CN101054595A - Gene molecule marking method for grape anthracnose disease resistant breeding - Google Patents
Gene molecule marking method for grape anthracnose disease resistant breeding Download PDFInfo
- Publication number
- CN101054595A CN101054595A CN 200710017357 CN200710017357A CN101054595A CN 101054595 A CN101054595 A CN 101054595A CN 200710017357 CN200710017357 CN 200710017357 CN 200710017357 A CN200710017357 A CN 200710017357A CN 101054595 A CN101054595 A CN 101054595A
- Authority
- CN
- China
- Prior art keywords
- dna
- grape
- nucleic acid
- gene
- template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 240000006365 Vitis vinifera Species 0.000 title abstract description 32
- 235000014787 Vitis vinifera Nutrition 0.000 title abstract description 32
- 235000009754 Vitis X bourquina Nutrition 0.000 title abstract description 30
- 235000012333 Vitis X labruscana Nutrition 0.000 title abstract description 30
- 238000009395 breeding Methods 0.000 title abstract description 19
- 230000001488 breeding effect Effects 0.000 title abstract description 18
- 108090000623 proteins and genes Proteins 0.000 title abstract description 16
- 238000000034 method Methods 0.000 title abstract description 15
- 201000010099 disease Diseases 0.000 title abstract description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 4
- 108020004414 DNA Proteins 0.000 abstract description 47
- 102000053602 DNA Human genes 0.000 abstract description 47
- 239000012634 fragment Substances 0.000 abstract description 11
- 239000003147 molecular marker Substances 0.000 abstract description 11
- 108091034117 Oligonucleotide Proteins 0.000 abstract description 10
- 241000219094 Vitaceae Species 0.000 abstract description 9
- 235000021021 grapes Nutrition 0.000 abstract description 9
- 239000000523 sample Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 235000017190 Vitis vinifera subsp sylvestris Nutrition 0.000 abstract description 3
- 244000237969 Vitis vulpina Species 0.000 abstract description 3
- 235000017242 Vitis vulpina Nutrition 0.000 abstract description 3
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000012163 sequencing technique Methods 0.000 abstract 1
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 238000001962 electrophoresis Methods 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 6
- 235000013399 edible fruits Nutrition 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 208000035240 Disease Resistance Diseases 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009402 cross-breeding Methods 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种用于葡萄抗黑痘病育种的基因分子标记方法,是以种间杂交组合白河-35-1×佳利酿的双亲及F1代、F2代为试材,用随机引物OPS03进行扩增,获得约1300对碱基的脱氧核糖核酸片段,对该片段用pGEM-T载体连接,然后转化大肠杆菌DH5α,克隆该片段。经测序,该片段为1365对碱基。按照该序列,人工合成的一个寡聚核苷酸能检测亲本、杂种、欧洲葡萄及野生葡萄抗黑痘病基因的存在与抗黑痘病性状的表达,用作检测葡萄抗黑痘病基因的探针。本发明的分子标记可用作葡萄抗黑痘病育种的早期筛选鉴定;其碱基序列为研究葡萄抗黑痘病基因提供了依据;人工合成的寡聚核苷酸序列具检测葡萄抗黑痘病基因存在与表达的功能。The invention relates to a gene molecular marker method for grape black pox breeding, which uses the parents, F1 generation and F2 generation of the interspecific hybrid combination Baihe-35-1×Carigny as test materials, and uses random primers OPS03 was amplified to obtain a deoxyribonucleic acid fragment of about 1300 base pairs, which was ligated with pGEM-T vector, and then transformed into Escherichia coli DH5α to clone the fragment. After sequencing, the fragment was 1365 base pairs. According to the sequence, an artificially synthesized oligonucleotide can detect the existence of the anti-black pox gene and the expression of the anti-black pox traits of parents, hybrids, European grapes and wild grapes, and is used as a method for detecting the anti-black pox gene of grapes. probe. The molecular marker of the present invention can be used for early screening and identification of grape black pox-resistant breeding; its base sequence provides a basis for the study of grape black pox-resistant genes; the artificially synthesized oligonucleotide sequence can detect grape black pox The function of the presence and expression of disease genes.
Description
技术领域
本发明涉及一种基因分子标记方法,特别是涉及一种用于葡萄抗黑痘病育种的基因分子标记方法,和脱氧核糖核酸(DNA)片段的序列以及作为检测葡萄抗黑痘病基因探针的寡聚核苷酸序列,属于植物基因工程领域。The present invention relates to a gene molecular marker method, in particular to a gene molecular marker method for grape black pox breeding, and the sequence of deoxyribonucleic acid (DNA) fragments and as a probe for detecting grape black pox resistance genes The oligonucleotide sequence belongs to the field of plant genetic engineering.
背景技术 Background technique
葡萄是一种世界性水果,其面积和产量均居各类水果的第二位,葡萄黑痘病是一种严重危害葡萄的真菌病害,尤其是在葡萄生长季节雨水较多、湿度较大的地区,危害严重,常造成葡萄落花落果,叶片穿孔脱落,果粒上有鸟眼状黑斑等,严重影响葡萄的生长与产量。传统防治葡萄黑痘病的方法是对葡萄进行多次喷药防病,但化学防治会造成果实残毒、污染环境,不利于人们的身体健康。利用葡萄资源自身的抗病性,通过杂交育种是培育抗黑痘病葡萄新品种的根本途径,但通过杂交育种的方法,选育出抗黑痘病新品种的周期较长,一般鉴定杂种抗黑痘病性能需3-5年,这种人力、物力、时间耗费多而效率低的育种方法远远不能满足生产的实际需要。Grape is a worldwide fruit, its area and output both rank second among all kinds of fruits. Grape black pox is a fungal disease that seriously harms grapes, especially in areas with more rain and high humidity during the grape growing season. In these regions, the damage is serious, often causing the grapes to drop flowers and fruits, the leaves are perforated and fall off, and there are bird's-eye black spots on the fruit grains, which seriously affect the growth and yield of grapes. The traditional method of preventing and controlling grape black pox is to spray grapes repeatedly to prevent the disease, but chemical control will cause residual poison in the fruit and pollute the environment, which is not conducive to people's health. Utilizing the disease resistance of the grape resources itself, cross breeding is the fundamental way to cultivate new varieties of black pox resistant grapes, but the cycle of breeding new varieties resistant to black pox through cross breeding is relatively long, and generally identification of hybrid resistant Black pox performance needs 3-5 years, this manpower, material resources, time-consuming and efficient breeding method are far from being able to meet the actual needs of production.
随机扩增多态性脱氧核糖核酸(RAPD)是一项分子标记技术,具有快速、简便、成本低、多态性检测丰富、不需同位素示踪和安全可靠的特点。该技术1990年首先被应用于菌属、菌种和种内差异的鉴别,随后在分子生物学研究领域及农作物育种方面得到广泛的应用,并取得明显成效,但一直没有应用于葡萄抗黑痘病育种。Randomly amplified polymorphic deoxyribonucleic acid (RAPD) is a molecular marker technology, which has the characteristics of rapidity, simplicity, low cost, rich polymorphism detection, no isotope tracer, and safety and reliability. This technology was first applied to the identification of genus, strain and intraspecific differences in 1990, and then it was widely used in the field of molecular biology research and crop breeding, and achieved remarkable results, but it has not been used in grape anti-black pox disease breeding.
发明内容Contents of invention
本发明的目的是解决传统杂交育种中,葡萄抗黑痘病育种周期长、效率低的难题,而公开一种用于葡萄抗黑痘病育种的基因分子标记方法。The purpose of the present invention is to solve the problem of long period and low efficiency in traditional hybrid breeding of grapes against black pox, and to disclose a gene molecular marker method for grapes against black pox breeding.
本发明采用的技术及操作步骤是:The technology that the present invention adopts and operation step are:
a.以葡萄抗黑痘病育种的种间杂交组合白河-35-1×佳利酿的双亲及F1代、F2代为试材,提取、分离、纯化脱氧核糖核酸(DNA)a. Using the parents, F 1 generation and F 2 generation of the interspecific hybrid combination Baihe-35-1×Carigny of grape black pox breeding as test materials, extract, separate and purify deoxyribonucleic acid (DNA)
b.用脱氧核糖核酸(DNA)作模板进行RAPD扩增b. RAPD amplification using deoxyribonucleic acid (DNA) as a template
c.获得与葡萄抗黑痘病基因连锁的脱氧核糖核酸(DNA)的片段c. Obtain a fragment of deoxyribonucleic acid (DNA) linked to the grape black pox gene
d.用UNIQ-10柱式DNA胶回收试剂盒从琼脂糖凝胶中提取纯化该脱氧核糖核酸(DNA)片段d. Extract and purify the deoxyribonucleic acid (DNA) fragments from the agarose gel with the UNIQ-10 Column DNA Gel Recovery Kit
e.以pGEM-T载体连接脱氧核糖核酸片段e. Link the deoxyribonucleic acid fragments with the pGEM-T vector
f.转化大肠杆菌DH5α,提取质粒DNA进行酶切f. Transform Escherichia coli DH5α, extract plasmid DNA for enzyme digestion
g.将鉴定为阳性克隆的菌液测定该DNA片段的碱基构成及其序列g. Determining the base composition and sequence of the DNA fragment from the bacteria solution identified as a positive clone
h.获得1365碱基对的DNA片段的全部碱基组成及其序列h. Obtain the entire base composition and sequence of the DNA fragment of 1365 base pairs
i.进一步依据1365碱基对的全部碱基组成及其序列i. Further based on the complete base composition and sequence of 1365 base pairs
j.人工合成4个寡聚核苷酸,其中之一(5′ACAATCACCCAACTCCTC 3′)可用作引物,对脱氧核糖核酸(DNA)作模板进行PCR扩增j. Artificially synthesize 4 oligonucleotides, one of which (5'ACAATCACCCAACTCCTC 3') can be used as a primer to perform PCR amplification on deoxyribonucleic acid (DNA) as a template
k.对原杂交组合双亲及其F1代、F2代,中国野生葡萄,欧洲葡萄,美洲野生葡萄,以及杂交组合广西-1×京可晶的亲本及其F1代分别进行扩增k. Amplify the parents of the original hybrid combination and its F 1 generation, F 2 generation, Chinese wild grape, European grape, American wild grape, and the parent of the hybrid combination Guangxi-1×Jingkejing and its F 1 generation
l.获得特异性脱氧核糖核酸(DNA)片段l. Obtain specific deoxyribonucleic acid (DNA) fragments
m.用上述方法回收、克隆、测序该DNA片断m. Reclaim, clone and sequence the DNA fragments by the above methods
n.获得了另一个检测葡萄抗黑痘病性状的脱氧核糖核酸(DNA)序列,其大小为1110碱基对n. Obtained another deoxyribonucleic acid (DNA) sequence measuring 1110 base pairs for the black pox resistance trait of grapes
o.确定获得的寡聚核苷酸序列(5′ACAATCACCCAACTCCTC 3′)作为检测葡萄抗黑痘病基因的探针。o. Determine the obtained oligonucleotide sequence (5'ACAATCACCCAACTCCTC 3') as a probe for detecting grape black pox resistance gene.
本发明葡萄抗黑痘病基因RAPD标记OPS03-1354对抗黑痘病育种杂交组合广西-1×京可晶F1代339株检测与田间植株抗病表现的符合率为98.53%,对组合白河-35-1×佳利酿F2代207株检测与田间植株抗病表现的符合率为96.17%;寡聚核苷酸(5′ACAATCACCCAACTCCTC 3′)作为检测葡萄抗黑痘病基因的探针对杂交组合广西-1×京可晶F1代339株检测与田间植株抗病表现的符合率为83.57%,对组合白河-35-1×佳利酿F2代207株检测与田间植株抗病表现的符合率为87%。The anti-black pox gene RAPD marker OPS03-1354 of the present invention has an anti-black pox breeding hybrid combination Guangxi-1×Jingkejing F 1 generation 339 strains, and the coincidence rate of detection and field plant disease resistance performance is 98.53%, and the combination Baihe- The coincidence rate between the detection of 207 strains of 35-1× Carignan F 2 generation and field plant resistance was 96.17%; oligonucleotide (5′ACAATCACCCCAACTCCTC 3′) was used as a probe pair to detect grape black pox resistance gene The coincidence rate of the 339 plants of the hybrid combination Guangxi-1×Jingkejing F 1 generation and the disease resistance performance of the field plants was 83.57%. The performance compliance rate was 87%.
具体实施方式 Detailed ways
本发明用脱氧核糖核酸(DNA)作模板进行RAPD扩增的具体步骤为:The present invention uses deoxyribonucleic acid (DNA) as template to carry out the concrete steps of RAPD amplification as:
b.1采用聚合酶链反应(PCR)b.1 Using polymerase chain reaction (PCR)
b.1.1混合液体积为25微升b.1.1 The volume of the mixed solution is 25 microliters
b.1.2含有10×PCR缓冲液2.5微升b.1.2 Contains 2.5 μl of 10× PCR buffer
b.1.3氯化镁1.5毫摩尔/升b.1.3 Magnesium chloride 1.5 mmol/L
b.1.4 dNTP 200微摩尔/升b.1.4 dNTP 200 μmol/L
b.1.5 Taq DNA聚合酶1个单位b.1.5 Taq DNA polymerase 1 unit
b.1.6随机引物1微升b.1.6 Random primer 1 microliter
b.1.7 45毫微克的模板脱氧核糖核酸(DNA);b.1.7 45 nanograms of template deoxyribonucleic acid (DNA);
b.2用25微升的矿物油覆盖反应液b.2 Overlay the reaction solution with 25 microliters of mineral oil
b.2.1 PCR仪为Eppendorf-AG22331型b.2.1 PCR instrument is Eppendorf-AG22331
b.2.2聚合酶链反应94℃下解链5分钟;b.2.2 Polymerase chain reaction Melting at 94°C for 5 minutes;
b.3进行45个循环b.3 Perform 45 cycles
b.3.1每一个循环包括94℃下解链1分钟b.3.1 Each cycle includes melting at 94°C for 1 minute
b.3.2 36℃下引物附着模板脱氧核糖核酸2分钟b.3.2 Primers attach to template DNA for 2 minutes at 36°C
b.3.3 72℃下脱氧核糖核酸(DNA)聚合链的伸长2分钟b.3.3 Elongation of deoxyribonucleic acid (DNA) polymer chain at 72°C for 2 minutes
b.3.4最后一个循环是72℃下延伸10分钟;b.3.4 The last cycle is an extension at 72°C for 10 minutes;
b.4将扩增产物在4℃下保存或直接用琼脂糖凝胶电泳b.4 Store the amplified product at 4°C or use agarose gel electrophoresis directly
b.4.1琼脂糖凝胶浓度为1.2%b.4.1 Agarose gel concentration is 1.2%
b.4.2加入溴化乙锭0.5毫微克/毫升b.4.2 Add ethidium bromide 0.5 ng/ml
b.4.3电泳的电压为110伏b.4.3 The electrophoresis voltage is 110 volts
b.4.4用水平板电泳槽电泳1-1.5小时;b.4.4 Electrophoresis with water plate electrophoresis tank for 1-1.5 hours;
b.5电泳结束后,在紫外灯下照相。b.5 After electrophoresis, take pictures under ultraviolet light.
本发明用人工合成的寡聚核苷酸(5′ACAATCACCCAACTCCTC 3′)作引物,对脱氧核糖核酸(DNA)作模板进行PCR扩增的具体步骤为:The present invention uses artificially synthesized oligonucleotides (5'ACAATCACCCAACTCCTC 3') as primers, and deoxyribonucleic acid (DNA) is used as a template to carry out the specific steps of PCR amplification as follows:
j.1采用聚合酶链反应(PCR)j.1 Using polymerase chain reaction (PCR)
j.1.1混合液体积为25微升j.1.1 The volume of the mixed solution is 25 microliters
j.1.2含有10×PCR缓冲液2.5微升j.1.2 Contains 2.5 μl of 10× PCR buffer
j.1.3氯化镁1.5毫摩尔/升j.1.3 Magnesium chloride 1.5 mmol/L
j.1.4 dNTP 200微摩尔/升j.1.4 dNTP 200 μmol/L
j.1.5 Taq DNA聚合酶1个单位j.1.5 Taq DNA polymerase 1 unit
j.1.6寡聚核苷酸(5′ACAATCACCCAACTCCTC 3′)1微升j.1.6 oligonucleotide (5′ACAATCACCCAACTCCTC 3′) 1 microliter
j.1.7 45毫微克的模板脱氧核糖核酸(DNA);j.1.7 45 nanograms of template deoxyribonucleic acid (DNA);
j.2用25微升的矿物油覆盖反应液j.2 Overlay the reaction solution with 25 microliters of mineral oil
j.2.1 PCR仪为Eppendorf-AG22331型j.2.1 PCR instrument is Eppendorf-AG22331 type
j.2.2聚合酶链反应94℃下解链5分钟;j.2.2 Polymerase chain reaction, melt at 94°C for 5 minutes;
j.3进行40个循环j.3 Perform 40 cycles
j.3.1每一个循环包括94℃下解链30秒j.3.1 Each cycle includes melting at 94°C for 30 seconds
j.3.2 62℃下引物附着模板脱氧核糖核酸30秒j.3.2 Primers attach to template DNA for 30 seconds at 62°C
j.3.3 72℃下脱氧核糖核酸(DNA)聚合链的伸长1分钟j.3.3 Elongation of deoxyribonucleic acid (DNA) polymer chain at 72°C for 1 minute
j.3.4最后一个循环72℃下延伸5分钟;j.3.4 The last cycle is extended at 72°C for 5 minutes;
j.4将扩增产物在4℃下保存或直接用琼脂糖凝胶电泳j.4 Store the amplified product at 4°C or use agarose gel electrophoresis directly
j.4.1琼脂糖凝胶浓度为1.2%j.4.1 Agarose gel concentration is 1.2%
j.4.2加入溴化乙锭0.5毫微克/毫升j.4.2 Add ethidium bromide 0.5 ng/ml
j.4.3电泳的电压为110伏j.4.3 The electrophoresis voltage is 110 volts
j.4.4用水平板电泳槽电泳1-1.5小时;j.4.4 Electrophoresis with water plate electrophoresis tank for 1-1.5 hours;
j.5电泳结束后在紫外灯下照相。j.5 Take pictures under ultraviolet light after electrophoresis.
采用随机扩增多态性脱氧核糖核酸(RAPD)技术,获得了与葡萄抗黑痘病基因连锁的分子标记,对该分子标记克隆、测序,获得了葡萄抗黑痘病基因分子标记的脱氧核糖核酸(DNA)的组成与序列,用该特定DNA序列可以检测葡萄抗黑痘病基因的存在与否,以加速育种进程和提高抗黑痘病育种的准确性;可以进一步通过染色体步移法,对抗黑痘病基因作图与定位,依据获得的葡萄抗黑痘病基因分子标记序列,人工合成的寡聚核苷酸序列(5’ACAATCACCCAACTCCTC 3’)也具有检测葡萄抗黑痘病基因存在与表达的功能。Using random amplified polymorphic deoxyribonucleic acid (RAPD) technology, a molecular marker linked to the grape anti-black pox gene was obtained. The molecular marker was cloned and sequenced, and the deoxyribose sugar of the molecular marker of the grape anti-black pox gene was obtained. The composition and sequence of nucleic acid (DNA), the presence or absence of grape black pox resistance gene can be detected with this specific DNA sequence, to speed up the breeding process and improve the accuracy of black pox resistance breeding; further through the chromosome walking method, Mapping and positioning of the anti-black pox gene, based on the obtained molecular marker sequence of the grape anti-black pox gene, the artificially synthesized oligonucleotide sequence (5'ACAATCACCCAACTCCTC 3') also has the ability to detect the existence and identification of the grape anti-black pox gene. expressive function.
本发明具有以下用途:可用作脱氧核糖核酸(DNA)探针、核糖核酸(RNA)探针、基因定位作图、基因转移、葡萄抗黑痘病育种中早期筛选鉴定的DNA分子依据、作为抗黑痘病葡萄品种和株系的脱氧核酸核酸(DNA)指纹以及注册植物专利的理论依据。The present invention has the following purposes: can be used as deoxyribonucleic acid (DNA) probe, ribonucleic acid (RNA) probe, gene localization mapping, gene transfer, the DNA molecule basis of early screening and identification in grape anti-black pox breeding, as Deoxynucleic acid (DNA) fingerprinting of black pox resistant grape varieties and lines and rationale for registration of plant patents.
本发明的葡萄抗黑痘病基因分子标记为葡萄杂交育种提供了幼苗期鉴定的DNA依据,将会加速抗黑痘病育种的进程和提高育种效率,为快速选育抗黑痘病葡萄新品种,进一步克隆抗黑痘病基因和基因转移提供方法和物质基础,也为葡萄抗黑痘病的遗传规律研究和分子标记连锁遗传作图提供科学依据。本发明检测葡萄抗黑痘病基因的脱氧核糖核酸(DNA)的序列和人工合成的寡聚核苷酸序列,从根本上解决和加速了葡萄抗黑痘病育种进程。The grape black pox resistant gene molecular marker of the present invention provides the DNA basis for identification at the seedling stage for grape hybrid breeding, will accelerate the process of black pox resistant breeding and improve breeding efficiency, and will provide a new method for rapid selection of black pox resistant grape varieties , further cloning the anti-black pox gene and gene transfer provides a method and material basis, and also provides a scientific basis for the study of the genetic law of grape anti-black pox and the linkage genetic mapping of molecular markers. The invention detects the deoxyribonucleic acid (DNA) sequence and the artificially synthesized oligonucleotide sequence of grape black pox resistance gene, fundamentally solves and accelerates the breeding process of grape black pox resistance.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710017357 CN101054595A (en) | 2007-02-05 | 2007-02-05 | Gene molecule marking method for grape anthracnose disease resistant breeding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710017357 CN101054595A (en) | 2007-02-05 | 2007-02-05 | Gene molecule marking method for grape anthracnose disease resistant breeding |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101054595A true CN101054595A (en) | 2007-10-17 |
Family
ID=38794650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710017357 Pending CN101054595A (en) | 2007-02-05 | 2007-02-05 | Gene molecule marking method for grape anthracnose disease resistant breeding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101054595A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102277444A (en) * | 2011-09-19 | 2011-12-14 | 南京农业大学 | Method for quickly distinguishing grape varieties by random amplified polymorphic deoxyribonucleic acid (RAPD) |
KR102162805B1 (en) * | 2019-09-09 | 2020-10-07 | 충남대학교 산학협력단 | Marker composition for discriminating anthracnose-resistant or sensitive grape cultivar and uses thereof |
-
2007
- 2007-02-05 CN CN 200710017357 patent/CN101054595A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102277444A (en) * | 2011-09-19 | 2011-12-14 | 南京农业大学 | Method for quickly distinguishing grape varieties by random amplified polymorphic deoxyribonucleic acid (RAPD) |
KR102162805B1 (en) * | 2019-09-09 | 2020-10-07 | 충남대학교 산학협력단 | Marker composition for discriminating anthracnose-resistant or sensitive grape cultivar and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101331740B1 (en) | SSR primer derived from Paeonia lactiflora and use thereof | |
CN105316329B (en) | Needle mushroom SSR molecular marker and its corresponding primer and application | |
CN107723378B (en) | The SNP marker and application of the seedless main effect QTL site SDL of grape fruit | |
CN107354211B (en) | Forest musk deer four-base microsatellite genetic marker locus and screening method thereof | |
CN106119397B (en) | Tomato spotted wilt resistant gene Sw-5b close linkages SNP site obtains and marker development | |
CN103571833B (en) | A kind of SSR label primer method of design, wheat SSR marker primer | |
CN107365874A (en) | Henry pocket orchid EST SSR label primers, its development approach and its application | |
CN1252284C (en) | Molecular marker linked with wheat mildew-resistance gene | |
CN111876477B (en) | Molecular marker primer combination for identification of plant sex traits of holly species and its application | |
CN107974510B (en) | EST-SSR (expressed sequence tag-simple sequence repeat) marker primer of paphiopedilum armeniacum, development method and application thereof | |
CN107119048B (en) | Pseudomonas mulberry rDNA and its application in molecular detection of Pseudomonas mulberry | |
CN105087574B (en) | Quinoa EST-SSR molecular labelings and its application | |
CN110551844A (en) | Sugarcane cultivar genome SSR molecular marker development method and application | |
CN101054595A (en) | Gene molecule marking method for grape anthracnose disease resistant breeding | |
CN104328197B (en) | Bluish dogbane expressed sequence tag microsatellite DNA mark | |
CN1661097A (en) | Molecular markers and their applications for identification of excellent strains of Porphyra alba | |
CN108624710A (en) | A kind of and the relevant SSR marker of cucumber fruit length character and its application | |
KR102315977B1 (en) | Molecular marker derived from complete sequencing of chloroplast genome for discrimination of Pinus species and uses thereof | |
CN115896329A (en) | SSR molecular marker primer set and its application developed based on the whole genome of Osmanthus fragrans | |
CN102978292B (en) | DGGE/TGGE (Denaturing Gradient Gel Electrophoresis/Temperature Gradient Gel Electrophoresis) analysis method of specific 18S rDNA (Deoxyribose Nucleic Acid) fragment without being based on GC clamp strategy | |
CN1284864C (en) | A one-step duplex PCR method for the detection of E. amylovora | |
CN111218522A (en) | Method for constructing new apple variety 'sauvignon' molecular identity card by using fluorescent SSR molecular marker and application | |
CN101054602A (en) | Method for detecting polyploidy plant gene mononucleotide site mutation | |
CN110846434A (en) | Primer and kit for identifying tea tree varieties and identification method thereof | |
KR102393484B1 (en) | Molecular marker based on nuclear genome sequence for discriminating genotype of Peucedanum japonicum resources and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |