CN101039014B - Optical semiconductor device - Google Patents
Optical semiconductor device Download PDFInfo
- Publication number
- CN101039014B CN101039014B CN 200710005407 CN200710005407A CN101039014B CN 101039014 B CN101039014 B CN 101039014B CN 200710005407 CN200710005407 CN 200710005407 CN 200710005407 A CN200710005407 A CN 200710005407A CN 101039014 B CN101039014 B CN 101039014B
- Authority
- CN
- China
- Prior art keywords
- semiconductor device
- light
- optical semiconductor
- semiconductor laser
- laser chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83385—Shape, e.g. interlocking features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明公开了一种光半导体装置。目的在于:提供一种使施加在半导体激光芯片的残留应力施加在所希望的方向上且一定的范围内,以提高半导体激光的性能、可靠性,提高批量生产性的光半导体装置。本发明的光半导体装置20,包括:半导体激光芯片21、安装半导体激光芯片21的基台23、和夹在基台23的上表面与半导体激光芯片21的下表面之间的焊剂层24。半导体激光芯片朝上弯曲为凸起的形状。
The invention discloses an optical semiconductor device. The object is to provide an optical semiconductor device in which residual stress applied to a semiconductor laser chip is applied in a desired direction and within a certain range to improve the performance and reliability of the semiconductor laser and improve mass productivity. The optical semiconductor device 20 of the present invention includes a semiconductor laser chip 21 , a base 23 on which the semiconductor laser chip 21 is mounted, and a solder layer 24 sandwiched between the upper surface of the base 23 and the lower surface of the semiconductor laser chip 21 . The semiconductor laser chip is bent upward into a convex shape.
Description
技术领域 technical field
本发明涉及光半导体装置,特别涉及用在可进行重写的光磁盘和高速大容量的光通信等中的高性能光半导体装置。 The present invention relates to optical semiconductor devices, and more particularly to high-performance optical semiconductor devices used in rewritable magneto-optical disks, high-speed and large-capacity optical communications, and the like. the
背景技术 Background technique
为了迎接高度信息化社会,在以网络为代表的通讯手段中,迫切要求高速、大容量的光通讯技术,在作为存储利用通讯等获得的大容量信息的装置中,迫切要求更加高速、大容量的可进行重写的光磁盘技术。在这样的情况下,半导体激光等光半导体装置就成为光通讯技术和光磁盘技术的主要器件,在这样的光半导体装置中要求具有更高的性能、更高的功能及更高的可靠性。 In order to meet the advanced information society, high-speed and large-capacity optical communication technology is urgently required in the communication means represented by the network, and more high-speed and large-capacity optical communication technology is urgently required as a device for storing large-capacity information obtained through communication. rewritable optical disk technology. Under such circumstances, optical semiconductor devices such as semiconductor lasers have become the main devices of optical communication technology and optical disk technology, and such optical semiconductor devices are required to have higher performance, higher functions and higher reliability. the
将半导体激光芯片连接在基台上的技术是作为使该光半导体装置高性能化的主要技术。图10将以往的光半导体装置的结构例作为一个例子示出。 The technique of connecting a semiconductor laser chip to a submount is a main technique for improving the performance of the optical semiconductor device. FIG. 10 shows a configuration example of a conventional optical semiconductor device as an example. the
图10为示出了用作光通讯的光源的光半导体装置10的主要部分的图。光半导体装置10,包括硅衬底3和分布反馈型半导体激光芯片1。在硅衬底3的上表面形成有二氧化硅膜5,在二氧化硅膜5上形成有电极图案6。在电极图案6上设置有焊剂层7,半导体激光芯片1隔着焊剂层7与电极图案6粘结在一起。
FIG. 10 is a diagram showing a main part of an
在半导体激光芯片1下表面的中央部分形成有台(mesa)部8,焊剂层7被涂敷在半导体激光芯片1下表面的台部8以外的部分中。即,在台部8与二氧化硅膜5之间存在有间隙9。在台部8存在有活性层2,活性层2为发出激光的层,被设置在半导体激光芯片1的靠下表面的位置上。
A
在光半导体装置10中,当将半导体激光芯片1安装在硅衬底3时,首先,将溶化的焊剂设置在电极图案6上,其次,将半导体激光芯片1设
置在溶化的焊剂上,接着,利用冷却法让焊剂固化。这里,由于半导体激光芯片的热膨胀系数和硅衬底的热膨胀系数通常不同,因此在让焊剂冷却、固化时,恐怕会使活性层2产生歪曲,或者会在活性层2产生残留应力。
In the
不过,如上所述,由于在台部8与二氧化硅膜5之间存在有间隙,因此活性层2与焊剂层7不接触。能够大幅度降低活性层2的歪曲,或者降低在活性层2产生残留应力的可能性。结果是分布反馈型光半导体装置10能够进行在稳定的振荡波长下的单一模式的动作(例如,参照专利文献1)。
However, as described above, since there is a gap between the
例如,专利文献2所示的光半导体装置(无图示)与上述光半导体装置10的结构大致相同,但是具有没有形成台部的半导体激光芯片。此时,也由于半导体激光芯片的热膨胀系数、和安装半导体激光芯片用的安装衬底的热膨胀系数不同,因此在安装在安装衬底之后的半导体激光芯片的活性层等产生残留应力。该残留应力有可能会使活性层的衍射晶格的特性不稳定。不过,由于存在有上述间隙,因此能够降低活性层的衍射晶格的特性不稳定,能够获得稳定的振荡特性。
For example, an optical semiconductor device (not shown) shown in Patent Document 2 has substantially the same configuration as the above-mentioned
例如,在专利文献3中公开了下述结构,以谋求降低上述残留应力、改善在高温下使半导体激光芯片动作时的激光特性和改善半导体装置的可靠性。在安装衬底上表面中的与台部面对面的部分设置有沟,将焊剂层沿着沟设置为条状。由于在半导体激光芯片下表面中的台部周围(台部外围部分)没有设置焊剂,因此能够降低上述残留应力。并且,在半导体激光芯片下表面中的比台部外围部分靠外侧的位置上,设置有与沟大致平行的焊剂层。该焊剂的熔点高于沿着沟设置为条状的焊剂的熔点。通过此结构,能够使半导体激光芯片电连接在安装衬底上,同时能够确保半导体激光装置较高的散热性。(例如,参照专利文献3) For example, Patent Document 3 discloses the following structure in order to reduce the above-mentioned residual stress, improve laser characteristics when the semiconductor laser chip is operated at high temperature, and improve the reliability of the semiconductor device. A groove is provided on a portion of the upper surface of the mounting substrate facing the stage portion, and the flux layer is formed in stripes along the groove. Since no flux is provided around the mesa (mesa peripheral portion) in the lower surface of the semiconductor laser chip, the above-mentioned residual stress can be reduced. In addition, a solder layer substantially parallel to the groove is provided on the lower surface of the semiconductor laser chip outside the peripheral portion of the mesa. The melting point of this flux is higher than the melting point of the flux arranged in stripes along the groove. With this structure, the semiconductor laser chip can be electrically connected to the mounting substrate, and at the same time, high heat dissipation of the semiconductor laser device can be ensured. (For example, refer to Patent Document 3)
【专利文献1】特开2002-314184号公报 [Patent Document 1] JP-A-2002-314184 Gazette
【专利文献2】特开平11-87849号公报 [Patent Document 2] Japanese Patent Laid-Open No. 11-87849
【专利文献3】特开2003-23200号公报 [Patent Document 3] JP-A-2003-23200 Gazette
如上所述,如果在半导体激光芯片的下表面与安装衬底的上表面之间设置间隙的话,则能够降低平行于半导体激光芯片的谐振器端面的方向中的残留应力。不过,为了谋求光半导体装置更高的性能、更高的可靠性,最好还要降低半导体激光芯片的谐振器方向中的残留应力。 As described above, if a gap is provided between the lower surface of the semiconductor laser chip and the upper surface of the mounting substrate, residual stress in a direction parallel to the resonator end face of the semiconductor laser chip can be reduced. However, in order to achieve higher performance and higher reliability of the optical semiconductor device, it is also desirable to reduce the residual stress in the resonator direction of the semiconductor laser chip. the
随着光半导体装置的高输出化的需要,必须要使半导体激光芯片的谐振器较长,其结果使半导体激光芯片的长度变长。当半导体激光芯片的芯片长度较长时,必须要控制半导体激光芯片的谐振器方向中的残留应力。如果不控制残留应力的话,例如在光磁盘用高输出半导体激光中,批量(lot)内的各光半导体装置会呈现不同的偏光比,或者,烧附(burn-in)初期的动作电流值的变化会在批量内的各光半导体装置中不同。并且,批量内的偏光比的不同和上述动作电流值的变化的不同会变大。另外,偏光比为光磁盘用半导体激光的主要特性之一。 With the need for higher output of optical semiconductor devices, the resonator of the semiconductor laser chip must be made longer, and as a result, the length of the semiconductor laser chip becomes longer. When the chip length of the semiconductor laser chip is long, it is necessary to control the residual stress in the resonator direction of the semiconductor laser chip. If the residual stress is not controlled, for example, in a high-output semiconductor laser for a magneto-optical disk, each optical semiconductor device in a lot will exhibit a different polarization ratio, or the operating current value at the initial stage of burn-in will vary. Variations differ among optical semiconductor devices within a lot. In addition, the difference in the polarization ratio within the lot and the difference in the above-mentioned change in the operating current value become large. In addition, the polarization ratio is one of the main characteristics of semiconductor lasers for magneto-optical disks. the
发明内容 Contents of the invention
本发明为鉴于上述各点的发明,目的在于:提供一种能够降低发光元件的谐振器方向中的残留应力的光半导体装置。 The present invention has been made in view of the points described above, and an object of the present invention is to provide an optical semiconductor device capable of reducing residual stress in a resonator direction of a light emitting element. the
本发明的光半导体装置,包括发光元件、在上表面安装发光元件的基台、和夹在基台的上表面与发光元件的下表面之间的连接层,发光元件朝上弯曲为凸起的形状。 The optical semiconductor device of the present invention includes a light-emitting element, a base on which the light-emitting element is installed on the upper surface, and a connection layer sandwiched between the upper surface of the base and the lower surface of the light-emitting element, and the light-emitting element is curved upward to be convex. shape. the
(发明的效果) (the effect of the invention)
根据本发明,能够让施加在半导体激光芯片的残留应力施加在所希望的方向上且一定的范围内。这样一来,能够提供一种可提高半导体激光的性能和可靠性,提高批量生产性的光半导体装置。 According to the present invention, the residual stress applied to the semiconductor laser chip can be applied in a desired direction and within a certain range. In this manner, it is possible to provide an optical semiconductor device capable of improving the performance and reliability of the semiconductor laser and improving mass productivity. the
附图的简单说明 A brief description of the accompanying drawings
图1为示出了本发明的第一实施例中的光半导体装置的概要结构图,图1(a)为从上方来看光半导体装置的安装状态的概要结构图,图1(b)为图1(a)所示的IB-IB线的剖面图。 Fig. 1 is a schematic structural diagram showing the optical semiconductor device in the first embodiment of the present invention, Fig. 1 (a) is a schematic structural diagram of the mounted state of the optical semiconductor device viewed from above, and Fig. 1 (b) is The sectional view of the IB-IB line shown in Fig. 1(a). the
图2示出了本发明的第一实施例的半导体激光芯片的安装状态的模式图。 FIG. 2 is a schematic view showing a mounted state of the semiconductor laser chip of the first embodiment of the present invention. the
图3为由金及锡构成的焊剂的相图(phase diagram)。 FIG. 3 is a phase diagram of a solder composed of gold and tin. the
图4为示出了光半导体芯片的弯曲和动作电流值的关系的图形。 FIG. 4 is a graph showing the relationship between the bending of the optical semiconductor chip and the operating current value. the
图5为本发明的第二实施例中的光半导体装置的焊剂连接的概要结构图,图5(a)为将焊剂不均匀地放在子安装台(submount)的上表面时的概要 结构图,图5(b)为在子安装台的上表面设置了凹部时的概要结构图。 Fig. 5 is a schematic structural view of the solder connection of the optical semiconductor device in the second embodiment of the present invention, and Fig. 5 (a) is a schematic diagram when the solder is unevenly placed on the upper surface of the submount (submount) Structural diagram, Fig. 5(b) is a schematic structural diagram when a recess is provided on the upper surface of the submount. the
图6为示出了在本发明的第二实施例中组装在金属制封装体中的光半导体装置的概要结构图,图6(a)为示出了内部主要结构的模式图,图6(b)为从图6(a)所示的箭头方向来看的内部主要结构的模式图。 6 is a schematic structural diagram showing an optical semiconductor device assembled in a metal package in a second embodiment of the present invention, FIG. 6(a) is a schematic diagram showing an internal main structure, and FIG. 6( b) is a schematic view of the internal main structure viewed from the direction of the arrow shown in FIG. 6( a ). the
图7为示出了本发明的第三实施例中的光半导体装置的概要结构图,图7(a)为示出了内部主要结构的模式图,图7(b)为图7(a)所示的VIIB-VIIB线的概要剖面图。 Fig. 7 is a schematic structural diagram showing an optical semiconductor device in a third embodiment of the present invention, Fig. 7(a) is a schematic diagram showing an internal main structure, and Fig. 7(b) is a schematic diagram of Fig. 7(a) A schematic cross-sectional view of line VIIB-VIIB shown. the
图8为示出了本发明的第四实施例中的光半导体装置的概要结构图,图8(a)为从上方来看光半导体装置的安装状态的概要结构图,图8(b)为图8(a)所示的VIIIB-VIIIB线的剖面图。 8 is a schematic structural view showing an optical semiconductor device in a fourth embodiment of the present invention, and FIG. The cross-sectional view of line VIIIB-VIIIB shown in FIG. 8( a ). the
图9为示出了本发明的第五实施例中的光半导体装置的概要结构图,图9(a)为从上方来看光半导体装置的安装状态的概要结构图,图9(b)为图9(a)所示的IXB-IXB线的剖面图。 Fig. 9 is a schematic structural view showing the optical semiconductor device in the fifth embodiment of the present invention, Fig. 9 (a) is a schematic structural view of the mounted state of the optical semiconductor device viewed from above, and Fig. 9 (b) is A cross-sectional view of line IXB-IXB shown in FIG. 9( a ). the
图10为以往的光半导体装置的概要结构图。 FIG. 10 is a schematic configuration diagram of a conventional optical semiconductor device. the
(符号的简单说明) (simple explanation of symbols)
10、20、30、40、50、60、70、80-光半导体装置;1、21、31、41、71、81-半导体激光芯片(发光元件);3、23、33、43-子安装台(基台);7、24、34、44-焊剂层(连接层);24b-光轴方向的中央部;24a、24c-光轴方向的端部;43b-凹部;75-元件本体;76、86-突起部;122-活性层。 10, 20, 30, 40, 50, 60, 70, 80-optical semiconductor device; 1, 21, 31, 41, 71, 81-semiconductor laser chip (light-emitting element); 3, 23, 33, 43-submount Platform (base platform); 7, 24, 34, 44-solder layer (connection layer); 24b-central portion in the direction of the optical axis; 24a, 24c-ends in the direction of the optical axis; 43b-recess; 75-element body; 76, 86 - protrusions; 122 - active layer. the
具体实施方式 Detailed ways
以下,参照附图对本发明的实施例所涉及的光半导体装置加以说明。另外,有时对在附图中标注的同一符号省略说明。 Hereinafter, an optical semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. In addition, the description of the same symbols attached in the drawings may be omitted. the
(第一实施例) (first embodiment)
图1(a)为示出了第一实施例的光半导体装置20的结构的上表面图,图1(b)为图1(a)所示的IB-IB线的剖面图。
1( a ) is a top view showing the structure of an
光半导体装置20,包括半导体激光芯片(发光元件)21、子安装台(基台)23、焊剂层(连接层)24和金属基台2,如图1(a)所示。半导体激光芯片21隔着焊剂层24粘结在子安装台23的上表面23a,子安装台23隔着无
图示的焊剂层而粘结在金属基台25的上表面。另外,子安装台23即可以由硅构成,也可以由高散热材料的、热膨胀系数小于半导体激光芯片21的热膨胀系数的材料(碳化硅和氮化铝等)构成。并且,金属基台25为无图示的封装体的一部分。
The
以下,对半导体激光芯片21及焊剂层24加以详细说明。
Hereinafter, the
在半导体激光芯片21中,从活性层(无图示)射出激光22。活性层设置在半导体激光芯片21的、与上表面27相比、靠下表面21a的位置上。由于激光22沿着图1(b)所示的箭头射出,因此该箭头的方向成为半导体激光芯片21的谐振器方向,光半导体装置20发出的光的光轴方向。而且,半导体激光芯片21的端面中的、大致垂直于光轴方向延伸的端面21b、21c成为谐振器的反射镜。
In the
并且,半导体激光芯片21朝上弯曲为凸起的形状,如图1(b)所示,换句话说,弯曲为光轴方向的中央部27b仅比光轴方向的两端部27a、27c朝上突出Δb1的形状,换句话说,朝上弯曲为画出曲率半径为r1、中心角度为θ的弧。当半导体激光芯片21象这样朝上弯曲为凸起的形状时,与半导体激光芯片21朝下弯曲为凸起的形状时相比,能够在批量内的多个光半导体装置20中,使初期特性(例如,偏光比、激光的扩展角度的对称性及电流-光输出特性的直线性)值、和在烧附初期的动作电流值的变化相同。从而,能够谋求光半导体装置20中的高性能及高可靠性。
And, the
焊剂层24被填充在半导体激光芯片21的下表面21a与子安装台23的上表面23a之间的间隙中。如上所述,由于半导体激光芯片21朝上弯曲为凸起的形状,而子安装台23的上表面23a是平坦的表面,因此上述间隙的位于光轴方向的两端部的间隙窄于位于光轴方向的中央部的间隙。使焊剂层24中的位于光轴方向的中央部24b的厚度比位于光轴方向的两端部24a、24c的厚度小了窄的那部分。
The
并且,最好焊剂层24含有锡及金,焊剂层24的熔点接近于使用半导体装置时的温度(以下,称为“使用时温度”)。这是因为在将半导体激光芯片21用焊剂连接在子安装台23时,先将半导体激光芯片21粘结在溶化的焊剂上,再让焊剂冷却固化,如果让焊剂层24的熔点接近于使用时的温度的话,能够谋求降低让焊剂固化时所产生的应力。并且,为了让焊
剂层24的熔点接近于使用时的温度,最好让焊剂层24中含有较多的锡。利用图3所示的相图,对其理由加以说明。
Furthermore, it is preferable that the
图3示出了锡和金的相图。图3的纵轴示出了焊剂的熔点温度,同图的横轴示出了锡相对于金的组成比。 Figure 3 shows the phase diagram of tin and gold. The vertical axis of FIG. 3 shows the melting point temperature of the solder, and the horizontal axis of the figure shows the composition ratio of tin to gold. the
当使金比锡多的焊剂溶化且固化时,即,当使锡相对于金的组成比不满50%的焊剂溶化且固化时,用280℃使该焊剂固化,成为含金丰富的共晶焊剂。 When melting and solidifying a solder containing more gold than tin, that is, when melting and solidifying a solder having a composition ratio of tin to gold of less than 50%, the solder is solidified at 280°C to become a gold-rich eutectic solder . the
而当使锡相对于金的组成比为90%左右的焊剂溶化且固化时,用217℃使该焊剂固化。如上所述,为了使焊剂的熔点接近于使用时的温度,最好使用含有丰富的锡的焊剂。 On the other hand, when melting and solidifying a solder having a composition ratio of tin to gold of about 90%, the solder is solidified at 217°C. As mentioned above, in order to make the melting point of the flux close to the temperature at the time of use, it is preferable to use a flux rich in tin. the
在焊剂层24中,锡相对于金的组成比是光轴方向的中央部24b的组成比大于光轴方向的两端部24a、24c的组成比。在对光半导体装置20的制造方法加以说明时,再对此点加以说明。
In the
本案发明者们制作了射出红色激光的激光装置,对该激光的初期特性进行了调查。并且,调查了焊剂层24的组成。
The present inventors produced a laser device that emits red laser light, and investigated the initial characteristics of the laser light. Furthermore, the composition of the
首先,对所制作的激光装置的半导体激光芯片21加以说明。其材质为波长是650nm带的AlGaInP类材料,其最大波形光输出为300mW,其芯片长度为1500μm,其芯片宽度为300μm,其芯片厚度为110μm。并且,准备了图1所示的Δb1的平均值为-0.12μm的批量、图1所示的Δb1的平均值为0.3μm的批量、和图1所示的Δb1的平均值为0.5μm的批量。并且,分别对属于各批量的多个激光装置的初期动作电流值进行了调查。图4示出了该测定结果。图4的横轴为弯曲量Δb1,同图的纵轴为动作电流值。
First, the
如图4所示,在弯曲量Δb1的平均值为-0.12μm的批量中,即,在半导体激光芯片21朝下弯曲为凸起的形状时,动作电流值在各光半导体装置中大大不同。而在弯曲量Δb1的平均值为0.3μm的批量中,动作电流值在各光半导体装置20、20、…中大致为固定值。
As shown in FIG. 4 , in a lot with an average value of the bending amount Δb1 of −0.12 μm, that is, when the
并且,对弯曲量Δb1的平均值为0.3μm的批量中的半导体激光芯片21所发出的激光的初期特性进行了调查,调查的结果是批量内的多个光半导体装置20、20、…呈现出大致同一初期特性值,批量内的初期特性值的
差异较小。并且,对多个光半导体装置20、20、…所呈现的初期特性值进行了平均,算出的初期特性值的平均值的结果表示该平均值为较理想的值,因此推测出若用该半导体激光芯片21来制造激光装置的话,则能够提供具有高性能且高可靠性的激光装置。所以,最好弯曲量Δb1为0.3μm,并且,由于弯曲量Δb1为0.3μm时曲率半径r1为900mm,因此得知最好曲率半径r1在900mm以上。
In addition, the initial characteristics of the laser light emitted by the
而且,在弯曲量Δb1的平均值为0.5μm的批量中,Δb1的最大值为1.0μm,在Δb1为1.0μm时曲率半径为281mm。在弯曲量Δb1的平均值为0.3μm的批量中,曲率半径为900mm左右。因此,得知最好半导体激光芯片21朝上弯曲为凸起的形状,且画出曲率半径在280mm以上的弧,更理想的是朝上弯曲为凸起的形状,且画出曲率半径在900mm以上的弧。
In addition, in a lot with an average value of the amount of curvature Δb1 of 0.5 μm, the maximum value of Δb1 is 1.0 μm, and the radius of curvature is 281 mm when Δb1 is 1.0 μm. The radius of curvature is about 900 mm in a lot having an average value of the amount of curvature Δb1 of 0.3 μm. Therefore, it is known that the best
这里,通过对将激光照射到半导体激光芯片而获得的光干扰带进行测定、解析,算出了弯曲量Δb1。由于激光的光干扰带的测定界限为0.05μm,因此当使芯片长度为1500μm的半导体激光芯片21朝上弯曲为凸起的形状时,曲率半径的上限为6000mm。不过,半导体激光芯片21的芯片长度越长,其曲率半径的上限越大。所以,在使芯片长度为3000μm的半导体激光芯片21朝上弯曲为凸起的形状时,曲率半径的上限为22500mm。
Here, the bending amount Δb1 was calculated by measuring and analyzing the light interference band obtained by irradiating the semiconductor laser chip with laser light. Since the measurement limit of the optical interference band of laser light is 0.05 μm, when the
并且,将半导体激光芯片21切断,从其剖面形状来测定弯曲量Δb1的结果是,能够在弯曲量Δb1的平均值为0.02μm的批量中,使激光的初期特性值和烧附初期的动作电流值的变化相同。当弯曲量Δb1为0.02μm时,芯片长度为3000μm的半导体激光芯片21的曲率半径的上限为56250mm。从上述内容可知,最好半导体激光芯片21朝上弯曲为凸起的形状,画出曲率半径在280mm以上56250mm以下的弧。
In addition, when the
综上所述,最好半导体激光芯片21朝上弯曲为凸起的形状,画出曲率半径在280mm以上56250mm以下的弧,更理想的是朝上弯曲为凸起的形状,画出曲率半径在280mm以上22500以下的弧。
To sum up, it is preferable that the
并且,本案发明者们在上述试验结束之后,对焊剂层24进行了调查。调查的结果是焊剂层24的厚度在光轴方向的中央部24b为4.8μm,而在
光轴方向的两端部24a、24c为3.8μm。并且,在焊剂层24中含有金和锡。能够认为焊剂层24中的金来源于形成在半导体激光芯片21的镀金层中的溶化部分,而焊剂层24中的锡来源于为了安装半导体激光芯片21,而将含锡的锡焊剂层设置在子安装台23的上表面23a时的锡焊剂层的溶化部分。
In addition, the inventors of the present application investigated the
本案发明者们又使半导体激光芯片朝下弯曲为凸起的形状,对该半导体激光芯片发出的激光的初期特性进行了调查。结果得知批量内的多个光半导体装置呈现出不同的初期特性,批量内的差异很大,因此难以大量制造激光装置。并且,将朝下弯曲为凸形形状的半导体激光芯片组装起来,来制作叠层型光半导体装置,对该叠层型光半导体装置进行了烧附,结果是从初期动作电流值的平均值和初期动作电流值开始变化的变化量,比朝上弯曲为凸起形状的半导体激光芯片大。 The inventors of the present invention bent the semiconductor laser chip downward into a convex shape, and investigated the initial characteristics of the laser light emitted from the semiconductor laser chip. As a result, it was found that a plurality of optical semiconductor devices in a lot showed different initial characteristics, and the difference in a lot was large, so it was difficult to mass-produce laser devices. Then, the semiconductor laser chip bent downward into a convex shape was assembled to manufacture a stacked type optical semiconductor device, and the stacked type optical semiconductor device was baked . As a result, the average value of the initial operating current value and The amount of change at which the initial operating current value starts to change is larger than that of a semiconductor laser chip bent upward in a convex shape.
并且,即使使半导体激光芯片朝上弯曲为凸形的形状,但如果其曲率半径r1不满250mm的话,与曲率半径r1在250mm以上的情况相比,也会有非常大的应力施加到半导体激光芯片,使动作电流值的平均值较大。由于当动作电流值的平均值较大时,在将光半导体装置安装在光拾取装置中时,光半导体装置会发出较多的热,因此使光半导体装置的温度大幅度上升,故而,不太理想。所以,最好使曲率半径r1在250mm以上,且使半导体激光芯片21朝上弯曲为凸起的形状。
In addition, even if the semiconductor laser chip is bent upward into a convex shape, if the curvature radius r1 is less than 250 mm, a very large stress will be applied to the semiconductor laser chip compared with the case where the curvature radius r1 is greater than 250 mm. , so that the average value of the operating current value is larger. When the average value of the operating current value is large, when the optical semiconductor device is installed in the optical pickup device, the optical semiconductor device will emit more heat, so the temperature of the optical semiconductor device is greatly increased. ideal. Therefore, it is preferable to make the radius r1 of curvature equal to or greater than 250 mm, and to bend the
当如上所述,隔着焊剂层24将半导体激光芯片21安装在基台时,残留应力在一定的方向上且一定的范围内施加在半导体激光芯片21(特别是活性层)上。但是,如果如图1(b)所示,将半导体激光芯片21弯曲为朝上凸起的形状时,能够使批量内的初期特性值全都为大致同一初期特性值,能够使烧附初期的动作电流值的变化相同。虽然对于其具体理由并不清楚,但本案发明者们是这样认为的。即,这是因为当使半导体激光芯片21朝上弯曲为凸起的形状时,半导体激光芯片21的下表面21a中的接近于活性层的部分产生收缩,从而能够抑制光轴方向的增益等的不同之故。
When the
其次,示出了本实施例所涉及的光半导体装置20的制造方法。用该制造方法将半导体激光芯片21用焊剂安装在子安装台23的上表面23a。以下,对用焊剂安装半导体激光芯片21的方法加以说明。
Next, a method of manufacturing the
首先,在子安装台23的上表面23a设置焊剂。
First, flux is provided on the
其次,对设置了焊剂的子安装台23从其上方及其下方进行加热,使焊剂溶化。然后,用加热的真空镊子(vacuum tweezer)夹住(hold)半导体激光芯片21,压在溶化的焊剂上。藉此方法,能够利用焊剂将半导体激光芯片21安装在子安装台23的上表面23a。
Next, the
然后,停止从下方的加热,让焊剂固化。 Then, stop the heat from below and let the flux solidify. the
此时,由于半导体激光芯片21的下表面21a比上表面27先冷却,因此激光芯片朝上弯曲为凸起的形状。这里,最好子安装台23的热膨胀系数比半导体激光芯片21的热膨胀系数稍大一点。这是因为如果子安装台23的热膨胀系数大于半导体激光芯片21的热膨胀系数的话,则与子安装台23的热膨胀系数小于半导体激光芯片21的热膨胀系数时相比,子安装台23的收缩变大,能够抑制半导体激光芯片21朝下弯曲为凸起形状之故。
At this time, since the
并且,由于如上所述,使半导体激光芯片21朝上弯曲为凸起的形状,因此半导体激光芯片21的下表面21a与子安装台23的上表面23a之间的间隙是光轴方向的中央部的间隙大于光轴方向的两端部的间隙。因而,溶化的焊剂从光轴方向的两端部分别向光轴方向的中央部移动,填充了该间隙。此时,由于金的熔点高于锡的熔点,因此主要是锡从光轴方向的两端部向光轴方向的中央部移动。结果是锡相对于金的比例是光轴方向的中央部24b的比例高于光轴方向的两端部24a、24c的比例。另外,发明者们用X线微分析法(micro analysis)(以下,称为XMA法)对焊剂层24中的锡相对于金的比例进行了调查,确定了该比例是光轴方向的中央部24b的比例大于光轴方向的两端部24a、24c的比例。
And, since the
另外,由于光轴方向的中央部24b的锡多于光轴方向的两端部24a、24c的锡,因此光轴方向的中央部24b的焊剂的熔点低于光轴方向的两端部24a、24c的焊剂的熔点。因而,在让焊剂固化时,首先是光轴方向的两端部24a、24c的焊剂固化,然后是光轴方向的中央部24b的焊剂固化。使得半导体激光芯片21朝上弯曲为凸起的形状。
In addition, since the tin in the
(第二实施例) (second embodiment)
图5模式地示出了将焊剂放在子安装台33的上表面33a的样子。图5(a)为模式地示出了本实施例中的一个例子的图,图5(b)为模式地示出了
本实施例中的另一个例子的图。
FIG. 5 schematically shows how solder is put on the
在本发明的第二实施例中,能够使光轴方向的中央部的锡含有率高于上述第一实施例。具体内容如下。 In the second embodiment of the present invention, the tin content in the central portion in the optical axis direction can be made higher than in the first embodiment described above. The details are as follows. the
在图5(a)中,虽然子安装台33的上表面33a是平坦的,但是放在子安装台33的上表面33a的焊剂不均匀。具体地说,子安装台33的上表面33a中的光轴方向的中央部34a的焊剂、和夹着该中央部34a的周缘部34b、34c的焊剂比其它部分的焊剂多。这样一来,能够使光轴方向的中央部34a的锡较丰富。
In FIG. 5( a ), although the
在图5(b)中,在子安装台43的上表面43a形成有凹部43b、43b、43b。具体地说,在子安装台43的上表面43a中的光轴方向的中央部、和夹着该中央部的周缘部形成有凹部43b、43b、43b。当在这样的上表面43a放上焊剂,以形成均匀的焊剂层44时,形成有凹部43b、43b、43b的部分与没有形成凹部43b、43b、43b的部分相比,能够放有更多的焊剂。这样一来,能够使光轴方向的中央部44a的锡多于光轴方向的两端部44b、44c的锡。
In FIG. 5( b ), recesses 43 b , 43 b , and 43 b are formed on the
如上所述,在图5(a)及图5(b)中,由于能够使半导体激光芯片朝上弯曲为凸起的形状,因此能够使施加在半导体激光芯片的残留应力施加在一定的方向上且一定的范围内。从而,能够使批量内的多个光半导体装置的初期特性值相同,且能够使烧附初期的动作电流值的变化相同。 As mentioned above, in Fig. 5(a) and Fig. 5(b), since the semiconductor laser chip can be bent upward into a convex shape, the residual stress applied to the semiconductor laser chip can be applied in a certain direction. And within a certain range. Accordingly, the initial characteristic values of a plurality of optical semiconductor devices in a lot can be made the same, and the change in the operating current value in the initial stage of firing can be made the same. the
图6示出了在图5(a)所示的结构中利用焊剂装上半导体激光芯片31之后,再将子安装台33粘结在金属制封装体中而成的光半导体装置50的结构图。图6(a)为示出了将光半导体装置50的罩(无图示)取下后的状态下的光半导体装置50的内部结构的模式图,图6(b)为示出了从图6(a)所示的箭头方向来看光半导体装置50时的内部结构的模式图。另外,虽然半导体激光芯片31在图6(b)中没有朝上弯曲为凸起的形状,但是实际上是弯曲为朝上凸起的形状。
Fig. 6 has shown in the structure shown in Fig. 5 (a) after utilizing flux to mount
半导体激光芯片31在朝上弯曲为凸起形状的状态下被安装在子安装台33上,利用熔点低于焊剂层24的熔点的焊剂,将该子安装台33安装在金属块52上。金属块52与金属制封装体53形成为一体,电极端子54a、54b、54c分别一体地形成在金属制封装体53。电极端子54b电连接在金
属制封装体53上,为光半导体装置50的接地端子。并且,电极端子54a为向光半导体装置50注入电流用的电极端子,从电极端子54a对电极端子54b(接地端子)施加正电压。该电极端子54a通过导电性电线55与半导体激光芯片31连接在一起。
本案发明者们对图6所示的光半导体装置50的初期特性的均匀性和烧附初期的动作电流值的变化进行了调查。具体地说,使电极端子54a、54b电连接,向半导体激光芯片31注入了电流。使光半导体装置50输出了波长为650nm带的、波形光输出为250mW的激光56。由于施加在半导体激光芯片31的残留应力施加在一定的方向上且一定的范围内,因此批量内的多个半导体激光呈现出相同的初期特性值,并且烧附初期的动作电流值呈现出均匀的变化。
The present inventors investigated the uniformity of the initial characteristics of the
(第三实施例) (third embodiment)
图7示出了本发明的第三实施例的光半导体装置60的结构的概要结构图。图7(a)为示出了将安装在光半导体装置60的封装体上部的罩(无图示)取下后的状态的模式图,图7(b)为图7(a)所示的VIIB-VIIB线的剖面图。
FIG. 7 is a schematic configuration diagram showing the configuration of an
图7(a)所示的光半导体装置60为这样的光集成装置,包括:半导体激光芯片21、受光元件62、受光信号的处理电路(无图示)、反射镜63、衍射晶格(无图示)、受光元件芯片64、封装体65、硅衬底66和电极端子67、67、…。在该光半导体装置60中,受光元件芯片64被设置在硅衬底66上,受光元件62及受光信号的信号处理电路通过焊剂而粘结在受光元件芯片64上。并且,受光元件芯片64通过导电性膏而粘结在封装体65上。
The
对光半导体装置60的动作加以说明。首先,在向封装体65的电极端子67、67、…注入电流之后,半导体激光芯片21驱动,射出激光69。该激光69平行于(图7(b)所示的L1)受光元件芯片64的表面射出,在反射镜63的反射点68反射,向上方(图7(b)所示的L2)垂直射出,即,从光半导体装置60射出。从光半导体装置60射出的激光69在读取了光磁盘上的信号之后,返回到光半导体装置60,被粘结在封装体65的封装体上部的衍射晶格(无图示)分支,由受光元件61接收。受光元件61对接收的光信
号进行放大及运算,将放大及运算后的光信号输入到受光信号的处理电路中。
The operation of the
本案发明者们向电极端子67、67、…注入电流后,光半导体装置60输出了波长为650nm带的、波形光输出为300mW的激光69。由于施加在半导体激光芯片21的残留应力施加在一定的方向上且一定的范围内,因此批量内的多个半导体激光呈现出相同的初期特性值,烧附初期的动作电流值呈现出相同的变化。
When the present inventors injected current into the
虽然对图7(a)所示的光半导体装置60省略了详细的说明,但是如图7(b)所示,半导体激光芯片21朝上弯曲为凸起的形状。并且,焊剂层24是光轴方向的中央部24b的厚度比光轴方向的两端部24a、24c的厚度大,且光轴方向的中央部24b的锡多于光轴方向的两端部24a、24c的锡。
Although a detailed description of the
(第四实施例) (fourth embodiment)
图8为示出了本发明的第四实施例所涉及的光半导体装置70的结构图,图8(a)为其上表面图,图8(b)为图8(a)所示的VIIIB-VIIIB线的剖面图。
FIG. 8 is a structural view showing an
在本实施例所涉及的光半导体装置70中,半导体激光芯片71具有元件本体75和突起部76、76。元件本体75朝上弯曲为凸起的形状,画出曲率半径为r2且中心角度为θ2的弧,为上述第一实施例所述的半导体激光芯片21。并且,半导体激光芯片71的端面75b、75c分别成为谐振器的反射镜。
In the
各突起部76设置在元件本体75的上表面的周缘部,如图8(a)所示,设置为沿着构成元件本体75的上表面的边中的短边方向延伸。在本实施例中,由于激光22沿着构成元件本体75的上表面的边中的长边方向射出,因此各突起部76沿着构成元件本体75的上表面的边中的大致垂直于光轴方向的方向延伸。并且,各突起部76的上表面76a的一部分存在于比半导体激光芯片21中的最朝上弯曲的部分还靠近上方的位置上。
Each
并且,最好各突起部76是通过镀金形成,最好由热传导率为元件本体的热传导率以上的材料构成。并且,最好形成为图8中的左右方向的长度为100μm,图8中的进深为300μm,厚度为5μm。
Furthermore, each
在本实施例中,也与上述第一实施例一样,准备了弯曲量Δb2的平均 值为-0.12μm的批量、弯曲量Δb2的平均值为0.3μm的批量、和弯曲量Δb2的平均值为0.5μm的批量,并且,分别对属于各批量的多个光半导体装置的初期动作电流值进行了调查。得到了与上述第一实施例一样的结果。 In this embodiment, as in the above-mentioned first embodiment, the average value of the bending amount Δb2 is prepared. The initial operating current of a plurality of optical semiconductor devices belonging to each lot was determined for a lot with a value of -0.12 μm, a lot with an average value of the amount of warpage Δb2 of 0.3 μm, and a lot with an average value of the amount of warpage Δb2 of 0.5 μm. value was investigated. The same results as in the first embodiment described above were obtained. the
并且,将图8(a)及图8(b)所示的光半导体装置70安装在金属制封装体中,制作了图7所示的装置,对初期特性和烧附初期的动作电流值的变化进行了调查,结果是初期特性值及动作电流值的变化在批量内相同。
And, the
其次,示出了本实施例的光半导体装置70的制造方法。
Next, the manufacturing method of the
首先,在子安装台23的上表面23a设置焊剂。
First, flux is provided on the
其次,例如,让平夹头(collet)接触到半导体激光芯片71的突起部76、76,夹住半导体激光芯片71。
Next, for example, a flat collet is brought into contact with the
接着,在让平夹头接触到半导体激光芯片71的突起部76、76的状态下,加热平夹头。同时,从下方加热子安装台23,对整个半导体激光芯片71进行加热。由于焊剂因该加热而溶化,因此半导体激光芯片71压在溶化的焊剂上。
Next, the flat chuck is heated in a state where the flat chuck is brought into contact with the
接着,停止对平夹头的加热及从下方对子安装台23的加热,让焊剂固化。 Next, the heating of the flat chuck and the heating of the submount 23 from below are stopped, and the flux is solidified. the
此时,半导体激光芯片71的热所逃走的路径有两条,从半导体激光芯片71经由焊剂层24,向子安装台23逃走的第一路径;和从半导体激光芯片71经由突起部76、76,向平夹头逃走的第二路径。这里,由于半导体激光芯片71中的光轴方向的两端部与光轴方向的中央部不同,一部分接触到空气,因此冷却速度较快。光轴方向的半导体激光芯片71的两端部比光轴方向的半导体激光芯片71的中央部早冷却。并且,由于焊剂在固化的同时,收缩,因此光轴方向的半导体激光芯片71的两端部被子安装台23侧拉伸。能够认为结果是使半导体激光芯片71朝上弯曲为凸起的形状。
Now, the path that the heat of semiconductor laser chip 71 escapes has two, from semiconductor laser chip 71 via
如上所述,焊剂从光轴方向的两端部24a、24c向中央部24b依次固化的现象,在使用由金和锡构成的焊剂时较为显著。另外,本案发明者们用XMA法对焊剂层24进行了分析,确定了锡的比例是光轴方向的中央部24b的锡的比例比光轴方向的两端部24a、24c的锡的比例高。
As described above, the phenomenon that the flux solidifies sequentially from both
(第五实施例) (fifth embodiment)
图9示出了本发明的第五实施例所涉及的光半导体装置80的概要结构图。图9(a)为从上方来看本实施例的光半导体装置80的概要结构图,图9(b)为图9(a)所示的IXB-IXB线的剖面图。
FIG. 9 shows a schematic configuration diagram of an
在本实施例中,如图9(b)所示,与上述第一实施例一样,半导体激光芯片81朝上弯曲为凸起的形状,具体地说,朝上弯曲为凸起的形状,画出曲率半径为r3、中心角度为θ3的弧。 In this embodiment, as shown in FIG. 9(b), as in the above-mentioned first embodiment, the semiconductor laser chip 81 is bent upward into a convex shape, specifically, curved upward into a convex shape, as shown in FIG. An arc whose radius of curvature is r3 and center angle is θ3. the
并且,在本实施例中,如图9(a)及图9(b)所示,半导体激光芯片81具有元件本体75和突起部86、86。但是,突起部86、86分别设置在比上述第四实施例靠半导体激光芯片81的上表面的中央的位置。这样一来,在对主要衬底进行切割,同时制造多个光半导体装置80、80、…时,与上述第四实施例相比,较易切割。
Furthermore, in this embodiment, as shown in FIGS. 9( a ) and 9 ( b ), a semiconductor laser chip 81 has an
另外,如上所述,本案发明者们还对本实施例所涉及的光半导体装置80的性能进行了确认,这里,对其详细内容加以省略。
In addition, as described above, the inventors of the present application also confirmed the performance of the
即,将波长为650nm带的AlGaInP类材料用作半导体激光芯片81,来制作输出红色激光的光半导体装置80,对其初期特性及光半导体装置80的可靠性和弯曲量Δb3的关系进行了调查,得到了与上述第一实施例所获得的结果大致相同的结果。
That is, an
并且,将图9(a)及图9(b)所示的光半导体装置80安装在金属制封装体中,制作了图7所示的装置,对初期特性和烧附初期的动作电流值的变化进行了调查,结果是初期特性值及动作电流值的变化在批量内相同。
And, the
(其它实施例) (other embodiments)
上述第一到第五实施例也可以为下述结构。 The first to fifth embodiments described above may also have the following configurations. the
将波长为780nm带的AlGaAs类半导体激光装置及波长为650nm带的AlGaInP类半导体激光装置用作光半导体装置加以了说明,只要是能够用在重写型光磁盘中的高输出半导体激光装置,也可以使用蓝色激光装置及紫外光激光装置。并且,也可以将发出两波长激光和三波长激光等多波长激光的装置用作光半导体装置。 The AlGaAs-based semiconductor laser device with a wavelength of 780nm band and the AlGaInP-based semiconductor laser device with a wavelength of 650nm band have been described as optical semiconductor devices. Blue laser devices and ultraviolet laser devices can be used. Furthermore, a device that emits multi-wavelength laser light such as two-wavelength laser light and three-wavelength laser light can also be used as an optical semiconductor device. the
半导体激光芯片可以形成为单片,也可以是将多个芯片混合安装在一起。并且,半导体激光芯片为发光元件的一个例子,也可以用端面发光型 发光二极管芯片来代替半导体激光芯片。 A semiconductor laser chip can be formed as a single chip, or a plurality of chips can be mixed and mounted together. In addition, a semiconductor laser chip is an example of a light-emitting element, and an end-emitting type can also be used Light-emitting diode chips instead of semiconductor laser chips. the
使各突起部由金构成,也可以由热传导率与发光元件的热传导率大致相同的金属和半导体构成。并且,各突起部也可以是通过加工发光元件的材料而成。当将波长为650nm带的AlGaInP类半导体构成的激光芯片用作半导体激光芯片时,子安装台由GaAs构成。因此,也可以对由GaAs构成的衬底进行蚀刻,来形成突起部。 Each protrusion is made of gold, but it may also be made of a metal or a semiconductor whose thermal conductivity is substantially the same as that of the light-emitting element. In addition, each protrusion may be formed by processing the material of the light emitting element. When a laser chip made of an AlGaInP-based semiconductor having a wavelength of 650 nm is used as the semiconductor laser chip, the submount is made of GaAs. Therefore, a substrate made of GaAs may also be etched to form protrusions. the
(产业上的利用可能性) (Industrial Utilization Possibility)
本发明提供一种使施加在半导体激光芯片上的残留应力施加在所希望的方向上且一定的范围内,来提高半导体激光的性能和可靠性,提高批量生产性的光半导体装置,对光通讯及光磁盘的设备和系统等有用。 The present invention provides an optical semiconductor device capable of improving the performance and reliability of semiconductor lasers and improving mass productivity by applying residual stress on semiconductor laser chips in a desired direction and within a certain range. And optical disk equipment and systems, etc. are useful. the
Claims (12)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-070819 | 2006-03-15 | ||
JP2006070819 | 2006-03-15 | ||
JP2006070819A JP2007250739A (en) | 2006-03-15 | 2006-03-15 | Optical semiconductor device |
JP2006-095031 | 2006-03-30 | ||
JP2006095031 | 2006-03-30 | ||
JP2006095031A JP4974563B2 (en) | 2006-03-30 | 2006-03-30 | Optical semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101039014A CN101039014A (en) | 2007-09-19 |
CN101039014B true CN101039014B (en) | 2012-06-06 |
Family
ID=38594725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710005407 Expired - Fee Related CN101039014B (en) | 2006-03-15 | 2007-02-08 | Optical semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007250739A (en) |
CN (1) | CN101039014B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5197219B2 (en) * | 2007-11-22 | 2013-05-15 | パナソニック株式会社 | Semiconductor device and manufacturing method thereof |
JP5534155B2 (en) * | 2009-11-13 | 2014-06-25 | 日本電気株式会社 | Device and device manufacturing method |
JP2011253925A (en) * | 2010-06-02 | 2011-12-15 | Toshiba Corp | Method of manufacturing light-emitting device |
CN102097744B (en) * | 2011-01-14 | 2012-12-12 | 刘兴胜 | Design method of high-power semiconductor laser device |
JP6639316B2 (en) * | 2016-04-15 | 2020-02-05 | 三菱電機株式会社 | Semiconductor light emitting device and method of manufacturing the same |
JP7584884B2 (en) * | 2018-12-03 | 2024-11-18 | 古河電気工業株式会社 | Semiconductor laser chip mounting submount, method of manufacturing same, and semiconductor laser module |
WO2020175619A1 (en) * | 2019-02-28 | 2020-09-03 | 京セラ株式会社 | Electronic component mounting package, electronic device, and light-emitting device |
CN119297725B (en) * | 2024-12-12 | 2025-03-14 | 苏州长光华芯光电技术股份有限公司 | Semiconductor laser and method for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1604351A (en) * | 2003-09-30 | 2005-04-06 | 信越半导体株式会社 | Luminous element making method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59210687A (en) * | 1984-05-04 | 1984-11-29 | Hitachi Ltd | semiconductor laser equipment |
JP4605850B2 (en) * | 2000-03-30 | 2011-01-05 | 京セラ株式会社 | Optical mounting substrate manufacturing method |
JP3889933B2 (en) * | 2001-03-02 | 2007-03-07 | シャープ株式会社 | Semiconductor light emitting device |
JP2003031895A (en) * | 2001-07-13 | 2003-01-31 | Sharp Corp | Semiconductor light emitting device and its manufacturing method |
JP2005136072A (en) * | 2003-10-29 | 2005-05-26 | Nec Compound Semiconductor Devices Ltd | Semiconductor laser equipment |
JP2005327753A (en) * | 2004-05-07 | 2005-11-24 | Matsushita Electric Ind Co Ltd | Semiconductor laser device |
-
2006
- 2006-03-15 JP JP2006070819A patent/JP2007250739A/en active Pending
-
2007
- 2007-02-08 CN CN 200710005407 patent/CN101039014B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1604351A (en) * | 2003-09-30 | 2005-04-06 | 信越半导体株式会社 | Luminous element making method |
Non-Patent Citations (1)
Title |
---|
JP特开2003-23200A 2003.01.24 |
Also Published As
Publication number | Publication date |
---|---|
CN101039014A (en) | 2007-09-19 |
JP2007250739A (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101039014B (en) | Optical semiconductor device | |
KR100688317B1 (en) | Semiconductor Light Emitting Device, Manufacturing Method and Mounting Board | |
US8275013B2 (en) | Semiconductor laser device and method of manufacturing the same | |
US7079563B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2001168442A (en) | Method of manufacturing semiconductor laser element, installation substrate, and support substrate | |
US7359416B2 (en) | Optical semiconductor device | |
JP2010166019A (en) | Semiconductor laser device | |
US7916766B2 (en) | Semiconductor laser device and manufacturing method thereof | |
US12027816B2 (en) | Method of manufacturing laser light source | |
JP2009064961A (en) | Semiconductor laser device and manufacturing method therefor | |
US8138663B2 (en) | Light emitting device and method of manufacturing the same | |
JP4755199B2 (en) | Multi-wavelength integrated semiconductor laser device manufacturing method | |
JP2010050362A (en) | Multibeam semiconductor laser | |
JP2005191209A (en) | Semiconductor laser device and manufacturing method thereof | |
JP4573882B2 (en) | Semiconductor laser device | |
JP5227666B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP4974563B2 (en) | Optical semiconductor device | |
JP4917704B2 (en) | Semiconductor laser manufacturing method | |
JP2012243960A (en) | Semiconductor laser device | |
US7310362B2 (en) | Semiconductor light emitting device and semiconductor light emitting apparatus | |
JP2006093466A (en) | Laser element and laser device of multi-wavelength semiconductor | |
JP2008258341A (en) | Semiconductor laser element | |
JP2011233717A (en) | Semiconductor laser device | |
JP2011049295A (en) | Semiconductor laser device | |
JP2006108262A (en) | Semiconductor laser element and its manufacturing method, semiconductor laser device, optical disk device, and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200602 Address after: Kyoto Japan Patentee after: Panasonic semiconductor solutions Co.,Ltd. Address before: Osaka Japan Patentee before: Matsushita Electric Industrial Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20220208 |