CN101060291B - 无变压器的超声波电机驱动器 - Google Patents
无变压器的超声波电机驱动器 Download PDFInfo
- Publication number
- CN101060291B CN101060291B CN200710072260XA CN200710072260A CN101060291B CN 101060291 B CN101060291 B CN 101060291B CN 200710072260X A CN200710072260X A CN 200710072260XA CN 200710072260 A CN200710072260 A CN 200710072260A CN 101060291 B CN101060291 B CN 101060291B
- Authority
- CN
- China
- Prior art keywords
- circuit
- output
- voltage
- ultrasonic motor
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
无变压器的超声波电机驱动器,它涉及到超声电机的驱动器。本发明解决了现有超声波电机驱动器需要变压器驱动而带来了体积大、适应性差、成本高的问题。无变压器的超声波电机驱动器包括单片机脉冲信号发生电路、直流升压电路、多路隔离驱动电路和多路桥式斩波电路,单片机脉冲信号发生电路的多路脉冲信号输出端分别与多路隔离驱动电路的信号输入端连接,每路隔离驱动电路的信号输出端与每路桥式斩波电路的控制信号输入端连接,每路桥式斩波电路的两个电源端并联在直流升压电路的直流驱动电压输出端和电源地之间。本发明提供了一种多参数可调的超声波电机驱动器,可应用于超声波电机的科研院所以及超声波电机应用领域,也可应用于超声波发生器领域。
Description
技术领域
本发明涉及到超声波电机的驱动器。
背景技术
超声波电机是近二十年来出现的一种全新概念的驱动装置,和传统的电磁电机相比,具有惯性小、不受磁场影响、运转宁静、低速大扭矩、可直接带动负载、断电自锁、运动形式灵活多样等特点。超声波电机需要至少两路相位相差90°的高频高压信号来驱动。目前,超声波电机驱动器大致分两大类:一类是利用开关逆变技术(参见附图12),采用变压器升压,这种措施在国内使用比较普遍,但体积笨重,并且不同型号电机需要匹配不同型号的电源(如中国专利申请号为02138534.3的公开文献),通用性不好;另一类是采用直接数字合成信号波形(参见附图13),这种措施虽实现了调频、调相和调幅的调节,激励信号理想,但信号的产生采用了昂贵的DSP和DDS芯片,不仅大材小用、电路结构复杂,而且价格昂贵(如中国专利申请号为03112679.0的公开文献)。国内现有的驱动器大都不具备同时调节频率、调节相位差、调节输出电压峰峰值以及调节输出驱动波形占空比的功能,这使驱动电源的应用领域受到很大的限制。而且现有的驱动器均采用变压器升压,体积较大,不利于设备的小型化。随着机械微电子的快速发展对微型电机的需求越来越多,经常需要小于1cm3的微马达,由于超声波电机的尺寸不受限制,在小型电机领域内更有发展前景。这使得研制小尺寸超声波电机驱动电源成为一种必然。
发明内容
为了解决超声波电机驱动器需要变压器驱动而带来了体积大、适应性差和成本高的问题,本发明提供了一种更适用于小型超声电机的体积小、适应性强、成本低的无变压器的超声波电机驱动器。
无变压器的超声波电机驱动器,它包括单片机脉冲信号发生电路2、直流升压电路1、多路隔离驱动电路3和多路桥式斩波电路4,所述单片机脉冲信号发生电路2的含有相同频率、占空比和相位差的多路脉冲信号输出端分别与多路隔离驱动电路3的信号输入端连接,每路隔离驱动电路3的信号输出端与每路桥式斩波电路4的控制信号输入端连接,每路桥式斩波电路4的两个电源端并联在直流升压电路1的直流驱动电压Vout的输出端和电源地之间,每路桥式斩波电路4输出超声波电机的一路脉冲驱动信号,所述直流升压电路1由开关电源控制电路11、功率驱动电路12、滤波电路16、升压电路13、分压电路14和分压采样电路15组成,所述开关电源控制电路11的控制信号输出端与功率驱动电路12的信号输入端连接,功率驱动电路12的信号输出端与升压电路13的控制信号输入端连接,升压电路13的直流电压输出端输出等于超声波电机驱动信号峰-峰值的直流驱动电压Vout给桥式斩波电路4的电源输入端,分压电路14的两个电源端分别与升压电路13的直流电压输出端Vout和电源地连接,分压电路14的输出端输出直流驱动电压Vout一半的驱动参考电压VCOM,分压采样电路15由两个电阻串联后并联在升压电路13的直流电压输出端和电源地之间,分压采样电路15的输出端与滤波电路16的信号输入端连接,滤波电路16的信号输出端与开关电源控制电路11的电压反馈信号输入端连接。
本发明的无变压器的超声波电机驱动器的优点有:(一)、采用直流升压电路提供超声波电机需要的驱动信号的峰峰值电压,可调整范围宽、输出电压稳定、带载能力强;(二)、采用单片机软件控制输出斩波用的数字脉冲信号,能够灵活调整输出驱动信号的频率、占空比和相位差等参数;(三)、每路驱动信号产生电路都是独立的,不但能够根据实际需要的驱动信号的路数进行硬件灵活匹配,易于形成系列化产品,还方便维护与维修;(四)、电路结构模块化,方便批量生产;(四)、体积小、成本低。可以应用于超声波电机的科研院所以及超声波电机应用领域,也可应用于超声波发生器领域。
附图说明
图1是本发明的整体电路结构示意图,图2、图3是具体实施方式二所述的直流升压电路1的电路结构示意图,图4是具体实施方式三中所述的隔离驱动电路3和桥式斩波电路4的电路结构示意图,图5是具体实施方式四所述的整体电路结构示意图,图6是具体实施方式五中所述的整体电路结构示意图,图7是具体实施方式五中所述的可编程晶振电路8的电路结构示意图,图8 是具体实施方式七中所述的整体电路结构示意图,图9是具体实施方式七所述的整体电路结构示意图,图10是具体实施方式七所述的电压采样电路9的电路结构示意图,图11、图12是现有两种超声波电机驱动器的电路结构示意图。
具体实施方式
具体实施方式一:参见图1说明本实施方式。本实施方式无变压器的超声波电机驱动器由单片机脉冲信号发生电路2、直流升压电路1、多路隔离驱动电路3和多路桥式斩波电路4组成,所述单片机脉冲信号发生电路2的含有相同频率、占空比和相位差的多路脉冲信号输出端分别与多路隔离驱动电路3的信号输入端连接,每路隔离驱动电路3的信号输出端与每路桥式斩波电路4的控制信号输入端连接,每路桥式斩波电路4的两个电源端并联在直流升压电路1的直流驱动电压Vout的输出端和电源地之间,每路桥式斩波电路4输出超声波电机的一路脉冲驱动信号。
本实施方式采用直流升压电路1,将外部的低压直流电压信号直接提升至超声波电机驱动信号的峰-峰值的直流驱动电压信号Vout,然后采用数字信号控制对该直流驱动电压信号Vout进行斩波获得超声波电机需要的脉冲驱动信号。直流升压电路提升电压的可调范围宽,带载能力强,无需与超声波电机进行阻抗匹配,使本实施方式的无变压器的超声波电机驱动器的适应性更强。
本实施方式采用单片机控制脉冲信号发生,单片机控制灵活,可以产生多路频率、占空比、相位差可调的控制信号,使本实施方式输出的驱动信号的波形的频率、占空比和相位差控制灵活。
具体实施方式二:参见图2、图3说明本实施方式。本实施方式与具体实施方式一所述的无变压器的超声波电机驱动器的区别在于,所述直流升压电路1由开关电源控制电路11、功率驱动电路12、滤波电路16、升压电路13、分压电路14和分压采样电路15组成,所述开关电源控制电路11的控制信号输出端与功率驱动电路12的信号输入端连接,功率驱动电路12的信号输出端与升压电路13的控制信号输入端连接,升压电路13的直流驱动电压Vout的输出端输出等于超声波电机驱动信号峰-峰值的直流驱动电压Vout的输出端给桥式斩波电路4的电源输入端,分压电路14的两个电源端分别与升压电路13的直流驱动电压Vout的输出端和电源地连接,分压电路14的输出端输出直流驱动 电压Vout一半的驱动参考电压VCOM,分压采样电路15由两个电阻串联后并联在升压电路13的直流驱动电压Vout的输出端和电源地之间,分压采样电路15的输出端与滤波电路16的信号输入端连接,滤波电路16的信号输出端与开关电源控制电路11的电压反馈信号输入端连接。
本实施方式的开关电源控制电路11采用开关电源专用控制芯片MC34063型芯片作为主控制芯片。
本实施方式的功率驱动电路12采用三极管推动桥式电路对开关源输出的信号进行功率放大。
本实施方式的分压电路14由P型和N型场效应对管构成,所述分压电路的上桥臂为N沟道的场效应管Q24,下桥臂为P沟道的场效应管Q29,两支场效应管的栅极由稳压管D19连接,稳压管D19的阴极与上桥臂的场效应管Q24的栅极连接,稳压管D19的阳极与下桥臂的场效应管Q29的栅极连接,稳压管D19用于解决由场效应管开启电压造成的交越失真,输出端的电位VCOM能通过电位器R30进行调节,进而保证分压电路14的输出端输出等于升压电路13输出的直流驱动电压信号Vout的一半,所述驱动参考电压VCOM是超声波电机驱动信号的公共端。
本实施方式中的分压采样电路15由两个电阻串联后并联直流驱动电压Vout的输出端和电源地之间,将直流驱动电压信号Vout的比例缩小后的电压信号VF作为采样信号提供给滤波电路16。
本实施方式的滤波电路16采用由运算放大器组成的电压跟随器作为滤波电路。
本实施方式中的升压电路13由一级升压电路131、二级升压电路132组成,功率驱动电路12的信号输出端同时与一级升压电路131和二级升压电路132的控制信号输入端连接,一级升压电路131的电压信号输入端与外界的低压直流电源的输出端连接,一级升压电路131的电压信号输出端Vo1与二级升压电路132的电压信号输入端连接,二级升压电路132的输出端输出直流驱动电压Vout。
本实施方式中的一级升压电路131和二级升压电路132均是由场效应管和升压电感组成,所述升压电感采用多根漆包线并行绕制,以降低涡流造成的铜 损,磁芯采用罐装磁芯,使电感向外射的电磁波大幅度降低,或者还采用非晶态磁环作导磁材料,这样可减小电感的。
本实施方式的升压电路13升压范围大,当一级升压电路131的输入电压信号Vin在10V~30V之间的时候,二级升压电路132输出的直流驱动电压信号Vout能够调整在90V~320V之间,这种方案具有电路结构简单、升压范围宽、体积小、元件利用率高、驱动功率大、带载能力强、成本低廉等优点。
具体实施方式三:参见图4说明本实施方式。本实施方式中的隔离驱动电路3采用场效应管专用隔离驱动芯片IR2104,桥式斩波电路4是由两个N型场效应管构成的电桥,桥式斩波电路4的两个电源端分别与直流升压电路1的直流电压输出端和电源地连接,隔离驱动电路3的信号输入端与单片机脉冲信号发生电路2的含有相同频率、占空比和相位差的脉冲信号输出端连接,隔离驱动电路3的信号输出端和桥式斩波电路4的控制信号输入端连接。
本实施方式所述的场效应管专用驱动芯片选用IR2104型集成电路。
具体实施方式四:参见图5说明本实施方式。本实施方式与具体实施方式一至三所述的无变压器的超声波电机驱动器的区别在于,它还包括键盘7和显示器6,所述键盘7的输出端和单片机脉冲信号发生电路2的数据输入端连接,显示器6的数据输入端与单片机脉冲信号发生电路2的数据输出端连接。
本实施方式增加了键盘和显示器的人机界面设备,可以通过键盘和显示器修改、设定要输出的脉冲信号的频率、占空比和相位差等参数,使本实施方式的无变压器的超声波电机驱动器能够根据要求输出多种参数的驱动信号,适应性更强。
具体实施方式五:参见图6说明本实施方式。本实施方式与具体实施方式一至四所述的无变压器的超声波电机驱动器的区别在于,它还包括可编程晶振电路8,所述可编程晶振电路8是输出频率可调的晶振电路,可编程晶振电路8的频率信号输出端与单片机脉冲信号发生电路2的频率信号输入端连接。
参见图7,本实施方式的可编程晶振电路8由可编程晶振L2和电位器R20组成,其中所述可编程晶振L2选用LTC1799型芯片,通过调整电位器R20的阻值变化可以改变可编程晶振电路8输出信号的频率,即改变了单片机脉冲信号发生电路2的工作频率,进而改变了单片机脉冲信号发生电路2输出脉冲信 号的频率。本实施方式可以通过调整电位器R20的阻值,使单片机脉冲信号发生电路2输出信号的频率能够在在20~100kHz之间进行任意调整。
具体实施方式六:参见图8说明本实施方式。本实施方式与具体实施方式五所述的无变压器的超声波电机驱动器的区别在于,它还包括主控CPU电路5、键盘7和显示器6,主控CPU电路5和单片机脉冲信号发生电路2通过SPI串行通讯接口连接,键盘7的输出端与主控CPU电路5的数据输入端连接,显示器6的数据输入端与主控CPU电路5的数据输出端连接。
本实施方式的主控CPU电路5和单片机脉冲信号发生电路2分别选择PIC系列的PIC16C64型和PIC16C62型单片机电路。
本实施方式增加了一个主控CPU电路5,即使用双单片机控制,主控CPU电路5负责通过键盘和显示器进行设定和显示驱动信号的参数,然后将设定的参数通过SPI串行通讯接口传递给单片机脉冲信号发生电路2,而单片机脉冲信号发生电路2根据主控CPU电路5的命令只做脉冲信号发生工作,可靠性更高。
本实施方式采用带有SPI串行通讯接口的主控CPU电路5和单片机脉冲信号发生电路2,所述SPI串行通讯接口是带有时钟的通讯接口,不受单片机工作频率的影响,避免了由于单片机脉冲信号发生电路2使用外部可调晶振而影响通讯。
具体实施方式七:参见图9和图10说明本实施方式。本实施方式与具体实施方式六所述的无变压器的超声波电机驱动器的区别在于,它还包括电压采样电路9,所述电压采样电路9的信号输入端与直流升压电路1中的滤波电路16的信号输出端连接,电压采样电路9的信号输出端与主控CPU电路5的A/D转换模拟量输入端连接。
本实施方式的无变压器的超声波电机驱动器能够采集并显示直流升压电路1输出的直流驱动电压Vout,可以在超声波电机的运行过程中,实施监测驱动信号的峰峰值电压。
Claims (6)
1.无变压器的超声波电机驱动器,它包括单片机脉冲信号发生电路(2)、直流升压电路(1)、多路隔离驱动电路(3)和多路桥式斩波电路(4),所述单片机脉冲信号发生电路(2)的含有相同频率、占空比和相位差的多路脉冲信号输出端分别与多路隔离驱动电路(3)的信号输入端连接,每路隔离驱动电路(3)的信号输出端与每路桥式斩波电路(4)的控制信号输入端连接,每路桥式斩波电路(4)的两个电源端并联在直流升压电路(1)的直流驱动电压Vout的输出端和电源地之间,其特征在于所述直流升压电路(1)由开关电源控制电路(11)、功率驱动电路(12)、滤波电路(16)、升压电路(13)、分压电路(14)和分压采样电路(15)组成,所述开关电源控制电路(11)的控制信号输出端与功率驱动电路(12)的信号输入端连接,功率驱动电路(12)的信号输出端与升压电路(13)的控制信号输入端连接,升压电路(13)输出等于超声波电机驱动信号峰-峰值的直流驱动电压Vout的输出端分别与桥式斩波电路(4)、分压电路(14)和分压采样电路(15)的电源输入端连接,分压电路(14)的两个电源端分别与升压电路(13)的直流驱动电压Vout的输出端和电源地连接,分压采样电路(15)由两个电阻串联后连接在升压电路(13)的直流驱动电压Vout输出端和电源地之间,分压采样电路(15)的输出端与滤波电路(16)的信号输入端连接,滤波电路(16)的信号输出端与开关电源控制电路(11)的电压反馈信号输入端连接。
2.根据权利要求1所述的无变压器的超声波电机驱动器,其特征在于所述隔离驱动电路(3)采用场效应管专用隔离驱动芯片,桥式斩波电路(4)是由两个N型场效应管构成的电桥,桥式斩波电路(4)的两个电源端分别与直流升压电路的直流驱动电压Vout输出端和电源地连接,隔离驱动电路(3)的信号输入端与单片机脉冲信号发生电路(2)的含有相同频率、占空比和相位差的脉冲信号输出端连接,隔离驱动电路(3)的信号输出端和桥式斩波电路(4)的控制信号输入端连接。
3.根据权利要求1所述的无变压器的超声波电机驱动器,其特征在于它还包括键盘(7)和显示器(6),所述键盘(7)的输出端和单片机脉冲信号发生电路(2)的数据输入端连接,显示器(6)的数据输入端与单片机脉冲信号发
生电路(2)的数据输出端连接。
4.根据权利要求1所述的无变压器的超声波电机驱动器,其特征在于它还包括可编程晶振电路(8),所述可编程晶振电路(8)是输出频率可调的晶振电路,可编程晶振电路(8)的频率信号输出端与单片机脉冲信号发生电路(2)的频率信号输入端连接。
5.根据权利要求1或2或4所述的无变压器的超声波电机驱动器,其特征在于它还包括主控CPU电路(5)、键盘(7)和显示器(6),所述主控CPU电路(5)和单片机脉冲信号发生电路(2)通过SPI串行通讯接口连接,键盘(7)的输出端与主控CPU电路(5)的数据输入端连接,显示器(6)的数据输入端与主控CPU电路(5)的数据输出端连接。
6.根据权利要求5所述的无变压器的超声波电机驱动器,其特征在于它还包括电压采样电路(9),所述电压采样电路(9)的信号输入端与滤波电路(16)的信号输出端连接,电压采样电路(9)的信号输出端与主控CPU电路(5)的A/D转换模拟量输入端连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710072260XA CN101060291B (zh) | 2007-05-25 | 2007-05-25 | 无变压器的超声波电机驱动器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710072260XA CN101060291B (zh) | 2007-05-25 | 2007-05-25 | 无变压器的超声波电机驱动器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101060291A CN101060291A (zh) | 2007-10-24 |
CN101060291B true CN101060291B (zh) | 2011-03-09 |
Family
ID=38866229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710072260XA Expired - Fee Related CN101060291B (zh) | 2007-05-25 | 2007-05-25 | 无变压器的超声波电机驱动器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101060291B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111245291A (zh) * | 2020-03-11 | 2020-06-05 | 东南大学 | 一种圆柱定子超声波电机无变压器llc驱动控制电路及方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064731B (zh) * | 2009-11-18 | 2013-07-24 | 财团法人金属工业研究发展中心 | 应用于超声波马达的单极具零电流切换的驱动电路 |
CN102097973B (zh) * | 2011-02-15 | 2013-01-09 | 南京航空航天大学 | 一种基于嵌入式芯片的超声电机驱动控制器 |
CN103567134B (zh) * | 2013-11-11 | 2016-01-13 | 河海大学常州校区 | 超声电源的匹配装置及其匹配方法 |
CN107947108A (zh) * | 2017-12-27 | 2018-04-20 | 四川赛科安全技术有限公司 | 应用于火灾报警控制系统的过流检测保护电路及实现方法 |
JP7191547B2 (ja) * | 2018-05-11 | 2022-12-19 | キヤノン株式会社 | 振動型駆動装置、電子機器及び振動型アクチュエータの制御方法 |
CN111308941A (zh) * | 2020-03-25 | 2020-06-19 | 杭州道森科技有限公司 | 一种电压可调式脉冲超声波发射电路及检测装置 |
CN114268301B (zh) * | 2022-02-28 | 2022-06-14 | 成都明夷电子科技有限公司 | 一种带有自校准offset功能的LOS检测电路及检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465492A (zh) * | 2002-07-02 | 2004-01-07 | 四川大学 | 节能型电动车驱动装置 |
CN1527473A (zh) * | 2003-09-22 | 2004-09-08 | 东南大学 | 基于脉宽调制方式的多变量超声波电机伺服控制器 |
CN1964180A (zh) * | 2005-11-08 | 2007-05-16 | 欧姆龙株式会社 | 电机控制装置 |
CN201041991Y (zh) * | 2007-05-25 | 2008-03-26 | 哈尔滨工业大学 | 无变压器的超声波电机驱动器 |
-
2007
- 2007-05-25 CN CN200710072260XA patent/CN101060291B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465492A (zh) * | 2002-07-02 | 2004-01-07 | 四川大学 | 节能型电动车驱动装置 |
CN1527473A (zh) * | 2003-09-22 | 2004-09-08 | 东南大学 | 基于脉宽调制方式的多变量超声波电机伺服控制器 |
CN1964180A (zh) * | 2005-11-08 | 2007-05-16 | 欧姆龙株式会社 | 电机控制装置 |
CN201041991Y (zh) * | 2007-05-25 | 2008-03-26 | 哈尔滨工业大学 | 无变压器的超声波电机驱动器 |
Non-Patent Citations (6)
Title |
---|
CN 1465492 A,说明书第2页第17至27行、附图2. |
JP特开2003-189644A 2003.07.04 |
傅平等.基于DSP的纵扭复合型超声波电机驱动电源.微电机38 2.2005,38(2),57-58. |
傅平等.基于DSP的纵扭复合型超声波电机驱动电源.微电机38 2.2005,38(2),57-58. * |
金龙等.基于DSP的超声波电机控制系统.电工技术学报19 8.2004,19(8),93-98. |
金龙等.基于DSP的超声波电机控制系统.电工技术学报19 8.2004,19(8),93-98. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111245291A (zh) * | 2020-03-11 | 2020-06-05 | 东南大学 | 一种圆柱定子超声波电机无变压器llc驱动控制电路及方法 |
CN111245291B (zh) * | 2020-03-11 | 2021-10-19 | 东南大学 | 一种圆柱定子超声波电机无变压器llc驱动控制电路及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101060291A (zh) | 2007-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101060291B (zh) | 无变压器的超声波电机驱动器 | |
CN103683967B (zh) | 一种直线驱动器的宏微驱动电源及其控制方法 | |
CN104716837B (zh) | 升降压变换器和升降压控制方法 | |
CN207117486U (zh) | 多路输出任意波形电流源系统 | |
CN201490955U (zh) | 一种两相步进驱动器 | |
CN204216790U (zh) | 一种可编程扫描电源 | |
CN109149940A (zh) | 一种变换器控制电路、应用及其控制方法 | |
CN201041990Y (zh) | 基于直流升压、斩波的超声波电机驱动模块 | |
CN209029928U (zh) | 一种变流器负载试验中的能量回馈装置 | |
CN102074971A (zh) | 一种老化测试用回馈负载节能电路及控制方法 | |
CN101060292B (zh) | 基于直流升压、斩波的超声波电机驱动模块 | |
CN1941589B (zh) | 电功率转换器电路 | |
CN201041991Y (zh) | 无变压器的超声波电机驱动器 | |
CN103780229A (zh) | 电容性负载驱动电路以及脉冲激发装置 | |
CN105429476A (zh) | 一种多电平开关线性复合式压电陶瓷驱动电源 | |
CN209375463U (zh) | 一种新型单相正弦波变频变压电源系统 | |
CN102097946A (zh) | 一种多功能整流逆变电能回馈负载 | |
CN107277954A (zh) | 一种电磁加热电路及其控制方法 | |
CN101404466B (zh) | 一种非谐振适配电路及使用该电路的压电装置驱动器 | |
CN101964591A (zh) | 单相静变器 | |
CN109525104A (zh) | 频率幅值可调节的交直流通用电源 | |
CN213937863U (zh) | 一种阵列式可控硅高压大电流脉冲开关的同步驱动电路 | |
CN207459999U (zh) | 一种宽范围输入输出的dc-dc变换电源电路 | |
CN2850131Y (zh) | 一种工频大量程交变恒流源 | |
CN102167289A (zh) | 多路同步输出臭氧发生电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110309 Termination date: 20110525 |