[go: up one dir, main page]

CN101035041A - Node invalidation and pre-alarming method of radio sensor network based on Bays method - Google Patents

Node invalidation and pre-alarming method of radio sensor network based on Bays method Download PDF

Info

Publication number
CN101035041A
CN101035041A CN 200710019932 CN200710019932A CN101035041A CN 101035041 A CN101035041 A CN 101035041A CN 200710019932 CN200710019932 CN 200710019932 CN 200710019932 A CN200710019932 A CN 200710019932A CN 101035041 A CN101035041 A CN 101035041A
Authority
CN
China
Prior art keywords
node
energy
area
nodes
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710019932
Other languages
Chinese (zh)
Other versions
CN100531087C (en
Inventor
王汝传
李文锋
孙力娟
黄海平
陈志�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CNB2007100199320A priority Critical patent/CN100531087C/en
Publication of CN101035041A publication Critical patent/CN101035041A/en
Application granted granted Critical
Publication of CN100531087C publication Critical patent/CN100531087C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

基于贝叶斯方法的无线传感器网络的节点失效预警方法是一种无线传感器网络中网络性能监测方面关于节点失效监测方法。主要用于解决无线传感器网络应用中对节点失效的判断、预测,通过向网络中发送查询命令,根据这些命令查询回来的数据进行分析,通过不同分区分级模型对返回数据进行修正,并将这些数据通过分区分级综合处理,将这些指标用综合模型综合成一个参数考察,然后根据这个区域的历史失效节点的失效概率和贝叶斯方法,得出当前查询节点的是否面临失效并及时通知用户,达到节点失效预警的目的。能很好地监测网络失效节点和对网络失效节点预警,为网络性能的监测提供了便利。

The node failure early warning method of wireless sensor network based on Bayesian method is a node failure monitoring method in the aspect of network performance monitoring in wireless sensor network. It is mainly used to solve the judgment and prediction of node failure in wireless sensor network applications. By sending query commands to the network, the data returned by these commands are analyzed, and the returned data is corrected through different partition and classification models, and these data Through the comprehensive processing of partitions and classifications, these indicators are synthesized into a parameter inspection with a comprehensive model, and then according to the failure probability of the historical failure nodes in this area and the Bayesian method, it is obtained whether the current query node is facing failure and timely notification to the user, to achieve The purpose of node failure warning. It can well monitor network failure nodes and give early warning to network failure nodes, which provides convenience for network performance monitoring.

Description

基于贝叶斯方法的无线传感器网络的节点失效预警方法Node failure early warning method for wireless sensor network based on Bayesian method

技术领域technical field

本发明是一种无线传感器网络中网络性能监测方面关于节点失效监测方法。主要用于解决无线传感器网络应用中对节点失效的判断、预测,属于无线传感器网络应用及软件开发领域。The invention relates to a node failure monitoring method in the aspect of network performance monitoring in a wireless sensor network. It is mainly used to solve the judgment and prediction of node failure in wireless sensor network applications, and belongs to the field of wireless sensor network applications and software development.

背景技术Background technique

无线传感器网络是由大量无线传感器节点组成的,能够感知、采集数据、处理数据并通过多跳网络将有效数据传输到目的地的自主网络。正因为无线传感器网络与传统网络有着这些优点,其广泛用于军事、医疗、环境监测、文物保护、智能家居等方面。A wireless sensor network is composed of a large number of wireless sensor nodes, which can perceive, collect data, process data, and transmit effective data to the destination autonomous network through a multi-hop network. Because of these advantages of wireless sensor networks and traditional networks, it is widely used in military, medical, environmental monitoring, cultural relics protection, smart home and other aspects.

目前,无线传感器网络的应用正在处于研究之中,对无线传感器网络的软硬件、软件方面研究有较大的进展。随着研究的不断深入,现开始研究无线传感器网络的管理部分,包括节点的能量管理、协同管理、协议管理、网络性能监测管理等。其中,网络性能管理是研究中一个非常关键的性能指标,标志着整个网络的状态,其功能是对各项网络性能指标进行实时监测,对节点功能失效、能量耗尽等不正常情况进行早期预警,从而为及时排除网络故障或追加布设节点提供帮助。在国外,美国加州大学洛杉矶分校的嵌入式网络化传感器研究中心提出了由三个层次的软件工具组成的网络性能监测体系,能够不断从网络中扫描与网络性能指标有关的数据并汇聚处理。对于节点能量方面,在后台有各个区域的能量级别对照图,通过分析当前区域的指标参数的值,与当初该区域节点能量相比较,对该区域的网络性能进行预警及处理。而在国内,对无线传感网络的研究逐渐升温,大部分的研究都偏重于无线传感器网络的硬件、应用软件相关方面,而对无线传感器网络这方面的管理仍是处于刚开始的阶段,有关节点失效的监测方面相关的研究成果暂时还没有发表。At present, the application of wireless sensor network is being studied, and the research on software, hardware and software of wireless sensor network has made great progress. With the continuous deepening of the research, the management part of the wireless sensor network is now beginning to be studied, including node energy management, collaborative management, protocol management, network performance monitoring management, etc. Among them, network performance management is a very critical performance indicator in the research, which marks the status of the entire network. Its function is to monitor various network performance indicators in real time, and to provide early warning for abnormal conditions such as node function failure and energy exhaustion. , so as to provide help for timely troubleshooting of network faults or additional deployment of nodes. Abroad, the Embedded Networked Sensor Research Center of the University of California, Los Angeles proposed a network performance monitoring system consisting of three levels of software tools, which can continuously scan data related to network performance indicators from the network and aggregate them for processing. In terms of node energy, there is a comparison chart of the energy level of each area in the background. By analyzing the value of the index parameters in the current area and comparing it with the energy of the node in the area at the beginning, the network performance of the area is warned and processed. In China, the research on wireless sensor networks is gradually heating up. Most of the research focuses on the hardware and application software of wireless sensor networks, while the management of wireless sensor networks is still in its infancy. Research results related to node failure monitoring have not yet been published.

发明内容Contents of the invention

技术问题:本发明目的是提供一种基于贝叶斯方法的无线传感器网络的节点失效预警方法,为无线传感网络性能的管理提供支持,为无线传感器网络的维护提供了保障。Technical problem: The purpose of this invention is to provide a node failure early warning method for wireless sensor networks based on Bayesian method, which provides support for the management of wireless sensor network performance and guarantees for the maintenance of wireless sensor networks.

技术方案:本发明是一种失效监测的预警方法,通过从网络中获取影响节点失效的指标(如原始能量、即时能量、剩余能量、通信量),再根据其本节点相关区域的历史节点失效概率,利用贝叶斯方法,实现预警功能。下面先描述这几个概念。Technical solution: The present invention is an early warning method for failure monitoring. By obtaining indicators (such as original energy, instant energy, residual energy, and communication volume) that affect node failure from the network, and then according to the historical node failure of the relevant area of the node Probability, using the Bayesian method to realize the early warning function. These concepts are described below.

原始能量:每个节点的电能值,节点在刚开始工作时节点的电能值,通常用mAh表示。Raw energy: the electric energy value of each node, the electric energy value of the node at the beginning of work, usually expressed in mAh.

即时能量:每个节点在开始正常运行后,在监测网络性能时,当节点收到不同的查询指令时节点的当前所具有的能量值。Instant energy: After each node starts normal operation, when monitoring network performance, when the node receives different query instructions, the current energy value of the node.

剩余能量:节点到目前为止,所剩余的能量值。这个值在特定的情况下等于节点的即时能量,但是在本方法的模型中,会通过先计算后估算得到这个值。Remaining energy: the remaining energy value of the node so far. This value is equal to the instantaneous energy of the node in certain cases, but in the model of this method, it will be calculated first and then estimated.

通信量:节点在一定时间内处理信息的数量,包括发送和接收数据的平均数量。Traffic: The amount of information a node processes within a certain period of time, including the average amount of data sent and received.

本发明基于贝叶斯方法的无线传感器网络的节点失效预警方法,包括如下步骤:The present invention is based on the node failure warning method of the wireless sensor network of Bayesian method, comprises the following steps:

步骤1).定义分区策略、将无线传感器网络分区,这里定义的是按照地理位置来划分的,先定义好整个网络节点的列数,每一行一列对应的节点分配一个位置,然后将几列节点分为同一区域;Step 1). Define the partition strategy and partition the wireless sensor network. The definition here is to divide according to the geographical location. First, define the number of columns of the entire network node. Each row and column corresponds to a node and assigns a position, and then several columns of nodes into the same area;

步骤2).确定无线传感器网络节点的能量级别;Step 2). Determine the energy level of the wireless sensor network node;

步骤3).节点开始工作时,将节点原始能量返回控制处理端;Step 3). When the node starts to work, the original energy of the node is returned to the control processing end;

步骤4).控制处理端定期发出请求命令,查询节点的即时能量、通信量;Step 4). The control processing end periodically sends request commands to query the real-time energy and traffic of the nodes;

步骤5).区域中的一个节点失效后,由邻居节点报告其失效节点的节点号、失效节点所在的区域、失效节点最近一次的通信时间;Step 5). After a node in the area fails, the neighbor node reports the node number of its failed node, the area where the failed node is located, and the latest communication time of the failed node;

步骤6).根据区节点的邻居发送回来的节点的ID、节点失效前最后一次与邻居节点的通信、节点在失效前发回的原始能量、即时能量、平均通信量的计算区域节点在原始能量、即时能量、平均通信量为这个值时节点的失效概率;如果有多个节点失效,则要以平均值;Step 6). According to the ID of the node sent back by the neighbors of the node in the area, the last communication with the neighbor node before the node failed, the original energy sent back by the node before the failure, the instant energy, and the calculation of the average communication volume of the area node in the original energy , instant energy, and the failure probability of the node when the average communication volume is this value; if there are multiple node failures, the average value should be used;

步骤7).当前查询回来的区节点的原始能量、即时能量、通信量,利用能修正模型“Ei=E(E1,E2,t)+ei”,这里i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式及通信量修正模型“Ti=T(T1,n)+ti”,这里i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式;Step 7). The original energy, real-time energy, and communication volume of the district nodes returned from the current query, use the energy correction model "Ei=E(E1, E2, t)+ei", where i represents the area number, and Ei is the revised Energy value, while ei is a correction factor, E(E1, E2, t) is a functional relational expression and traffic correction model about original energy E1, instant energy E2, reference time difference t "Ti=T(T1, n)+ ti", where i represents the area number, Ti is the corrected energy value, and ti is the correction factor, T(T1, n) is a functional relational expression about the traffic T1 and the average processing capacity n;

步骤8).使用综合指标评估模型“A=Ei,Ti,f”计算综合参考值,这里i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子;Step 8). Use the comprehensive index evaluation model "A=Ei, Ti, f" to calculate the comprehensive reference value, where i represents the area number, Ei is the energy value after correction, Ti is the traffic after correction, and f is the correction factor ;

步骤9).根据贝叶斯方法,估计出当前节点是否失效,Step 9). According to the Bayesian method, it is estimated whether the current node is invalid,

步骤10).一旦估计出节点失效,即可用提示信息告诉用户,实现节点失效预警。Step 10). Once the failure of the node is estimated, the user can be notified with prompt information to realize early warning of node failure.

其中分区策略如下:The partition strategy is as follows:

1):定义网络节点的列数,定义的原则根据节点的列数,即水平方向有几列节点,则网络节点的列数就为几列;1): Define the number of columns of network nodes. The principle of definition is based on the number of columns of nodes, that is, how many columns of nodes are there in the horizontal direction, then the number of columns of network nodes is how many columns;

2):确定要分成的区域个数,每个区域取大小为3行3列作为一个区域,即总区域个数为节点的总数除以9得到的商;2): Determine the number of areas to be divided into, and each area takes a size of 3 rows and 3 columns as an area, that is, the total number of areas is the quotient obtained by dividing the total number of nodes by 9;

3):网络节点的列数除以区域大小得到每行区域个数;3): The number of columns of network nodes is divided by the area size to obtain the number of areas in each row;

4):从第一行第一列开始划分,查找属于第一个区域的节点,如果查找的节点超出了第一个区域的列数,则从第二行第一列开始查找属于第一个区域的节点,直到查找的节点超出了第一个区域的节点列数;然后以同样的方式对下一行进行划分,直到所有属于第一行的节点都划分完毕;4): Divide from the first column of the first row, find the nodes belonging to the first area, if the searched nodes exceed the number of columns in the first area, start from the first column of the second row to find the nodes belonging to the first area The nodes in the area until the searched nodes exceed the number of node columns in the first area; then divide the next line in the same way until all the nodes belonging to the first line are divided;

5):从第二个区域的开始列数的第一行开始,查找属于第二个区域的节点,如果查找的节点超出了第二个区域的节点的列数,则从第二行开始,按照上面的原则一直进行,直到所有行划分完毕;5): Starting from the first row of the start column number of the second area, search for nodes belonging to the second area, if the searched node exceeds the column number of the node in the second area, start from the second row, Proceed according to the above principle until all rows are divided;

6):如果当前的区域个数都划分完毕,则停止执行。否则,转7)6): If the current number of regions has been divided, stop the execution. Otherwise, go to 7)

7):从下一个区域的第一行第一列开始,开始划分区域的节点,直到第一行划分完,然后对第二行,第三行,进行划分,直到所有行都划分完毕;反复执行6);7): Starting from the first row and the first column of the next region, start to divide the nodes of the region until the first row is divided, then divide the second row and the third row until all the rows are divided; repeat Execute 6);

贝叶斯方法是一种概率统计方法,贝叶斯方法就是根据当前的数据,结合历史数据,推断当前这种情况会发生的概率是多少,即已知事件A发生时事件Bj发生的概率的情况下,可以计算出事件Bi发生时事件A发生的概率。The Bayesian method is a method of probability statistics. The Bayesian method is based on the current data and combined with historical data to infer the probability that this situation will occur at present, that is, the probability of event B j occurring when event A occurs. In the case of , the probability of event A occurring when event B i occurs can be calculated.

能量级别可以根据电池的能量表示特点表示各级对应的能量:五级:0-440mAh;四级:441-880mAh;三级:881-1320mAh;二级:1321-1760mAh;一级:1761-2200mAh。The energy level can indicate the energy corresponding to each level according to the energy expression characteristics of the battery: level five: 0-440mAh; level four: 441-880mAh; level three: 881-1320mAh; level two: 1321-1760mAh; level one: 1761-2200mAh .

修正模型为:在对节点进行评估时,根据节点的原始能量、即时能量、通信量的性能指标进行了修正,在对单个性能指标进行修正时使用了修正模型,其中能量修正模型表示为:Ei=E(E1,E2,t)+ei,i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式;在对通信量进行修正时,使用了修正模型Ti=T(T1,n)+ti,i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式。The correction model is: when evaluating a node, it is corrected according to the performance indicators of the node's original energy, real-time energy, and communication traffic, and the correction model is used when correcting a single performance indicator, where the energy correction model is expressed as: Ei =E(E1, E2, t)+ei, i represents the area number, Ei is the corrected energy value, and ei is the correction factor, E(E1, E2, t) is about the original energy E1, the instant energy E2, Refer to the functional relational expression of the time difference t; when correcting the communication volume, the correction model Ti=T(T1,n)+ti is used, i represents the area number, Ti is the energy value after correction, and ti is the correction factor , T(T1, n) is a functional relational expression about the communication amount T1 and the average processing amount n.

综合评估模型为:在对节点进行评估时,为了更好地使用贝叶斯方法,对查询的多个指标进行合一处理,只考察多个性能指标的综合值,这里引入的综合评估模型为A=(Ei,Ti,f),i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子。The comprehensive evaluation model is: when evaluating a node, in order to better use the Bayesian method, multiple indicators of the query are processed in one, and only the comprehensive value of multiple performance indicators is considered. The comprehensive evaluation model introduced here is A=(Ei, Ti, f), i represents the area number, Ei is the energy value after correction, Ti is the communication volume after correction, and f is the correction factor.

有益效果:使用该方法有如下优点:Beneficial effect: using this method has the following advantages:

1.自主监测网络节点失效1. Self-monitoring network node failure

能根据设定的时间或频率不定期或定期地对网络进行查询,查询网络中所有的不同区域的节点的性能指标,根据这些指标及贝叶斯方法分析当前网络中所有的节点是否处理失效。According to the set time or frequency, the network can be queried irregularly or periodically, and the performance indicators of all nodes in different areas in the network can be queried. Based on these indicators and the Bayesian method, it is possible to analyze whether all nodes in the current network have failed to deal with them.

2.节省能量2. Save energy

对整个网络节点的性能指标的分析是在后台进行的,并不是在资源受限的无线传感器节点进行,这使得节点不用耗费大量的能量去计算分析、统计、预测节点的失效。The analysis of the performance indicators of the entire network node is carried out in the background, not in the wireless sensor nodes with limited resources, which makes the nodes do not need to consume a lot of energy to calculate, analyze, count, and predict the failure of nodes.

3.误差小3. Small error

本方法的执行是基于一定的历史统计的,根据这些先验概率推导出后验概率。就此而言,历史数据的结果对现在虽然有参考性,但是由于网络因素较多,这个参考值会有一定的误差,因此,对这些数据进行误差减少。即通过统计多个数据取平均值,这样减少了误差。The implementation of this method is based on certain historical statistics, and the posterior probability is derived from these prior probabilities. In this regard, although the results of historical data are of reference to the present, due to many network factors, this reference value will have certain errors. Therefore, the error reduction of these data is carried out. That is, the average value is taken by counting multiple data, which reduces the error.

4.灵活性4. Flexibility

能够对网络采集指标的方式灵活配置,可以选择周期性地进行,也可以选择不定期地进行采集,可以采集网络节点的即时能量,也可能采集网络节点的区域位置,同时对无线传感器网络的区域中节点可以灵活设定,即可以在一定周期内采集一个区域内的所有节点的性能指标,也可以在定期内采集一部分节点的性能指标;可以定期或不定期采集不同区域中的一些节点或全部节点的性能指标。It can flexibly configure the way of network collection indicators, which can be collected periodically or irregularly. It can collect the real-time energy of network nodes, and it is also possible to collect the regional location of network nodes. At the same time, the regional The middle nodes can be flexibly set, that is, the performance indicators of all nodes in an area can be collected within a certain period, and the performance indicators of some nodes can be collected regularly; some or all nodes in different areas can be collected regularly or irregularly. Node performance metrics.

5.可扩展性5. Scalability

随着研究的深入,可能需要加入网络的性能指标,如发送数据速率,因此,这里留有了可扩展接口,只要加入需要统计的性能指标到综合评估模型即可。With the deepening of the research, it may be necessary to add network performance indicators, such as the sending data rate. Therefore, an extensible interface is left here, as long as the performance indicators that need to be counted are added to the comprehensive evaluation model.

附图说明Description of drawings

图1是一种基于贝叶斯的无线传感器网络的节点失效体系架构图。图中有无线传感器网络节点区域A、B、C、D、E。Figure 1 is a node failure architecture diagram of a Bayesian-based wireless sensor network. In the figure, there are wireless sensor network node areas A, B, C, D, and E.

图2是分区分级处理示意图。Fig. 2 is a schematic diagram of partition classification processing.

图3是分区分级综合处理示意图。Fig. 3 is a schematic diagram of comprehensive processing of divisions and classifications.

图4是基于贝叶斯的无线传感器网络的节点失效方法的方法流程图。FIG. 4 is a flow chart of a Bayesian-based node failure method for a wireless sensor network.

具体实施方式Detailed ways

图1是一种基于贝叶斯的无线传感器网络的节点失效体系架构图。图中无线传感器网络节点区域(区域A、区域B、区域C、区域D、区域E,这里A,B,C,D,E仅表示记号),图2是分区分级处理示意图。图中显示了分组处理对有关节点失效方面性能的预处理过程,对查询的结果进行分区分级预处理,为分区分级综合处理提供更可靠的数据。Figure 1 is a node failure architecture diagram of a Bayesian-based wireless sensor network. In the figure, wireless sensor network node areas (area A, area B, area C, area D, and area E, where A, B, C, D, and E are only symbols), and Fig. 2 is a schematic diagram of partitioning and hierarchical processing. The figure shows the preprocessing process of the group processing on the performance of the node failure, and performs partition and classification preprocessing on the query results to provide more reliable data for the partition and classification comprehensive processing.

图3是分区分级综合处理示意图。对查询回来的性能指标合一处理,通过分区分级处理后的有关节点失效的性能指标经过修正后,在这里通过综合处理模型进行合一化,使之用一个综合指标体现一个节点的性能,再利用贝叶斯方法即可实现节点的失效预警。Fig. 3 is a schematic diagram of comprehensive processing of divisions and classifications. The performance indicators returned from the query are unified, and the performance indicators related to node failure after partitioning and grading processing are corrected. Here, the integrated processing model is used to integrate the performance of a node, so that a comprehensive indicator can be used to reflect the performance of a node, and then The early warning of node failure can be realized by using the Bayesian method.

图4是基于贝叶斯的无线传感器网络的节点失效方法的方法流程图。FIG. 4 is a flow chart of a Bayesian-based node failure method for a wireless sensor network.

贝叶斯方法:贝叶斯方法是一种概率统计方法。贝叶斯方法就是根据当前的数据,结合历史数据,推断当前这种情况会发生的概率是多少。可以用数学描述如下:设试验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,且P(A)>0,P(Bi)>0(i=1,2,...,n), P ( A ) = Σ j = 1 n P ( B j | A ) P ( B j ) , P(Bi|A)表示事件A发生时事件Bi发生的概率,P(A|Bi)表示事件Bi发生时事件A发生的概率,P(Bj|A)表示事件A发生时事件Bj发生的概率,则贝叶斯公式表示为:Bayesian method: Bayesian method is a kind of probability and statistics method. The Bayesian method is based on the current data, combined with historical data, to infer the current probability of this situation happening. It can be described mathematically as follows: Let the sample space of experiment E be S, A be the event of E, B 1 , B 2 ,..., Bn be a division of S, and P(A)>0, P(Bi) >0 (i=1, 2, . . . , n), P ( A ) = Σ j = 1 no P ( B j | A ) P ( B j ) , P(B i |A) represents the probability of event B i occurring when event A occurs, P(A|B i ) represents the probability of event A occurring when event B i occurs, and P(B j |A) represents the probability of event A occurring The probability of event B j occurring, the Bayesian formula is expressed as:

PP (( BB ii || AA )) == PP (( AA || BB ii )) PP (( BB ii )) ΣΣ jj == 11 nno PP (( BB jj || AA )) PP (( BB jj )) ,, (( ii == 1,21,2 ,, .. .. .. ,, nno ))

能量及通信量修正模型:基于贝叶斯方法的无线传感器网络的节点失效预警方法在对节点进行评估时,根据节点的性能指标(原始能量、即时能量、通信量)进行了修正,在对单个性能指标进行修正时使用了修正模型,能量修正模型表示为(Ei=E(E1,E2,t)+ei),i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式;在对通信量进行修正时,使用了修正模型(Ti=T(T1,n)+ti),i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式。Energy and traffic correction model: The node failure early warning method of wireless sensor network based on the Bayesian method is corrected according to the performance indicators (raw energy, instant energy, and traffic) of the node when evaluating the node. The correction model is used when the performance index is corrected. The energy correction model is expressed as (Ei=E(E1, E2, t)+ei), i represents the area number, Ei is the energy value after correction, and ei is the correction factor. E(E1, E2, t) is a functional relational expression about the original energy E1, the instant energy E2, and the reference time difference t; when correcting the traffic, a correction model (Ti=T(T1,n)+ti) is used , i represents the area number, Ti is the corrected energy value, and ti is the correction factor, T(T1, n) is a functional relational expression about the traffic T1 and the average processing capacity n.

综合评估模型:基于贝叶斯方法的无线传感器网络的节点失效预警方法在对节点进行评估时,为了更好地使用贝叶斯方法,对查询的多个指标进行合一处理,只考察多个性能指标的综合值。这里引入的综合评估模型为(A=(Ei,Ti,f)),i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子。Comprehensive evaluation model: The node failure early warning method of wireless sensor network based on the Bayesian method. The composite value of the performance index. The comprehensive evaluation model introduced here is (A=(Ei, Ti, f)), where i represents the area number, Ei is the energy value after correction, Ti is the traffic volume after correction, and f is the correction factor.

体系结构:图1给出了一种基于贝叶斯方法的无线传感器网络的节点失效预警方法的体系结构。整个无线传感器网络被逻辑地分成多个区域,每个区域的节点具有相似的特点,如节点的通信量相当、节点地理位置邻近、区域所获取数据具有相似性。Architecture: Figure 1 shows the architecture of a node failure early warning method for wireless sensor networks based on the Bayesian method. The entire wireless sensor network is logically divided into multiple regions, and the nodes in each region have similar characteristics, such as the equivalent traffic of the nodes, the geographical proximity of the nodes, and the similarity of the data obtained by the regions.

无线传感器网络节点区域(区域A、区域B、区域C、区域D、区域E,这里A,B,C,D,E仅表示记号),请求派遣、派遣接收、参数配置、分区分级处理、分区分级综合处理、失效节点预警、失效节点监控和历史数据库几个部分。Wireless sensor network node area (area A, area B, area C, area D, area E, where A, B, C, D, E only represent symbols), request dispatch, dispatch reception, parameter configuration, partition classification processing, partition Hierarchical comprehensive processing, early warning of failed nodes, monitoring of failed nodes and historical database.

参数配置:完成对本方法所需参数的设定,如定期还是不定期的查询网络,如果是定期的话,定期的时间间隔为多长,是否针对所有区域查询还是只针对个别区域查询,是查询区域内的全部节点还是部分节点,设置查询的性能指标,是以取即时能量和通信量,还是还要取附加指标,统计通信量时使用的时间间隔,是监测节点的发送数据数量还是接收数量,或者都考虑。Parameter configuration: Complete the setting of the parameters required by this method, such as querying the network regularly or irregularly, if it is regular, how long is the regular time interval, whether to query for all areas or only for individual areas, is the query area All nodes or some nodes in the network, set the performance index of the query, whether to take the real-time energy and communication volume, or to take additional indicators, the time interval used when counting the communication volume, whether to monitor the number of sent data or the number of received nodes, Or consider both.

请求派遣:负责将要查询的命令组装并发送到网络。涉及到发送请求的时间时间间隔以及请求查询的目标到节点等。Request dispatch: responsible for assembling and sending the commands to be queried to the network. It involves the time interval of sending the request and the target node of the request query, etc.

派遣接收:不断从网络中接收查询回来的消息,根据设定的查询指标,分别解析查询结果,并将结果分别按照不同的区域号、即时能量送到不同的处理模块。Dispatch reception: Continuously receive query messages from the network, analyze the query results according to the set query indicators, and send the results to different processing modules according to different area numbers and real-time energy.

分区分级处理:每个区域都有一个对应的处理模型,根据当前区域中节点返回的查询消息,进行统计当前查询节点的能量级别,并将这些参数值进行评估修正,以更接近现在节点的性能情况。如,通过计算信息量的多少预测当前查询时节点所具有的能量与通信所消耗的平均能量,计算出当前节点能量的修正值。处理流程图见图2。Partition hierarchical processing: each area has a corresponding processing model, according to the query message returned by the node in the current area, the energy level of the current query node is counted, and these parameter values are evaluated and corrected to get closer to the performance of the current node Condition. For example, by calculating the amount of information and predicting the energy of the node at the time of the current query and the average energy consumed by communication, the correction value of the current node energy is calculated. See Figure 2 for the processing flow chart.

分区分级综合处理:分区分级处理的结果交由分区分级综合处理,对一些与节点性能相关的指标进行综合考察,求出综合考察值,然后根据分区分级的历史的统计,算出当前节点面临失效的程序,见附图3。Comprehensive processing of partition classification: the results of partition classification processing are handed over to partition classification comprehensive processing, and some indicators related to node performance are comprehensively inspected to obtain the comprehensive inspection value, and then according to the statistics of the partition classification history, the current node is facing failure. For the program, see Figure 3.

失效节点监控:以一定的时间间隔在数据库中搜索,查找最近面临失效的节点以及到目前为止已经失效的节点。Failure node monitoring: Search the database at regular intervals to find nodes that have recently faced failure and nodes that have failed so far.

失效节点预警:根据失效节点监控得出的结果,显示即将要失效的节点及已经失效的节点。Failure node early warning: According to the results of failure node monitoring, it displays the nodes that are about to fail and the nodes that have failed.

历史数据库:保存一些与节点相关的信息,区域号、节点号、原始能量、即时能量、通信量、综合评估值、失效率、区域失效节点的原始能量、即时能量、综合评估值及在失效节点中所占的比率。Historical database: save some information related to nodes, area number, node number, original energy, real-time energy, traffic, comprehensive evaluation value, failure rate, original energy of regional failure nodes, real-time energy, comprehensive evaluation value and failure node The ratio in .

方法流程:Method flow:

基于贝叶斯方法的无线传感器网络的节点失效预警方法的方法流程图如图The method flow chart of the node failure early warning method for wireless sensor networks based on the Bayesian method is shown in the figure

4,所包含的步骤如下:4. The steps involved are as follows:

步骤1).定义分区策略、将无线传感器网络分区,这里定义的是按照地理位置来划分的,先定义好整个网络节点的列数,每一行一列对应的节点分配一个位置,然后将几列节点分为同一区域;Step 1). Define the partition strategy and partition the wireless sensor network. The definition here is to divide according to the geographical location. First, define the number of columns of the entire network node, and assign a position to each row and column corresponding to the node, and then divide several columns of nodes into the same area;

步骤2).根据无线传感器网络节点的能量值,分为五级能量级别(五级:0-440mAh;四级:441-880mAh;三级:881-1320mAh;二级:1321-1760mAh;一级:1761-2200mAh);Step 2). According to the energy value of the wireless sensor network node, it is divided into five energy levels (level five: 0-440mAh; level four: 441-880mAh; level three: 881-1320mAh; level two: 1321-1760mAh; level one : 1761-2200mAh);

步骤3).节点开始工作时,将节点原始能量返回控制处理端;Step 3). When the node starts to work, the original energy of the node is returned to the control processing end;

步骤4).控制处理端定期发出请求命令,查询节点的即时能量、通信量;Step 4). The control processing end periodically sends request commands to query the real-time energy and traffic of the nodes;

步骤5).区域中的一个节点失效后,由邻居节点报告其失效节点的节点号、失效节点所在的区域、失效节点最近一次的通信时间;Step 5). After a node in the area fails, the neighbor node reports the node number of its failed node, the area where the failed node is located, and the latest communication time of the failed node;

步骤6).根据区节点的邻居发送回来的节点的ID、节点失效前最后一次与邻居节点的通信、节点在失效前发回的原始能量、即时能量、平均通信量的计算区域节点在原始能量、即时能量、平均通信量为这个值时节点的失效概率;如果有多个节点失效,则要以平均值;Step 6). According to the ID of the node sent back by the neighbors of the node in the area, the last communication with the neighbor node before the node failed, the original energy sent back by the node before the failure, the instant energy, and the calculation of the average communication volume of the area node in the original energy , instant energy, and the failure probability of the node when the average communication volume is this value; if there are multiple node failures, the average value should be used;

步骤7).当前查询回来的区节点的原始能量、即时能量、通信量,利用能修正模型“Ei=E(E1,E2,t)+ei”,这里i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式及通信量修正模型“Ti=T(T1,n)+ti”,这里i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式;Step 7). The original energy, real-time energy, and communication volume of the district nodes returned from the current query, use the energy correction model "Ei=E(E1, E2, t)+ei", where i represents the area number, and Ei is the revised Energy value, while ei is a correction factor, E(E1, E2, t) is a functional relational expression and traffic correction model about original energy E1, instant energy E2, reference time difference t "Ti=T(T1, n)+ ti", where i represents the area number, Ti is the corrected energy value, and ti is the correction factor, T(T1, n) is a functional relational expression about the traffic T1 and the average processing capacity n;

步骤8).使用综合指标评估模型“A=Ei,Ti,f”计算综合参考值,这里i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子;Step 8). Use the comprehensive index evaluation model "A=Ei, Ti, f" to calculate the comprehensive reference value, where i represents the area number, Ei is the energy value after correction, Ti is the traffic after correction, and f is the correction factor ;

步骤9).根据贝叶斯方法,估计出当前节点是否失效;Step 9). According to the Bayesian method, it is estimated whether the current node is invalid;

步骤10).将估计的失效节点用提示信息告诉用户,实现节点失效预警功能。Step 10). Notify the user of the estimated failure node with prompt information to realize the node failure early warning function.

为了方便描述,我们假定以节点能量和通信量两个指标,以图1的拓扑为例,现关注图1中A区节点失效的情形。For the convenience of description, we assume two indicators of node energy and traffic, and take the topology in Figure 1 as an example. Now we focus on the failure of nodes in Area A in Figure 1.

具体实施方法为:The specific implementation method is:

(1)将无线传感器网络分成A区、B区、C区、D区、E区和F区6个区;(1) Divide the wireless sensor network into six areas: A, B, C, D, E, and F;

(2)根据无线传感器网络节点的能量值,分为五级能量级别(五级:0-440mAh;四级:441-880mAh;三级:881-1320mAh;二级:1321-1760mAh;(2) According to the energy value of wireless sensor network nodes, it is divided into five energy levels (level five: 0-440mAh; level four: 441-880mAh; level three: 881-1320mAh; level two: 1321-1760mAh;

(3)一级:1761-2200mAh);(3) Level 1: 1761-2200mAh);

(4)节点开始工作时,将节点原始能量(889mAh)返回控制处理端;(4) When the node starts working, the original energy (889mAh) of the node is returned to the control processing end;

(5)控制处理端每隔20秒地向A区域中的节点发出请求命令,获取A区域中节点的即时能量、通信量;(5) The control processing end sends a request command to the nodes in the A area every 20 seconds to obtain the instant energy and communication volume of the nodes in the A area;

(6)根据A区节点5的邻居发送回来的节点的ID、节点失效前最后一次与邻居节点的通信、节点5在失效前发回的原始能量(889mAh)、即时能量(881mAh、870mAh、790mAh...)、平均通信量(20p/usec)的计算A区域节点在原始能量(889mAh)、即时能量(870mAh)、平均通信量(20p/usec)为这个值时节点的失效概率(1.2%);这里只是以一个节点5失效的情况,如果有多个节点失效,则要以平均值;(6) According to the ID of the node sent back by the neighbor of node 5 in area A, the last communication with the neighbor node before the failure of the node, the original energy (889mAh) and the instant energy (881mAh, 870mAh, 790mAh) sent back by node 5 before the failure ...), the calculation of the average traffic (20p/usec) node failure probability (1.2% ); here is only the failure of one node 5, if there are multiple nodes failure, the average value should be used;

(7)当前查询回来的A区节点3的原始能量(887mAh)、即时能量(870mAh)、通信量(20p/usec),利用能量修正模型(Ei=E(887,870,t)+ei)及通信量修正模型(Ti=T(20,n)+ti);(7) The original energy (887mAh), real-time energy (870mAh), and communication volume (20p/usec) of node 3 in area A currently queried, using the energy correction model (Ei=E(887,870,t)+ei) And traffic correction model (Ti=T(20,n)+ti);

(8)根据综合指标评估模型(A=(Ei,Ti,f))计算综合参考值;(8) Calculate the comprehensive reference value according to the comprehensive index evaluation model (A=(Ei, Ti, f));

(9)利用(7)的结果,根据贝叶斯方法,估计出当前节点5的失效概率;(9) Utilize the result of (7), according to Bayesian method, estimate the failure probability of current node 5;

(10)将估计失效的节点显示并提示给用户,以达到节点失效预警。(10) Display and prompt the estimated failure nodes to the user, so as to achieve early warning of node failure.

Claims (6)

1.一种基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于该方法流程包括如下步骤:1. A node failure early warning method of a wireless sensor network based on a Bayesian method, characterized in that the method process comprises the steps: 步骤1).定义分区策略、将无线传感器网络分区,这里定义的是按照地理位置来划分的,先定义好整个网络节点的列数,每一行一列对应的节点分配一个位置,然后将几列节点分为同一区域;Step 1). Define the partition strategy and partition the wireless sensor network. The definition here is to divide according to the geographical location. First, define the number of columns of the entire network node. Each row and column corresponds to a node and assigns a position, and then several columns of nodes into the same area; 步骤2).确定无线传感器网络节点的能量级别;Step 2). Determine the energy level of the wireless sensor network node; 步骤3).节点开始工作时,将节点原始能量返回控制处理端;Step 3). When the node starts to work, the original energy of the node is returned to the control processing end; 步骤4).控制处理端定期发出请求命令,查询节点的即时能量、通信量;Step 4). The control processing end periodically sends request commands to query the real-time energy and traffic of the nodes; 步骤5).区域中的一个节点失效后,由邻居节点报告其失效节点的节点号、失效节点所在的区域、失效节点最近一次的通信时间;Step 5). After a node in the area fails, the neighbor node reports the node number of its failed node, the area where the failed node is located, and the latest communication time of the failed node; 步骤6).根据区节点的邻居发送回来的节点的ID、节点失效前最后一次与邻居节点的通信、节点在失效前发回的原始能量、即时能量、平均通信量的计算区域节点在原始能量、即时能量、平均通信量为这个值时节点的失效概率;如果有多个节点失效,则要以平均值;Step 6). According to the ID of the node sent back by the neighbors of the zone node, the last communication with the neighbor node before the node fails, the original energy sent back by the node before the failure, the instant energy, and the calculation of the average communication volume of the area node in the original energy , instant energy, and the failure probability of the node when the average communication volume is this value; if there are multiple node failures, the average value should be used; 步骤7).当前查询回来的区节点的原始能量、即时能量、通信量,利用能修正模型“Ei=E(E1,E2,t)+ei”,这里i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式及通信量修正模型“Ti=T(T1,n)+ti”,这里i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式;Step 7). The original energy, real-time energy, and communication volume of the district nodes returned from the current query, use the energy correction model "Ei=E(E1, E2, t)+ei", where i represents the area number, and Ei is the revised Energy value, while ei is a correction factor, E(E1, E2, t) is a functional relational expression and traffic correction model about original energy E1, instant energy E2, reference time difference t "Ti=T(T1, n)+ ti", where i represents the area number, Ti is the corrected energy value, and ti is the correction factor, T(T1, n) is a functional relational expression about the traffic T1 and the average processing capacity n; 步骤8).使用综合指标评估模型“A=Ei,Ti,f”计算综合参考值,这里i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子;Step 8). Use the comprehensive index evaluation model "A=Ei, Ti, f" to calculate the comprehensive reference value, where i represents the area number, Ei is the energy value after correction, Ti is the traffic after correction, and f is the correction factor ; 步骤9).根据贝叶斯方法,估计出当前节点是否失效,Step 9). According to the Bayesian method, it is estimated whether the current node is invalid, 步骤10).一旦估计出节点失效,即可用提示信息告诉用户,实现节点失效预警。Step 10). Once the failure of the node is estimated, the user can be notified with prompt information to realize early warning of node failure. 2.根据权利要求1所述的基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于分区策略如下:2. the node failure early warning method of the wireless sensor network based on Bayesian method according to claim 1, it is characterized in that partition strategy is as follows: 1):定义网络节点的列数,定义的原则根据节点的列数,即水平方向有几列节点,则网络节点的列数就为几列;1): Define the number of columns of network nodes. The principle of definition is based on the number of columns of nodes, that is, how many columns of nodes are there in the horizontal direction, then the number of columns of network nodes is how many columns; 2):确定要分成的区域个数,每个区域取大小为3行3列作为一个区域,即总区域个数为节点的总数除以9得到的商;2): Determine the number of areas to be divided into, and each area takes a size of 3 rows and 3 columns as an area, that is, the total number of areas is the quotient obtained by dividing the total number of nodes by 9; 3):网络节点的列数除以区域大小得到每行区域个数;3): The number of columns of network nodes is divided by the area size to obtain the number of areas in each row; 4):从第一行第一列开始划分,查找属于第一个区域的节点,如果查找的节点超出了第一个区域的列数,则从第二行第一列开始查找属于第一个区域的节点,直到查找的节点超出了第一个区域的节点列数;然后以同样的方式对下一行进行划分,直到所有属于第一行的节点都划分完毕;4): Divide from the first column of the first row, find the nodes belonging to the first area, if the searched nodes exceed the number of columns in the first area, start from the first column of the second row to find the nodes belonging to the first area The nodes in the area until the searched nodes exceed the number of node columns in the first area; then divide the next line in the same way until all the nodes belonging to the first line are divided; 5):从第二个区域的开始列数的第一行开始,查找属于第二个区域的节点,如果查找的节点超出了第二个区域的节点的列数,则从第二行开始,按照上面的原则一直进行,直到所有行划分完毕;5): Starting from the first row of the starting column number of the second area, search for nodes belonging to the second area, if the searched node exceeds the number of columns of nodes in the second area, start from the second row, Proceed according to the above principle until all rows are divided; 6):如果当前的区域个数都划分完毕,则停止执行。否则,转7)6): If the current number of regions has been divided, stop the execution. Otherwise, go to 7) 7):从下一个区域的第一行第一列开始,开始划分区域的节点,直到第一行划分完,然后对第二行,第三行,进行划分,直到所有行都划分完毕;反复执行6)。7): Starting from the first row and the first column of the next region, start to divide the nodes of the region until the first row is divided, then divide the second row and the third row until all the rows are divided; repeat Execute 6). 3.根据权利要求1所述的基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于贝叶斯方法是一种概率统计方法,贝叶斯方法就是根据当前的数据,结合历史数据,推断当前这种情况会发生的概率是多少,即已知事件A发生时事件Bj发生的概率的情况下,可以计算出事件Bi发生时事件A发生的概率。3. the node failure early warning method of the wireless sensor network based on Bayesian method according to claim 1, it is characterized in that Bayesian method is a kind of probability statistics method, and Bayesian method is exactly according to current data, in conjunction with history Data, infer the probability that this situation will occur at present, that is, when the probability of event B j occurring when event A occurs, the probability of event A occurring when event B i occurs can be calculated. 4.根据权利要求1所述的基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于能量级别可以根据电池的能量表示特点表示各级对应的能量:五级:0-440mAh;四级:441-880mAh;三级:881-1320mAh;二级:1321-1760mAh;一级:1761-2200mAh。4. The node failure early warning method of wireless sensor network based on Bayesian method according to claim 1, characterized in that the energy level can represent the energy corresponding to each level according to the energy representation characteristics of the battery: five levels: 0-440mAh; Level 4: 441-880mAh; Level 3: 881-1320mAh; Level 2: 1321-1760mAh; Level 1: 1761-2200mAh. 5.根据权利要求1所述的基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于修正模型为:在对节点进行评估时,根据节点的原始能量、即时能量、通信量的性能指标进行了修正,在对单个性能指标进行修正时使用了修正模型,其中能量修正模型表示为:Ei=E(E1,E2,t)+ei,i表示区域号,Ei是修正后的能量值,而ei则是修正因子,E(E1,E2,t)是关于原始能量E1、即时能量E2、参考时间差t的函数关系式;在对通信量进行修正时,使用了修正模型Ti=T(T1,n)+ti,i表示区域号,Ti是修正后的能量值,而ti则是修正因子,T(T1,n)是关于通信量T1、平均处理量n的函数关系式。5. the node failure early warning method of the wireless sensor network based on Bayesian method according to claim 1, it is characterized in that revision model is: when evaluating node, according to the original energy of node, instant energy, traffic The performance index has been corrected, and a correction model is used when correcting a single performance index, where the energy correction model is expressed as: Ei=E(E1, E2, t)+ei, i represents the area number, and Ei is the corrected energy value, while ei is the correction factor, E(E1, E2, t) is the functional relational expression about the original energy E1, the instant energy E2, and the reference time difference t; when correcting the traffic, the correction model Ti=T is used (T1, n)+ti, i represents the area number, Ti is the corrected energy value, and ti is the correction factor, and T(T1, n) is the functional relationship between the traffic T1 and the average processing capacity n. 6.根据权利要求1所述的基于贝叶斯方法的无线传感器网络的节点失效预警方法,其特征在于综合评估模型为:在对节点进行评估时,为了更好地使用贝叶斯方法,对查询的多个指标进行合一处理,只考察多个性能指标的综合值,这里引入的综合评估模型为A=(Ei,Ti,f),i表示区域号,Ei是修正后的能量值,Ti则是修正后的通信量,f是修正因子。6. the node failure warning method of the wireless sensor network based on Bayesian method according to claim 1, it is characterized in that comprehensive evaluation model is: when node is evaluated, in order to use Bayesian method better, to The multiple indicators of the query are processed together, and only the comprehensive value of multiple performance indicators is considered. The comprehensive evaluation model introduced here is A=(Ei, Ti, f), i represents the area number, and Ei is the energy value after correction. Ti is the revised traffic, and f is the correction factor.
CNB2007100199320A 2007-02-02 2007-02-02 Node invalidation and pre-alarming method of radio sensor network based on Bays method Expired - Fee Related CN100531087C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100199320A CN100531087C (en) 2007-02-02 2007-02-02 Node invalidation and pre-alarming method of radio sensor network based on Bays method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100199320A CN100531087C (en) 2007-02-02 2007-02-02 Node invalidation and pre-alarming method of radio sensor network based on Bays method

Publications (2)

Publication Number Publication Date
CN101035041A true CN101035041A (en) 2007-09-12
CN100531087C CN100531087C (en) 2009-08-19

Family

ID=38731360

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100199320A Expired - Fee Related CN100531087C (en) 2007-02-02 2007-02-02 Node invalidation and pre-alarming method of radio sensor network based on Bays method

Country Status (1)

Country Link
CN (1) CN100531087C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951631A (en) * 2010-09-16 2011-01-19 华中科技大学 Wireless sensor network node based on dual-power module
CN102354158A (en) * 2011-10-24 2012-02-15 天津职业技术师范大学 Separation device for online measurement of dynamic error based on Bayesian network and method thereof
CN101435329B (en) * 2008-12-08 2012-05-23 北京航空航天大学 Error rate test system based on Bayes theorem
CN103179177A (en) * 2011-12-26 2013-06-26 上海交通大学 Data classification methods used in sensor networks
WO2014008825A1 (en) * 2012-07-12 2014-01-16 中国移动通信集团公司 Method, device, and system for monitoring online status of terminal in internet-of-things system
CN103678936A (en) * 2013-12-26 2014-03-26 清华大学 Exceptional part locating method in multi-part engineering system
CN104462443A (en) * 2014-12-15 2015-03-25 北京国双科技有限公司 Data processing method and device
CN104703195A (en) * 2015-02-16 2015-06-10 南京邮电大学 Method for predicating behavior of mobile self-networking routing node
CN104834813A (en) * 2015-04-28 2015-08-12 南京邮电大学 Statistic analysis processing method and device for multi-source heterogeneous data of internet of things
CN103888445B (en) * 2014-02-26 2017-02-15 北京大学 Cloud-service-oriented UCON multi-task access control method and system
CN109219074A (en) * 2018-08-31 2019-01-15 中建科技有限公司深圳分公司 A kind of monitor method of sensor network, monitor and detection device
CN113225539A (en) * 2020-12-23 2021-08-06 全民认证科技(杭州)有限公司 Floating population artificial intelligence early warning system based on cloud computing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435329B (en) * 2008-12-08 2012-05-23 北京航空航天大学 Error rate test system based on Bayes theorem
CN101951631A (en) * 2010-09-16 2011-01-19 华中科技大学 Wireless sensor network node based on dual-power module
CN102354158A (en) * 2011-10-24 2012-02-15 天津职业技术师范大学 Separation device for online measurement of dynamic error based on Bayesian network and method thereof
CN103179177B (en) * 2011-12-26 2016-07-06 上海交通大学 For the data classification method in sensor network
CN103179177A (en) * 2011-12-26 2013-06-26 上海交通大学 Data classification methods used in sensor networks
WO2014008825A1 (en) * 2012-07-12 2014-01-16 中国移动通信集团公司 Method, device, and system for monitoring online status of terminal in internet-of-things system
CN103678936A (en) * 2013-12-26 2014-03-26 清华大学 Exceptional part locating method in multi-part engineering system
CN103678936B (en) * 2013-12-26 2017-09-22 清华大学 Exceptional part localization method in a kind of multi-part engineering system
CN103888445B (en) * 2014-02-26 2017-02-15 北京大学 Cloud-service-oriented UCON multi-task access control method and system
CN104462443B (en) * 2014-12-15 2018-02-02 北京国双科技有限公司 Data processing method and device
CN104462443A (en) * 2014-12-15 2015-03-25 北京国双科技有限公司 Data processing method and device
CN104703195A (en) * 2015-02-16 2015-06-10 南京邮电大学 Method for predicating behavior of mobile self-networking routing node
CN104703195B (en) * 2015-02-16 2018-05-25 南京邮电大学 A kind of mobile ad hoc network routing node behavior prediction method
CN104834813A (en) * 2015-04-28 2015-08-12 南京邮电大学 Statistic analysis processing method and device for multi-source heterogeneous data of internet of things
CN104834813B (en) * 2015-04-28 2018-08-21 南京邮电大学 The multi-source heterogeneous data statistic analysis treating method and apparatus of Internet of Things
CN109219074A (en) * 2018-08-31 2019-01-15 中建科技有限公司深圳分公司 A kind of monitor method of sensor network, monitor and detection device
CN109219074B (en) * 2018-08-31 2021-11-26 中建科技集团有限公司 Monitoring method, monitor and detection device of sensor network
CN113225539A (en) * 2020-12-23 2021-08-06 全民认证科技(杭州)有限公司 Floating population artificial intelligence early warning system based on cloud computing

Also Published As

Publication number Publication date
CN100531087C (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN101035041A (en) Node invalidation and pre-alarming method of radio sensor network based on Bays method
Bhuiyan et al. Sensor placement with multiple objectives for structural health monitoring
CN105873105B (en) A kind of mobile radio communication abnormality detection and localization method based on network Quality of experience
CN106095639A (en) A kind of cluster subhealth state method for early warning and system
CN101848478B (en) Wireless sensor network fault processing method
CN1617512A (en) An Adaptive Network Traffic Prediction and Abnormal Alarm Method
CN117354171B (en) Platform health condition early warning method and system based on Internet of things platform
CN101038638A (en) Method for predicting residual useful life of electronic components of generating set automatic control system
CN1719803A (en) Multi-scale routing correction method and application for scalable large-scale sensor networks
CN103186603A (en) Method, system and equipment for determining influence of SQL statements on performance of key businesses
CN115278741A (en) Fault diagnosis method and device based on multi-mode data dependency relationship
CN111367909A (en) Health management method and system of intelligent manufacturing equipment
CN102801548B (en) A kind of method of intelligent early-warning, device and information system
CN107389124B (en) Sensor-based road and bridge state monitoring method and system
CN117472894A (en) Method for cleaning communication data based on data link
CN103616877B (en) Monitoring diagnostic method and system for energy pipe network
CN101820356A (en) Network fault diagnosis system based on ARM-Linux
CN1738143A (en) Power Network Topology Error Identification Method Based on Hybrid State Estimation
CN1722682A (en) Network monitoring system
CN115347670A (en) Energy storage converter fault prediction method
CN110221173A (en) A kind of power distribution network intelligent diagnosing method based on big data driving
CN117575176B (en) Processing method and system for abnormal value in power data
CN118966917A (en) A method and system for online collection and detection of new energy station data
Zhang et al. Maintenance of large scale wireless sensor networks
CN1801131A (en) Setup method for real-time database system of thermal power plant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20070912

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: Nanjing Post & Telecommunication Univ.

Contract record no.: 2016320000220

Denomination of invention: Node invalidation and pre-alarming method of radio sensor network based on Bays method

Granted publication date: 20090819

License type: Common License

Record date: 20161121

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: Nanjing Post & Telecommunication Univ.

Contract record no.: 2016320000220

Date of cancellation: 20180116

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090819

Termination date: 20180202