CN101047869A - Method and device for correction gamma property of vedio communication - Google Patents
Method and device for correction gamma property of vedio communication Download PDFInfo
- Publication number
- CN101047869A CN101047869A CNA2006100828614A CN200610082861A CN101047869A CN 101047869 A CN101047869 A CN 101047869A CN A2006100828614 A CNA2006100828614 A CN A2006100828614A CN 200610082861 A CN200610082861 A CN 200610082861A CN 101047869 A CN101047869 A CN 101047869A
- Authority
- CN
- China
- Prior art keywords
- gamma
- brightness
- function
- probability density
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
- H04N5/202—Gamma control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/82—Camera processing pipelines; Components thereof for controlling camera response irrespective of the scene brightness, e.g. gamma correction
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Picture Signal Circuits (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
本发明提供一种视频通信伽玛特性的校正方法和装置:获取输出亮度信号的亮度直方图,将输出亮度信号的亮度直方图转换为输出亮度信号亮度分布概率密度函数,并确定输出亮度信号亮度分布概率密度函数的极值点;建立输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系;利用极值点的数学关系将输入、输出信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系转换为:在极值点处,输出亮度信号亮度分布概率密度函数与Gamma特性函数之间的数学关系;对转换后的数学关系进行求解,以确定伽玛特性参数,并对伽玛环节进行伽玛校正。本发明全盲的伽码特性参数确定方法提高了Gamma校正易用性,拓宽了Gamma校正的应用范围。
The present invention provides a method and device for correcting gamma characteristics of video communication: obtain the brightness histogram of the output brightness signal, convert the brightness histogram of the output brightness signal into a probability density function of the brightness distribution of the output brightness signal, and determine the brightness of the output brightness signal The extreme point of the distribution probability density function; establish the mathematical relationship between the extreme point of the output brightness signal brightness distribution probability density function and the extreme point of the input brightness signal brightness distribution probability density function; use the mathematical relationship of the extreme point to input , the mathematical relationship between the brightness distribution probability density function and the Gamma characteristic function of the output signal is converted into: at the extreme point, the mathematical relationship between the output brightness signal brightness distribution probability density function and the Gamma characteristic function; Solve the mathematical relationship to determine the gamma characteristic parameters and perform gamma correction on the gamma link. The blind gamma characteristic parameter determination method of the present invention improves the usability of Gamma correction and broadens the application range of Gamma correction.
Description
技术领域technical field
本发明涉及视频通讯技术领域,具体涉及一种视频通信伽玛特性的校正方法和装置。The invention relates to the technical field of video communication, in particular to a method and device for correcting gamma characteristics of video communication.
背景技术Background technique
视频通信,尤其是多方视频通信,目前正在随着宽带网络的迅速发展,得到日益广泛的应用。在国内和国际上,视频会议和可视电话业务正在成为NGN(Next Generation Network,下一代网络)上的基本业务。各国的电信运营商也非常重视这个市场机会。预期在未来几年中,视频通信业务将成为运营商重要的业务增长点。Video communication, especially multi-party video communication, is currently being widely used with the rapid development of broadband networks. Domestically and internationally, video conferencing and videophone services are becoming basic services on NGN (Next Generation Network, Next Generation Network). Telecom operators in various countries also attach great importance to this market opportunity. It is expected that in the next few years, the video communication service will become an important business growth point for operators.
发展视频通讯业务的一个关键问题是:提高端到端(End-to-end)的用户体验(User Experience或者Quality of Experience)。用户体验中除了网络的QoS如丢包、延迟、抖动、R因子等参数外,对于视频,由于各个环节引起的Gamma(伽玛)非线性问题造成的对亮度信号的畸变(Distortion),也是影响最终用户体验的重要因素。A key issue in the development of video communication services is to improve end-to-end user experience (User Experience or Quality of Experience). In user experience, in addition to network QoS such as packet loss, delay, jitter, R factor and other parameters, for video, the distortion (Distortion) of the brightness signal caused by the Gamma (gamma) nonlinearity caused by each link also affects An important factor in the end user experience.
目前,对于提高端到端用户体验的方法和技术主要集中在保证网络QoS和视频压缩编码相关的前后处理(Pre-processing,post-processing)方面。对于Gamma特性引起的亮度畸变问题,缺乏关注和系统的解决方法。但是,该问题的重要性已经引起了一些国际大电信运营商的关注。At present, methods and technologies for improving end-to-end user experience are mainly focused on ensuring network QoS and video compression and encoding related pre-processing (Pre-processing, post-processing). There is a lack of attention and systematic solutions to the problem of brightness distortion caused by Gamma characteristics. However, the importance of this issue has attracted the attention of some major international telecom operators.
下面对Gamma特性进行简要介绍。The Gamma feature is briefly introduced below.
视频通信的过程为:需要被传送的场景如人物、背景、文件等的光信号进入到视频通信终端(下文简称终端)如摄像机/摄像头等,经过A/D转换成数字图像信号,再经过压缩编码,传送出去,到达对方终端,然后,经过去压缩(decompression)解码还原为数字图像信号,再在显示设备上显示出来,最终又变成光信号被人眼感知。在上述过程中,图像亮度信号经过了多个环节。根据定义,Gamma特性就是一个环节的图像亮度信号的输入-输出关系不是线性的,而是一种非线性的关系。这里的图像亮度信号(Luminance)是一种广义的亮度信号,即一开始的光信号,到电信号,再到数字化的图像亮度/灰度信号,每个阶段的信号都含有图像亮度信号的信息,因此,广义地说,图像亮度信号经过了多个环节。The process of video communication is: the optical signal of the scene to be transmitted, such as characters, background, files, etc., enters the video communication terminal (hereinafter referred to as the terminal) such as camera/camera, etc., converts it into a digital image signal through A/D, and then compresses it. It is coded, transmitted, and reaches the terminal of the other party. Then, after decompression and decoding, it is restored to a digital image signal, and then displayed on a display device, and finally becomes an optical signal to be perceived by human eyes. In the above process, the image brightness signal has gone through multiple links. According to the definition, the Gamma characteristic is that the input-output relationship of the image brightness signal of a link is not linear, but a nonlinear relationship. The image luminance signal (Luminance) here is a generalized luminance signal, that is, the initial optical signal, to the electrical signal, and then to the digitized image luminance/grayscale signal. The signal at each stage contains the information of the image luminance signal. , therefore, in a broad sense, the image brightness signal has gone through multiple links.
单个环节Gamma特性的一般模型如附图1所示。The general model of the Gamma characteristic of a single link is shown in Figure 1.
图1中,输入亮度信号和输出亮度信号的非线性的关系可以表示为:Lout=G(Lin),其中,Lout为输出亮度信号,Lin为输入亮度信号,函数G(.)为一个非线性函数。In Fig. 1, the nonlinear relationship between the input luminance signal and the output luminance signal can be expressed as: L out = G(L in ), wherein, L out is the output luminance signal, L in is the input luminance signal, and the function G(.) is a non-linear function.
典型的Gamma特性示例如附图2所示。A typical Gamma characteristic example is shown in Figure 2.
图2中的每一个方块中标注的数字为亮度值,方块的灰度表示亮度信号的明亮程度。图2(a)中,上面的一行灰度方块的亮度是线性递增的,即从0.1递增到1.0,下面一行灰度方块的亮度是按照幂函数规律递增的,也就是说,下面一行灰度方块的亮度经过了Gamma非线性的失真影响。图2(b)中给出的是以曲线表示的Gamma特性。The number marked in each square in FIG. 2 is a brightness value, and the gray scale of the square represents the brightness of the brightness signal. In Figure 2(a), the brightness of the upper row of grayscale squares increases linearly, that is, from 0.1 to 1.0, and the brightness of the lower row of grayscale squares increases according to the power function, that is, the lower row of grayscale The brightness of the square is affected by the distortion of Gamma nonlinearity. Figure 2(b) gives the Gamma characteristic represented by the curve.
当多个环节级联(cascading)起来或者说串联起来时,则总的Gamma特性等于各个环节Gamma函数的复合(composition)。When multiple links are cascaded or connected in series, the total Gamma characteristic is equal to the composition of the Gamma functions of each link.
多个环节级联的Gamma特性的一般模型如附图3所示。The general model of the Gamma characteristic of cascading multiple links is shown in Figure 3.
图3中,每个环节的输入亮度信号和输出亮度信号的非线性的关系分别为:Lout=G(1)(Lin)、Lout=G(2)(Lin)、Lout=G(3)(Lin)。In Fig. 3, the nonlinear relationship between the input luminance signal and the output luminance signal of each link is respectively: Lout=G (1) (Lin), Lout=G (2) (Lin), Lout=G (3) ( Lin).
由此可以得知各个环节Gamma函数的复合为公式(1)所示:From this, it can be known that the composition of the Gamma function of each link is shown in formula (1):
GCT(.)=G(1)(.)oG(2)(.)oG(3)(.)........G(n-1)(.)oG(n)(.)G CT (.)=G (1) (.)oG (2) (.)oG (3) (.)......G (n-1) (.)oG (n) (. )
(1) (1)
lout=GCT(lin)=G(n)(G(n-1)(G(n-2)(.......G(2)(G(1)(lin)))))l out =G CT (l in )=G (n) (G (n-1) (G (n-2) (...G (2) (G (1) (l in )) )))
其中,“。”表示函数的复合运算。CT表示cascaded total,即级联总Gamma的意思。Among them, "." represents the compound operation of the function. CT stands for cascaded total, which means cascaded total Gamma.
在实际中,Gamma非线性是由不同原因引起的。显示设备如CRT显示器的Gamma特性在理想状况下是:In practice, Gamma nonlinearity is caused by different reasons. Gamma characteristics of display devices such as CRT monitors are ideally:
Lout=Lin 2.2 (2)L out =L in 2.2 (2)
而对应的摄像机/摄像头的理想的Gamma特性是:The ideal Gamma characteristics of the corresponding camera/camera are:
Lout=Lin 0.45 (3)L out =L in 0.45 (3)
从Gamma问题的起源来看,Gamma问题起源于CRT显示器,因为其Gamma值是2.2,为了补偿掉这个非线性,在摄像机中引入了Gamma值0.45。在这个例子中,Gamma特性的形式是一个幂函数(Power Function)。需要说明的是,这里的输入和输出亮度信号都是在各自的坐标空间中进行了规一化(Normalized)的,即0≤Lout≤1,0≤Lin≤1。而其它类型的显示器比如液晶等,其Gamma函数的形式或者会有所不同,或者虽然在形式上也是幂函数,但是参数不同。From the origin of the Gamma problem, the Gamma problem originated from the CRT monitor, because its Gamma value is 2.2. In order to compensate for this non-linearity, a Gamma value of 0.45 is introduced into the camera. In this example, the form of the Gamma characteristic is a power function (Power Function). It should be noted that the input and output luminance signals here are normalized (Normalized) in their respective coordinate spaces, that is, 0≤L out ≤1, 0≤L in ≤1. For other types of displays such as liquid crystals, the form of the Gamma function may be different, or although the form is also a power function, the parameters are different.
理想的情况是输入亮度信号和输出亮度信号之间存在线性关系,即Lout=Lin。要获得线性关系,必须对于具有非线性Gamma特性的环节进行Gamma校正(Gamma Correction)。Ideally, there is a linear relationship between the input luminance signal and the output luminance signal, that is, L out =L in . To obtain a linear relationship, Gamma Correction (Gamma Correction) must be performed on links with nonlinear Gamma characteristics.
对一个Gamma环节的Gamma校正原理图如附图4所示。The principle diagram of Gamma correction for a Gamma link is shown in Figure 4.
图4中,对于一个环节来说,其Gamma特性给定即Lout=Gg(Lin),这样,可以用另外一个校正环节Lout=Gc(Lin)和它进行级联,来使得总的Gamma特性成为真正的线性关系,从而达到校正掉给定环节的非线性的目的。In Fig. 4, for a link, its Gamma characteristic is given, that is, L out = Gg(L in ), so that another correction link L out = Gc(L in ) can be cascaded with it to make the total The Gamma characteristic of Gamma becomes a true linear relationship, so as to achieve the purpose of correcting the nonlinearity of a given link.
显然,Gg(.)和Gc(.)互为反函数。在一般情况下,对于一个函数,要获得其反函数不一定有解,而且,即使存在反函数,也无法用计算的方法获得。Obviously, Gg(.) and Gc(.) are inverse functions of each other. In general, for a function, there may not be a solution to obtain its inverse function, and even if there is an inverse function, it cannot be obtained by calculation.
实际应用中,更多的情况是存在多个Gamma环节的情况,对多个Gamma环节的Gamma校正原理图如附图5所示。In practical applications, there are more cases where there are multiple Gamma links, and the principle diagram of Gamma correction for multiple Gamma links is shown in Fig. 5 .
图5中,校正环节需要插入到前后两个给定Gamma环节之间。前给定环节的Gamma特性即Lout=Ga(Lin),后给定环节的Gamma特性即Lout=Gp(Lin)。此时,校正环节中的Gc(.)非常复杂,Gc(.)和Ga(.)或者Gp(.)之间不再是简单的反函数关系了。In Fig. 5, the correction link needs to be inserted between the two given Gamma links before and after. The Gamma characteristic of the previous given link is L out =Ga(L in ), and the Gamma characteristic of the later given link is L out =Gp(L in ). At this time, Gc(.) in the calibration link is very complicated, and the relationship between Gc(.) and Ga(.) or Gp(.) is no longer a simple inverse function relationship.
实现上述Gamma校正方法,其前提是:能够对于一个给定的Gamma环节或者多个给定的Gamma环节的级联确定Gamma特性参数。这里的Gamma特性参数就是Gamma特性函数曲线的参数。To realize the above-mentioned Gamma correction method, the premise is that the Gamma characteristic parameter can be determined for a given Gamma link or a cascade of multiple given Gamma links. The Gamma characteristic parameter here is the parameter of the Gamma characteristic function curve.
在通信的一般情况下,校正需要涉及到两个以上的通信终端。比如在一个两方视频通信中,终端A的视频传送到终端B,那么这路视频的校正就同时涉及到终端A上的Gamma环节和终端B上的Gamma环节。In the general case of communications, corrections need to involve more than two communicating terminals. For example, in a two-party video communication, if the video of terminal A is transmitted to terminal B, then the correction of this video involves both the Gamma link on terminal A and the Gamma link on terminal B.
目前,确定Gamma特性参数的方法主要有两种:At present, there are two main methods for determining the Gamma characteristic parameters:
方法一:仪器测量方法。即通过专用仪器测量出Gamma特性函数曲线上的一些点,然后,采用数据拟合的方法来进行曲线拟合,以确定Gamma特性参数。Method 1: Instrument measurement method. That is, some points on the Gamma characteristic function curve are measured by special instruments, and then the data fitting method is used to perform curve fitting to determine the Gamma characteristic parameters.
方法二:采用输入亮度信号和输出亮度信号的方法。即对于单个给定的Gamma环节,只要Gg(.)满足一定条件,就可以找到对Gg(.)进行Gamma校正的Gc(.);对于多个给定的Gamma环节,只要Ga(.)、Gp(.)满足一定条件,就可以找到对Ga(.)和Gp(.)进行Gamma校正的Gc(.)。Method 2: The method of inputting a luminance signal and outputting a luminance signal is adopted. That is, for a single given Gamma link, as long as Gg(.) satisfies certain conditions, Gc(.) can be found to perform Gamma correction on Gg(.); for multiple given Gamma links, as long as Ga(.), Gp(.) satisfies certain conditions, and Gc(.) that performs Gamma correction on Ga(.) and Gp(.) can be found.
从上述两种方法的描述可以看出,目前确定Gamma特性参数的实现方法都有一个前提条件,即明确知道需要被确定Gamma特性参数的Gamma环节的输入亮度信号和输出亮度信号的具体数值,也就是明确知道Gamma环节的输入亮度信号和输出亮度信号的全部知识,因此,上述两种确定Gamma特性参数的实现方法均属于非盲测量方法。From the description of the above two methods, it can be seen that the current implementation methods for determining the Gamma characteristic parameters have a prerequisite, that is, the specific values of the input luminance signal and the output luminance signal of the Gamma link that needs to be determined for the Gamma characteristic parameter. It is to clearly know all the knowledge of the input luminance signal and the output luminance signal of the Gamma link. Therefore, the above two implementation methods for determining the Gamma characteristic parameters belong to non-blind measurement methods.
非盲测量方法的实现原理如附图6所示。The realization principle of the non-blind measurement method is shown in Fig. 6 .
图6中,Gamma特性参数测量系统利用Gamma环节的输入亮度信号全部知识、输出亮度信号全部知识测量出Gamma特性参数,这里的Gamma环节可以是单个Gamma环节,也可以是级联的Gamma环节。In Fig. 6, the gamma characteristic parameter measurement system measures the gamma characteristic parameters by using all the knowledge of the input luminance signal and the output luminance signal of the gamma link. The gamma link here can be a single gamma link or a cascaded gamma link.
但是,非盲测量方法在实际应用中的适用范围是非常有限的,也就是说,上述前提条件在很多情况下是不能满足的,下面例举目前常见的三种不能满足上述前提条件的应用。However, the scope of application of the non-blind measurement method in practical applications is very limited, that is to say, the above preconditions cannot be satisfied in many cases. The following are examples of three common applications that cannot meet the above preconditions.
应用情景一:对于IPTV(Internet Protocol Television)等流媒体业务和应用,由于节目制作过程中,已经受到了视频输入设备的Gamma特性的影响,在节目播出的时候,尤其是点播等情况,已经无法获得原来节目制作时候用于采集视频信号的视频输入设备的Gamma特性,而且,也不可能对视频输入设备的Gamma特性参数进行测量了。Application Scenario 1: For streaming media services and applications such as IPTV (Internet Protocol Television), due to the influence of the Gamma characteristics of the video input device during the program production process, when the program is broadcast, especially in the case of on-demand, it has already The Gamma characteristic of the video input device used to collect the video signal during the original program production cannot be obtained, and it is impossible to measure the Gamma characteristic parameter of the video input device.
应用情景二:对于数据会议等应用也存在上述问题。目前,视频会议的发展和数据会议的发展同步,两者完善的结合,对于协作应用(collaborativeapplications)有很大的意义。在企业等环境中,上述协作应用业务有强烈的市场需求。但是,在数据会议应用中,很多多媒体资料比如图片等的来源是不可考的,很难获得当时生成这些数据的视频输入设备的Gamma特性,而且,也不可能对视频输入设备的Gamma特性参数进行测量了。Application Scenario 2: The above problems also exist for applications such as data conferencing. At present, the development of video conferencing is synchronized with the development of data conferencing, and the perfect combination of the two is of great significance to collaborative applications. In environments such as enterprises, there is a strong market demand for the aforementioned collaborative application services. However, in data conferencing applications, the source of many multimedia materials such as pictures is unreliable, it is difficult to obtain the Gamma characteristics of the video input device that generated these data at that time, and it is also impossible to carry out the Gamma characteristic parameters of the video input device Measured.
应用情景三:对于面向千万家庭用户的公众视频通信业务来说,为了降低成本和视频通信业务使用门槛,往往大量的采用廉价摄像头,尤其是那些非常便宜的USB接口摄像头。这些廉价的视频输入设备的Gamma特性曲线和标准的Lout=Lin 0.45相差很远,甚至根本不是幂函数的形式。而且从这些廉价摄像头的出厂技术资料中一般无法获取其Gamma特性参数。甚至有些廉价的摄像头根本就没有出厂技术资料。用户在家里使用这些摄像头时,也不可能通过上述确定Gamma特性参数的方法来获得Gamma特性参数。Application Scenario 3: For public video communication services for tens of millions of household users, in order to reduce costs and use thresholds of video communication services, a large number of cheap cameras are often used, especially those very cheap USB interface cameras. The Gamma characteristic curve of these cheap video input devices is far from the standard L out =L in 0.45 , and is not even in the form of a power function at all. Moreover, it is generally impossible to obtain the Gamma characteristic parameters of these cheap cameras from the factory technical data. Even some cheap cameras do not have factory technical data at all. When the user uses these cameras at home, it is also impossible to obtain the Gamma characteristic parameter through the above-mentioned method for determining the Gamma characteristic parameter.
以上三种应用是非常重要的,而且,上述三种应用都有很大的市场潜力,尤其是IPTV和协作数据会议市场的发展非常快。视频通信要真正用于巨大的市场,必须依靠走公众运营的道路来吸引千家万户,这样就要求入门条件一定要非常低,视频输入设备的价格要非常低廉。目前确定Gamma特性参数的非盲测量方法使Gamma校正难于应用,而且,通过专用仪器测量的方法提高了视频通信业务的实现成本。The above three applications are very important, and all of the above three applications have great market potential, especially the IPTV and collaborative data conferencing markets are developing very fast. If video communication is really used in a huge market, it must rely on the road of public operation to attract thousands of households. This requires that the entry requirements must be very low, and the price of video input equipment must be very low. The current non-blind measurement method for determining Gamma characteristic parameters makes Gamma correction difficult to apply, and the method of measuring with special instruments increases the implementation cost of video communication services.
发明内容Contents of the invention
本发明的目的在于,提供一种视频通信伽玛特性的校正方法和装置,利用输出亮度信号的直方图来确定伽玛特性参数,以实现降低视频通信成本,提高Gamma校正易用性的目的。The object of the present invention is to provide a method and device for correcting gamma characteristics of video communication, which uses the histogram of the output brightness signal to determine gamma characteristic parameters, so as to reduce the cost of video communication and improve the usability of gamma correction.
为达到上述目的,本发明提供的一种视频通信伽玛特性的校正方法,包括:In order to achieve the above object, a method for correcting gamma characteristics of video communication provided by the present invention includes:
a、获取输出亮度信号的亮度直方图;a. Acquiring a luminance histogram of the output luminance signal;
b、将输出亮度信号的亮度直方图转换为输出亮度信号亮度分布概率密度函数,并确定输出亮度信号亮度分布概率密度函数的极值点;b. converting the luminance histogram of the output luminance signal into a luminance distribution probability density function of the output luminance signal, and determining the extreme point of the luminance distribution probability density function of the output luminance signal;
c、建立输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系;c. Establishing the mathematical relationship between the extreme point of the brightness distribution probability density function of the output brightness signal and the extreme value point of the brightness distribution probability density function of the input brightness signal;
d、利用所述极值点、以及极值点之间的数学关系将输入、输出信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系转换为:在极值点处,输出亮度信号亮度分布概率密度函数与Gamma特性函数之间的数学关系;d. Using the extreme point and the mathematical relationship between the extreme points to convert the mathematical relationship between the respective brightness distribution probability density functions and Gamma characteristic functions of the input and output signals to: at the extreme point, the output brightness The mathematical relationship between the signal brightness distribution probability density function and the Gamma characteristic function;
e、对所述转换后的数学关系进行求解,以确定伽玛特性参数;e. Solving the converted mathematical relationship to determine the gamma characteristic parameter;
f、根据所述伽玛特性参数对伽玛环节进行伽玛校正。f. Performing gamma correction on the gamma link according to the gamma characteristic parameter.
所述伽玛环节为:单个给定伽玛环节、或者多个给定伽玛环节的级联组合。The gamma link is: a single given gamma link, or a cascade combination of multiple given gamma links.
所述步骤b包括:Described step b comprises:
将输出亮度信号的亮度直方图转换为多项式形式的输出亮度信号亮度分布概率密度函数:Convert the luminance histogram of the output luminance signal into a polynomial form of the output luminance signal brightness distribution probability density function:
fr(r)=cdrd+cd-1rd-1+cd-2rd-2+.....+c1r+c0;f r (r) = c d r d +c d-1 r d-1 +c d-2 r d-2 +.....+c 1 r+c 0 ;
其中:cd,cd-1,cd-2,.....,c0为d+1个多项式系数,r为输入亮度信号的幅值。Among them: c d , c d-1 , c d-2 , ..., c 0 are d+1 polynomial coefficients, and r is the amplitude of the input brightness signal.
所述步骤d包括:Said step d comprises:
输入、输出亮度信号各自的亮度分布概率密度函数fe(x,t)、fr(x,t)、以及Gamma特性函数之间的数学关系为:The mathematical relationship between the brightness distribution probability density functions f e (x, t), f r (x, t) and the Gamma characteristic function of the input and output brightness signals is:
d(e;p)fr(r)=fe(e);d(e; p) f r (r) = f e (e);
其中:r=g(e,p),e∈[0,1];Where: r=g(e,p), e∈[0,1];
输入、输出亮度信号各自的亮度分布概率密度函数的极值点数量相同,且定量的数学关系为:The number of extreme points of the brightness distribution probability density function of the input and output brightness signals is the same, and the quantitative mathematical relationship is:
rk=g(ek;p),p=[p1,p2,p3,.....,pM]T r k = g(e k ; p), p = [p 1 , p 2 , p 3 , . . . , p M ] T
其中:k=1,2,3,......,J;J为亮度分布概率密度函数的极值点数量;Wherein: k=1,2,3,...,J; J is the number of extreme points of the brightness distribution probability density function;
在极值点处,转换后的输出亮度信号亮度分布概率密度函数及其导函数与Gamma特性函数及其反函数、导函数之间的数学关系为:At the extreme point, the mathematical relationship between the converted output brightness signal brightness distribution probability density function and its derivative function and the Gamma characteristic function and its inverse function and derivative function is:
其中:k=1,2,3,......,J,J为亮度分布概率密度函数的极值点数量,rk为输出亮度信号亮度分布概率函数的极值点,而且,导函数 为:Wherein: k=1,2,3,..., J, J is the extreme value point quantity of brightness distribution probability density function, r k is the extreme value point of output brightness signal brightness distribution probability function, and, derivation function for:
所述步骤e包括:Described step e comprises:
利用直接求解方程法、或者非线性函数优化方法对数学关系:
非线性函数优化方法包括:Nonlinear function optimization methods include:
根据所述输出亮度信号亮度分布概率密度函数与Gamma特性函数之间的数学关系构造代价函数:According to the mathematical relationship between the output brightness signal brightness distribution probability density function and the Gamma characteristic function, the cost function is constructed:
在M个参数中任意选取M-1个参数,将参数空间的维度降低为M-1维;Randomly select M-1 parameters among the M parameters, and reduce the dimension of the parameter space to M-1 dimensions;
确定M-1个参数的方法为:确定参数向量ptrue,使对于任意p∈RM-1,关系J(p)>=J(pture)成立,即寻找到代价函数的全局最小点,参数向量ptrue即为对于这M-1个参数所确定的数值;The method of determining M-1 parameters is: determine the parameter vector p true , so that for any p∈R M-1 , the relationship J(p)>=J(p ture ) holds true, that is, find the global minimum point of the cost function, The parameter vector p true is the value determined for the M-1 parameters;
利用关系g(1;p)=1结合ptrue,确定剩下一个伽玛特性参数。Using the relation g(1; p)=1 in combination with p true , the remaining gamma characteristic parameter is determined.
确定ptrue的方法包括:组合优化方法、神经网络方法、蛮力搜索方法。Methods for determining p true include: combinatorial optimization methods, neural network methods, and brute force search methods.
所述蛮力搜索方法包括步骤:The brute force search method comprises the steps of:
将维度降低一维的伽玛特性参数空间划分为多个超立方体;Divide the one-dimensional gamma characteristic parameter space into multiple hypercubes;
选取初始搜索点,并根据预定顺序从该初始搜索点所在的超立方体开始进行遍历搜索;Select an initial search point, and perform a traversal search from the hypercube where the initial search point is located according to a predetermined order;
计算搜索过程中进入的每个超立方体的几何中心坐标Q,并根据所述代价函数的表达式以及搜索过程中进入的超立方体计算J(Q);Calculate the geometric center coordinate Q of each hypercube entering in the search process, and calculate J (Q) according to the expression of the cost function and the hypercube entering in the search process;
如果J(Q)小于等于预定门限,或者搜索过的超立方体满足预定条件,则将本次搜索进入的超立方体的几何中心坐标Q作为ptrue,搜索过程结束;If J(Q) is less than or equal to the predetermined threshold, or the hypercube searched meets the predetermined condition, then the geometric center coordinate Q of the hypercube entered in this search is used as p true , and the search process ends;
否则,继续搜索过程。Otherwise, the search process continues.
所述初始搜索点根据实际应用中伽玛特性参数的经验数值来设置。The initial search point is set according to the empirical value of the gamma characteristic parameter in practical application.
所述遍历搜索包括:以初始搜索点所在的超立方体作为初始超立方体,将包围初始超立方体的超立方体按照距离初始超立方体的远近划分为依次包裹前一层的多层超立方体阵列,并逐层进行搜索。The traversal search includes: taking the hypercube where the initial search point is located as the initial hypercube, dividing the hypercube surrounding the initial hypercube into multi-layer hypercube arrays wrapping the previous layer in turn according to the distance from the initial hypercube, and layer to search.
在蛮力搜索方法中,维度降低一维的伽玛特性参数空间被划分为多个粗粒度的超立方体,所述遍历搜索包括:In the brute force search method, the gamma characteristic parameter space whose dimension is reduced by one dimension is divided into a plurality of coarse-grained hypercubes, and the traversal search includes:
以初始搜索点所在的超立方体作为初始超立方体,将包围初始超立方体的超立方体按照距离初始超立方体的远近划分为依次包裹前一层的多层超立方体阵列,并逐层进行搜索;With the hypercube where the initial search point is located as the initial hypercube, the hypercube surrounding the initial hypercube is divided into multi-layer hypercube arrays that wrap the previous layer in turn according to the distance from the initial hypercube, and search layer by layer;
将搜索到的满足条件的超立方体作为新的伽玛特性参数空间,并将其划分为更细粒度的超立方体,依次类推,进行从粗到细的逐层搜索。The searched hypercube that satisfies the conditions is used as a new gamma characteristic parameter space, and it is divided into finer-grained hypercubes, and so on, and a layer-by-layer search is performed from coarse to fine.
本发明还提供一种伽玛特性的校正装置,所述装置包括:获取直方图模块、第一转换模块、极值点计算模块、存储模块、第二转换模块、Gamma特性参数求解模块和伽玛校正模块;The present invention also provides a correction device for gamma characteristics, said device comprising: a histogram acquisition module, a first conversion module, an extreme point calculation module, a storage module, a second conversion module, a gamma characteristic parameter solving module and a gamma Calibration module;
获取直方图模块:用于获取输出亮度信号的亮度直方图,并输出至第一转换模块;Obtaining a histogram module: used to obtain the brightness histogram of the output brightness signal, and output it to the first conversion module;
第一转换模块:用于将其接收的输出亮度信号的亮度直方图转换为输出亮度信号亮度分布概率密度函数,并输出至极值点计算模块和第二转换模块;The first conversion module: used to convert the brightness histogram of the output brightness signal received by it into a probability density function of the brightness distribution of the output brightness signal, and output it to the extreme point calculation module and the second conversion module;
极值点计算模块:用于计算其接收的输出亮度信号亮度分布概率密度函数的各个极值点,并输出至第二转换模块;Extreme point calculation module: used to calculate each extreme point of the brightness distribution probability density function of the output brightness signal received by it, and output to the second conversion module;
存储模块:用于存储输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系、以及存储输入、输出亮度信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系;Storage module: used to store the mathematical relationship between the extreme point of the brightness distribution probability density function of the output brightness signal and the extreme point of the brightness distribution probability density function of the input brightness signal, and store the respective brightness distribution probability densities of the input and output brightness signals The mathematical relationship between the function and the Gamma characteristic function;
第二转换模块:用于根据其接收到的极值点、输出亮度信号亮度分布概率密度函数、存储模块中存储的极值点的数学关系将输入、输出亮度信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系转换为:在极值点处,输出亮度信号亮度分布概率密度函数与Gamma特性函数之间的数学关系;The second conversion module: used for converting the respective luminance distribution probability density functions of input and output luminance signals and The mathematical relationship between the Gamma characteristic functions is transformed into: at the extreme point, the mathematical relationship between the output brightness signal brightness distribution probability density function and the Gamma characteristic function;
Gamma特性参数求解模块:用于对所述转换后的数学关系进行求解计算,以确定伽玛特性参数;Gamma characteristic parameter solving module: used for solving and calculating the converted mathematical relationship to determine the gamma characteristic parameter;
伽玛校正模块:用于根据所述伽玛特性参数对伽玛环节进行伽玛校正。Gamma correction module: for performing gamma correction on the gamma link according to the gamma characteristic parameters.
所述装置位于视频数据源设备中、和/或位于视频通信网络的中间设备中、和/或位于视频数据目的设备。本发明还提供一种伽玛特性的校正装置,包括:The device is located in a video data source device, and/or in an intermediate device of a video communication network, and/or in a video data destination device. The present invention also provides a correction device for gamma characteristics, comprising:
通过上述技术方案的描述可知,本发明提供的Gamma校正方法仅需要输出亮度信号的直方图即可,这样,本发明的Gamma参数确定方法可以称为全盲测量方法;由于本发明不需要输入亮度信号的任何知识,因此,本发明的Gamma校正方法具有很高的应用可行性;本发明的伽玛校正方法特别适用于IPTV、协作数据会议、广泛使用低端视频输入设备的公众视频通信;本发明在采用蛮力搜索方法来确定伽玛特性函数的参数时,采用了逐层搜索、从粗到细搜索、根据实际情况选取初始搜索点等方法,提高了搜索效率;从而通过本发明提供的技术方案实现了提高Gamma校正易用性,拓宽Gamma校正的应用范围,提高用户体验和服务质量的目的。Known by the description of above-mentioned technical scheme, the Gamma correction method that the present invention provides only needs to output the histogram of luminance signal, like this, the Gamma parameter determination method of the present invention can be referred to as full-blind measuring method; Because the present invention does not need to input luminance signal Therefore, the gamma correction method of the present invention has high application feasibility; the gamma correction method of the present invention is particularly suitable for IPTV, collaborative data conference, public video communication that widely uses low-end video input equipment; the present invention When adopting the brute force search method to determine the parameter of the gamma characteristic function, adopted layer by layer search, search from coarse to fine, select the methods such as initial search point according to actual situation, improved search efficiency; Thereby the technology provided by the present invention The solution achieves the purpose of improving the usability of Gamma correction, broadening the application range of Gamma correction, and improving user experience and service quality.
附图说明Description of drawings
图1是环节Gamma特性的模型示意图;Figure 1 is a schematic diagram of the model of the link Gamma characteristic;
图2(a)是Gamma特性示意图一;Figure 2(a) is a schematic diagram of the Gamma characteristic;
图2(b)是Gamma特性示意图二;Figure 2(b) is a schematic diagram of the Gamma characteristic II;
图3是多个环节级联的Gamma特性的模型示意图;Fig. 3 is a schematic diagram of the model of the Gamma characteristic of cascading multiple links;
图4是对一个Gamma环节的Gamma校正原理示意图;Fig. 4 is a schematic diagram of the Gamma correction principle of a Gamma link;
图5是对多个Gamma环节的Gamma校正原理示意图;Fig. 5 is a schematic diagram of the Gamma correction principle for multiple Gamma links;
图6是现有技术中的非盲测量方法的实现原理示意图;Fig. 6 is a schematic diagram of the realization principle of the non-blind measurement method in the prior art;
图7是本发明实施例的全盲Gamma特性参数确定方法的实现原理示意图;Fig. 7 is a schematic diagram of the implementation principle of the method for determining the full-blind Gamma characteristic parameter according to the embodiment of the present invention;
图8是视频信号的亮度直方图示例图;Figure 8 is an example diagram of a brightness histogram of a video signal;
图9是本发明实施例的输入信号、输出亮度信号亮度分布概率密度函数之间的关系示意图;9 is a schematic diagram of the relationship between the input signal and output brightness signal brightness distribution probability density function according to an embodiment of the present invention;
图10(a)是一帧输入图像;Figure 10(a) is a frame of input image;
图10(b)是一帧输出图像;Figure 10(b) is a frame of output image;
图10(c)是输入信号、输出亮度信号亮度分布概率密度函数极值点之间的对应关系示意图;Fig. 10(c) is a schematic diagram of the corresponding relationship between the input signal and the output brightness signal brightness distribution probability density function extreme points;
图11是本发明实施例的通过插值和数据拟合得到的输出亮度信号亮度分布概率密度函数示意图;11 is a schematic diagram of a probability density function of brightness distribution of an output brightness signal obtained through interpolation and data fitting according to an embodiment of the present invention;
图12是本发明实施例的蛮力搜索方法的原理示意图;FIG. 12 is a schematic diagram of the principle of a brute force search method according to an embodiment of the present invention;
图13本发明实施例的初始超立方体和其外围多层超立方体在二维情况下的示意图;Figure 13 is a schematic diagram of the initial hypercube and its peripheral multilayer hypercube in two dimensions according to the embodiment of the present invention;
图14是本发明实施例的蛮力搜索方法示意图。Fig. 14 is a schematic diagram of a brute force search method according to an embodiment of the present invention.
具体实施方式Detailed ways
在很多应用场景中,输出亮度信号的具体数值即全部知识是可知的,而输入亮度信号的具体数值是不可知的,甚至输入亮度信号的任何知识均不可知。本发明仅利用了输出亮度信号的知识来确定Gamma特性参数,以进行Gamma校正的。由于在本发明的技术方案中,没有利用输入亮度信号的任何知识,所以,本发明技术方案中确定Gamma特性参数的方法可以称为全盲Gamma特性参数确定方法。In many application scenarios, the specific value of the output luminance signal, that is, all knowledge, is known, but the specific value of the input luminance signal is not known, or even any knowledge of the input luminance signal is unknown. The present invention only utilizes the knowledge of the output luminance signal to determine the Gamma characteristic parameter for Gamma correction. Since no knowledge of the input luminance signal is used in the technical solution of the present invention, the method for determining the Gamma characteristic parameter in the technical solution of the present invention can be called a method for determining the Gamma characteristic parameter of a full blindness.
本发明的全盲Gamma特性参数确定方法的实现原理如附图7所示。The implementation principle of the blind Gamma characteristic parameter determination method of the present invention is shown in FIG. 7 .
图7中,对于需要确定Gamma特性的环节,本发明根据已知的输出亮度信号的知识来确定该环节的Gamma特性参数。在本发明的全盲Gamma特性参数确定方法中,输出亮度信号的全部知识是已知的,但是,本发明并不一定利用输出亮度信号的全部知识。In FIG. 7 , for the link that needs to determine the Gamma characteristic, the present invention determines the Gamma characteristic parameter of the link according to the known knowledge of the output brightness signal. In the full-blind Gamma characteristic parameter determination method of the present invention, all the knowledge of the output luminance signal is known, but the present invention does not necessarily use all the knowledge of the output luminance signal.
在根据输出亮度信号的知识确定了Gamma特性参数后,就能够根据Gamma特性参数对Gamma环节进行Gamma校正了。在本发明中,需要确定Gamma特性的环节可以为单个给定的Gamma环节,也可以为多个给定的Gamma环节的级联组合。After the Gamma characteristic parameter is determined according to the knowledge of the output luminance signal, the Gamma correction can be performed on the Gamma link according to the Gamma characteristic parameter. In the present invention, the link that needs to determine the Gamma characteristic can be a single given Gamma link, or a cascade combination of multiple given Gamma links.
下面结合附图对本发明提供的技术方案进行详细描述。The technical solution provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
首先,本发明需要获取输出亮度信号的亮度直方图,亮度直方图如附图8所示。图8中,设定图像的亮度为0到255个等级,则不同亮度等级均对应于一个亮度分布概率。First, the present invention needs to obtain the brightness histogram of the output brightness signal, and the brightness histogram is shown in Fig. 8 . In FIG. 8 , the brightness of the image is set from 0 to 255 levels, and different brightness levels correspond to a brightness distribution probability.
直方图是图像处理技术领域的技术术语,其实,直方图就是一种离散形式的分布概率密度函数。Histogram is a technical term in the field of image processing technology. In fact, histogram is a discrete form of distribution probability density function.
视频信号是由一帧一帧的连续图像组成的,输出亮度信号的直方图可以从某一帧图像中获得。从图像中获得亮度信号的直方图的方法属于常规技术,在此不再详细描述。The video signal is composed of continuous images frame by frame, and the histogram of the output brightness signal can be obtained from a certain frame image. The method of obtaining the histogram of the luminance signal from the image belongs to conventional technology, and will not be described in detail here.
获取输出亮度信号的直方图也可以在其它阶段进行,如在输出亮度信号还在一维信号的时候,获取输出亮度信号的直方图,此时,输出亮度信号并没有转化成图像。Obtaining the histogram of the output luminance signal can also be performed in other stages, for example, when the output luminance signal is still a one-dimensional signal, the histogram of the output luminance signal is obtained. At this time, the output luminance signal has not been converted into an image.
直方图信息和连续的分布概率密度函数之间存在着密切的关系。一般来说,由连续的分布概率密度函数可以直接得到亮度直方图;反过来,由亮度直方图,也可以通过数据插值或者拟合等方法来得到连续的分布概率密度函数。事实上,直方图信息和连续的分布概率密度函数存在严格的比例数量关系。以上关系说明如下。There is a close relationship between the histogram information and the probability density function of the continuous distribution. Generally speaking, the brightness histogram can be directly obtained from the continuous distribution probability density function; conversely, the continuous distribution probability density function can also be obtained by data interpolation or fitting methods from the brightness histogram. In fact, there is a strict proportional-quantity relationship between the histogram information and the probability density function of the continuous distribution. The above relationship is explained as follows.
对于单个给定Gamma环节或者多个给定Gamma环节的级联组合来说,亮度信号的全体集合是{s(t)|t∈R,0≤s(t)≤1},其中,R表示全体实数集合。也就是说,亮度信号的全体集合是全体信号幅值(amplitude)小于等于1的非负值时间信号的集合。这里的亮度信号的取值为非负,亮度信号的取值是根据物理意义确定的,因为负亮度没有物理意义。任何信号在经过规一化处理之后,一定会满足信号幅值小于等于1的条件。这里的亮度信号是普遍意义上的亮度信号,因此下面的描述对于输入亮度信号、输出亮度信号都适用。为了描述简单起见,下面以输出亮度信号为例,对直方图信息和连续的分布概率密度函数之间的关系进行说明。For a single given Gamma link or a cascaded combination of multiple given Gamma links, the entire set of luminance signals is {s(t)|t∈R, 0≤s(t)≤1}, where R represents The set of all real numbers. That is to say, the entire set of luminance signals is a set of non-negative time signals whose overall signal amplitude (amplitude) is less than or equal to 1. The value of the luminance signal here is non-negative, and the value of the luminance signal is determined according to the physical meaning, because the negative luminance has no physical meaning. After any signal is normalized, it must meet the condition that the signal amplitude is less than or equal to 1. The luminance signal here is a luminance signal in a general sense, so the following description is applicable to both the input luminance signal and the output luminance signal. For simplicity of description, the following takes the output brightness signal as an example to illustrate the relationship between the histogram information and the continuous distribution probability density function.
由于存在随机干扰,所以,这些输出亮度信号可以看成是随机过程。这些输出亮度信号的统计特性可能各不相同,但是,按照信号的统计特性,特别是按照分布概率特性,可以对输出信号进行分类。任何信号作为一个随机过程都有一个分布概率密度函数与之对应,如果随机过程是平稳的(这里的平稳是严格意义上的平稳),那么这个分布概率密度函数和时间无关;如果随机过程不是平稳的,那么这个分布概率密度函数可能和时间有关。因此,一般来说,对于一个随机过程s(t)(t∈R,0≤s(t)≤1)来说,可以用fs(x,t),t∈R表示其分布概率密度函数。如果是严格意义上的平稳的随机过程,则fs(x,t),t∈R和t无关,即分布概率密度函数不随时间变化而变化,此时,fs(x,t)=fs(x)。Due to the existence of random interference, these output brightness signals can be regarded as a random process. The statistical characteristics of these output luminance signals may be different, but the output signals can be classified according to the statistical characteristics of the signals, especially according to the distribution probability characteristics. As a random process, any signal has a distribution probability density function corresponding to it. If the random process is stable (here, the stability is strictly stable), then the distribution probability density function has nothing to do with time; if the random process is not stable , then the probability density function of this distribution may be time-dependent. Therefore, in general, for a random process s(t)(t∈R, 0≤s(t)≤1), the probability density function of its distribution can be represented by f s (x, t), t∈R . If it is a stationary random process in the strict sense, f s (x, t), t∈R has nothing to do with t, that is, the distribution probability density function does not change with time. At this time, f s (x, t)=f s (x).
信号的规一化处理方法如下:The normalization processing method of the signal is as follows:
如果一个信号s(t)不满足条件t∈R,0≤s(t)≤1,那么,需要对该信号进行规一化处理,使其满足t∈R,0≤s(t)≤1。例如:如果信号实际的取值范围是[0,Smax],则规一化处理后的信号sn(t)为:If a signal s(t) does not satisfy the condition t∈R, 0≤s(t)≤1, then the signal needs to be normalized so that it satisfies t∈R, 0≤s(t)≤1 . For example: if the actual value range of the signal is [0, S max ], the normalized signal s n (t) is:
sn(t)=s(t)/Smax (4)s n (t) = s (t) / S max (4)
公式(4)中的下标n表示英文normalized,意思为规一化。The subscript n in formula (4) means normalized in English, which means normalization.
相应地,如果将信号从规一化的值还原到实际的取值,即对信号进行逆规一化处理,其计算公式如下:Correspondingly, if the signal is restored from the normalized value to the actual value, that is, the signal is denormalized, and the calculation formula is as follows:
s(t)=Smaxsn(t) (5)s(t)=S max s n (t) (5)
根据分布概率密度函数的定义,分布概率密度函数有如下属性:According to the definition of the distribution probability density function, the distribution probability density function has the following properties:
并且 (6)and (6)
fs(x,t)≥0,对于任何tf s (x,t)≥0, for any t
而且,对于信号幅值小于等于1的非负值信号,满足:Moreover, for a non-negative signal with a signal amplitude less than or equal to 1, satisfy:
fs(x,t)=0,x<0或者x>1 (7)f s (x, t)=0, x<0 or x>1 (7)
也就是说,信号值大于1或者小于0是不可能的,概率为零。That is, it is impossible for a signal value to be greater than 1 or less than 0, and the probability is zero.
作为一个自然推论就是:As a natural corollary it is:
按照概率密度函数的定义,对于很小的区间长度δ和区间[0,1]上一点x0来说,fs(x0,t)δ≈Prob{x0≤s(t)≤x0+δ} (9)According to the definition of the probability density function, for a very small interval length δ and a point x 0 on the interval [0, 1], f s (x 0 , t)δ≈Prob{x 0 ≤s(t)≤x 0 +δ} (9)
或者等效地or equivalently
其中:符号Prob表示概率(Probability)。Among them: the symbol Prob represents the probability (Probability).
其直观意义是说,在时刻t,亮度信号落在区间[x0,x0+δ]或者 的概率近似等于fs(x0,t)δ。这其实是一种把连续分布概率密度函数变成离散概率密度的方法。由此可知,由连续概率密度函数,通过这样的离散化可以得到信号的亮度直方图。Its intuitive meaning is that at time t, the luminance signal falls in the interval [x 0 , x 0 +δ] or The probability of is approximately equal to f s (x 0 ,t)δ. This is actually a way to turn the probability density function of a continuous distribution into a discrete probability density. It can be seen that, from the continuous probability density function, the brightness histogram of the signal can be obtained through such discretization.
对于规一化的亮度信号,可以把[0,1]区间等分成N个子区间,每个子区间的长度是1/N。第k(k=0,1,2,....,N-1)个子区间是[k/N,(k+1)/N]。如果N足够大,1/N足够小,那么,可以认为:For a normalized luminance signal, the interval [0, 1] can be equally divided into N subintervals, and the length of each subinterval is 1/N. The kth (k=0, 1, 2, ..., N-1) subinterval is [k/N, (k+1)/N]. If N is large enough and 1/N is small enough, then it can be considered that:
于是,可以形成一个概率序列(sequence):Thus, a probability sequence (sequence) can be formed:
如果信号还原到其非规一化的信号空间中,如在视频通信中通常亮度信号取0-255的整数,共256级亮度,当然,也可以将亮度信号一般化为2D级亮度的情况,此时,需要将单位区间即[0,1]线性映射成集合{0,1,2,3,...,2D-2,2D-1},每个子区间相应扩大2D倍,成为(1/N)2D。于是相应的概率序列变成连续概率密度函数:If the signal is restored to its non-normalized signal space, as in video communication, the luminance signal usually takes an integer from 0 to 255, with a total of 256 levels of luminance. Of course, the luminance signal can also be generalized to 2D level luminance. , at this time, it is necessary to linearly map the unit interval [0, 1] into a set {0, 1, 2, 3, ..., 2 D -2, 2 D -1}, and each sub-interval is correspondingly enlarged by 2 D times , becomes (1/N)2 D . The corresponding probability sequence then becomes a continuous probability density function:
根据公式(8)和公式(10),显然可以得出:According to formula (8) and formula (10), it is obvious that:
公式(13)中的这个概率序列就叫做亮度信号s(t)的直方图。This probability sequence in formula (13) is called the histogram of the luminance signal s(t).
从上述推导中可以明显看出:直方图是可以由信号亮度的连续分布概率密度函数直接得到的,反过来,亮度信号的连续分布概率密度函数也可以由直方图经过数据插值、拟合等处理后得到。From the above derivation, it can be clearly seen that the histogram can be directly obtained from the probability density function of the continuous distribution of the signal brightness, and conversely, the probability density function of the continuous distribution of the brightness signal can also be processed by the histogram through data interpolation and fitting. after getting.
下面给出一个直方图的具体例子。当信号的亮度包括256亮度级时,概率序列和直方图中具体数值的对应关系为:A specific example of a histogram is given below. When the brightness of the signal includes 256 brightness levels, the corresponding relationship between the probability sequence and the specific values in the histogram is:
h(0)=0h(0)=0
h(1)=0h(1)=0
........
h(64)=0.005h(64)=0.005
h(65)=0.006h(65)=0.006
........
h(190)=0.006h(190)=0.006
h(191)=0.005h(191)=0.005
h(192)=0.001h(192)=0.001
h(193)=0h(193)=0
......
h(255)=0h(255)=0
在本发明中,设定伽码特性函数的具体表现形式是明确知道的,可以从本发明作为实施例的两种形式中选择一种来用。当然也可以是其它形式的函数,只要满足连续光滑并且至少二阶可导即可。In the present invention, the specific expression form of setting the gamma characteristic function is clearly known, and one of the two forms of the present invention as an embodiment can be selected for use. Of course, it can also be a function of other forms, as long as it is continuous smooth and at least second-order differentiable.
下面用函数y=g(x;p),p=[p1,p2,...,pM]T来表示Gamma特性参数未知的Gamma环节的Gamma特性,这里的Gamma环节包括单个Gamma环节或者多个Gamma环节的级联组合的情况。上述Gamma特性函数的表示方式中,p=[p1,p2,...,PM]T是一个参数向量,一般情况下,参数向量由M个参数组成。这些参数的全部或者部分是需要确定的。因此,按照这个很一般的形式,Gamma特性函数几乎可以是任何形式的函数,只要满足函数是连续的条件即可,而且,一般来说,Gamma特性函数是光滑可导的,至少是分段光滑可导的,因此,假设Gamma特性函数关于变量x的一阶和二阶导函数存在是合理的。Gamma特性函数的一阶导函数可以用如下符号表示:Below, the function y=g(x; p), p=[p 1 , p 2 ,..., p M ] T is used to represent the Gamma characteristic of the Gamma link whose Gamma characteristic parameter is unknown, where the Gamma link includes a single Gamma link Or the cascade combination of multiple Gamma links. In the above expression of the Gamma characteristic function, p=[p 1 , p 2 , . . . , P M ] T is a parameter vector, and generally, the parameter vector is composed of M parameters. All or some of these parameters need to be determined. Therefore, according to this very general form, the Gamma characteristic function can be almost any form of function, as long as the function is continuous, and, generally speaking, the Gamma characteristic function is smooth and derivable, at least piecewise smooth Differentiable, therefore, it is reasonable to assume that there are first and second derivatives of the Gamma characteristic function with respect to the variable x. The first derivative of the Gamma characteristic function can be represented by the following symbols:
并且,Gamma特性函数,还应该满足:And, the Gamma characteristic function should also satisfy:
g(1;p)=1 (16)g(1;p)=1 (16)
一般来说,Gamma特性函数可以用如下两种常用的方式来表示:Generally speaking, the Gamma characteristic function can be expressed in the following two common ways:
方式一、幂函数:
方式二、多项式函数:
y=g(x;p)=p1xK+p2xK-1+....+pKx+pK+1,其中,p=[p1,p2,p3,...,pK+1]T (18)y=g(x;p)=p 1 x K +p 2 x K-1 +...+p K x+p K+1 , where p=[p 1 , p 2 , p 3 ,. .., p K+1 ] T (18)
上述公式(18)也可以变换成公式(19)的表达形式:The above formula (18) can also be transformed into the expression form of formula (19):
y=g(x;p)=p1(x-x0)K+p2(x-x0)K-1+....+pK(x-x0)+pK+1 (19)y=g(x;p)=p 1 (xx 0 ) K +p 2 (xx 0 ) K-1 +....+p K (xx 0 )+p K+1 (19)
其中,p=[p1,p2,p3,...,pK+1,x0]T。Wherein, p=[p 1 , p 2 , p 3 , . . . , p K+1 , x 0 ] T .
如果用e(t)和r(t)分别表示输入亮度信号和输出亮度信号,那么,e(t)和r(t)各自对应的分布概率密度函数是:fe(x,t)和fr(x,t),并且,e(t)、r(t)和Gamma特性函数之间存在如下关系:r(t)=g(e(t);p),p=[p1,p2,p3,...,pM]T。If e(t) and r(t) are used to denote the input luminance signal and output luminance signal respectively, then the respective distribution probability density functions of e(t) and r(t) are: f e (x, t) and f r (x, t), and there is the following relationship between e(t), r(t) and the Gamma characteristic function: r(t)=g(e(t); p), p=[p 1 , p 2 , p 3 , ..., p M ] T .
根据概率理论,可以推导出:According to probability theory, it can be deduced that:
d(e;p)fr(r)=fe(e),其中d(e; p) f r (r) = f e (e), where
(20) (20)
r=g(e;p),e∈[0,1]r=g(e;p), e∈[0, 1]
推导出公式(20)的具体过程可以参见常用的概率书籍,在本实施例中不再详细描述。The specific process of deriving formula (20) can refer to commonly used probability books, and will not be described in detail in this embodiment.
从公式(20)可以看出,公式(20)和时间变量t无关。其实,Gamma特性函数本身和时间变量无关,因此,只要在一段相当长的时间内测定一次Gamma特性参数,在整个通信过程中就可以一直使用这组Gamma特性参数,如在IPTV中,一个节目的Gamma特性参数可以认为是相同的,这样,最多在每个节目开始的时候测量一次Gamma特性参数就可以了。It can be seen from formula (20) that formula (20) has nothing to do with the time variable t. In fact, the Gamma characteristic function itself has nothing to do with the time variable. Therefore, as long as the Gamma characteristic parameters are measured once in a relatively long period of time, this set of Gamma characteristic parameters can be used throughout the communication process. For example, in IPTV, a program's The Gamma characteristic parameters can be considered to be the same, so it is enough to measure the Gamma characteristic parameters at most once at the beginning of each program.
在获得了输出亮度信号亮度分布概率密度函数后,需要计算输出亮度信号亮度分布概率密度函数的各个极值点。计算函数的各个极值点属于常规技术,在本发明的实施例中不再详细描述。After obtaining the brightness distribution probability density function of the output brightness signal, it is necessary to calculate each extreme point of the brightness distribution probability density function of the output brightness signal. Calculating each extreme point of the function belongs to conventional technology, and will not be described in detail in the embodiments of the present invention.
本发明的一个重要基础是:输入亮度信号亮度分布概率密度函数的极值点与输出亮度信号亮度分布概率密度函数的极值点之间存在很严格的一一对应关系。这个对应关系如附图10所示。An important basis of the present invention is that there is a strict one-to-one correspondence between the extreme points of the probability density function of the brightness distribution of the input brightness signal and the extreme points of the probability density function of the brightness distribution of the output brightness signal. This corresponding relationship is shown in FIG. 10 .
在图10中,图(a)是输入视频信号的一帧,图(b)图是图(a)对应的输出视频信号的一帧,图(c)中的两条曲线分别是输入亮度信号亮度分布概率密度函数和输出亮度信号亮度分布概率密度函数。In Fig. 10, graph (a) is a frame of input video signal, graph (b) is a frame of output video signal corresponding to graph (a), and the two curves in graph (c) are input luminance signal respectively The brightness distribution probability density function and the output brightness signal brightness distribution probability density function.
从图(c)中可以看出,两条曲线的极值点是严格一一对应的。这个对应关系为:It can be seen from Figure (c) that the extreme points of the two curves are strictly one-to-one correspondence. This correspondence is:
e1->r1(极大点),e2->r2(极小点),e3->r3(极大点),e4->r4(极小点),e5->r5(极大点)。e 1 ->r 1 (maximum point), e 2 ->r 2 (minimum point), e 3 ->r 3 (maximum point), e 4 ->r 4 (minimum point), e 5 ->r 5 (maximum point).
不失一般性,设定输入亮度信号亮度分布概率密度函数和输出亮度信号亮度分布概率密度函数均有J个极值点,分别是e1,e2,...,eJ和r1,r2,......,rJ。Without loss of generality, it is assumed that both the probability density function of the brightness distribution of the input brightness signal and the probability density function of the brightness distribution of the output brightness signal have J extreme points, which are e 1 , e 2 ,..., e J and r 1 , r 2 ,...,r J .
在这个极值点对应关系的基础上,本发明对输入亮度信号亮度分布概率密度函数的极值点ek、及对应的输出亮度信号亮度分布概率密度函数的极值点rk(k=1,2,...,J)进行了一个合理的近似处理,即设定公式(21)成立:On the basis of this extremum point correspondence, the present invention is for the extremum point e k of the luminance distribution probability density function of the input luminance signal and the extremum point r k of the corresponding output luminance signal luminance distribution probability density function (k=1 , 2,..., J) has performed a reasonable approximation, that is, setting the formula (21) to hold:
rk=g(ek;p),p=[p1,p2,p3,...,pM]T k=1,2,3,...,J (21)r k = g(e k ; p), p = [p 1 , p 2 , p 3 , . . . , p M ] T k = 1, 2, 3, . . . , J (21)
其中:k=1,2,3,......,J;J为亮度分布概率密度函数的极值点数量。Where: k=1, 2, 3, . . . , J; J is the number of extreme points of the probability density function of the brightness distribution.
由于输出亮度信号亮度分布概率密度函数的极值点数量和输入亮度信号亮度分布概率密度函数的极值点数量相同,所以,这里的J即可以为输出亮度信号亮度分布概率密度函数的极值点数量,也可以为输入亮度信号亮度分布概率密度函数的极值点数量。Since the number of extreme points of the probability density function of the brightness distribution of the output brightness signal is the same as the number of extreme points of the probability density function of the brightness distribution of the input brightness signal, J here can be the extreme point of the probability density function of the brightness distribution of the output brightness signal The quantity can also be the number of extreme points of the probability density function of the brightness distribution of the input brightness signal.
严格来说,关系rk=g(ek;p),p=[p1,p2,p3,...,pM]T是不成立的,这可以从数学上进行证明。但是,在实际应用中,经过对于大量实际视频信号的分析,可以发现rk和g(ek;p)是非常近似相等的,因此,本发明可以近似的认为公式(21)是成立的。当然,公式(21)也可以稍加变动,如等式的一边增加一个加性常数项或者乘兴比例因子等。在下面的描述中,是以输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系为公式(21)为例进行描述的,对公式(21)进行稍加变动后,对伽码参数进行确定的过程与下面的描述基本相同,在此不再详细描述。Strictly speaking, the relationship r k =g(e k ; p), p=[p 1 , p 2 , p 3 , . . . , p M ] T is not valid, which can be proved mathematically. However, in practical applications, after analyzing a large number of actual video signals, it can be found that r k and g(e k ; p) are very approximately equal, therefore, the present invention can approximately consider that formula (21) is established. Of course, the formula (21) can also be slightly changed, such as adding an additive constant term or multiplying a proportional factor to one side of the equation. In the following description, the mathematical relationship between the extreme point of the probability density function of the brightness distribution of the output brightness signal and the extreme point of the probability density function of the brightness distribution of the input brightness signal is used as an example to describe the formula (21). After the formula (21) is slightly changed, the process of determining the gamma parameters is basically the same as the following description, and will not be described in detail here.
从上述描述中可以看出,输入亮度信号亮度分布概率密度函数的极值点与输出亮度信号亮度分布概率密度函数的极值点存在如下两个关系:关系1、定性的几何拓扑关系,即两个亮度分布概率密度函数的极值点之间存在一一对应关系,也就是说,两个亮度分布概率密度函数的极值点的数量相同。关系2、定量的数学关系:rk=g(ek;p),p=[p1,p2,p3,...,pM]T。当然,这里的数学关系允许稍加变换。It can be seen from the above description that the extreme points of the probability density function of the brightness distribution of the input brightness signal and the extreme points of the probability density function of the brightness distribution of the output brightness signal have the following two relationships:
设定fe(x)和fr(x)是连续可导的,并且d(x;p)是连续可导的,即g(x;p)二阶连续可导。这样,本发明对公式(20)两边进行求导,可以得到:Suppose f e (x) and f r (x) are continuously differentiable, and d(x; p) is continuously differentiable, that is, g(x; p) is second-order continuously differentiable. Like this, the present invention derivates both sides of formula (20), can obtain:
r=g(e;p), (22)r=g(e;p), (22)
由于e1,e2,.....,eJ是fe(x)的极值点,因此,在这些极值点上fe(x)的导数为零。这样,存在如下公式:Since e 1 , e 2 , . . . , e J are extreme points of f e (x), therefore, the derivatives of f e (x) at these extreme points are zero. Thus, the following formula exists:
结合公式(22)和公式(23)有如下关系成立:Combining formula (22) and formula (23), the following relationship is established:
r=g(ek;p),k=1,2,3,....,Jr=g(e k ; p), k=1, 2, 3, ..., J
由于公式(21)近似成立,因此公式(24)可以变换为如下关系:Since formula (21) is approximately true, formula (24) can be transformed into the following relationship:
公式(26)中,k=1,2,3,......,J,J为亮度分布概率密度函数的极值点数量,rk为输出亮度信号亮度分布概率函数的极值点,而且,导函数 为:In the formula (26), k=1,2,3,..., J, J is the number of extremum points of the brightness distribution probability density function, r k is the extremum point of the output brightness signal brightness distribution probability function , and, the derivative function for:
在实际应用中,Gamma特性函数都是单调的,因此,Gamma特性函数存在反函数。这个反函数可以记作g-1(x;p),显然,Gamma特性函数的反函数也是依赖于伽玛参数向量p的。In practical applications, the Gamma characteristic functions are all monotone, therefore, there is an inverse function of the Gamma characteristic function. This inverse function can be recorded as g -1 (x; p), obviously, the inverse function of the Gamma characteristic function also depends on the gamma parameter vector p.
从公式(26)中可以看出,公式(26)中不含有关于输入信号的任何信息,公式(26)完全取决于输出亮度信号亮度分布概率密度函数和输出亮度信号亮度分布概率密度函数的极值点。从而本发明能够仅仅根据输出信号及其亮度分布概率密度函数来确定Gamma特性参数。It can be seen from formula (26) that formula (26) does not contain any information about the input signal, and formula (26) completely depends on the output brightness signal brightness distribution probability density function and the polarity of the output brightness signal brightness distribution probability density function value points. Therefore, the present invention can determine the Gamma characteristic parameter only according to the output signal and its brightness distribution probability density function.
设定本发明获得的输出亮度信号的直方图为:{hr(k)|k=0,1,2,....,N-1}。也就是说,每个直方图中包含有N个项,在直方图术语中,每一个项叫做“柱”(bin)。The histogram of the output brightness signal obtained by the present invention is set as: {h r (k)|k=0, 1, 2, . . . , N-1}. That is to say, each histogram contains N items, and each item is called a "column" (bin) in histogram terminology.
根据公式(12)可以由输出图像亮度直方图获得输出亮度信号亮度分布概率密度函数:According to formula (12), the output brightness signal brightness distribution probability density function can be obtained from the output image brightness histogram:
对于均匀分布在[0,1]区间上的N个点
如果N足够大,那么,可以通过插值或者数据拟合方式得到输出亮度分布概率密度的表达式:If N is large enough, then the expression of the output brightness distribution probability density can be obtained by interpolation or data fitting:
fr(r)=cdrd+cd-1rd-1+cd-2rd-2+.....+c1r+c0 (28)f r (r)=c d r d +c d-1 r d-1 +c d-2 r d-2 +.....+c 1 r+c 0 (28)
其中:cd,cd-1,cd-2,.....,c0为d+1个多项式系数,r为输入亮度信号的幅值。Among them: c d , c d-1 , c d-2 , ..., c 0 are d+1 polynomial coefficients, and r is the amplitude of the input brightness signal.
该表达式为包括多项式样条函数在内的多项式。The expression is a polynomial including a polynomial spline.
在一般情况下,对于256级亮度的图像,N=256,此时,N已经足够大了。插值或者数据拟合技术的实现方法有多种,本发明不限制插值或者数据拟合的具体实现范围内。In general, for an image with 256 levels of brightness, N=256, at this time, N is already large enough. There are many ways to implement the interpolation or data fitting technology, and the present invention does not limit the specific implementation scope of the interpolation or data fitting.
公式(28)的导数为:The derivative of formula (28) is:
本发明可以选用(17)、(18)、(19)中给出的任何一种表现形式的伽玛特性函数的表达式,此时,获得了Gamma特性函数的具体形式,只是参数向量p需要确定。对于参数向量p的每一个给定的值计算出公式(26)中的任何一项,即计算出公式(26)中的各个相乘因子和相加项。The present invention can select (17), (18), the expression of the gamma characteristic function of any form of expression that provides in (19), at this moment, obtained the concrete form of Gamma characteristic function, only parameter vector p needs Sure. Any item in the formula (26) is calculated for each given value of the parameter vector p, that is, each multiplication factor and addition item in the formula (26) is calculated.
如果有J个方程,只要J≥M-1,其中,M为需要确定伽玛特性参数的个数,那么,一定可以通过这组方程求解出唯一的解作为其中M-1个伽玛参数的确定值,然后,再利用公式(16)作为一个约束条件来确定常数项,即确定剩余的一个伽玛参数。If there are J equations, as long as J≥M-1, where M is the number of gamma characteristic parameters that need to be determined, then the unique solution must be solved through this set of equations as the M-1 gamma parameters Determine the value, and then use formula (16) as a constraint condition to determine the constant term, that is, determine the remaining gamma parameter.
也就是说,由于公式(16)的存在,使得所有的伽码参数之间都满足一个约束条件,这些伽码参数如果是M个,那么,只有M-1个参数是独立的,只要确定出M个伽码参数中的任意M-1个参数,剩下的一个伽玛参数通过公式(16)来求解即可,从而确定出了Gamma特性函数的所有参数。That is to say, due to the existence of formula (16), all gamma parameters satisfy a constraint condition. If there are M gamma parameters, then only M-1 parameters are independent, as long as it is determined that For any M-1 parameters among the M gamma parameters, the remaining gamma parameter can be solved by formula (16), so as to determine all the parameters of the Gamma characteristic function.
在一般情况下,条件J≥M-1都能满足。In general, the condition J≥M-1 can be satisfied.
根据公式(26)获得参数向量p的方法有多种,下面主要介绍两种确定参数向量p的方法:There are many ways to obtain the parameter vector p according to the formula (26). The following mainly introduces two methods of determining the parameter vector p:
方法一、直接求解方程法。The first method is to solve the equation directly.
由公式(26)获得J个方程,从中任意选择M-1个方程,形成方程组联立求解。一般来说,这组方程是非线性的,而且是超越(Transcendental)的,如对于幂函数形式的Gamma特性函数等。因此不存在解析解(closed-formsolution)。需要用数值解法(numerical solution method)。关于方程组的数值解法,属于常规技术,在本实施例中不在详细描述。J equations are obtained from formula (26), from which M-1 equations are arbitrarily selected to form a system of equations to be solved simultaneously. Generally speaking, this set of equations is non-linear and Transcendental, such as the Gamma characteristic function in the form of a power function. Therefore there is no closed-form solution. A numerical solution method is required. The numerical solution of the equations belongs to conventional technology, and will not be described in detail in this embodiment.
方法二、非线性函数优化方法。
根据公式(26)构造一个代价函数:Construct a cost function according to formula (26):
显然,对于Gamma特性函数的真正的参数向量ptrue,在理论上应该使得J(ptrue)=0,由于参数向量ptrue满足公式(30)中的每一个方程,因此,公式(30)中的每个求和项都是零。但是在实际应用中,因为存在误差和近似如获得直方图过程中的近似等,所以,公式(30)中的每个求和项不会都等于零,但是,应该是一个很小的数值,并且应该满足如下条件:对于任何p∈RM,都有J(p)≥J(ptrue)。也就是说,ptrue是函数J(p)的全局最小点(global minimal point)。Obviously, for the real parameter vector p true of the Gamma characteristic function, J(p true )=0 should be made in theory, because the parameter vector p true satisfies each equation in the formula (30), therefore, in the formula (30) Each summation term of is zero. But in practical applications, because there are errors and approximations such as the approximation in the process of obtaining the histogram, so each summation item in formula (30) will not be equal to zero, but should be a very small value, and The following condition should be satisfied: for any p∈RM , there is J(p)≥J(p true ). That is, p true is the global minimum point of the function J(p).
从上述描述中可以知道,对于采用公式(17)、(18)、(19)给出的任意一种形式的Gamma特性函数,都可以根据参数向量p的每个给定数值,计算出g-1(rk;p),z(g-1(rk;p);p),d2(g-1(rk;p);p),同时,输出亮度信号亮度分布概率密度函数是已知的,这样,就可以按照公式(28)、(29)计算出fr(rk)和 从而就可以计算出公式(30)中的每个求和项,也就可以计算出总的求和结果J。It can be known from the above description that for any of the Gamma characteristic functions given by formulas (17), (18) and (19), g can be calculated according to each given value of the parameter vector p - 1 (r k ; p), z(g -1 (r k ; p); p), d 2 (g -1 (r k ; p); p), at the same time, the output brightness signal brightness distribution probability density function is known, so that f r (r k ) and Thus, each summation item in formula (30) can be calculated, and the total summation result J can also be calculated.
因此,在非线性函数优化方法中,确定参数向量p的问题就转化成对代价函数J(p)求其全局最小点的数学问题。Therefore, in the nonlinear function optimization method, the problem of determining the parameter vector p is transformed into a mathematical problem of finding the global minimum point of the cost function J(p).
在非线性函数优化方法中,可以采用如下三种方式来确定参数向量p。In the nonlinear function optimization method, the parameter vector p can be determined in the following three ways.
方式(1)、常规数学优化方法。Mode (1), conventional mathematical optimization method.
由于J(p)中存在导数,因此,可以采用经典的数学优化方法如梯度方法、共轭梯度方法等来确定参数向量p。Since there is a derivative in J(p), classical mathematical optimization methods such as gradient method and conjugate gradient method can be used to determine the parameter vector p.
通过常规数学优化方法来确定参数向量p的具体过程属于常规技术,在本实施例中不再详细描述。The specific process of determining the parameter vector p through a conventional mathematical optimization method belongs to conventional technology, and will not be described in detail in this embodiment.
方式(2)、神经网络方法。Mode (2), neural network method.
通过神经网络方法来确定参数向量p的具体过程属于常规技术,在本实施例中不再详细描述。The specific process of determining the parameter vector p through the neural network method belongs to conventional technology, and will not be described in detail in this embodiment.
方式(3)、蛮力搜索方法(Brutal Force Search Method)。所谓蛮力搜索,顾名思义,就是穷尽搜索所有的可能性。Method (3), Brutal Force Search Method. The so-called brute force search, as the name suggests, is to exhaust all possibilities.
对于参数取离散值的情况,则参数所有可能取值的集合是有限集合,那么,逐一搜索集合中的每个点,就能够找到使得J(p)最小的点,这样,就找到了全局最小点ptrue。但是,这种情况很少,在绝大多数情况下,参数是取连续值的,因此,参数所有可能取值的集合是无限集合,无法真正进行穷尽搜索。For the case where the parameter takes a discrete value, the set of all possible values of the parameter is a finite set, then, by searching each point in the set one by one, the point that makes J(p) the smallest can be found, so that the global minimum Point p true . However, such cases are rare. In most cases, parameters take continuous values. Therefore, the set of all possible values of parameters is an infinite set, and exhaustive search cannot be truly performed.
对于参数取连续值的情况,蛮力搜索方法是将参数空间分成多个小的超立方体(Hypercube),然后,在每个超立方体中取一个点作为采样点,如超立方体的几何中心点等,最后,计算代价函数在各个超立方体的采样点上的函数值,找到使得代价函数最小的超立方体的采样点,将该采样点作为全局最小点。For the case where the parameters take continuous values, the brute force search method is to divide the parameter space into multiple small hypercubes (Hypercube), and then take a point in each hypercube as a sampling point, such as the geometric center point of the hypercube, etc. , and finally, calculate the function value of the cost function at each sampling point of the hypercube, find the sampling point of the hypercube that minimizes the cost function, and use this sampling point as the global minimum point.
下面针对参数取连续值的情况、结合附图对利用蛮力搜索方法确定Gamma特性函数的参数的实现过程进行详细描述。The implementation process of using the brute-force search method to determine the parameters of the Gamma characteristic function will be described in detail below for the case where the parameters take continuous values and in conjunction with the accompanying drawings.
蛮力搜索方法虽然有点“笨”,但是,蛮力搜索方法在工程实践中有着广泛用途,比如密码破译等,最有效的方法还是蛮力搜索方法。而且,对于数学优化问题,现有的技术除了蛮力搜索之外,都存在陷入局部极小(local minimalpoint)的问题,但是蛮力搜索法不存在该问题。Although the brute force search method is a bit "stupid", the brute force search method has a wide range of applications in engineering practice, such as password deciphering, etc. The most effective method is the brute force search method. Moreover, for mathematical optimization problems, except for brute force search, the existing technologies all have the problem of falling into a local minimum (local minimal point), but the brute force search method does not have this problem.
在本发明中,可以利用关于参数的先验知识,找到合适的起始搜索点,这样,可以大大降低需要搜索的次数,从而提高蛮力搜索方法的效率。In the present invention, the prior knowledge about the parameters can be used to find a suitable initial search point, thus greatly reducing the number of searches required, thereby improving the efficiency of the brute force search method.
蛮力搜索方法的原理如附图12所示。The principle of the brute force search method is shown in FIG. 12 .
图12中,M-1个参数所有可能取值的集合构成了参数空间(ParameterSpace,简称PS),参数空间是M-1维欧式空间RM-1的一个子集。在确定了参数空间后,蛮力搜索的实现方法包括如下步骤:In Fig. 12, the set of all possible values of the M-1 parameters constitutes the parameter space (ParameterSpace, referred to as PS), and the parameter space is a subset of the M-1-dimensional Euclidean space R M-1 . After the parameter space is determined, the implementation method of brute force search includes the following steps:
步骤一、超立方体划分。
将PS划分成多个M-1超立方体(Hypercube),附图12中,ABCDEFGH,8个点组成一个超立方体。由于每个参数的取值范围大小不同,所以,超立方体的每个边长也不同。Divide the PS into a plurality of M-1 hypercubes (Hypercube), in Figure 12, ABCDEFGH, 8 points form a hypercube. Since the value range of each parameter is different, the length of each side of the hypercube is also different.
设定第k(k=1,2,...,M-1)个参数pk的取值范围是[mink,maxk],对第k个维度进行Pk等分,从而该维度上每个超立方体的边长是Set the value range of the kth (k=1, 2, ..., M-1) parameter p k to [min k , max k ], and perform P k equal division on the kth dimension, so that the dimension The edge length of each hypercube is
从而每个超立方体的体积为:The volume of each hypercube is thus:
因此,总的超立方体个数大于
对于每个超立方体用指标向量I=[i1,i2,....,iM-1]T来表示,其中ik(k=1,2,...,M-1,ik=1,2,3,....,Pk)表示在第k个维度上,该超立方体是第ik个。For each hypercube, it is represented by an index vector I=[i 1 , i 2 , ..., i M-1 ] T , where i k (k=1, 2, ..., M-1, i k =1, 2, 3, ..., P k ) means that on the kth dimension, the hypercube is the i kth .
因此,对于第I=[i1,i2,....,iM-1]T个超立方体来说,其在各个维度上的坐标范围是:Therefore, for the I=[i 1 , i 2 ,...,i M-1 ] T hypercube, its coordinate range in each dimension is:
[mink+(ik-1)Δk,mink+ikΔk] (33)[min k +(i k-1 )Δ k ,min k +i k Δ k ] (33)
该超立方体的几何中心QI的坐标是:The coordinates of the geometric center Q I of this hypercube are:
[min1+(i1-1/2)Δ1,min2+(i2-1/2)Δ2,..............,minM-1+(iM-1-1/2)ΔM-1]T (34)[min 1 +(i 1 -1/2)Δ 1 , min 2 +(i 2 -1/2)Δ 2 ,......, min M-1 +( i M-1 -1/2)Δ M-1 ] T (34)
步骤二、选取初始搜索点。
一般来说,对于某个参数pk,都存在一个比较合理的值,可以作为初始值。如Gamma特性函数采用幂函数形式时,对于视频输入设备来说,Gamma参数的取值一般在2.2左右,因为工业标准要求是2.2,由于制造技术和产品品质的原因,Gamma参数可能会正负偏离2.2,但是在多数情况下,比较接近2.2。这样的话,如果以2.2作为初始搜索点开始搜索,由于2.2比较接近真实值,则找到真实值需要尝试的次数就比较少。同样的道理,可以为每个参数pk(k=1,2,...,M-1)找到其合适的初始值pint k,那么这些初始值形成一个向量,就是参数向量p的初始值pint=[pint k,pint k,pint k,....,pint(M-1)]T。Generally speaking, for a certain parameter p k , there is a relatively reasonable value, which can be used as an initial value. For example, when the Gamma characteristic function adopts the form of a power function, for video input devices, the value of the Gamma parameter is generally around 2.2, because the industry standard requires 2.2, and due to manufacturing technology and product quality, the Gamma parameter may deviate positively or negatively. 2.2, but in most cases, closer to 2.2. In this way, if 2.2 is used as the initial search point to start searching, since 2.2 is closer to the real value, the number of times to find the real value is relatively small. In the same way, it is possible to find an appropriate initial value p int k for each parameter p k (k=1, 2, ..., M-1), then these initial values form a vector, which is the initial value of the parameter vector p Value p int = [p int k , p int k , p int k , . . . , p int(M-1) ] T .
步骤三,根据选取的初始搜索点开始搜索。
首先判断pint落在哪个超立方体中,通过比较坐标等方法可以判定出pint落在哪个超立方体中。比较坐标方法的具体实现过程为:First judge which hypercube the p int falls in, and determine which hypercube the p int falls in by comparing coordinates and other methods. The specific implementation process of the comparison coordinate method is as follows:
设定该超立方体的坐标是Iint=[iint1,iint2,....,iint(M-1)]T,判断条件是:对于k=0,1,2…..M-1时,当且仅当下述公式(35)成立,则确定出pint落在坐标为:Iint=[iint1,iint2,....,iint(M-1)]T的超立方体中。The coordinates of the hypercube are set to be I int =[i int1 , i int2 ,...., i int(M-1) ] T , and the judgment condition is: for k=0, 1, 2.....M- When 1, if and only if the following formula (35) is established, it is determined that the coordinates of p int are: I int = [i int1 , i int2 , ..., i int(M-1) ] T super in the cube.
mink+(iintk-1)Δk≤pintk<mink+iintkΔk (35)min k +(i intk -1)Δ k ≤p intk < min k +i intk Δ k (35)
在确定了初始搜索点所在的超立方体后,从该超立方体开始搜索。根据公式(30)计算J(pint),如果J(pint)能够使公式(36)成立,或者搜索过的超立方体满足预定条件,如搜索过的超立方体的数量达到预定数值等,那么,整个搜索过程结束,到步骤五。此时,ptrue=pint;其中,ptrue为全局最优点,即最终获得的Gamma特性函数的参数向量。After determining the hypercube where the initial search point is located, start searching from this hypercube. Calculate J(p int ) according to formula (30), if J(p int ) can make formula (36) hold, or the searched hypercube meets the predetermined conditions, such as the number of searched hypercubes reaches the predetermined value, etc., then , the whole search process ends, go to step five. At this time, p true = p int ; wherein, p true is the global optimal point, that is, the parameter vector of the finally obtained Gamma characteristic function.
J(pint)≤Jthreshold (36)J(p int )≤J threshold (36)
其中,Jthreshold是一个预先给定的门限值。Wherein, J threshold is a predetermined threshold value.
如果J(pint)不能够使公式(36)成立,则到步骤四。If J(p int ) cannot make formula (36) valid, go to step four.
步骤四、继续搜索。Step 4. Continue to search.
在步骤四中的继续搜索可以是分层进行的。包围在初始超立方体外部的超立方体可以为一层或多层。The continued search in step 4 may be performed hierarchically. The hypercube surrounding the initial hypercube can be one or more layers.
在二维情况下,初始超立方体和其外围多层超立方体如附图13所示。In the two-dimensional case, the initial hypercube and its surrounding multilayer hypercube are shown in Fig. 13 .
图13中,中间灰色的正方形为初始超立方体,与初始超立方体的边邻接的立方体为第一层超立方体,与第一层超立方体的边邻接的立方体为第二层超立方体,与第二层超立方体的边廉价的立方体为第三层超立方体。In Fig. 13, the square in the middle gray is the initial hypercube, the cube adjacent to the edge of the initial hypercube is the first layer hypercube, and the cube adjacent to the edge of the first layer hypercube is the second layer hypercube, and the second layer hypercube is the cube adjacent to the edge of the first layer hypercube. The edge cheap cube of the layer hypercube is the third layer hypercube.
本发明的分层搜索方法为:逐次搜索初始超立方体之外的每一层中的每个超立方体,在每一层超立方体的搜索中,应按照预定顺序遍历该层中的每一个超立方体。预定顺序可以是多种多样的,本发明不限制预定顺序的形式,只要能够遍历一层中的超立方体就可以。Hierarchical search method of the present invention is: successively search each hypercube in each layer except initial hypercube, in the search of each layer hypercube, should traverse each hypercube in this layer according to predetermined order . The predetermined order can be various, and the present invention does not limit the form of the predetermined order, as long as the hypercube in one layer can be traversed.
在某一层超立方体搜索过程中,当根据预定顺序搜索到某个超立方体时,需要按照公式(34)计算该超立方体的几何中心Q的坐标,然后,计算函数值J(Q),如果J(Q)能够使公式(37)成立,或者搜索过的超立方体的数量达到预定数值,那么,整个搜索过程结束,到步骤五。此时,ptrue=Q;During the search process of a certain layer of hypercube, when a certain hypercube is searched according to the predetermined order, it is necessary to calculate the coordinates of the geometric center Q of the hypercube according to the formula (34), and then calculate the function value J(Q), if J(Q) can make the formula (37) valid, or the number of searched hypercubes reaches a predetermined value, then the whole search process is over, go to step five. At this time, p true = Q;
J(Q)≤Jthreshold (37)J(Q) ≤Jthreshold (37)
如果J(Q)不能够使公式(37)成立,而且,搜索过的超立方体的数量也没有达到预定数值,继续根据预定顺序在本层超立方体中搜索。如果本层的超立方体搜索完成、且本层各超立方体的J(Q)均不能够使公式(37)成立,则继续搜索下一层超立方体。If J(Q) cannot make the formula (37) valid, and the number of searched hypercubes has not reached the predetermined value, continue to search in the hypercubes in this layer according to the predetermined order. If the hypercube search of this layer is completed, and the J(Q) of each hypercube in this layer cannot make the formula (37) established, then continue to search the hypercube of the next layer.
当搜索完第L层后,不论是否找到满足条件(37)的超立方体的几何中心Q,搜索过程都将结束,此时,应将搜索到的最小的J(Q)中的Q作为ptrue。到步骤五。这里的L是预先给定的一个门限值,表示最多需要搜索的层数。When the L-th layer is searched, no matter whether the geometric center Q of the hypercube satisfying the condition (37) is found, the search process will end. At this time, the Q in the smallest J(Q) should be searched as p true . Go to step five. Here, L is a predetermined threshold value, indicating the maximum number of layers to be searched.
步骤五,搜索过程结束。Step five, the search process ends.
上述搜索方法还可以应用于按照从粗到细的搜索过程中,达到最快最好的搜索效果。The above search method can also be applied in the search process from coarse to fine to achieve the fastest and best search effect.
从粗到细的搜索过程如附图14所示。The search process from coarse to fine is shown in Figure 14.
图14中,首先,按照上述步骤一到步骤五进行第一次搜索。第一次搜索可以看成是粗搜索,这样,可以将参数空间中的超立方体的边长设置的大一些,这样,参数空间中超立方体的数量较少。在从粗到细的搜索过程中,步骤三中搜索过的超立方体满足的预定条件可以为划分粒度是否粗于预定划分粒度。第一次搜索如果找到了满足条件(36)或者(37)的超立方体,则搜索过程结束。第一次搜索过程可以采用分层搜索的方法。In Fig. 14, firstly, the first search is performed according to the
如果在第一次搜索过程中没有搜索到满足条件(36)或者(37)的超立方体,而且,超立方体的粒度划分还没有达到预定粒度,则在第一次搜索到的最小的J(Q)对应的超立方体中进行第二次较细的搜索,此时,应将第一次搜索到的最小的J(Q)对应的超立方体当成新的整个参数空间。此时的新的参数空间中的每个超立方体的边长变小了,重复上述步骤一至步骤五的搜索过程。同样,在第二次较细的搜索过程中,如果找到了满足条件(36)或者(37)的超立方体,第二次搜索过程结束。第二次搜索过程可以采用分层搜索的方法。If no hypercube satisfying the condition (36) or (37) is found in the first search process, and the granularity division of the hypercube has not yet reached the predetermined granularity, the smallest J(Q ) to perform a second finer search in the corresponding hypercube. At this time, the hypercube corresponding to the smallest J(Q) found in the first search should be regarded as the new entire parameter space. At this time, the side length of each hypercube in the new parameter space becomes smaller, and the search process from
如果在第二次较细的搜索过程中,没有找到满足条件(36)或者(37)的超立方体,而且,超立方体的粒度划分还没有达到预定粒度,则在第二次搜索到的最小的J(Q)对应的超立方体中进行第三次更细的搜索,依此类推,将最后一次精细搜索找到的满足条件(36)或者(37)的超立方体的几何中心作为全局最优点ptrue,即Gamma特性函数的参数向量。If no hypercube satisfying the condition (36) or (37) is found in the second finer search process, and the granularity division of the hypercube has not yet reached the predetermined granularity, then the smallest hypercube found in the second search Carry out a third finer search in the hypercube corresponding to J(Q), and so on, take the geometric center of the hypercube that meets the condition (36) or (37) found in the last fine search as the global optimal point p true , which is the parameter vector of the Gamma characteristic function.
如果超立方体的粒度划分达到了预定粒度,但是仍然没有找到满足条件(36)或(37)的超立方体,则搜索过程结束。此时,应将查找到的最小的J(Q)对应的超立方体的集合中心作为全局最优点ptrue,即Gamma特性函数的参数向量。If the granularity division of the hypercube reaches the predetermined granularity, but no hypercube satisfying the condition (36) or (37) is still found, the search process ends. At this time, the set center of the hypercube corresponding to the found smallest J(Q) should be taken as the global optimal point p true , that is, the parameter vector of the Gamma characteristic function.
在上述从粗到细的每一次的搜索过程中都可以采用分层搜索的方法。A layered search method can be used in each search process from coarse to fine.
在通过上述方法确定了Gamma特性函数的参数向量后,就能够对Gamma环节进行Gamma校正了。这里,需要进行Gamma校正的环节可以为视频数据源设备,也可以为视频通信网络中的中间设备,还可以为视频数据目的设备。After the parameter vector of the Gamma characteristic function is determined by the above method, the Gamma correction can be performed on the Gamma link. Here, the link requiring Gamma correction may be a video data source device, an intermediate device in a video communication network, or a video data destination device.
从上述技术方案的描述中可以看出,本发明提供的Gamma校正方法仅需要知道输出亮度信号的直方图和一组宽松的假设条件就可以确定给定Gamma环节的Gamma特性参数,从而为多媒体通信系统提供了一种易于实现的Gamma校正方法,本发明提供的Gamma校正方法具有很高的应用可行性,从而大大拓宽了Gamma校正的应用范围,特别能够针对IPTV、协作数据会议、广泛使用低端视频输入设备的公众视频通信提供了很好的Gamma校正功能,大大提高用户体验和服务质量,进一步提升上述业务的竞争力,为电信运营商、服务提供商和设备厂商带来巨大的经济效益。As can be seen from the description of the above technical solution, the Gamma correction method provided by the present invention only needs to know the histogram of the output luminance signal and a group of loose assumptions to determine the Gamma characteristic parameter of the given Gamma link, thereby providing a new solution for multimedia communication. The system provides an easy-to-implement Gamma correction method. The Gamma correction method provided by the present invention has high application feasibility, thereby greatly broadening the application range of Gamma correction, especially for IPTV, collaborative data conferences, and widely used low-end The public video communication of the video input device provides a very good Gamma correction function, which greatly improves the user experience and service quality, further enhances the competitiveness of the above services, and brings huge economic benefits to telecom operators, service providers and equipment manufacturers.
本发明提供的视频通信伽玛特性的校正装置主要包括:获取直方图模块、第一转换模块、极值点计算模块、存储模块、第二转换模块、Gamma特性参数求解模块和伽玛校正模块。The device for correcting gamma characteristics of video communication provided by the present invention mainly includes: a histogram acquisition module, a first conversion module, an extremum point calculation module, a storage module, a second conversion module, a gamma characteristic parameter solving module and a gamma correction module.
获取直方图模块主要用于获取输出亮度信号的亮度直方图,并将其获得的亮度直方图输出至第一转换模块。获取直方图模块可以在输出亮度信号转换为输出图像帧之前获取输出亮度信号的亮度直方图,也可以从输出图像帧中获取输出亮度信号的亮度直方图。具体如上述方法中的描述。The obtaining histogram module is mainly used to obtain the brightness histogram of the output brightness signal, and output the obtained brightness histogram to the first conversion module. The histogram obtaining module can obtain the brightness histogram of the output brightness signal before converting the output brightness signal into an output image frame, or can obtain the brightness histogram of the output brightness signal from the output image frame. Specifically as described in the above method.
第一转换模块主要用于将其接收的输出亮度信号的亮度直方图转换为输出亮度信号亮度分布概率密度函数,并将输出亮度信号亮度分布概率密度函数分别输出至极值点计算模块和第二转换模块。这里的输出亮度信号亮度分布概率密度函数可以为:fr(r)=cdrd+cd-1rd-1+cd-2rd-2+.....+c1r+c0。The first conversion module is mainly used to convert the luminance histogram of the output luminance signal received by it into the luminance distribution probability density function of the output luminance signal, and output the luminance distribution probability density function of the output luminance signal to the extreme point calculation module and the second conversion respectively module. Here the output brightness signal brightness distribution probability density function can be: f r (r) = c d r d + c d-1 r d-1 + c d-2 r d-2 +.....+c 1 r+c 0 .
极值点计算模块主要用于在接收到输出亮度信号亮度分布概率密度函数后,计算输出亮度信号亮度分布概率密度函数的各个极值点,并将计算获得的各个极值点传输至第二转换模块。计算输出亮度信号亮度分布概率密度函数的极值点的方法属于常规技术,在此不再详细描述。The extreme point calculation module is mainly used to calculate each extreme point of the brightness distribution probability density function of the output brightness signal after receiving the brightness distribution probability density function of the output brightness signal, and transmit the calculated extreme points to the second conversion module. The method of calculating the extreme point of the probability density function of the brightness distribution of the output brightness signal belongs to conventional technology, and will not be described in detail here.
存储模块主要用于存储输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系,并存储输入、输出亮度信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系d(e;p)fr(r)=fe(e)。The storage module is mainly used to store the mathematical relationship between the extreme point of the brightness distribution probability density function of the output brightness signal and the extreme point of the brightness distribution probability density function of the input brightness signal, and store the respective brightness distribution probability densities of the input and output brightness signals The mathematical relationship between the function and the Gamma characteristic function d(e; p) f r (r) = f e (e).
这里的输出亮度信号亮度分布概率密度函数的极值点与输入亮度信号亮度分布概率密度函数的极值点之间的数学关系可以为:Here, the mathematical relationship between the extreme point of the output brightness signal brightness distribution probability density function and the extreme value point of the input brightness signal brightness distribution probability density function can be:
rk=g(ek;p),p=[p1,p2,p3,...,pM]T。当然,这里的数学关系允许稍加变换,具体如上述方法中的描述。r k = g(e k ; p), p = [p 1 , p 2 , p 3 , . . . , p M ] T . Of course, the mathematical relationship here allows a slight transformation, specifically as described in the above method.
第二转换模块主要用于根据其接收到的极值点、输出亮度信号亮度分布概率密度函数、存储模块中存储的极值点的数学关系将存储模块中的输入、输出亮度信号各自的亮度分布概率密度函数和Gamma特性函数之间的数学关系d(e;p)fr(r)=fe(e)转换为:在极值点处,输出亮度信号亮度分布概率密度函数及其导函数与Gamma特性函数及其反函数、一阶导函数、二阶导函数之间的数学关系:The second conversion module is mainly used to convert the respective luminance distributions of the input and output luminance signals in the storage module according to the extreme points it receives, the probability density function of the output luminance signal brightness distribution, and the mathematical relationship of the extreme points stored in the storage module The mathematical relationship between the probability density function and the Gamma characteristic function d(e; p) f r (r) = f e (e) is transformed into: at the extreme point, the output brightness signal brightness distribution probability density function and its derivative function The mathematical relationship between the Gamma characteristic function and its inverse function, first-order derivative function, and second-order derivative function:
其中:k=1,2,3,......,J,J为亮度分布概率密度函数的极值点数量,rk为输出亮度信号亮度分布概率函数的极值点,而且,导函数 为:Wherein: k=1,2,3,..., J, J is the extreme value point quantity of brightness distribution probability density function, r k is the extreme value point of output brightness signal brightness distribution probability function, and, derivation function for:
Gamma特性参数求解模块主要用于对第二转换模块转换后的数学关系进行求解计算,以确定伽玛特性参数。Gamma特性参数求解模块可以采用直接求解方程法、非线性函数优化方法等来确定伽玛特性参数。这里的非线性函数优化方法包括常规数学优化方法、神经网络方法、蛮力搜索等。Gamma特性参数求解模块在采用蛮力搜索方法时,可以采用分层搜索方法,也可以采用从粗到细的分层搜索方法等,具体如上述方法中的描述。The Gamma characteristic parameter solving module is mainly used to solve and calculate the mathematical relationship converted by the second conversion module, so as to determine the Gamma characteristic parameter. The Gamma characteristic parameter solving module can use the direct solution equation method, the nonlinear function optimization method, etc. to determine the Gamma characteristic parameter. The nonlinear function optimization methods here include conventional mathematical optimization methods, neural network methods, brute force search, etc. When the Gamma characteristic parameter solving module adopts the brute-force search method, it can adopt a layered search method, or a layered search method from coarse to fine, etc., as described in the above method specifically.
伽玛校正模块主要用于根据Gamma特性参数求解模块获得的Gamma特性参数对伽玛环节进行伽玛校正。这里的伽码环节包括:单个给定Gamma环节或者多个给定Gamma环节的级联组合。The gamma correction module is mainly used to perform gamma correction on the gamma link according to the gamma characteristic parameters obtained by the gamma characteristic parameter solving module. The gamma link here includes: a single given Gamma link or a cascade combination of multiple given Gamma links.
本发明提供的装置位于视频设备中,如位于视频数据源设备中、位于视频通信网络的中间设备中,再如位于视频数据目的设备中。The device provided by the present invention is located in a video device, such as in a video data source device, in an intermediate device of a video communication network, or in a video data destination device.
虽然通过实施例描绘了本发明,本领域普通技术人员知道,本发明有许多变形和变化而不脱离本发明的精神,本发明的申请文件的权利要求包括这些变形和变化。Although the present invention has been described by way of example, those of ordinary skill in the art know that there are many variations and changes in the present invention without departing from the spirit of the invention, and the claims of the application document of the present invention include these variations and changes.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100828614A CN101047869B (en) | 2006-06-15 | 2006-06-15 | Method and device for correcting gamma characteristics of video communication |
PCT/CN2007/070121 WO2007147363A1 (en) | 2006-06-15 | 2007-06-15 | A method and an apparatus for correcting the gamma characteristic of the video communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100828614A CN101047869B (en) | 2006-06-15 | 2006-06-15 | Method and device for correcting gamma characteristics of video communication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101047869A true CN101047869A (en) | 2007-10-03 |
CN101047869B CN101047869B (en) | 2011-04-27 |
Family
ID=38772013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100828614A Expired - Fee Related CN101047869B (en) | 2006-06-15 | 2006-06-15 | Method and device for correcting gamma characteristics of video communication |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101047869B (en) |
WO (1) | WO2007147363A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110580690A (en) * | 2019-09-02 | 2019-12-17 | 杭州雄迈集成电路技术有限公司 | image enhancement method for identifying peak value transformation nonlinear curve |
CN111402147A (en) * | 2020-02-26 | 2020-07-10 | 浙江大华技术股份有限公司 | Video image processing method, video image processing device, computer equipment and storage medium |
CN118298779A (en) * | 2024-06-05 | 2024-07-05 | 杭州群核信息技术有限公司 | Gamma correction approximation method and device for color conversion |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI556643B (en) * | 2015-01-26 | 2016-11-01 | Senao Networks Inc | Image adjustment method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970060961A (en) * | 1996-01-18 | 1997-08-12 | 김광호 | Adaptive gamma correction device using integral look-up table |
JP2000069327A (en) * | 1998-08-24 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Gamma correction device |
JP4466261B2 (en) * | 2004-07-30 | 2010-05-26 | カシオ計算機株式会社 | Imaging apparatus, brightness correction method, and program |
CN100527856C (en) * | 2005-06-30 | 2009-08-12 | 华为技术有限公司 | Gamma characteristic correcting method |
CN100372364C (en) * | 2005-11-28 | 2008-02-27 | 华为技术有限公司 | A video signal acquisition device |
CN1852414B (en) * | 2005-11-28 | 2010-05-05 | 华为技术有限公司 | Video code-flow gamma characteristic correction method and multi-point control unit |
-
2006
- 2006-06-15 CN CN2006100828614A patent/CN101047869B/en not_active Expired - Fee Related
-
2007
- 2007-06-15 WO PCT/CN2007/070121 patent/WO2007147363A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110580690A (en) * | 2019-09-02 | 2019-12-17 | 杭州雄迈集成电路技术有限公司 | image enhancement method for identifying peak value transformation nonlinear curve |
CN110580690B (en) * | 2019-09-02 | 2021-05-14 | 杭州雄迈集成电路技术股份有限公司 | Image enhancement method for identifying peak value transformation nonlinear curve |
CN111402147A (en) * | 2020-02-26 | 2020-07-10 | 浙江大华技术股份有限公司 | Video image processing method, video image processing device, computer equipment and storage medium |
CN111402147B (en) * | 2020-02-26 | 2023-04-07 | 浙江大华技术股份有限公司 | Video image processing method, video image processing device, computer equipment and storage medium |
CN118298779A (en) * | 2024-06-05 | 2024-07-05 | 杭州群核信息技术有限公司 | Gamma correction approximation method and device for color conversion |
Also Published As
Publication number | Publication date |
---|---|
WO2007147363A1 (en) | 2007-12-27 |
CN101047869B (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1251518C (en) | Method for converting digital signal and apparatus for converting digital signal | |
CN1187716C (en) | Device and method for coding and decoding keyword data | |
CN1297148C (en) | Animation image encoding transmission system, animation image encoding transmission method, suitable encoding device, decoding device, encoding method, decoding method and program used in the system and method | |
CN1867034A (en) | Image signal processing apparatus, camera system and image signal processing method | |
CN101039421A (en) | Method and apparatus for realizing quantization in coding/decoding process | |
CN1537384A (en) | Method for sub-pixel valve interpolation | |
CN1640142A (en) | Method and apparatus for coding of wavelet transformed coefficients | |
CN1379366A (en) | Image processing apparatus and method | |
CN1874409A (en) | Image signal processing apparatus, camera system and image signal processing method | |
CN1719905A (en) | Coding apparatus, coding method, coding method program, and recording medium recording the coding method program | |
CN1700255A (en) | Image transmitter, image receiver, and image transmitting system | |
CN101047869A (en) | Method and device for correction gamma property of vedio communication | |
CN1149499C (en) | Methods and systems for improved digital video data processing using discrete cosine transforms | |
CN1838724A (en) | Decoding apparatus, dequantizing method, distribution determining method, and program thereof | |
CN1925597A (en) | Image processing apparatus, image processing method, and program | |
CN101080928A (en) | Method for transmitting in a transmission channel with a variable bit rate | |
CN1812479A (en) | Image processing apparatus and method, image output apparatus, camera apparatus, program and medium | |
CN1852414A (en) | Video code-flow gamma characteristic correction method and multi-point control unit | |
CN1835548A (en) | Decoding apparatus, decoding method and program product therefor | |
CN101052132A (en) | Correcting method and device for video frequency gamma property | |
CN1809170A (en) | Discrete cosine transform method and apparatus applicable to image coding and video coding | |
CN101043349A (en) | Method for correcting video stream gamma characteristic | |
CN1647523A (en) | Image conversion device and image conversion method | |
CN1838776A (en) | Decoding apparatus, dequantizing method, and program thereof | |
CN1852412A (en) | Gamma characteristic negotiation correction method and its used system and terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110427 Termination date: 20150615 |
|
EXPY | Termination of patent right or utility model |