[go: up one dir, main page]

CN101066945B - 一种合成3-位取代内酰胺类化合物的方法 - Google Patents

一种合成3-位取代内酰胺类化合物的方法 Download PDF

Info

Publication number
CN101066945B
CN101066945B CN200710041247A CN200710041247A CN101066945B CN 101066945 B CN101066945 B CN 101066945B CN 200710041247 A CN200710041247 A CN 200710041247A CN 200710041247 A CN200710041247 A CN 200710041247A CN 101066945 B CN101066945 B CN 101066945B
Authority
CN
China
Prior art keywords
compound
substituted
aryl
alkyl
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710041247A
Other languages
English (en)
Other versions
CN101066945A (zh
Inventor
游书力
李公强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN200710041247A priority Critical patent/CN101066945B/zh
Publication of CN101066945A publication Critical patent/CN101066945A/zh
Application granted granted Critical
Publication of CN101066945B publication Critical patent/CN101066945B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明提供了一种合成3-取代内酰胺化合物的方法,是一种有效的以氮杂环卡宾作为催化剂,由醛基取代的小环胺类化合物高效率的合成3-取代内酰胺化合物的方法。与现有方法相比,该方法可适底物范围广,催化剂方便易得,反应条件温和,操作简便,而且反应效率高。另外,当底物中存在手性季碳中心时,该反应可以将其手性传递到产物中,可用来合成高对应选择性的含季碳中心的内酰胺类化合物。而且该方法无需加入任何金属盐类化合物,从而有利于药物的生产和处理。

Description

一种合成3-位取代内酰胺类化合物的方法
技术领域
本发明涉及一种合成3-位取代内酰胺类化合物的方法,尤其涉及一种通过底物中季碳手性中心手性保留来合成光学活性的螺环内酰胺化合物的方法。该方法是由氮杂环卡宾的前体盐与碱作用现场生成的氮杂环卡宾催化醛基取代的小环胺类化合物扩环的反应,也可以直接由氮杂环卡宾催化醛基取代的小环胺类化合物扩环的反应,该反应可以高效地合成3-位取代内酰胺类化合物。
背景技术
近年来,有机小分子催化由于其合成容易,结构修饰方便,无重金属残留等优点在全世界范围内引起了学术界和工业界的广泛关注[(a)Seayad,J.;List,B.Org.Biomol.Chem.2005,3,719-724.(b)Dalko,P.I.;Moisan,L.Angew.Chem.Int.Ed.2004,43,5138-5175.],其中由氮杂环卡宾为催化剂催化的有机反应在近年来更是取得了迅速的发展[a)H.Stetter,Angew.Chem.1976,88,695-704;Angew.Chem.Int.Ed.1976,15,639-647;b)M.S.Kerr,J.Read de Alaniz,T.Rovis,J.Am.Chem.Soc.2002,124,10298-10299;c)A.E.Mattson,A.R.Bharadwaj,K.A.Scheidt,J.Am.Chem.Soc.2004,126,2314-2315;d)M.S.Kerr,T.Rovis,J.Am.Chem.Soc.2004,126,8876-8877;e)J.Read de Alaniz,T.Rovis,J.Am.Chem.Soc.2005,127,6284-6289;f)Q.Liu,T.Rovis,J.Am.Chem.Soc.2006,128,2552-2553;g)Y.Hachisu,J.W.Bode,K.Suzuki,J.Am.Chem.Soc.2003,125,8432-8433;h)D.Enders,O.Niemeier,T.Balensiefer,Angew.Chem.2006,118,1491-1495;Angew.Chem.Int.Ed.2006,45,1463-1467;i)H.Takikawa,Y.Hachisu,J.W.Bode,K.Suzuki,Angew.Chem.2006,118,3572-3574;Angew.Chem.Int.Ed.2006,45,3492-3494;j)M.He,G.J.Uc,J.W.Bode,J.Am.Chem.Soc.2006,128,15088-15089;k)G.-Q.Li,L.-X.Dai,S.-L.You,Chem.Commun.2007,852-854],在这一领域中,我们最近发展了由氮杂环卡宾催化醛基取代的小环胺类化合物的扩环反应,该反应可以高效率地合成3-位取代内酰胺类化合物,而这一类化合物存在于大量的具有生物活性的天然和非天然产物中[a)N.C.Warshakoon;S.Wu;A.Boyer;R.Kawamoto;J.Sheville;S.Renock;K.Xu;M.Pokross;A.G.Evdokimov;R.Walter;M.Mekel.Bioorg.Med.Chem.Lett.2006,16,5598-5601;b)J.Uddin;K.Ueda;E.Siwu;M.Kita;D.Uemura Biorg.Med.Chem.,2006,14,6954-6961;c)H.Ishikawa;G.I.Elliott;J.Velcicky;Y.Choi;D.Boger J.Am.Chem.Soc.,2006,128,10596-10612;d)Hamlyn,Richard John;Rigoreau,Laurent Jean Martin;Raynham,Tony Michael;Priestley,Rachael Elizabeth;Soudy,Christelle Nicole Marguerite;Lyko,Frank;Bruckner,Bodo;Kern,Oliver Thomas.PCT Int.Appl.2007,71;e)Jacyno,John M.;Lin,Nan-Homg;Holladay,Mark W.;Sullivan,James P.CurrentTopics in Plant Physiology(1995),15(Phytochemicals and Health),294-6.f)J.A.Ferrendelli;H.J.Kupferberg Advances in Neurology 1980,27,587-96.]目前文献中对3-位取代的内酰胺化合物的合成报道很多,但其中大多都有金属参与反应或者反应条件较苛刻,反应时间很长等缺点,因而发展一种操作方便,条件温和,而且效率高的合成3-位取代内酰胺类化合物的方法是这方面的重点和难点。本发明人发展的利用氮杂环卡宾前体盐与碱作用,现场生成氮杂环卡宾或者直接用氮杂环卡宾这一有机小分子催化剂,通过对醛基取代小环内酰胺这一方便易得的底物扩环来实现3-位取代的内酰胺化合物的合成,对此类化合物的合成有着重要的意义。
发明内容
本发明目的是要提供一种高效的合成3-位取代内酰胺类化合物的方法。尤其是在底物中含有季碳手性中心时,反应可以将手性保留到产物中,可用来高效率高对映选择性地合成光学活性的3-位取代内酰胺类化合物。
本发明的方法是一种高效的由醛基取代四元环胺类化合物合成3-位取代内酰胺化合物的方法。该方法是由氮杂环卡宾前体盐与碱作用现场生成氮杂环卡宾作为催化剂,也可以直接用氮杂环卡宾作为催化剂。
本发明的方法所合成的3-位取代内酰胺化合物分子通式是:
Figure G2007100412478D00031
式中:R1或R2任意选自H、含C1-C16的烷基、氨基、烷氧基或卤素原子等;R3任意选自各种酰基、取代的芳基或者C1-C16的烷基的等;X为羰基或
Figure G2007100412478D00032
n=0、1或2;
本发明的3-位取代的内酰胺化合物是以醛基取代的小环胺类化合物为原料,在有机溶剂的存在下,以氮杂环卡宾前体盐与碱的作用生成的氮杂环卡宾催化反应制得,也可以直接用氮杂环卡宾催化反应制得,可用下式表示:
Figure G2007100412478D00033
醛基取代的小环胺类化合物的结构式为:其中R1或R2任意选自H、含C1-C16的烷基、氨基、烷氧基或者卤素原子等;R3任意选自酰基、取代的芳基或者C1-C16的烷基的等;X为羰基或
Figure G2007100412478D00035
n=0、1或2;当用氮杂环卡宾前体盐与碱作用现场生成氮杂环卡宾作为催化剂时,氮杂环卡宾的前体盐的结构式可以是任意光学纯的或其对映体或消旋体的如下结构式,但不受图示所限:
Figure G2007100412478D00036
当直接用氮杂环卡宾作为催化剂时,氮杂环卡宾的结构式可以是任意光学纯的或其对映体或消旋体的如下结构式,但不受图示所限:
Figure G2007100412478D00041
其中,R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16或R17为H、C1-C16的烷基、芳基、取代芳基;所述取代的芳基上的取代基为烷基、烷氧基或取代的胺基,上述各取代基可单独成键或者相互之间成键形成C5-C7的环烷基、芳基、取代芳基、含N、O、S的杂芳基或杂环烷基;A1,A2,A3,A4为Cl-、Br-、BF4 -或ClO4 -
所述的碱是三乙胺、1,8-二氮杂二环[5,4,0]十一碳-7-烯、1,5-二氮杂二环[4,3,0]壬-5-烯、碳酸铯、磷酸钾、二(三甲基硅基)氨基钠、二(三甲基硅基)氨基锂、二(三甲基硅基)氨基钾、叔丁醇钾、叔丁醇钠或二异丙基乙基胺;
所述的醛基取代小环胺类化合物、氮杂环卡宾前体盐或氮杂环卡宾、碱的摩尔比为1∶0.01-0.2∶0-0.2。
当用氮杂环卡宾前体盐与碱作用,现场生成氮杂环卡宾催化该反应时,所述的醛基取代的小环胺类化合物、氮杂环卡宾前体盐和碱的的摩尔比1∶0.01-0.2∶0.01-0.2。推荐摩尔比为1∶0.2∶0.2。尤其推荐反应的摩尔比为:醛基取代小环胺类化合物∶氮杂环卡宾前体盐∶碱=1∶0.01∶0.01。
当直接用氮杂环卡宾催化该反应时,所述的醛基取代的小环胺类化合物、氮杂环卡宾和碱的的摩尔比1∶0.01-0.2∶0。尤其推荐反应的摩尔比为:醛基取代小环胺类化合物∶氮杂环卡宾∶碱=1∶0.01∶0。
反应温度推荐为0℃至120℃,进一步推荐反应温度为:25℃至110℃。反应时间推荐为5小时-48小时。
其中R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17同前所述。
本发明中所提到的烷基、烃氧基、酰基等,除非另外说明,均推荐碳数为1~18的基团,进一步推荐碳数为1~10的,尤其推荐碳数为1~5的。本发明中所提到的环烷基,除非另外说明,均指碳数为3~18的基团,进一步推荐碳数为3~10的,尤其推荐碳数为3~7的。本发明中所提到的芳基,除非另外说明,均指苯基、C5~C10的含N、O或S的杂环基,推荐为苯基。本发明中提到的杂芳基,推荐C5~C10的含N、O和S的杂环基。
本发明方法中,所述有机溶剂可以是极性或非极性溶剂。如苯、四氯化碳、石油醚、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、乙醚、二氯甲烷、三氯甲烷、甲苯、二甲苯、环己烷、正己烷、正庚烷、二氧六环或乙腈等。
采用本发明方法所得产物可以经过重结晶,薄层层析,柱层析减压蒸馏等方法加以分离。如用重结晶的方法,推荐溶剂为极性溶剂与非极性溶剂的混合溶剂。推荐溶剂可为二氯甲烷-正己烷、异丙醇-石油醚、乙酸乙酯-石油醚、乙酸乙酯-正己烷或异丙醇-乙酸乙酯-石油醚等混合溶剂。用薄层层析和柱层析方法,所用的展开剂为极性溶剂与非极性溶剂的混合溶剂。推荐溶剂可为异丙醇-石油醚、乙酸乙酯-石油醚、乙酸乙酯-正己烷或异丙醇-乙酸乙酯-石油醚等混合溶剂,其体积比可以分别是:极性溶剂∶非极性溶剂=1∶0.1-500。例如:乙酸乙酯∶石油醚=1∶0.1-50,异丙醇∶石油醚=1∶0.1-500。
本发明提供了一些新的3-位取代内酰胺化合物其中例如R1为H;R2为甲基或苯基;R3为苯基、对甲基苯基、苄基、烷基。该类化合物可以经常规的反应将R3脱除以及将酰胺还原为氨基并上氨基保护基如苄氧羰基,从而具有广泛的应用。
本发明提供了一种有效的由氮杂环卡宾前体盐与碱作用,现场生成的氮杂环卡宾或者直接用氮杂环卡宾作为催化剂,由醛基取代的小环胺类化合物高效率的合成3-位取代内酰胺化合物的方法。与现有方法相比,该方法可适用于多种不同类型的醛基取代小环胺类化合物,反应条件温和,操作简便。另外,反应中无需加入任何金属盐类化合物,从而有利于药物的生产和处理。且反应的产率也较好,一般为78%-99%。
具体实施方式
通过下述实施例将有助于理解本发明,但并不限制本发明的内容。
实施例1:噻唑类氮杂环卡宾前体盐的制备
室温氩气保护下,在一干燥的反应管中将4,5-二甲基噻唑或者4-甲基-5-羟乙基噻唑(1.0mmol)溶于10mL干燥的乙腈中,在快速搅拌的条件下,将(1.0mmol)的溴化苄或者苄氯缓慢的滴加到体系中,回流3个小时。待反应结束,自然冷却至室温,在快速搅拌下,向体系中缓慢滴加乙酸乙酯30mL,体系有大量白色固体析出,静置。过滤,得白色固体,即为噻唑类卡宾的前体盐。
C1:溴化(3-苄基-4,5-二甲基噻唑)
3-Benzyl-4,5-dimethylthiazolium bromide
Figure G2007100412478D00061
固体,91%产率。′H NMR(300MHZ,DMSO)67.492-7.324(m,5H),5.809(s,2H),2.499(s,3H),2.327(s,3H);MS(CI)m/z(relative intensity)204(M,13.6),171(8),142(10.4),114(72.81),91(100).
C2:溴化[3-苄基-4-甲基-5-(β-羟基乙基)噻唑]
3-Benzyl-5-(β-ethoxyethyl)-4-methy thiazolium Bromide
Figure G2007100412478D00062
白色固体,82%产率;’H NMR(300MHz,CDCl3)11.51(s,1H),7.35(m,5H),6.12(d,2H,J=5.2Hz),3.49-3.65(m,4H),3.0l(t,2H,J=5.4Hz),2.42(s,3H),1.19(t,3H,J=7.0Hz).
C3:2-Phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium chloride
Figure G2007100412478D00063
总产率C3(15.778g 62%).Rf(丙酮)=0.09;1H NMR(300MHz,D2O)δ7.61-7.79(m,2H),7.50-7.59(m,3H),4.38(dd,2H,J=7.3,7.3Hz),3.13(dd,2H,J=7.3,7.3Hz),2.77(ddd,2H,J=15.0,7.7,7.7Hz);13C NMR(100MHz,D2O)δ163.9,135.5,131.0,130.3,121.3,47.5,26.7,21.5;IR(NaCl,压片)1586,1513,1426,1382,967cm-1;m.p.180-184℃;HRMS(快原子轰击),C11H12N3,计算值186.1031.实测值186.1038.
C4:1,3,4-triphenyl-4H-1,2,4-triazol-1-ium perchlorate
Figure G2007100412478D00071
MS(m/z,rel.intensity)397(M+,100),398(22),399(32)
C5:1,3-二(2,6-二异丙基苯基)咪唑盐酸盐
1,3-Bis(2,6-diisopropylphenyl)imidzaolium chloride
Figure G2007100412478D00072
MS(m/z,rel.intensity)397(M+,100),398(22),399(32).
C6:1,3-二(均三甲基苯基)咪唑盐酸盐
1,3-Bis(2,4,6-trimethylphenyl)imidazolium chicride
Figure G2007100412478D00073
MS(m/z,相对强度)340(M+,100),341(23),342(32).
C7:
2-phenyl-6,10b-dihydro-4H,5aH-5-oxa-3,10cdiaza-2-azoniacyclopenta[c]fluor--ene tetrafluoroborate
Figure G2007100412478D00081
消旋或者手性化合物
MS(m/z,相对强度)337(M+,100),336(24),338(20).
C8:
2-Pentafluorophenyl-6,10b-dihydro-4H,5aH-5-oxa-3,10cdiaza-2-azoniacyclopenta[c]fluorene tetrafluoroborate
Figure G2007100412478D00082
消旋体或者手性化合物
MS(m/z,相对强度)380(M+,100),381(20),382(2).
C9:2-(2,4,6-trimethylphenyl)-6,10b-dihydro-4H,5aH-5-oxa-3,10cdiaza--2-azoniacyclopenta[c]fluorene tetrafluoroborate
Figure G2007100412478D00083
消旋体或者手性化合物
MS(m/z,相对强度)419(M+,100),418(25),420(24)。
实施例2:氮杂环卡宾催化醛基取代内酰胺化合物的扩环反应
Figure G2007100412478D00084
在氩气保护下,向一干燥的反应管中依次加入氮杂环卡宾前体盐化合物(0.01mmol),碱(0.01mmol),醛基取代小环胺类化合物(1.00mmol),二氯甲烷4.0mL,回流。反应结束,减压除去溶剂,将残留物柱层析分离得产物。未加特别说明,反应均以二氯甲烷为溶剂,反应温度回流。
P1:N-(对甲氧基苯基)-3-苯基琥珀酰亚胺
N-(4-methoxyphenyl)-3-phenylpyrrolidine-2,5-dione
Figure G2007100412478D00091
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/4,v/v;白色固体,99%产率;1HNMR(CDCl3,300MHz)δ2.97(dd,1H,J1=4.8Hz,J2=18.3Hz),3.35(dd,1H,J1=9.9Hz,J2=18.6Hz),3.82(s,3H),4.16(dd,1H,J1=4.8Hz,J2=9.9Hz),6.98(d,2H,J=9.0Hz),7.23(d,2H,J=9.0Hz),7.29-7.42(m,5H);13C NMR(75MHz,CDCl3):δ37.2,45.9,55.4,114.5,124.4,127.3,127.6,128.0,129.2,137.2,159.5,175.4,176.9;IR(薄膜):vmax(cm-1)=3007,2953,2834,1705,1513,1250,1198,777,703,670;MS(电子轰击,相对强度)293(M+,50),161(100);元素分析C17H15NO3:计算值:C,72.58;H,5.37;N,4.98;实测值:C,72.42;H,5.26;N,4.83;m.p.161-162℃.
P2:N-(对甲氧基苯基)-3-(对甲氧基苯基)琥珀酰亚胺
N-(4-methoxyphenyl)-3-4-(methoxyphenyl)pyrrolidine-2,5-dione
Figure G2007100412478D00092
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/3,v/v;白色固体,98%产率;1HNMR(CDCl3,300MHz)δ2.94(dd,1H,J1=4.8Hz,J2=18.3Hz),3.34(dd,1H,J1=9.6Hz,J2=18.6Hz),3.81(s,3H),3.82(s,3H),4.12(dd,1H,J1=4.8Hz,J2=9.6Hz),6.92(d,2H,J=8.7Hz),6.98(d,2H,J=9.0Hz)7.21-7.26(m,4H);13CNMR(75MHz,CDCl3):δ37.2,45.1,55.3,55.4,114.4,114.6,124.4,127.6,128.4,129.1,159.2,159.5,175.5,177.2;IR(薄膜):vmax(cm-1)=2960,2839,1705,1516,1251,1200,1181,1033,833,670;MS(电子轰击,相对强度)311(M+,43),134(100);元素分析C18H17NO4:计算值:C,69.44;H,5.50;N,4.50;实测值:C,69.30;H,5.79;N,4.32;m.p.172-173℃.
P3:N-(对甲氧基苯基)-3-(对氯苯基)琥珀酰亚胺
3-(4-chlorophenyl)-N-(4-methoxyphenyl)pyrrolidine-2,5-dione
Figure G2007100412478D00101
催化剂为C6(1mol%);反应溶剂为1,4-二氧六环,回流;乙酸乙酯/石油醚=1/4,v/v;白色固体,93%产率;1HNMR(CDCl3,300MHz)δ2.95(dd,1H,J1=5.1Hz,J2=18.6Hz),3.37(dd,1H,J1=9.6Hz,J2=18.3Hz),3.83(s,3H),4.17(dd,1H,J1=4.8Hz,J2=9.6Hz),6.99(d,2H,J=9.0Hz),7.21-7.27(m,4H),7.38(d,2H,J=8.4Hz);13C NMR(75MHz,CDCl3):δ36.9,45.2,55.5,114.5,124.3,127.6,128.8,129.4,134.0,135.4,159.6,175.0,176.4;IR(压片):vmax(cm-1)=3472,3072,3012,2837,1783,1706,1513,1251,1205,1167,1029,832,670;MS(电子轰击,m/z,相对强度)315(M+,37),149(100);元素分析C17H14ClNO3:计算值:C,64.67;H,4.47;N,4.44;实测值:C,64.63;H,4.66;N,4.39;m.p.197-198℃.
P4:N-(对甲氧基苯基)-3-(2-噻吩基)琥珀酰亚胺
N-(4-methoxyphenyl)-3-(thiophen-2-yl)pyrrolidine-2,5-dione
Figure G2007100412478D00102
催化剂为C6(1mol%);反应溶剂为1,4-二氧六环;乙酸乙酯/石油醚=1/4,v/v;白色固体,85%产率;1H NMR(CDCl3,300MHz)δ3.06(dd,1H,J1=5.4Hz,J2=18.3Hz),3.37(dd,1H,J1=9.6Hz,J2=18.6Hz),3.80(s,3H),4.39(dd,1H,J1=5.4Hz,J2=9.6Hz),6.94-7.06(m,4H),7.17-7.29(m,3H);13C NMR(75MHz,CDCl3):δ37.1,41.0,55.4,114.4,124.2,125.3,125.5,127.1,127.5,138.3,159.5,174.5,175.5;IR(压片):vmax(cm-1)=3105,3004,2833,1902,1779,1709,1704,1516,1405,1250,1199,1175,1030,667;MS(电子轰击,m/z,相对强度)287(M+,3),110(100);HRMS(电子轰击)C15H13NO3S(M+):计算值287.0616实测值:287.0619;m.p.122-124℃.
P5:N-(对甲氧基苯基)-3-甲基琥珀酰亚胺
N-(4-methoxyphenyl)-3-methylpyrrolidine-2,5-dione
Figure G2007100412478D00111
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/5,v/v;白色固体,91%产率;1HNMR(CDCl3,300MHz)δ1.45(d,3H,J=7.2Hz),2.49(dd,1H,J1=3.6Hz,J2=16.8Hz),3.00-3.13(m,2H),3.82(s,3H),6.98(d,2H,J=9.3Hz),7.19(d,2H,J=8.7Hz);13C NMR(75MHz,CDCl3):δ16.8,34.7,36.5,55.4,114.4,124.5,127.6,159.4,175.7,179.8;IR(压片):vmax(cm-1)=3005,2943,2846,1773,1704,1511,1396,1245,1182,1166,1031,836,668;MS(电子轰击,m/z,相对强度)219(M+,100);HRMS(电子轰击)C12H13NO3(M+):计算值:219.0895;实测值:219.0900;m.p.91-93℃.
P6:N-(对甲氧基苯基)-3-正戊基琥珀酰亚胺
N-(4-methoxyphenyl)-3-pentylpyrrolidine-2,5-dione
Figure G2007100412478D00112
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/5,v/v;白色固体,99%产率;1HNMR(CDCl3,300MHz)δ0.9l(brs,3H),1.33-1.44(m,6H),1.55-1.68(m,1H),1.93-2.04(m,1H),2.53(m,1H),2.88-3.03(m,2H),3.81(s,3H),6.97(d,2H,J=9.0Hz),7.18(d,2H,J=9.0Hz);13C NMR(75MHz,CDCl3):δ14.0,22.4,26.3,31.4,31.4,34.5,40.0,55.4,114.4,124.5,127.6,159.4,176.0,179.3;IR(thin film):vmax(cm-1)=3074,2957,2932,2856,1776,1706,1519,1394,1255,1174,1027,822,769;MS(EI,m/z,rel.intensity)275(M+,53),205(100);HRMS(EI)C16H21NO3(M+):计算值275.1521;实测值:275.1521;m.p.67-68℃.
P7:N-(对甲氧基苯基)-3-异丙基琥珀酰亚胺
3-isopropyl-N-(4-methoxyphenyl)pyrrolidine-2,5-dione
Figure G2007100412478D00121
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/5,v/v;白色固体,93%产率;1HNMR(CDCl3,300MHz)δ0.96(d,3H,J=6.9Hz),1.04(d,3H,J=7.2Hz),2.39(m,1H),2.58(dd,1H,J1=4.2Hz,J2=18.3Hz),2.82(dd,1H,J1=9.3Hz,J2=18.3Hz),2.93(m,1H),3.80(s,3H),6.96(d,2H,J=8.7Hz),7.15(d,2H,J=9.0Hz);13C NMR(75MHz,CDCl3):δ17.1,19.8,29.0,30.3,45.5,55.3,114.3,124.4,127.6,159.3,176.1,178.6;IR(压片):vmax(cm-1)=2963,2935,1709,1513,1399,1255,1200,1035,831,771,672;MS(电子轰击,m/z,相对强度)247(M+,100);HRMS(电子轰击)C14H17NO3(M+):计算值:247.1208;实测值:247.1208;m.p.112-114℃.
P8:N-(对甲氧基苯基)-3,3-二甲基琥珀酰亚胺
N-(4-methoxyphenyl)-3,3-dimethylpyrrolidine-2,5-dione
Figure G2007100412478D00122
催化剂为C6(5mol%);乙酸乙酯/石油醚=1/5,v/v;白色固体,97%产率;1HNMR(CDCl3,300MHz)δ1.42(s,6H),2.71(s,2H),3.83(s,3H),6.98(d,2H,J=9.0Hz),7.20(d,2H,J=9.0Hz);13C NMR(75MHz,CDCl3):δ25.7,25.7,40.0,43.7,55.4,114.4,124.6,127.6,159.4,175.1,182.4;IR(压片):vmax(cm-1)=2936,2843,1775,1710,1511,1397,1248,1148,1033,834,788;MS(电子轰击,m/z,相对强度)233(M+,87),83(100);HRMS(电子轰击)C13H15NO3(M+):计算值:233.1052;实测值:233.1051;
P9:N-(对甲氧基苯基)-3-乙基-3-苯基琥珀酰亚胺
3-ethyl-N-(4-methoxyphenyl)-3-phenylpyrrolidine-2,5-dione
Figure G2007100412478D00123
催化剂为C6(5mol%);反应溶剂为1,4-二氧六环,回流,乙酸乙酯/石油醚=1/5,v/v;白色固体,97%产率;1H NMR(CDCl3,300MHz)δ0.97(t,3H,J=7.2Hz),2.17(dq,2H,J1=5.1Hz,J2=7.2Hz),3.06(AB,1H,JAB=18.3Hz),3.25(AB,1H,JBA=18.0Hz),3.80(s,3H),6.97(d,2H,J=8.7Hz),7.19(d,2H,J=8.7Hz),7.27-7.51(m,5H);13C NMR(75MHz,CDCl3):δ9.0,32.7,41.1,52.1,55.4,114.4,124.4,126.1,127.5,127.7,128.8,140.6,159.4,174.9,179.3;IR(压片):vmax(cm-1)=3474,3059,2970,2939,1779,1712,1515,1388,1253,1033,823,736,701;MS(电子轰击,m/z,相对强度)309(M+,66),149(100);HRMS(电子轰击)C19H19NO3(M+):计算值:309.1365;实测值:309.1371.
P10:N-(均三甲基)-3-苯基琥珀酰亚胺
N-mesityl-3-phenylpyrrolidine-2,5-dione
Figure G2007100412478D00131
催化剂为C6(5mol%);乙酸乙酯/石油醚=1/5,v/v;白色固体,78%产率;1HNMR(300MHz,CDCl3)δ2.09(s,3H),2.11(s,3H),2.30(s,3H),3.05(dd,1H,J1=5.1Hz,J2=18.6Hz),3.43(dd,1H,J1=9.9Hz,J2=18.6Hz),4.24(dd,1H,J1=5.1Hz,J2=9.9Hz),6.97(d,2H,J=4.5Hz),7.31-7.44(m,5H);13C NMR(75MHz,CDCl3)δ17.6,17.8,21.0,37.2,46.2,127.3,127.4,127.9,129.1,129.3,129.3,135.1,135.2,137.0,139.3,175.1,176.4;IR(压片):vmax(cm-1)=3466,3028,2919,1773,1712,1488,1372,1184,863,785,667;MS(电子轰击,m/z,相对强度)293(M+,30),161(100);HRMS(电子轰击)C19H19NO2(M+):计算值:293.1416实测值:293.1412;m.p.137-138℃.
P11:
Figure G2007100412478D00132
催化剂为C6(1mol%);乙酸乙酯/石油醚=1/3,v/v;白色泡沫状固体,92%产率99.9%ee,[手性柱AD-H,己烷/异丙醇=70/30,1.0ml·min-1,λ=220nm,t(最大保留时间)=19.67分钟,t(最小保留时间)=15.12分钟];[α]D 20=-46.5(c1.0,CHCl3).1H NMR和13C NMR显示体系存在旋转异构体,其物质的量比为2∶1。.1H NMR(300MHz,CDCl3)δ1.90-2.18(m,2H),2.78(AB,1H,JAB=17.7Hz),3.12,3.27(AB,1H,JBA=18.0Hz),3.60-3.71(m,2H),3.77,3.79(s,3H),5.06-5.18(m,2H),6.62,6.96(d,2H,J=9.0Hz),6.79,7.26(d,2H,J=9.0Hz),7.24-7.34(m,5H);13C NMR(75Hz,CDCl3)δ:23.1,23.9,38.2,40.0,41.4,42.4,47.4,48.3,55.3,55.3,64.2,65.1,67.2,68.1,114.1,114.3,123.9,124.5,127.3,127.8,127.8,128.0,128.4,128.5,128.6,128.7,135.1,135.9,153.0,154.1,159.2,159.4,173.1,173.6,177.4,177.7;IR(压片):vmax(cm-1)=2957,2883,2840,1718,1696,1514,1417,1253,1213,1166;MS(电子轰击,m/z,相对强度)394(M+,27),91(100);HRMS(电子轰击)计算值:C22H22N2O5(M+):394.1529实测值:394.1535;m.p.107-108℃.
P12:N-(对甲氧基苯基)-4-苯基吡咯烷酮
N-(4-methoxyphenyl)-4-phenylpyrrolidin-2-one
Figure G2007100412478D00141
MS(m/z,相对强度)267(M+,100),268(19),269(2).
P13:N-(对甲氧基苯基)-4-甲基吡咯烷酮
N-(4-methoxyphenyl)-4-methylpyrrolidin-2-one
Figure G2007100412478D00142
MS(m/z,相对强度)205(M+,100),206(13)
P14:N-(对甲氧基苯基)-4-正戊基吡咯烷酮
N-(4-methoxyphenyl)-4-penthylpyrrolidin-2-one
Figure G2007100412478D00151
MS(m/z,相对强度)261(M+,100),262(18),263(2).
实施例3:产物中酰胺的还原(应用实例)
Figure G2007100412478D00152
在氩气保护下,向干燥体系中加P11(0.5mmol,182.0mg)和四氢呋喃5mL。将体系置于冰水浴中冷却到0℃后,向体系中缓慢分批加入LiAlH4(2.5mmol,101.3mg),搅拌30分钟,撤去冰水浴,自然恢复室温,搅拌。反应完毕后(TLC跟踪反应),将体系冷却至0℃后,缓慢滴加蒸馏水0.18mL,搅拌30分钟后,过滤。用乙酸乙酯洗涤固体,合并有机相,干燥后柱层析。石油醚/乙酸乙酯=3/1,3‰三乙胺),得相应还原产物,产率86%。
White solid.99.7%ee,[手性柱OD-H(15cm),己烷/异丙醇=98/2,0.7ml·min-1,λ=230nm,t(最大保留时间)=15.71分钟,t(最小保留时间)=13.29分钟];[α]D 20=-18.4(c 0.82,CHCl3).1H NMR(300MHz,CDCl3)δ1.68-1.94(m,5H),2.13-2.20(m,1H),2.37(s,3H),2.76-2.83(m,2H),2.97(d,1H,J=9.3Hz),3.21-3.29(m,1H),3.35-3.44(m,2H),3.76(s,3H),6.52(d,2H,J=9.0Hz),6.85(d,2H,J=9.6Hz);13C NMR(75MHz,CDCl3)820.8,30.2,34.8,38.3,47.3,53.4,54.4,55.9,69.6,112.3,114.9,142.9,150.8;IR(压片):vmax(cm-1)=2979,2951,2828,2781,1516,1241,1042,814;MS(电子轰击,m/z,相对强度)246(M+,42),150(100).HRMS(电子轰击)C15H22NO(M+):计算值:246.1732实测值:246.1736;m.p.46-48℃.

Claims (5)

1.一种合成3-位取代内酰胺类化合物的方法,其特征是在有机溶剂的存在下和0℃~120℃下,以醛基取代小环胺类化合物为原料,以氮杂环卡宾前体盐与碳酸铯、磷酸钾或碱作用生成的氮杂环卡宾作为催化剂,反应2-36小时制得3-位取代的内酰胺化合物;
所述的醛基取代小环胺类化合物、氮杂环卡宾前体盐、以及碳酸铯、磷酸钾或碱的摩尔比为1∶0.01-0.2∶0.01-0.2;
所述的醛基取代小环胺类化合物的结构式为
Figure F2007100412478C00011
所述的氮杂环卡宾前体盐具有如下结构式:
Figure F2007100412478C00012
所述的氮杂环卡宾具有如下结构式:
Figure F2007100412478C00013
所述的碱是三乙胺、1,8-二氮杂二环[5,4,0]十一碳-7-烯、1,5-二氮杂二环[4,3,0]壬-5-烯、二(三甲基硅基)氨基钠、二(三甲基硅基)氨基锂、二(三甲基硅基)氨基钾、叔丁醇钾、叔丁醇钠或者二异丙基乙基胺;
其中R1,R2任意选自H、C1-C16的烷基、C3-C16的环烷基、氨基或取代的胺基、烷氧基或者卤素原子;R3任意选自酰基、取代的芳基或者C1-C16的烷基;
X为羰基或者
Figure F2007100412478C00014
n=0或1;
R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16或R17为H、C1-C16的烷基、芳基或取代的芳基;
所述的取代的芳基上的取代基为烷基、烷氧基;所述的取代的胺基上的取代基为C1-C16的烷基、芳基或者C5~C10的含N、O、S的杂环烷基;A1、A2、A3或A4任意为Cl-、Br-、BF4 -或ClO4 -;所述的烷基、烷氧基或酰基的碳数为1~18;所述的芳基是苯基、C5~C10的含N、O或S的杂环基。
2.根据权利要求1所述的合成3-位取代内酰胺类化合物的方法,其特征是所述3-位取代内酰胺类化合物为光学纯,其结构为其中*为手性碳原子,R1、R2、R3和X如权利要求1所述。
3.根据权利要求1所述的合成3-位取代内酰胺类化合物的方法,其特征是所述3-位取代内酰胺类化合物为消旋体,其结构为
Figure F2007100412478C00022
其中R1、R2、R3和X如权利要求1所述。
4.如权利要求1所述的合成3-位取代内酰胺类化合物的方法,其特征是所述的有机溶剂是苯、四氯化碳、石油醚、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、乙醚、二氯甲烷、三氯甲烷、甲苯、二甲苯、环己烷、正己烷、正庚烷、二氧六环或乙腈。
5.如权利要求1所述的合成3-位取代内酰胺类化合物的方法,其特征是3-位取代内酰胺类化合物经过重结晶、薄层层析,柱层析或减压蒸馏加以分离。
CN200710041247A 2007-05-25 2007-05-25 一种合成3-位取代内酰胺类化合物的方法 Expired - Fee Related CN101066945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710041247A CN101066945B (zh) 2007-05-25 2007-05-25 一种合成3-位取代内酰胺类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710041247A CN101066945B (zh) 2007-05-25 2007-05-25 一种合成3-位取代内酰胺类化合物的方法

Publications (2)

Publication Number Publication Date
CN101066945A CN101066945A (zh) 2007-11-07
CN101066945B true CN101066945B (zh) 2010-05-19

Family

ID=38879665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710041247A Expired - Fee Related CN101066945B (zh) 2007-05-25 2007-05-25 一种合成3-位取代内酰胺类化合物的方法

Country Status (1)

Country Link
CN (1) CN101066945B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2740628C (en) 2008-09-18 2018-05-01 Naurex, Inc. Nmda receptor modulators and uses thereof
KR101692275B1 (ko) 2010-02-11 2017-01-04 노오쓰웨스턴 유니버시티 2차 구조 안정화된 nmda 수용체 조절제 및 그의 용도
MX2012009388A (es) 2010-02-11 2012-10-01 Univ Northwestern Moduladores del receptor de n-metil-d-aspartato estabilizado de estructura secundaria y sus usos.
CN102153557B (zh) * 2011-01-21 2013-03-20 中国科学院上海有机化学研究所 具有乙二胺骨架的多手性中心氮杂环卡宾前体盐、合成方法及用途
JP2016506962A (ja) 2013-01-29 2016-03-07 ノーレックス, インコーポレイテッドNaurex, Inc. スピロラクタム系nmda受容体モジュレーターおよびその使用
CN105026401A (zh) 2013-01-29 2015-11-04 诺雷克斯股份有限公司 螺-内酰胺nmda受体调节剂及其用途
LT2951183T (lt) 2013-01-29 2019-05-27 Aptinyx Inc. Spiro-laktamo nmda receptorių moduliatoriai ir jų panaudojimas
JP6419087B2 (ja) 2013-01-29 2018-11-07 アプティニックス インコーポレイテッド スピロラクタム系nmda受容体モジュレーターおよびその使用
EA032153B1 (ru) 2013-01-29 2019-04-30 Аптиникс Инк. Спиролактамные модуляторы nmda-рецептора и их применение
WO2017201285A1 (en) 2016-05-19 2017-11-23 Aptinyx Inc. Spiro-lactam nmda receptor modulators and uses thereof
MX378566B (es) 2016-05-19 2025-03-11 Aptinyx Inc Moduladores del receptor espiro-lactama n-metil-d-aspartato y usos de los mismos.
US11299495B2 (en) 2016-08-01 2022-04-12 Aptinyx Inc. Spiro-lactam NMDA receptor modulators and uses thereof
MX385336B (es) 2016-08-01 2025-03-18 Aptinyx Inc Moduladores del receptor nmda espiro-lactam y uso de los mismos.
PE20190502A1 (es) 2016-08-01 2019-04-10 Aptinyx Inc Moduladores del receptor nmda spiro-lactam y bis-spiro-lactam y uso de los mismos
AU2017306164B2 (en) 2016-08-01 2021-10-21 Tenacia Biotechnology (Hong Kong) Co., Limited Spiro-lactam NMDA modulators and methods of using same
WO2018026782A1 (en) 2016-08-01 2018-02-08 Aptinyx Inc. Spiro-lactam nmda receptor modulators and uses thereof
CN106916093B (zh) * 2017-02-23 2019-07-09 福州大学 一种氮杂环卡宾催化合成多取代吡咯烷酮类化合物的方法
JP7210599B2 (ja) 2018-01-31 2023-01-23 アプティニックス インコーポレイテッド スピロラクタム系nmda受容体修飾因子およびその使用
US12012413B2 (en) 2019-11-11 2024-06-18 Tenacia Biotechnology (Hong Kong) Co., Limited Methods of treating painful diabetic peripheral neuropathy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Benito Alcaide, et al..Organocatalytic Ring Expansion of β-Lactams to γ-Lactams through a Novel N1-C4 Bond Cleavage. DirectSynthesis ofEnantiopure Succinimide Derivatives.Org. Lett.7 18.2005,7(18),3981-3984.
Benito Alcaide,et al..Organocatalytic Ring Expansion of β-Lactams to γ-Lactams through a Novel N1-C4 Bond Cleavage.DirectSynthesis ofEnantiopure Succinimide Derivatives.Org. Lett.7 18.2005,7(18),3981-3984. *
Ming He, et al..Catalytic Synthesis of γ-Lactams via Direct Annulations ofEnals and N-Sulfonylimines.Org. Lett.7 14.2005,7(14),3131-3134.
Ming He,et al..Catalytic Synthesis of γ-Lactams via Direct Annulations ofEnals and N-Sulfonylimines.Org. Lett.7 14.2005,7(14),3131-3134. *

Also Published As

Publication number Publication date
CN101066945A (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
CN101066945B (zh) 一种合成3-位取代内酰胺类化合物的方法
Hayama et al. Mechanistic insight into asymmetric hetero-Michael addition of α, β-unsaturated carboxylic acids catalyzed by multifunctional thioureas
Chen et al. Formal [4+ 1] annulation reactions in the synthesis of carbocyclic and heterocyclic systems
Yu et al. A highly efficient asymmetric Michael addition of α, α-disubstituted aldehydes to maleimides catalyzed by primary amine thiourea salt
Fukata et al. Procedure-controlled enantioselectivity switch in organocatalytic 2-oxazolidinone synthesis
Chen et al. Copper-catalyzed N-alkynylations of sulfoximines with bromoacetylenes
Zhou et al. Synthesis of C 1-symmetric chiral secondary diamines and their applications in the asymmetric copper (II)-catalyzed Henry (nitroaldol) reactions
CN101125817B (zh) 一种合成高对映选择性醛基取代小环胺类化合物和光学活性3-位取代内酰胺类化合物的方法
Jiang et al. Enantio-and diastereoselective asymmetric addition of 1, 3-dicarbonyl compounds to nitroalkenes in a doubly stereocontrolled manner catalyzed by bifunctional rosin-derived amine thiourea catalysts
Zhang et al. Group-assisted purification chemistry for asymmetric mannich-type reaction of chiral N-phosphonyl imines with azlactones leading to syntheses of α-quaternary α, β-diamino acid derivatives
Matlock et al. Synthesis of α-substituted vinylsulfonium salts and their application as annulation reagents in the formation of epoxide-and cyclopropane-fused heterocycles
Cayuelas et al. Enantioselective synthesis of polysubstituted spiro-nitroprolinates mediated by a (R, R)-Me-DuPhos· AgF-catalyzed 1, 3-dipolar cycloaddition
Li et al. Divergent synthesis of enantioenriched β-functional amines via desymmetrization of meso-aziridines with isocyanides
Bai et al. Quinine-catalyzed asymmetric domino Mannich-cyclization reactions of 3-isothiocyanato oxindoles with imines for the synthesis of spirocyclic oxindoles
Yao et al. N, N′-Dioxide/gadolinium (III)-catalyzed asymmetric conjugate addition of nitroalkanes to α, β-unsaturated pyrazolamides
Yang et al. Chiral N-Phosphonyl Imines for an Aza-Morita–Baylis–Hillman Reaction via Group-Assisted Purification (GAP) Chemistry
Calaza et al. Stereoselective synthesis of quaternary proline analogues
Zhu et al. α-Oxo-γ-butyrolactam, N-containing pronucleophile in organocatalytic one-pot assembly of butyrolactam-fused indoloquinolizidines
Hu et al. Chiral bifunctional ferrocenylphosphine catalyzed highly enantioselective [3+ 2] cycloaddition reaction
Viso et al. An approach to the stereoselective synthesis of enantiopure dihydropyrroles and aziridines from a common sulfinyl-sulfinamide intermediate
Mandal et al. Synthesis of β-lactams through alkyne–nitrone cycloadditions
Zhou et al. N-Heterocyclic carbene-promoted [4+ 2] annulation of α-chloro hydrazones with α-chloro aliphatic aldehydes to access enantioenriched dihydropyridazinones
Alonso et al. Using heteroaryl-lithium reagents as hydroxycarbonyl anion equivalents in conjugate addition reactions with (S, S)-(+)-pseudoephedrine as chiral auxiliary; enantioselective synthesis of 3-substituted pyrrolidines
Hou et al. Asymmetric synthesis of oxindole-derived vicinal tetrasubstituted acyclic amino acid derivatives by the Mannich-type reaction
Fan et al. Cu (I)-catalyzed asymmetric Mannich reaction of glycine schiff bases to ketimines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100519

Termination date: 20140525