CN101043244A - Transmission diversity method in single carrier block transmission of multi-antenna communication system - Google Patents
Transmission diversity method in single carrier block transmission of multi-antenna communication system Download PDFInfo
- Publication number
- CN101043244A CN101043244A CNA2006100714149A CN200610071414A CN101043244A CN 101043244 A CN101043244 A CN 101043244A CN A2006100714149 A CNA2006100714149 A CN A2006100714149A CN 200610071414 A CN200610071414 A CN 200610071414A CN 101043244 A CN101043244 A CN 101043244A
- Authority
- CN
- China
- Prior art keywords
- antenna
- transmission
- frequency domain
- block
- transmit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
根据本发明,提出了一种在多天线通信系统的单载波块传输中的发送分集方法,包括:在发送端,针对一路发送天线,直接对原始成块信号插入保护间隔并通过所述一路发送天线发送,针对另一路发送天线,首先对原始成块信号进行两路并行处理,对并行处理后的信号求和并插入保护间隔,且通过所述另一路发送天线发送,其中所述两路并行处理分别由共轭置换处理和特征序列加权处理构成;在接收端,对接收到的由所述一路发送天线和所述另一路发送天线在相邻两个子载波上发送的4个频域信号按传统Alamouti方式一起进行线性均衡。
According to the present invention, a transmit diversity method in single-carrier block transmission of a multi-antenna communication system is proposed, comprising: at the transmit end, for one transmit antenna, directly inserting a guard interval into the original block signal and transmitting Antenna transmission, for another transmission antenna, firstly perform two parallel processes on the original block signal, sum the parallel processed signals and insert a guard interval, and transmit through the other transmission antenna, wherein the two parallel processes The processing is composed of conjugate permutation processing and eigensequence weighting processing; at the receiving end, the received four frequency domain signals transmitted by the one transmitting antenna and the other transmitting antenna on two adjacent subcarriers according to Traditional Alamouti method together with linear equalization.
Description
技术领域technical field
本发明涉及一种在多天线通信系统的单载波块传输中的发送分集方法,该发送分集方法对信道时变不敏感且具有低复杂度,并且特别适合于诸如多输入多输出(MIMO)天线通信系统等多天线通信系统。The present invention relates to a method of transmit diversity in single-carrier block transmission in a multi-antenna communication system, which is insensitive to channel time variation and has low complexity, and is particularly suitable for applications such as multiple-input multiple-output (MIMO) antennas Communication systems and other multi-antenna communication systems.
背景技术Background technique
在高速移动环境中进行高速率的数据传输是当前无线通信系统研究关注的焦点之一。其中,如何对抗信息高速传输下的信道色散问题是需要解决的主要问题之一。High-speed data transmission in a high-speed mobile environment is one of the focuses of current research on wireless communication systems. Among them, how to counteract the channel dispersion problem under high-speed information transmission is one of the main problems that need to be solved.
对于频率选择性信道色散来说,目前可用于其中的高效传输技术的主要有两类:正交频分复用(OFDM)传输技术和基于频域均衡(FDE)的单载波(SC)块传输技术。For frequency selective channel dispersion, there are two main types of high-efficiency transmission technologies currently available: Orthogonal Frequency Division Multiplexing (OFDM) transmission technology and Single Carrier (SC) block transmission based on Frequency Domain Equalization (FDE) technology.
下面将介绍SC块传输技术。The SC block transmission technology will be introduced below.
与OFDM中数据在频域传输相比,SC中的数据在时域进行传输,因此SC传输具有低功率峰平比(PAPR)的优点。低PAPR对于提高发送功率的利用率、降低信号的失真度以及量化阶次十分重要。而在OFDM中,频域并行的数据流变换到时域传输时会带来很高的PAPR。同时,从实现复杂度上来讲,如果采用FDE技术的话,SC传输技术的实现复杂度几乎与OFDM传输技术一样。基于此原因,SC传输技术正日益受到人们的关注,目前已成为3GPP长期演进(LTE)中上行链路中最有竞争力的传输手段之一(上行链路对于低PAPR的要求较下行链路高)。Compared with data transmission in frequency domain in OFDM, data in SC is transmitted in time domain, so SC transmission has the advantage of low power peak-to-average ratio (PAPR). Low PAPR is very important for improving the utilization rate of transmission power, reducing signal distortion and quantization order. However, in OFDM, the parallel data stream in frequency domain will bring high PAPR when it is transformed into time domain transmission. At the same time, in terms of implementation complexity, if FDE technology is adopted, the implementation complexity of SC transmission technology is almost the same as that of OFDM transmission technology. For this reason, SC transmission technology is attracting more and more attention, and has become one of the most competitive transmission methods in the uplink of 3GPP Long Term Evolution (LTE) (uplink has lower requirements for low PAPR than downlink high).
图1所示为传统的单天线SC块传输系统结构的示意图。FIG. 1 is a schematic diagram of the structure of a traditional single-antenna SC block transmission system.
在发送端,首先,在编码装置101和调制装置102处对待发送的数据流进行信道编码和星座调制,然后,在组块装置103处对调制后串行的符号流分块(块长为N)。之后,在插入GI装置104处,在数据块与数据块之间插入保护间隔(GI)。最后将其从天线105上发送出去。在插入GI装置104处,同OFDM系统一样,一般采用每个数据块前插入循环前缀(CP)的方法,即将每个数据块的最后NG个数据拷贝后放到该数据块的头部,其中NG为GI的长度,要求其不小于信道最大时延长度。At the sending end, at first, channel coding and constellation modulation are performed on the data stream to be transmitted at the
在接收端,首先由接收天线111将空间信号接收下来。然后,由信道估计装置118根据该接收信号中的导频信号或采用其他方法进行信道估计,估计出当前的时域信道冲激响应h。同时,在去除GI装置112处将接收信号中的GI部分去除。然后,分别在快速傅立叶变换装置113、频域均衡装置114和反快速傅立叶变换装置115处依次对长度为N的接收数据块进行N点快速傅立叶变换(FFT)、FDE(频域均衡)、和N点反快速傅立叶变换,其中频域均衡装置114中利用信道估计装置118得到的当前信道特性对信号进行频域均衡。接下来,对均衡输出的信号依次进行解调116和信道译码117,最后得到原始的发送数据。At the receiving end, the space signal is firstly received by the
可见,这里SC块传输系统中数据的发送和接收都是以数据块为单位的。SC-FDE的原理可以用以下数学形式来进一步描述。It can be seen that the sending and receiving of data in the SC block transmission system is based on data blocks. The principle of SC-FDE can be further described by the following mathematical form.
首先,可以将信道描述成一个Lc阶的有限冲激响应(FIR)滤波器,即信道冲激响应h={h(0),h(1),…,h(Lc-1)}。则经过去除GI装置112处理后的时域第i块内第n个信号可以表示为:First, the channel can be described as a finite impulse response (FIR) filter of order Lc, that is, the channel impulse response h={h(0), h(1), . . . , h(Lc-1)}. Then the n-th signal in the i-th block in the time domain after removing the
其中,{si(n)n=0 N-1}表示第i个数据块发送的N个数据,(k)N表示k模N后的余数,n(n)是加性白高斯噪声(AWGN)。Among them, {s i (n) n=0 N-1 } represents the N data sent by the i-th data block, (k) N represents the remainder after k modulo N, and n(n) is additive white Gaussian noise ( AWGN).
由上式可见,从信号形式上SC传输技术与OFDM传输技术十分相似,都是发送信号与信道冲激循环卷积的结果。那么,在频域上,即,对接收信号FFT之后就可以体现为发送信号频域与信道频域乘积的结果,即:It can be seen from the above formula that SC transmission technology is very similar to OFDM transmission technology in terms of signal form, and both are the result of circular convolution between the transmitted signal and the channel impulse. Then, in the frequency domain, that is, after FFT of the received signal, it can be reflected as the product of the frequency domain of the transmitted signal and the frequency domain of the channel, namely:
Ri(k)=H(k)Si(k)+N(k) 0≤k≤N-1 (2)R i (k) = H (k) S i (k) + N (k) 0≤k≤N-1 (2)
其中,Ri(k)表示第i个接收数据块FFT之后频域第k点上数值,H(k)为信道频域第k点上数值,Si(k)表示第i个发送数据块FFT之后频域第k点上数值,N(k)表示噪声频域第k点上数值。Among them, R i (k) represents the value at the kth point in the frequency domain after the FFT of the i-th received data block, H(k) is the value at the k-th point in the channel frequency domain, and S i (k) represents the i-th transmitted data block After FFT, the value at the kth point in the frequency domain, N(k) represents the value at the kth point in the noise frequency domain.
因此,SC信号可以通过简单的FDE方式进行均衡,如迫零(ZF)均衡和最小均方误差(MMSE)均衡。将均衡算子表示为W={W(0),W(1),…,W(N-1)},其中W(k)为频域子载波k上的均衡算子,则经FDE和IFFT后的时域信号输出为:Therefore, SC signals can be equalized by simple FDE methods, such as zero-forcing (ZF) equalization and minimum mean square error (MMSE) equalization. The equalization operator is expressed as W={W(0), W(1),...,W(N-1)}, where W(k) is the equalization operator on frequency domain subcarrier k, then by FDE and The time domain signal output after IFFT is:
当采用ZF均衡时,有W(k)=1/H(k);当采用MMSE均衡时,有
SC块传输中的发送分集方法Transmit Diversity Method in SC Block Transmission
前面介绍了传统的单天线通信系统的SC块传输中的发送和均衡方法。已经知道,目前多天线传输技术(MIMO)已成为未来无线通信中的一项重要传输手段。在MIMO系统中,发送端利用多根天线进行信号的发送,接收端利用多根天线进行空间信号的接收。研究表明,相比于传统的单天线传输方法,MIMO技术可以有效提高信号的传输速率和性能。The transmission and equalization methods in the SC block transmission of the traditional single-antenna communication system are introduced above. It is already known that the current multi-antenna transmission technology (MIMO) has become an important transmission means in future wireless communications. In the MIMO system, the transmitting end uses multiple antennas to transmit signals, and the receiving end uses multiple antennas to receive spatial signals. Studies have shown that compared with traditional single-antenna transmission methods, MIMO technology can effectively improve signal transmission rate and performance.
SC块传输与MIMO的结合,能够在频率选择性信道上实现高速的数据传输。基于上行发送功率有限的考虑,LTE中建议上行采用SC和多天线发送分集相结合的发送方法。目前,相关文献中已给出一种用于SC块传输中的发送分集方法并引起广泛关注,该方法可以看作是传统Alamouti发送分集在SC块传输下的扩展。该方法的实现结构如图2所示。The combination of SC block transmission and MIMO can realize high-speed data transmission on frequency selective channels. Based on the consideration of limited uplink transmit power, it is recommended in LTE to adopt a transmission method combining SC and multi-antenna transmit diversity for uplink. At present, a method of transmit diversity in SC block transmission has been proposed in relevant literature and has attracted widespread attention. This method can be regarded as an extension of traditional Alamouti transmit diversity under SC block transmission. The realization structure of this method is shown in Fig. 2 .
图2所示为传统的多天线通信系统中的SC块传输发送分集结构的示意图。FIG. 2 is a schematic diagram of a SC block transmission transmit diversity structure in a traditional multi-antenna communication system.
在发送端,待发送的数据首先在信道编码和调制装置201经过信道编码和星座调制。然后在组块装置202处进行组块。组块后的每符号块的长度为N。之后,在块空时编码装置203处对相邻的2个符号块进行块空时编码,并输出2路数据块,每路数据块对应一个发送天线。接下来,分别在插入GI装置204对每路数据块插入保护间隔。最后将其从各自对应的发送天线205上发送出去。此时,在两发送天线上的发送数据格式如图3所示。At the sending end, the data to be sent first undergoes channel coding and constellation modulation in the channel coding and
图3所示为传统多天线通信系统的SC块传输发送分集下的各天线数据格式的示意图。FIG. 3 is a schematic diagram of the data format of each antenna under SC block transmission transmit diversity in a traditional multi-antenna communication system.
在图3中,假设在块空时编码203之前第i块的信号用si=[si(0),si(1),…,si(N-1)]T来表示,其长度为N,T表矩阵转置。如图3所示,天线1和2在块2i时刻分别发送信号s2i=[s2i(0),s2i(1),…,s2i(N-1)]T和s2i+1=[s2i+1(0),s2i+1(1),…,s2i+1(N-1)]T;天线1和2在块2i+1时刻分别发送信号-s*2i+1((N-n)N)=[-s*2i+1(0),-s*2i+1(N-1),…,-s*2i+1(1)]T和s*2i((N-n)N)=[s*2i(0),s*2i(N-1),…,s*2i(1)]T,其中(x)N表示x对N取余数。In Fig. 3, it is assumed that the signal of the i-th block is represented by s i =[s i (0), s i (1), ..., s i (N-1)] T before block space-
根据数字信号处理的相关理论,按图3所示的数据格式发送时,两个发送天线上信号的频域格式如图4所示。According to relevant theories of digital signal processing, when the data format shown in Figure 3 is transmitted, the frequency domain format of the signals on the two transmitting antennas is shown in Figure 4 .
图4所示为传统多天线通信系统的SC块传输发送分集下的各天线数据的频域格式示意图。FIG. 4 is a schematic diagram of frequency domain format of data of each antenna under SC block transmission transmit diversity in a traditional multi-antenna communication system.
在图4中,假设第i块信号si=[si(0),si(1),…,si(N-1)]的频域信号表示为Si=[Si(0),Si(1),…,Si(N-1)],即有Si=FFT{si}。由此,如图4所示,天线1和2在块2i时刻分别发送的频域信号S2i=[S2i(0),S2i(1),…,S2i(N-1)]T和S2i+1=[S2i+1(0),S2i+1(1),…,S2i+1(N-1)]T;天线1和2在块2i+1时刻分别发送的频域信号为-S* 2i+1=[-S* 2i+1(0),-S* 2i+1(1),…,-S* 2i+1(N-1)]T和S* 2i=[S* 2i(0),S* 2i(1),…,S* 2i(N-1)]T。In Fig. 4, it is assumed that the frequency domain signal of the i-th block signal s i =[s i (0), s i (1),..., s i (N-1)] is expressed as S i =[S i (0 ), S i (1), ..., S i (N-1)], that is, S i =FFT{s i }. Thus, as shown in FIG. 4 , the frequency-domain signals S 2i =[S 2i (0), S 2i (1),...,S 2i (N-1)] T and S 2i+1 =[S 2i+1 (0), S 2i+1 (1),..., S 2i+1 (N-1)] T ; The frequency domain signal is -S * 2i+1 = [-S * 2i+1 (0), -S * 2i+1 (1), ..., -S * 2i+1 (N-1)] T and S * 2i = [S * 2i (0), S * 2i (1), . . . , S * 2i (N−1)] T .
可以发现,在同一子载波k上,两个天线在两个相邻块上的频域信号正好构成传统的Alamouti信号结构,比如在子载波k上的发送信号频域格式如下表1所示:
表1子载波k上的发送信号频域格式示意Table 1 Schematic diagram of the frequency domain format of the transmitted signal on subcarrier k
根据MIMO相关理论,Alamouti发送分集的优点在于接收端可以用低复杂度的线性检测获得最大似然(ML)的性能,从而可以获得有效的发送分集性能。图3所示SC块传输发送分集下的接收机结构如图5所示。According to MIMO-related theories, the advantage of Alamouti transmit diversity is that the receiving end can use low-complexity linear detection to obtain maximum likelihood (ML) performance, so that effective transmit diversity performance can be obtained. The structure of the receiver under the transmit diversity of SC block transmission shown in FIG. 3 is shown in FIG. 5 .
图5所示为传统SC块传输发送分集下的接收机结构示意。FIG. 5 is a schematic diagram of a receiver structure under transmit diversity of traditional SC block transmission.
在接收端,两个发送相邻块首先由nR个接收天线301将空间全部信号接收下来,并由信道估计装置309根据该接收信号中的导频信号或采用其他方法进行信道估计,估计出当前的信道特性。然后,分别在去除GI装置302处对每个天线上的接收信号进行去除GI的操作。去除GI之后,分别在串并转换装置303和FFT装置304处对每个接收天线上的接收信号进行串并转换和FFT操作。然后,在频域均衡装置305对这nR个接收天线上所接收的频域信号一起进行FDE操作。其中,频域均衡装置305对每个子载波逐一均衡,即对同一子载波上、两个天线在两个相邻块上发的4个频域信号按传统Alamouti方式一起进行线性频域均衡。接下来,在IFFT装置306处对频域均衡装置305输出的2路信号进行IFFT操作,在并串转换装置307处进行并串转换,并且在解调和译码装置308处进行符号解调和信道译码,最后得到原始的发送数据。At the receiving end, firstly, the n R receiving antennas 301 of the two neighboring blocks receive all the spatial signals, and the
然而,由传统Alamouti发送相关理论可以知道,这种发送分集方法对于信道时变比较敏感,其要求相邻SC块内的信道特性保持不变。这一点在未来实际系统中往往难以满足,主要有两个方面原因。一方面是未来移动通信将面向更多的高速移动用户,移动台的高速移动将不可避免地带来信道的时变。另一方面,由SC系统结构可知,一般每个SC块在时间上较长,远大于符号间隔(比如一个块可包含上千个发送符号),因此在如此长时间内要求信道的恒定不变往往难以满足。However, it can be known from the traditional Alamouti transmission correlation theory that this transmission diversity method is sensitive to channel time variation, which requires that the channel characteristics in adjacent SC blocks remain unchanged. This point is often difficult to satisfy in future actual systems, mainly for two reasons. On the one hand, future mobile communications will face more high-speed mobile users, and the high-speed movement of mobile stations will inevitably bring about time-varying channels. On the other hand, it can be seen from the structure of the SC system that generally each SC block is longer in time, much longer than the symbol interval (for example, a block can contain thousands of transmission symbols), so the channel is required to be constant for such a long time Often unsatisfactory.
对于现有方法而言,相邻SC块内的信道时变将带来接收信号在频域上不正交,从而带来接收性能的恶化。因此,能否设计出一种用于SC块传输中的对信道时变不敏感的、低复杂度的发送分集方法是MIMO-SC块传输所关心的一个重要课题。For the existing method, the channel time variation in adjacent SC blocks will cause the received signals to be non-orthogonal in the frequency domain, thereby deteriorating the receiving performance. Therefore, whether to design a transmit diversity method that is insensitive to channel time variation and low complexity for SC block transmission is an important issue concerned by MIMO-SC block transmission.
发明内容Contents of the invention
本发明的目的在于提供了一种在多天线通信系统的单载波块传输中的发送分集方法,该发送分集方法对信道时变不敏感且具有低复杂度,并且特别适合于诸如多输入多输出(MIMO)天线通信系统等多天线通信系统。The purpose of the present invention is to provide a method of transmit diversity in single carrier block transmission of a multi-antenna communication system, which is insensitive to channel time variation and has low complexity, and is especially suitable for such as multiple input multiple output (MIMO) antenna communication system and other multi-antenna communication systems.
为了实现上述目的,根据本发明,提出了一种在多天线通信系统的单载波块传输中的发送分集方法,包括:在发送端,针对一路发送天线,直接对原始成块信号插入保护间隔并通过所述一路发送天线发送,针对另一路发送天线,首先对原始成块信号进行两路并行处理,对并行处理后的信号求和并插入保护间隔,且通过所述另一路发送天线发送,其中所述两路并行处理分别由共轭置换处理和特征序列加权处理构成;在接收端,对接收到的由所述一路发送天线和所述另一路发送天线在相邻两个子载波上发送的4个频域信号按Alamouti方式一起进行线性均衡。In order to achieve the above object, according to the present invention, a transmit diversity method in single-carrier block transmission of a multi-antenna communication system is proposed, including: at the transmit end, for one transmit antenna, directly insert a guard interval into the original block signal and Sending through the one sending antenna, and for the other sending antenna, firstly perform two parallel processing on the original block signal, sum the parallel processed signals and insert a guard interval, and send through the other sending antenna, wherein The two-way parallel processing is composed of conjugate permutation processing and eigensequence weighting processing respectively; at the receiving end, for the received 4 The two frequency domain signals are linearly equalized together according to the Alamouti method.
优选地,由所述一路发送天线和所述另一路发送天线在块i时刻发送的信号分别为si和Ps* i,其中P=W1P1+W2P2,P1和P2分别为两路并行处理中的置换矩阵,W1和W2分别为两路并行处理中的特征序列加权矩阵。Preferably, the signals transmitted by the one transmitting antenna and the other transmitting antenna at block i time are respectively s i and Ps * i , where P=W 1 P 1 +W 2 P 2 , P 1 and P 2 are the permutation matrices in the two-way parallel processing, and W 1 and W 2 are the feature sequence weighting matrices in the two-way parallel processing, respectively.
优选地, Preferably,
。.
优选地,在接收端接收到的由所述一路发送天线和所述另一路发送天线发送的频域信号分别是Si=[Si(0),Si(1),…,Si(N-1)]T和S’i=[-S* i(1),S* i(0),-S* i(3),S* i(2),…,-S* i(N-1),S* i(N-2)]T,在两个相邻子载波2k和2k+1上的频域信号构成了Alamouti信号结构。Preferably, the frequency domain signals received at the receiving end and sent by the one transmit antenna and the other transmit antenna are respectively S i =[S i (0), S i (1), ..., S i ( N-1)] T and S' i = [-S * i (1), S * i (0), -S * i (3), S * i (2), ..., -S * i (N -1), S * i (N-2)] T , the frequency domain signals on two adjacent subcarriers 2k and 2k+1 constitute the Alamouti signal structure.
优选地,所述在接收端在相邻两个子载波上发送的4个频域信号按Alamouti方式一起进行线性均衡的步骤包括:在由所述一路发送天线和所述另一路发送天线在两个相邻子载波2k和2k+1上发送的4个频域信号按Alamouti方式一起进行线性频域均衡。Preferably, the step of linearly equalizing the four frequency-domain signals sent on two adjacent subcarriers at the receiving end according to the Alamouti method includes: using the one transmitting antenna and the other transmitting antenna at the two The four frequency domain signals sent on the adjacent subcarriers 2k and 2k+1 are subjected to linear frequency domain equalization according to the Alamouti method.
优选地,所述多天线通信系统为多输入多输出天线通信系统。Preferably, the multi-antenna communication system is a multiple-input multiple-output antenna communication system.
为了实现上述目的,根据本发明,还提出了一种在多天线通信系统的单载波块传输中的发送分集系统,包括:在发送端,组块装置,对针对两路发送天线的待发送信号分别进行组块;插入保护间隔装置,用于直接对针对两路发送天线中的一路发送天线的组块后的信号插入保护间隔且通过所述一路发送天线发送,以及对针对两路发送天线中的另一路发送天线的两路并行处理及求和装置处理后的信号插入保护间隔且通过所述另一路发送天线发送;两路并行处理及求和装置,针对两路发送天线中的另一路发送天线,首先对针对所述另一路发送天线的组块后的信号进行两路并行处理,对并行处理后的信号求和并输出到所述插入保护间隔装置,其中所述两路并行处理分别由共轭置换处理和特征序列加权处理构成;在接收端,频域均衡装置,对接收到的由所述一路发送天线和所述另一路发送天线在相邻两个子载波上发送的4个频域信号按Alamouti方式一起进行线性均衡。In order to achieve the above object, according to the present invention, a transmission diversity system in single carrier block transmission of a multi-antenna communication system is also proposed, including: at the transmission end, a block device, for the signal to be transmitted for the two transmission antennas Blocking is performed respectively; a guard interval device is inserted, which is used to directly insert a guard interval into a signal after block for one of the two transmit antennas and send it through the one transmit antenna, and for the two transmit antennas The signal processed by the two-way parallel processing and summing device of the other sending antenna is inserted into the guard interval and sent through the other sending antenna; the two-way parallel processing and summing device sends Antenna, firstly perform two-way parallel processing on the signals after the blocks for the other sending antenna, sum the parallel-processed signals and output them to the insertion guard interval device, wherein the two-way parallel processing is performed by It consists of conjugate permutation processing and eigensequence weighting processing; at the receiving end, the frequency domain equalization device, for the received 4 frequency domain The signals are linearly equalized together in the Alamouti manner.
根据本发明,将传统方法中频域信号的空时发送分集转变为空频发送分集,从而可以有效对抗信道时变所带来的性能恶化,同时保持发送和接收的低复杂度。According to the present invention, the space-time transmission diversity of the frequency domain signal in the traditional method is transformed into the space-frequency transmission diversity, so that the performance degradation caused by the time-varying channel can be effectively resisted, while maintaining low complexity of transmission and reception.
附图说明Description of drawings
通过参考以下结合附图对所采用的优选实施例的详细描述,本发明的上述目的、优点和特征将变得显而易见,其中:The above objects, advantages and features of the present invention will become apparent by referring to the following detailed description of preferred embodiments employed in conjunction with the accompanying drawings, wherein:
图1为示出了传统的单天线SC块传输系统结构的示意图;FIG. 1 is a schematic diagram showing the structure of a traditional single-antenna SC block transmission system;
图2为示出了传统的多天线SC块传输发送分集结构的示意图;FIG. 2 is a schematic diagram showing a traditional multi-antenna SC block transmission transmit diversity structure;
图3为示出了传统的多天线SC块传输发送分集下的各天线数据格式的示意图;FIG. 3 is a schematic diagram showing the data format of each antenna under traditional multi-antenna SC block transmission transmit diversity;
图4为示出了传统的多天线SC块传输发送分集下的各天线数据频域格式的示意图;FIG. 4 is a schematic diagram showing the frequency domain format of each antenna data under the traditional multi-antenna SC block transmission transmit diversity;
图5为示出了传统的多天线SC块传输发送分集下的接收机结构的示意图;FIG. 5 is a schematic diagram showing a receiver structure under traditional multi-antenna SC block transmission transmit diversity;
图6为示出了根据本发明实施例的多天线SC块传输发送分集结构的示意图;FIG. 6 is a schematic diagram showing a transmit diversity structure of multi-antenna SC block transmission according to an embodiment of the present invention;
图7为示出了根据本发明实施例的多天线SC块传输发送分集下的各天线数据格式的示意图;FIG. 7 is a schematic diagram showing the data format of each antenna under multi-antenna SC block transmission transmit diversity according to an embodiment of the present invention;
图8为示出了示出了根据本发明实施例的多天线SC块传输发送分集下的各天线数据频域格式的示意图;FIG. 8 is a schematic diagram showing the frequency domain format of each antenna data under multi-antenna SC block transmission transmit diversity according to an embodiment of the present invention;
图9为示出了根据本发明实施例的发送信号的接收装置的示意图;以及FIG. 9 is a schematic diagram showing a receiving device for transmitting signals according to an embodiment of the present invention; and
图10为示出了本发明所采用的方法与传统方法的性能比较结果的示意图。FIG. 10 is a schematic diagram showing performance comparison results of the method adopted in the present invention and the traditional method.
具体实施方式Detailed ways
下面将结合附图来说明本发明的具体实施方式。The specific implementation manners of the present invention will be described below in conjunction with the accompanying drawings.
图6所示为根据本发明实施例的多天线SC块传输发送分集结构的示意图。FIG. 6 is a schematic diagram of a transmit diversity structure for multi-antenna SC block transmission according to an embodiment of the present invention.
图6中,依然首先在编码和调制装置401处对待发送的数据进行信道编码和星座调制,然后,在组块装置402处对其进行组块,组块后每符号块长度为N。接下来,针对一路发送天线,在插入GI装置405处,直接在成块信号间插入GI之后发送出去;而对于另一路天线来说,首先对原始成块信号进行两路并行处理,然后在求和装置407对并行处理后的信号求和,再在插入GI装置405处插入GI发送出去,其中所述每路并行处理均由共轭置换装置403和特征序列加权装置404构成。此时,在两个发送天线上的发送数据格式如图7所示。In FIG. 6 , channel coding and constellation modulation are still firstly performed on the data to be transmitted at the encoding and modulating
图7所示为根据本发明的多天线SC块传输发送分集下的各天线数据格式的示意图。Fig. 7 is a schematic diagram of the data format of each antenna under the transmission diversity of multi-antenna SC block transmission according to the present invention.
在图7中,假设在组块之后的第i块信号用si=[si(0),si(1),…,si(N-1)]T来表示,其长度为N,T表矩阵转置。如图7所示,天线1和2在块i时刻分别发送信号si=[si(0),si(1),…,si(N-1)]T和Ps* i=P[s* i(0),s* i(1),…,s* i(N-1)]T,其中P=W1P1+W2P2,P1和P2分别对应图6中的置换1和置换2操作403,W1和W2分别对应图6中的加权装置1和加权装置2中的操作。In Fig. 7, it is assumed that the i-th block signal after the block is represented by s i =[s i (0), s i (1),..., s i (N-1)] T , and its length is N , T table matrix transpose. As shown in Fig. 7,
具体说来,第二路发送天线上插入GI之前的信号处理过程包括:Specifically, the signal processing process before inserting the GI on the second transmitting antenna includes:
(1)对成块信号进行共轭置换;(1) Perform conjugate permutation on the block signal;
这里,首先对组块之后的第i块信号si=[si(0),si(1),…,si(N-1)]T取共轭然后进行置换。置换操作即是变换原数据块中各信号的位置,从数学上置换操作可以用左乘置换矩阵来描述。图6中,两路信号的置换操作可以分别用N×N矩阵P1和P2来描述。则经过共轭置换后的两路信号可以分别表示成P1s* i和P2s* i,其中Here, firstly, the i-th block signal s i =[s i (0), s i (1), . . . , s i (N-1)] T after the block is conjugated and then permuted. The permutation operation is to transform the position of each signal in the original data block. Mathematically, the permutation operation can be described by the left multiplication permutation matrix. In Fig. 6, the permutation operation of the two signals can be described by N×N matrices P 1 and P 2 respectively. Then the two signals after conjugate permutation can be expressed as P 1 s * i and P 2 s * i respectively, where
i=1,…,N;j=1,…,Ni=1,...,N; j=1,...,N
以及 as well as
i=1,…,N;j=1,…,N。i=1,...,N; j=1,...,N.
(2)对置换后的信号进行特征序列加权;(2) Carry out characteristic sequence weighting to the permuted signal;
这里,分别对共轭置换后的信号P1s* i和P2s* i进行特征序列加权,序列加权操作可以用左乘对角矩阵来描述。图6中,两路信号的特征序列加权操作可以分别用N×N对角矩阵W1和W2来描述。则经过序列加权后的两路信号可以分别表示成W1P1s* i和W2P2s* i,其中Here, the characteristic sequence weighting is carried out on the signals P 1 s * i and P 2 s * i after the conjugate permutation respectively, and the sequence weighting operation can be described by multiplying the diagonal matrix on the left. In Fig. 6, the weighting operation of the characteristic sequence of the two signals can be described by N×N diagonal matrices W 1 and W 2 respectively. Then the two signals after sequence weighting can be expressed as W 1 P 1 s * i and W 2 P 2 s * i respectively, where
(3)对两路并行处理后的信号求和。(3) Summing the signals after two parallel processes.
最后,得到求和后的信号为W1P1s* i+W2P2s* i。Finally, the summed signal is W 1 P 1 s * i +W 2 P 2 s * i .
当采用图6所示发明方法进行信号发送时,可以得到图8所示的频域信号格式。When the inventive method shown in FIG. 6 is used for signal transmission, the frequency domain signal format shown in FIG. 8 can be obtained.
图8所示为根据本发明实施例的多天线SC块传输发送分集下的各天线数据频域格式的示意图。Fig. 8 is a schematic diagram of the frequency domain format of data of each antenna under the transmission diversity of multi-antenna SC block transmission according to an embodiment of the present invention.
其中,天线1和2发送的频域信号分别是Si=[Si(0),Si(1),…,Si(N-1)]T和S’i=[-S* i(1),S* i(0),-S* i(3),S* i(2),…,-S* i(N-1),S* i(N-2)]T。在以下的附加说明中给出了按图6发明方法发送时可获得图8的频域信号格式的解释。Wherein, the frequency domain signals transmitted by
由图可见,根据本发明的方法,两个天线在两个相邻子载波2k和2k+1上的频域信号正好构成传统的Alamouti信号结构,如下表2所示:
表2子载波2k和2k+1上的发送信号频域格式示意Table 2 Schematic diagram of the frequency domain format of the transmitted signal on subcarriers 2k and 2k+1
前面提到,此种发送方式要求同一天线所发送两个信号所对应的信道特性尽量保持不变。在传统方法中,同一天线上的两个信号在时间上相邻的两个块上传输,如表一,移动台的高速移动以及块长较长的缘故使得这个条件往往很难满足。而在本发明的方法中,同一天线上的两个信号在频域上相邻的两个子载波上传输,如表二。由相关理论可以知道,频域中相邻子载波上的信道特性有很强的相关性,两者几乎一致。也就是说,本发明的方法将可以更加有效的对抗信道时变下的性能损失。As mentioned above, this transmission method requires that the channel characteristics corresponding to the two signals transmitted by the same antenna remain unchanged as much as possible. In the traditional method, two signals on the same antenna are transmitted on two adjacent blocks in time, as shown in Table 1. The high-speed movement of the mobile station and the long block length often make this condition difficult to satisfy. However, in the method of the present invention, two signals on the same antenna are transmitted on two adjacent subcarriers in the frequency domain, as shown in Table 2. It can be known from the correlation theory that the channel characteristics on adjacent subcarriers in the frequency domain have a strong correlation, and the two are almost identical. That is to say, the method of the present invention can more effectively resist performance loss under channel time variation.
对于图6中所示本发明所采用的MIMO-SC发送方法,可以采用图9所示的接收装置进行接收。For the MIMO-SC transmission method adopted by the present invention shown in FIG. 6, the receiving device shown in FIG. 9 can be used for reception.
图9所示为根据本发明实施例的发送信号的接收装置的示意图。FIG. 9 is a schematic diagram of a receiving device for sending signals according to an embodiment of the present invention.
由图9可见,对根据本发明方法的发送信号的接收过程与图5中的传统SC块传输发送分集下的方法十分相似,其唯一的区别是采用了新的频域均衡装置310进行频域均衡。It can be seen from FIG. 9 that the receiving process of the transmitted signal according to the method of the present invention is very similar to the method under the traditional SC block transmission transmission diversity in FIG. balanced.
具体说来,在图5中的频域均衡装置305对每个子载波逐一均衡,即对同一子载波上、两个天线在两个相邻块上发的4个频域信号按传统Alamouti方式一齐进行线性频域均衡。而在本发明的方法中,由于是两个天线在两个相邻子载波2k和2k+1上的频域信号构成传统的Alamouti信号结构,因此,图9中的频域均衡装置310对每两个子载波一起均衡,即对两个天线在两个相邻子载波2k和2k+1上发的4个频域信号按传统Alamouti方式一起进行线性频域均衡。其均衡算法同传统方法完全一样,仅仅输入不同(均衡器的输入由传统方法中的同一子载波上、两个天线在两个相邻块上发的4个频域信号变为两个天线在两个相邻子载波2k和2k+1上发的4个频域信号),因此这里不在赘述。Specifically, the frequency
图10所示为本发明所采用的方法与传统方法的性能比较的示意图。FIG. 10 is a schematic diagram showing performance comparison between the method adopted in the present invention and the traditional method.
仿真中采用的信道模型为ITU M.1225信道模型A,信道带宽为10MHz,N=1024。发送天线和接收天线数分别为2和1,采用QPSK调制。图10中的fd为最大多普勒频移,T为每个传输块时间长度。由图10可见,对现有方法而言,随着信道时变的增加其性能会逐渐恶化。而发明方法可以相对有效地对抗信道时变所带来的性能损失,而且发送和接收方法仍保持低复杂度。另外,与传统方法相比,发送端采用了发送加权的操作,但由于仅仅是两路加权,而且加权序列为正余弦信号序列,因此发明方法对PAPR带来的影响不大。The channel model adopted in the simulation is ITU M.1225 channel model A, the channel bandwidth is 10MHz, and N=1024. The numbers of transmitting antennas and receiving antennas are 2 and 1 respectively, and QPSK modulation is adopted. f d in Fig. 10 is the maximum Doppler frequency shift, and T is the time length of each transmission block. It can be seen from Fig. 10 that, for the existing method, its performance will gradually deteriorate as the channel time variation increases. However, the invented method can relatively effectively resist the performance loss caused by channel time variation, and the sending and receiving methods still maintain low complexity. In addition, compared with the traditional method, the sending end adopts the operation of sending weighting, but because there are only two weightings, and the weighted sequence is a sine-cosine signal sequence, the inventive method has little impact on PAPR.
按图6所示的发明方法发送时可获得图8的频域信号格式的附加说明如下:Additional descriptions of the frequency domain signal format of FIG. 8 that can be obtained when sending according to the inventive method shown in FIG. 6 are as follows:
令第一个发送天线上的频域信号为Si=[Si(0),Si(1),…,Si(N-1)]T,则第二个发送天线上的频域信号S’i=[-S* i(1),S* i(0),-S* i(3),S* i(2),…,-S* i(N-1),S* i(N-2)]T可以表示为S’i=(ASi)*,其中A为N×N矩阵,有Let the frequency domain signal on the first transmitting antenna be S i =[S i (0), S i (1),..., S i (N-1)] T , then the frequency domain signal on the second transmitting antenna Signal S'i = [-S * i (1), S * i (0), -S * i (3), S * i (2), ..., -S * i (N-1), S * i (N-2)] T can be expressed as S' i =(AS i )*, where A is an N×N matrix, and
假设存在N×N矩阵C,使得FFT{Csi}=ASi,则根据信号处理相关理论,有FFT{BC*s* i}=(ASi)*,其中Suppose there is an N×N matrix C such that FFT{Cs i }=AS i , then according to the related theory of signal processing, there is FFT{BC*s * i }=(AS i )*, where
下面着重求解C。令FN为FFT矩阵,即有
而又有W1P1+W2P2=BC*,所以得证。And there is W 1 P 1 +W 2 P 2 =BC*, so the proof is obtained.
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。Although the present invention has been illustrated in conjunction with the preferred embodiments thereof, those skilled in the art will understand that various modifications, substitutions and alterations can be made therein without departing from the spirit and scope of the invention. Accordingly, the invention should not be limited by the above-described embodiments, but by the appended claims and their equivalents.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100714149A CN101043244A (en) | 2006-03-20 | 2006-03-20 | Transmission diversity method in single carrier block transmission of multi-antenna communication system |
PCT/JP2007/055679 WO2007111198A1 (en) | 2006-03-20 | 2007-03-20 | Transmission method and transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100714149A CN101043244A (en) | 2006-03-20 | 2006-03-20 | Transmission diversity method in single carrier block transmission of multi-antenna communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101043244A true CN101043244A (en) | 2007-09-26 |
Family
ID=38541118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100714149A Pending CN101043244A (en) | 2006-03-20 | 2006-03-20 | Transmission diversity method in single carrier block transmission of multi-antenna communication system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101043244A (en) |
WO (1) | WO2007111198A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101184069B (en) * | 2007-12-14 | 2010-06-16 | 东南大学 | Selective Feedback Detection Method Based on Single Carrier Frequency Domain Equalization |
CN101729212B (en) * | 2008-10-16 | 2014-02-05 | 中兴通讯股份有限公司南京分公司 | Subcarrier mapping method of space-frequency block codes |
CN104124987A (en) * | 2013-04-28 | 2014-10-29 | 国际商业机器公司 | Method used for concurrently processing data and apparatus thereof |
CN108600128A (en) * | 2018-03-30 | 2018-09-28 | 西安宇飞电子技术有限公司 | Equal balance system and equalization methods based on MMSE criterion |
CN110518986A (en) * | 2019-08-01 | 2019-11-29 | 中国船舶重工集团公司第七一五研究所 | A kind of channel shortening method reducing peak-to-average ratio |
RU2799577C1 (en) * | 2023-03-01 | 2023-07-06 | Владимир Анатольевич Цимбал | Method for data transmission over spatially distribute radio transmitters |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5019294B2 (en) * | 2008-02-28 | 2012-09-05 | 独立行政法人情報通信研究機構 | Reception device, signal equalization device and method |
JP5246771B2 (en) * | 2008-11-11 | 2013-07-24 | 国立大学法人東京工業大学 | Phase noise compensation receiver |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4125913B2 (en) * | 2002-05-24 | 2008-07-30 | 松下電器産業株式会社 | Wireless transmission device, wireless reception device, and wireless communication system |
-
2006
- 2006-03-20 CN CNA2006100714149A patent/CN101043244A/en active Pending
-
2007
- 2007-03-20 WO PCT/JP2007/055679 patent/WO2007111198A1/en active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101184069B (en) * | 2007-12-14 | 2010-06-16 | 东南大学 | Selective Feedback Detection Method Based on Single Carrier Frequency Domain Equalization |
CN101729212B (en) * | 2008-10-16 | 2014-02-05 | 中兴通讯股份有限公司南京分公司 | Subcarrier mapping method of space-frequency block codes |
CN104124987A (en) * | 2013-04-28 | 2014-10-29 | 国际商业机器公司 | Method used for concurrently processing data and apparatus thereof |
CN104124987B (en) * | 2013-04-28 | 2016-06-08 | 国际商业机器公司 | For method and the device of parallel data processing |
CN108600128A (en) * | 2018-03-30 | 2018-09-28 | 西安宇飞电子技术有限公司 | Equal balance system and equalization methods based on MMSE criterion |
CN110518986A (en) * | 2019-08-01 | 2019-11-29 | 中国船舶重工集团公司第七一五研究所 | A kind of channel shortening method reducing peak-to-average ratio |
CN110518986B (en) * | 2019-08-01 | 2022-04-26 | 中国船舶重工集团公司第七一五研究所 | Channel compression method for reducing peak-to-average ratio |
RU2799577C1 (en) * | 2023-03-01 | 2023-07-06 | Владимир Анатольевич Цимбал | Method for data transmission over spatially distribute radio transmitters |
Also Published As
Publication number | Publication date |
---|---|
WO2007111198A1 (en) | 2007-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Al-Dhahir | Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels | |
Zhou et al. | Single-carrier space-time block-coded transmissions over frequency-selective fading channels | |
US20030073464A1 (en) | Space-time coded transmissions within a wireless communication network | |
CN1478341A (en) | Methods and appangements in telecommunications system | |
CN101039136A (en) | Space-frequency coding-based multi-antenna transmitter diversity method and system thereof | |
Öztürk et al. | Spatial modulation GFDM: A low complexity MIMO-GFDM system for 5G wireless networks | |
CN105337921B (en) | Multicarrier non orthogonal transmissions method based on sub-carrier indices modulation | |
CN1658528A (en) | An Adaptive Channel Estimation Method for MIMO-OFDM System | |
CN1917397A (en) | Method for estimating channel in MIMO-OFDM system | |
CN101043244A (en) | Transmission diversity method in single carrier block transmission of multi-antenna communication system | |
CN105322991B (en) | MIMO transmission system and transmission method based on WFRFT precodings | |
CN101355543A (en) | Channel Estimation Method for MIMO-SCFDE System Based on Orthogonal Training Sequence | |
CN104158784B (en) | A kind of symbol detection method of DCO ofdm systems | |
CN1917498A (en) | Phase compensation method of space-frequency group code in use for overcoming drift of interception position in OFDM | |
CN1719761A (en) | A communication method for a distributed multiple-input multiple-output orthogonal frequency division multiplexing communication system | |
CN1703034A (en) | A MIMO-OFDM system based channel estimation method | |
CN101848178B (en) | Single carrier frequency domain equalization method and system as well as sending and receiving device | |
CN102710567A (en) | Part judgment method in interference elimination technology for multiple-input multiple-output (MIMO) wireless communication receiver | |
CN102006250B (en) | Turbo enhancement method for MIMO-SCFDE wireless communication receiver | |
CN1801792A (en) | Channel estimating method in MIMO-OFDM system | |
CN1968238A (en) | Sorted QR decomposition method and MIMO detection method | |
CN106453169B (en) | Signal sending and receiving method and device in wireless communication system | |
CN101783722A (en) | Transmission method and device for virtual MIMO | |
CN1588929A (en) | Interatived channel evaluation, method based on more-in and more-out orthogonal frequency division complexing system | |
CN101286822B (en) | Transmission method in orthogonal frequency division multiplexing system with MIMO and transceiver thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |