[go: up one dir, main page]

CN101031836A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
CN101031836A
CN101031836A CN 200580032903 CN200580032903A CN101031836A CN 101031836 A CN101031836 A CN 101031836A CN 200580032903 CN200580032903 CN 200580032903 CN 200580032903 A CN200580032903 A CN 200580032903A CN 101031836 A CN101031836 A CN 101031836A
Authority
CN
China
Prior art keywords
lens
imaging
focal length
lens system
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580032903
Other languages
Chinese (zh)
Inventor
川田真由美
山下优年
伊奈裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101031836A publication Critical patent/CN101031836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本发明提供一种不增加透镜数量便能够缩短透镜系统的全长并小型化且能够对像差进行良好修正的高效成像透镜。本发明的成像透镜是由至少包括第一透镜、孔径光阑以及第二透镜的透镜系统而构成的成像透镜,第一透镜在物体侧透镜面上具有凸面,令所述第一透镜的焦距为f1、所述透镜系统的焦距为f、所述第一透镜物体侧透镜面的曲率半径为r1,则所述透镜系统满足以下条件:0.5<f1/f<1.5…(1)、1.0<f/r1<4.0…(2),另外,第二透镜是双凹透镜,在第一透镜(1)以及第二透镜(2)的任何一个透镜中,至少其中一方的透镜面具有非球面形状,令第一透镜(1)的折射率为n1时,则透镜系统满足以下条件:0.6<f1/f<1.0…(3)、1.8<(n1-1)f/r1<2.5…(4)。

Figure 200580032903

The present invention provides a high-efficiency imaging lens capable of shortening the overall length of a lens system and miniaturizing it without increasing the number of lenses, and capable of excellently correcting aberrations. The imaging lens of the present invention is an imaging lens composed of a lens system comprising at least a first lens, an aperture stop and a second lens. The first lens has a convex surface on the object side lens surface, so that the focal length of the first lens is f1, the focal length of the lens system is f, and the radius of curvature of the object-side lens surface of the first lens is r1, then the lens system satisfies the following conditions: 0.5<f1/f<1.5...(1), 1.0<f /r1<4.0...(2), in addition, the second lens is a biconcave lens, and in any one of the first lens (1) and the second lens (2), at least one of the lens surfaces has an aspheric shape, so that When the refractive index of the first lens (1) is n1, the lens system satisfies the following conditions: 0.6<f1/f<1.0...(3), 1.8<(n1-1)f/r1<2.5...(4).

Figure 200580032903

Description

成像透镜imaging lens

技术领域technical field

本发明涉及搭载在数码相机(DSC:digital still camera)等相机上的成像透镜。The present invention relates to an imaging lens mounted on a camera such as a digital still camera (DSC: digital still camera).

背景技术Background technique

近年来,采用CCD等固态成像元件(solid-state image sensor)的数码相机以及摄影机等的普及率正在上升。而且,由于搭载所述固态摄像传感器以及成像透镜的移动电话以及笔记本电脑等携带通讯器械的数量也在增加,故其使用的成像透镜的需要量激增。随着携带通讯器械的小型化,薄型化以及高效化,其搭载的成像透镜也被要求小型化,薄型化以及高效化,同时,为了便于普及低成本化也成为被要求的内容。In recent years, the penetration rate of digital cameras and video cameras using solid-state image sensors such as CCDs is increasing. Furthermore, since the number of portable communication devices such as mobile phones and notebook computers equipped with the solid-state imaging sensors and imaging lenses is also increasing, the demand for imaging lenses used therein is increasing rapidly. Along with the miniaturization, thinning and high efficiency of portable communication equipment, the imaging lens mounted on it is also required to be small, thin and efficient. At the same time, low cost is also required for popularization.

现有技术中采用两枚透镜以满足对此的要求。例如日本特开2001-174701号公报以及日本特开2002-296495号公报中公开了所述现有技术。In the prior art, two lenses are used to meet this requirement. Such prior art is disclosed in, for example, JP-A-2001-174701 and JP-A-2002-296495.

另外,随着带摄影功能的移动电话或笔记本电脑,以及PDA等携带通讯器械的急速普及,开始对较高光学性能产生要求。因此,各种各样的透镜作为成像透镜被开发出来。这类透镜公开在,例如,日本特开2002-258155号公报以及日本特开2004-177628号公报中。In addition, with the rapid popularization of portable communication devices such as mobile phones and notebook computers with camera functions, and PDAs, higher optical performance is required. Therefore, various lenses have been developed as imaging lenses. Such lenses are disclosed in, for example, Japanese Patent Laid-Open No. 2002-258155 and Japanese Patent Laid-Open No. 2004-177628.

发明内容Contents of the invention

本发明的成像透镜是由至少包括第一透镜、孔径光阑(aperturestop)以及第二透镜的透镜系统而构成的成像透镜,其中,The imaging lens of the present invention is an imaging lens composed of a lens system including at least a first lens, an aperture stop (aperture stop) and a second lens, wherein,

第一透镜是在物体侧透镜面上具有凸面的正弯月形透镜(positivemeniscus lens),The first lens is a positive meniscus lens having a convex surface on the object side lens surface,

令第一透镜的焦距为f1、透镜系统的焦距为f、第一透镜物体侧透镜面的曲率半径为r1,则透镜系统满足以下的条件:Let the focal length of the first lens be f1, the focal length of the lens system be f, and the radius of curvature of the object-side lens surface of the first lens be r1, then the lens system satisfies the following conditions:

0.5<f1/f<1.5  ……(1),0.5<f1/f<1.5 ... (1),

1.0<f/r1<4.0  ……(2)。1.0<f/r1<4.0 ... (2).

本发明的成像透镜是由从物体侧依次至少具有孔径光阑、第一透镜以及第二透镜的透镜系统而构成的成像透镜,其中,The imaging lens of the present invention is an imaging lens composed of a lens system having at least an aperture stop, a first lens, and a second lens in order from the object side, wherein,

第一透镜是在物体侧透镜面上具有凸面的正弯月形透镜,The first lens is a positive meniscus lens having a convex surface on the object side lens surface,

第二透镜是双凹透镜,The second lens is a biconcave lens,

在第一透镜以及第二透镜的任何一个透镜中,至少其中一方的透镜面具有非球面形状,In any one of the first lens and the second lens, at least one of the lens surfaces has an aspherical shape,

令透镜系统的焦距为f、第一透镜的焦距为f1、第一透镜的折射率(refractive index)为n1、第一透镜的物体侧面的曲率半径为r1,则透镜系统满足以下两个条件式:Let the focal length of the lens system be f, the focal length of the first lens be f1, the refractive index of the first lens (refractive index) be n1, and the radius of curvature of the object side of the first lens be r1, then the lens system satisfies the following two conditional expressions :

0.6<f1/f<1.0        ……(3),0.6<f1/f<1.0 ... (3),

1.8<(n1-1)f/r1<2.5  ……(4)。1.8<(n1-1)f/r1<2.5 ... (4).

附图说明Description of drawings

图1表示的是本发明实施方式1中成像透镜的截面图。FIG. 1 shows a cross-sectional view of an imaging lens in Embodiment 1 of the present invention.

图2A到图2C表示的是图1所示的关于成像透镜的像差图。2A to 2C show aberration diagrams for the imaging lens shown in FIG. 1 .

图3表示的是本发明实施方式2中成像透镜的截面图。FIG. 3 is a cross-sectional view of an imaging lens in Embodiment 2 of the present invention.

图4A到图4C表示的是图3所示的关于成像透镜的像差图。4A to 4C show aberration diagrams of the imaging lens shown in FIG. 3 .

图5表示的是本发明实施方式3中成像透镜的截面图。FIG. 5 is a cross-sectional view of an imaging lens in Embodiment 3 of the present invention.

图6A到图6C表示的是图5所示的关于成像透镜的像差图。6A to 6C show aberration diagrams about the imaging lens shown in FIG. 5 .

图7表示的是本发明实施方式4中成像透镜的截面图。FIG. 7 is a cross-sectional view of an imaging lens in Embodiment 4 of the present invention.

图8A到图8C表示的是图7所示的关于成像透镜的像差图。8A to 8C show aberration diagrams for the imaging lens shown in FIG. 7 .

具体实施方式Detailed ways

首先,对本发明的优选实施方式1和2进行说明。First, preferred embodiments 1 and 2 of the present invention will be described.

在所述现有技术的成像透镜中存在以下问题。即,所述日本特开2001-174701号公报以及日本特开2002-296495号公报中公开的成像透镜均为2枚结构形式,构成第一透镜的透镜成为负功率(也称为负折射力、负焦距、或者仅称为负透镜)或者较弱的正功率(也称为正折射力、正焦距、或者仅称为正透镜)。因此,透镜全长相对于透镜系统的焦距的比大,在日本特开2001-174701号公报中所公开的成像透镜中,其透镜全长相对于透镜系统焦距的比大约为2.3倍,而在日本特开2002-296495号公报中所公开的成像透镜中,其透镜全长相对于透镜系统焦距的比大约为1.6倍。因此,特别是作为使用于具有薄型化需求的移动电话等中的成像透镜,存在缺乏结构小型化的问题。There are the following problems in the imaging lens of the related art. That is, the imaging lenses disclosed in the Japanese Patent Application Laid-Open No. 2001-174701 and the Japanese Patent Laid-Open No. 2002-296495 are all two structural forms, and the lenses constituting the first lens become negative power (also referred to as negative refractive power, negative focal length, or just negative lens) or weaker positive power (also known as positive refractive power, positive focal length, or just positive lens). Therefore, the ratio of the total length of the lens to the focal length of the lens system is large. In the imaging lens disclosed in Japanese Patent Application Laid-Open No. 2001-174701, the ratio of the total length of the lens to the focal length of the lens system is about 2.3 times. In the imaging lens disclosed in KOKAI Publication No. 2002-296495, the ratio of the total lens length to the focal length of the lens system is approximately 1.6 times. Therefore, there is a problem of lack of miniaturization of the structure, especially as an imaging lens used in a mobile phone or the like which has a demand for thinning.

本发明是鉴于上述现有技术的问题而提出的,其目的在于提供一种缩短透镜系统的全长并且具有高性能的成像透镜。The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide an imaging lens having a high performance while shortening the overall length of the lens system.

本发明涉及的成像透镜是由至少包括第一透镜、孔径光阑以及第二透镜的透镜系统所构成的成像透镜,第一透镜是在物体侧透镜面上具有凸面的正弯月形透镜。并且,令第一透镜的焦距为f1、透镜系统的焦距为f、第一透镜物体侧透镜面的曲率半径为r1,则透镜系统满足以下条件:The imaging lens of the present invention is an imaging lens composed of a lens system including at least a first lens, an aperture stop and a second lens. The first lens is a positive meniscus lens with a convex surface on the object side lens surface. And, if the focal length of the first lens is f1, the focal length of the lens system is f, and the radius of curvature of the object-side lens surface of the first lens is r1, then the lens system satisfies the following conditions:

0.5<f1/f<1.5  ……(1),0.5<f1/f<1.5 ... (1),

1.0<f/r1<4.0  ……(2)。1.0<f/r1<4.0 ... (2).

涉及上述结构的成像透镜是由两枚透镜,即:作为在物体侧透镜面上具有凸面的正(具有功率,折射力或者焦距)弯月形透镜的第一透镜、以及作为在图像侧透镜面上具有凸面的正弯月形透镜的第二透镜而形成透镜系统。另外,孔径光阑被设置在第一透镜的前面(物体侧)或者后面(图像侧)。The imaging lens related to the above structure is composed of two lenses, namely: the first lens as a positive (with power, refractive power or focal length) meniscus lens having a convex surface on the object side lens surface, and the first lens as a positive (with power, refractive power or focal length) meniscus lens on the image side lens surface. A second lens with a convex positive meniscus lens forms a lens system. In addition, an aperture stop is provided on the front (object side) or rear (image side) of the first lens.

此处,本发明中的条件式(1)是对透镜系统的前组(前部透镜)(第一透镜)的功率(power)配置进行规定的条件式,表示在实现小型化的同时能够良好地进行各像差(aberration)修正的条件。Here, the conditional expression (1) in the present invention is a conditional expression that specifies the power (power) arrangement of the front group (front lens) (first lens) of the lens system, and shows that it is possible to achieve a good Conditions for correcting each aberration.

即,当第一透镜的焦距f1与透镜系统的焦距f的比超过条件式(1)的上限时,针对透镜系统的前组(前部透镜)的功率配置变弱,透镜系统的全长变长。相反,当超过条件式(1)的下限时,由于针对透镜系统的前组(前部透镜)的功率配置增强,所以,在前部透镜产生的各像差无法由后组(后部透镜)(第二透镜)来进行修正。That is, when the ratio of the focal length f1 of the first lens to the focal length f of the lens system exceeds the upper limit of the conditional expression (1), the power allocation for the front group (front lens) of the lens system becomes weak, and the total length of the lens system becomes long. On the contrary, when the lower limit of the conditional expression (1) is exceeded, since the power configuration for the front group (front lens) of the lens system is strengthened, the aberrations generated in the front lens cannot be eliminated by the rear group (rear lens) (second lens) for correction.

另外,本发明中的条件式(2)是针对透镜系统的第一透镜的物体侧透镜面的功率分配进行规定的条件式,表示在具有高度透镜性能的同时,能够使其具有良好加工性的条件。In addition, the conditional expression (2) in the present invention is a conditional expression for specifying the power distribution of the object-side lens surface of the first lens of the lens system, and shows that it is possible to have good processability while having a high lens performance. condition.

即,当第一透镜的物体侧透镜面的曲率半径r1与透镜系统的焦距f的比例关系超过条件式(2)的上限时,第一透镜物体侧透镜面的曲率过大,第一透镜的加工变得困难。另一方面,当超过条件式(2)的下限时,使歪曲像差的修正变得困难,同时,由于在最大视角中的图像入射角变大,特别是在使用固态成像元件的成像透镜中产生阴影(shading)(临边昏暗等),因而无法提高透镜的性能。That is, when the ratio of the radius of curvature r1 of the object side lens surface of the first lens to the focal length f of the lens system exceeds the upper limit of conditional formula (2), the curvature of the first lens object side lens surface is too large, and the first lens Processing becomes difficult. On the other hand, when the lower limit of conditional expression (2) is exceeded, correction of distortion aberration becomes difficult, and at the same time, since the image incident angle in the maximum viewing angle becomes large, especially in an imaging lens using a solid-state imaging element Shading (dark limbs, etc.) occurs, thus not improving the performance of the lens.

由此,经本发明发明人反复研究的结果表明,通过由两枚透镜构成透镜系统,并且透镜系统的各参数符合条件式(1)而能够实现小型化,通过满足条件式(1)(2)而能够良好地进行各像差的修正,并且,通过满足条件式(2),而能够开发出加工性良好的成像透镜。通过采用所述透镜系统,在能够实现小型化的同时,能够对各像差进行良好的修正。Thus, the results of repeated studies by the inventors of the present invention show that by constituting the lens system by two lenses, and each parameter of the lens system meets the conditional formula (1), miniaturization can be realized, and by satisfying the conditional formula (1) (2 ) and various aberrations can be well corrected, and by satisfying the conditional expression (2), an imaging lens with good processability can be developed. By adopting such a lens system, various aberrations can be well corrected while achieving miniaturization.

这样,根据涉及本发明的成像透镜,通过由两枚透镜构成透镜系统并且透镜系统的各参数满足条件式(1)而实现小型化,通过满足条件式(1)(2)而能够对各像差进行良好的修正,并且,通过满足条件式(2)而能够提高加工性能。In this way, according to the imaging lens of the present invention, miniaturization is realized by constituting the lens system with two lenses and each parameter of the lens system satisfies conditional expression (1), and each image can be imaged by satisfying conditional expression (1) (2). The difference is well corrected, and the processability can be improved by satisfying the conditional expression (2).

以下,参照附图,对本发明的优选实施方式进行说明。Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

实施方式1Embodiment 1

图1表示的是涉及本发明的实施方式1的成像透镜的截面图。FIG. 1 is a cross-sectional view of an imaging lens according to Embodiment 1 of the present invention.

本实施方式的成像透镜如图1所示,由从物体侧开始依次具有第一透镜101、孔径光阑103以及第二透镜102的透镜系统所构成。第一透镜101是在物体侧透镜面(第一透镜第一面)106上具有凸面的正弯月形透镜。第二透镜是102是在图像侧透镜面(第二透镜第二面)109上具有凸面的正弯月形透镜。另外,在第二透镜102的图像侧透镜面109与成像面105之间配置有CCD等固体成像元件中的面板(faceplate)或者滤光器等光学部件(面板或者滤光器)104。The imaging lens of the present embodiment is constituted by a lens system including a first lens 101 , an aperture stop 103 , and a second lens 102 sequentially from the object side, as shown in FIG. 1 . The first lens 101 is a positive meniscus lens having a convex surface on an object-side lens surface (first lens first surface) 106 . The second lens 102 is a positive meniscus lens having a convex surface on the image side lens surface (second lens second surface) 109 . In addition, an optical member (faceplate or filter) 104 such as a faceplate or a filter in a solid-state imaging device such as a CCD is arranged between the image-side lens surface 109 of the second lens 102 and the imaging surface 105 .

在具有上述结构的本实施方式中的成像透镜的各参数值如表1所示。此处,rj是从物体侧开始依次至第j个面序号Rj的曲率半径(mm)。对于面序号Rj,当j为1时是第一透镜101的物体侧透镜面106,当j为2时是第一透镜101的图像侧透镜面(第一透镜第二面)107,当j为3时是第二透镜102的物体侧透镜面(第二透镜第一面)108,当j为4时是第二透镜101的图像侧透镜面109。dj是从物体侧开始依次至第j个的面中心间隔(mm)。Nd是d线(波长为0.58756μm的光)中各透镜的折射率,νd是d线中各透镜的阿贝数(abbe number),f是透镜系统的焦距(mm),Fno.是全孔径F值(Full Aperture F Value),L表示透镜系统的全长(mm)。其中,面序号旁的*表示非球面。Table 1 shows the parameter values of the imaging lens in the present embodiment having the above-mentioned structure. Here, rj is the radius of curvature (mm) from the object side to the j-th surface number Rj in order. Regarding the surface number Rj, when j is 1, it is the object side lens surface 106 of the first lens 101, when j is 2, it is the image side lens surface (first lens second surface) 107 of the first lens 101, when j is When j is 4, it is the object-side lens surface (second lens first surface) 108 of the second lens 102 , and when j is 4, it is the image-side lens surface 109 of the second lens 101 . dj is the plane center distance (mm) from the object side to the jth in order. Nd is the refractive index of each lens in the d-line (light with a wavelength of 0.58756 μm), νd is the Abbe number of each lens in the d-line, f is the focal length (mm) of the lens system, and Fno. is the full aperture F value (Full Aperture F Value), L represents the total length of the lens system (mm). Among them, * next to the surface number indicates an aspheric surface.

另外,令距离面顶点的切面的光轴方向的距离(下陷量(sag))为x、距离光轴的高度为h、近轴曲率半径为r、圆锥常数为κ、第m次的非球面系数为Am(m=4、6、8、10、12),则非球面形状可以通过下式来表示:In addition, let the distance (sag) in the optical axis direction of the tangent plane from the vertex of the surface be x, the height from the optical axis be h, the paraxial curvature radius be r, the conic constant be κ, and the mth aspheric surface The coefficient is A m (m=4, 6, 8, 10, 12), then the aspherical shape can be expressed by the following formula:

x={(1/r)h2}/[1+{1-(1+κ)(1/r)2h2}1/2]+A4h4+A6h6+A8h8+A10h10+A12h12……(X)。x={(1/r)h 2 }/[1+{1-(1+κ)(1/r) 2 h 2 } 1/2 ]+A 4 h 4 +A 6 h 6 +A 8 h 8 +A 10 h 10 +A 12 h 12 ... (X).

因此,以下显示上式(X)中κ和Am值,对非球面形状进行特定。Therefore, the values of κ and A m in the above formula (X) are shown below to specify the shape of the aspheric surface.

【表1】【Table 1】

f=2.628、Fno=3.2、L=3.305f=2.628, Fno=3.2, L=3.305

透镜数据   面序号   rj   dj   Nd   νd   R1*   0.700   0.5   1.68985   52.83   R2*   0.695   0.12   孔径光阑   ∞   0.475   R3*   -2.797   0.908   1.52997   55.73   R4*   -1.155   0.15   R5   ∞   0.5   1.51680   64.20   R6   ∞   0.652   IMA   ∞ lens data Face number r j dj Nd νd R1 * 0.700 0.5 1.68985 52.83 R2 * 0.695 0.12 Aperture stop 0.475 R3 * -2.797 0.908 1.52997 55.73 R4 * -1.155 0.15 R5 0.5 1.51680 64.20 R6 0.652 IMA

非球面系数   R1   R2   R3   R4   κ   2.8317E-01   2.2685E+00   1.5921E+01   3.7023E-01   A4   -4.9731E-02   -1.1404E-01   -4.1096E-01   3.3537E-02   A6   1.5962E-01   -9.7563E-01   2.4183E+00   -3.3923E-01   A8   -6.8503E-01   -1.0840E+01   -8.0945E+00   6.2224E-01   A10   0.0000E+00   0.0000E+00   9.9482E+00   -4.3038E-01   A12   0.0000E+00   0.0000E+00   0.0000E+00   0.0000E+00 Aspheric coefficient R1 R2 R3 R4 kappa 2.8317E-01 2.2685E+00 1.5921E+01 3.7023E-01 A 4 -4.9731E-02 -1.1404E-01 -4.1096E-01 3.3537E-02 A 6 1.5962E-01 -9.7563E-01 2.4183E+00 -3.3923E-01 A 8 -6.8503E-01 -1.0840E+01 -8.0945E+00 6.2224E-01 A 10 0.0000E+00 0.0000E+00 9.9482E+00 -4.3038E-01 A 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

此外,本实施方式中,第一透镜101的焦距f1为3.542mm,透镜系统的焦距f为2.628mm。因此,0.5<f1/f=1.34<1.5,满足条件式(1)。另外,第一透镜101的物体侧透镜面106的曲率半径r1为0.700mm。因此,1.0<f/r1=3.75<4.0,满足条件式(2)。此外,将透镜系统的全长L通过透镜系统的焦距f而规格化后的值L/f为1.26。因此,透镜系统的全长L是焦距f的1.3倍以下,可以实现非常小型化的成像透镜。In addition, in this embodiment, the focal length f1 of the first lens 101 is 3.542 mm, and the focal length f of the lens system is 2.628 mm. Therefore, 0.5<f1/f=1.34<1.5, satisfying the conditional expression (1). In addition, the curvature radius r1 of the object-side lens surface 106 of the first lens 101 is 0.700 mm. Therefore, 1.0<f/r1=3.75<4.0, satisfying conditional expression (2). In addition, the value L/f normalized by the focal length f of the lens system by the full length L of the lens system was 1.26. Therefore, the total length L of the lens system is not more than 1.3 times the focal length f, and a very compact imaging lens can be realized.

图2A到图2C表示的是图1所示的关于成像透镜的像差图。图2A表示的是球面像差(spherical aberration),图2B表示的是像散(ast-igmatism),图2C表示的是歪曲像差。2A to 2C show aberration diagrams for the imaging lens shown in FIG. 1 . Figure 2A shows spherical aberration (spherical aberration), Figure 2B shows astigmatism (ast-igmatism), and Figure 2C shows distortion aberration.

在本实施方式中,与现有技术相比,不仅能够实现非常小型化的成像透镜,而且还能够对各像差进行良好的修正。In this embodiment, it is possible not only to realize a very compact imaging lens but also to perform excellent correction of various aberrations as compared with the prior art.

此外,在本实施方式的透镜系统中,透镜面106、107、108以及109采用的是非球面的透镜,但本发明并不局限于此,也可以对其进行适当的选择。In addition, in the lens system of this embodiment, the lens surfaces 106 , 107 , 108 , and 109 are aspheric lenses, but the present invention is not limited thereto, and can be selected appropriately.

另外,本发明的第一透镜以及第二透镜优选使用树脂材料。通过所有透镜均使用树脂材料,而能够降低造价并便于生产制造。In addition, it is preferable to use a resin material for the first lens and the second lens of the present invention. By using resin material for all the lenses, the manufacturing cost can be reduced and the manufacturing is facilitated.

实施方式2Embodiment 2

以下,对涉及本发明成像透镜的实施方式2进行说明。Hereinafter, Embodiment 2 related to the imaging lens of the present invention will be described.

图3表示的是本发明实施方式2中的成像透镜的截面图。FIG. 3 is a cross-sectional view of an imaging lens in Embodiment 2 of the present invention.

涉及本实施方式的成像透镜与实施方式1的不同点在于:如图3所示,本实施方式的孔径光阑103的位置位于第一透镜101的前方(物体侧)、第二透镜102的图像侧透镜面109的形状不同、以及成像面105的位置位于光学部件(面板以及滤光器)104的端面上。The difference between the imaging lens of this embodiment and Embodiment 1 is that, as shown in FIG. The shape of the side lens surface 109 is different, and the position of the imaging surface 105 is located on the end surface of the optical component (panel and filter) 104 .

在具有上述结构的本实施方式中的成像透镜的各参数值如表2所示。此处,代表各数值的意义与实施方式1相同。Table 2 shows the parameter values of the imaging lens in the present embodiment having the above-mentioned structure. Here, the meanings of the respective numerical values are the same as those in the first embodiment.

【表2】【Table 2】

f=2.323、Fno=2.85、L=2.632f=2.323, Fno=2.85, L=2.632

透镜数据   面序号   rj   dj   Nd   νd   孔径光阑   ∞   0.05   R1*   0.782   0.572   1.606019   57.427987   R2*   1.314   0.52   R3*   13.894   0.9   1.478   56   R4*   3.442   0.24   R5   ∞   0.4   1.516798   64.198258   R6(IMA)   ∞ lens data Face number r j dj Nd νd Aperture stop 0.05 R1 * 0.782 0.572 1.606019 57.427987 R2 * 1.314 0.52 R3 * 13.894 0.9 1.478 56 R4 * 3.442 0.24 R5 0.4 1.516798 64.198258 R6(IMA)

非球面系数   R1   R2   R3   R4   κ   -8.2257E-01   5.1816E-01   0.0000E+00   0.0000E+00   A4   1.8399E-01   4.1192E-01   -6.2582E-01   -4.6135E-01   A6   2.3617E+00   4.4581E+00   1.6949E-01   5.9372E-01   A8   -2.2671E+01   -4.7764E+01   1.9894E+00   -7.9928E-01   A10   1.2446E+02   2.7136E+02   -1.3495E+01   3.9079E-01   A12   -2.4472E+02   -4.2054E+02   1.7067E+01   -6.0955E-02 Aspheric coefficient R1 R2 R3 R4 kappa -8.2257E-01 5.1816E-01 0.0000E+00 0.0000E+00 A 4 1.8399E-01 4.1192E-01 -6.2582E-01 -4.6135E-01 A 6 2.3617E+00 4.4581E+00 1.6949E-01 5.9372E-01 A 8 -2.2671E+01 -4.7764E+01 1.9894E+00 -7.9928E-01 A 10 1.2446E+02 2.7136E+02 -1.3495E+01 3.9079E-01 A 12 -2.4472E+02 -4.2054E+02 1.7067E+01 -6.0955E-02

其中,在本实施方式中,第一透镜101的焦距f1为2.669mm,透镜系统的焦距f为2.323mm。因此,0.5<f1/f=0.86<1.5,满足条件式(1)。另外,第一透镜101的物体侧透镜面106的曲率半径r1为0.782mm。因此,1.0<f/r1=2.97<4.0,满足条件式(2)。此外,将透镜系统的全长L通过透镜系统的焦距f而规格化后的值L/f为1.13。因此,透镜系统的全长L是焦距f的1.3倍以下,可以实现非常小型化的成像透镜。Wherein, in this embodiment, the focal length f1 of the first lens 101 is 2.669 mm, and the focal length f of the lens system is 2.323 mm. Therefore, 0.5<f1/f=0.86<1.5, satisfying the conditional expression (1). In addition, the curvature radius r1 of the object-side lens surface 106 of the first lens 101 is 0.782 mm. Therefore, 1.0<f/r1=2.97<4.0, satisfying conditional expression (2). In addition, the value L/f normalized by the focal length f of the lens system by the full length L of the lens system was 1.13. Therefore, the total length L of the lens system is not more than 1.3 times the focal length f, and a very compact imaging lens can be realized.

图4A~图4C表示的是图3所示的成像透镜的像差图。图4A表示的是球面像差,图4B表示的是像散,图4C表示的是歪曲像差。4A to 4C show aberration diagrams of the imaging lens shown in FIG. 3 . FIG. 4A shows spherical aberration, FIG. 4B shows astigmatism, and FIG. 4C shows distortion aberration.

在本实施方式中,与现有技术相比,不仅能够实现非常小型化的成像透镜,而且还能够对各像差进行良好的修正。In this embodiment, it is possible not only to realize a very compact imaging lens but also to perform excellent correction of various aberrations as compared with the prior art.

此外,在本实施方式的透镜系统中,透镜面106、107、108以及109采用的是非球面的透镜,但本发明并不局限于此,可以对其进行适当的选择。In addition, in the lens system of this embodiment, the lens surfaces 106, 107, 108, and 109 are aspherical lenses, but the present invention is not limited thereto, and can be selected appropriately.

以下,对本发明的实施方式3和实施方式4进行说明。Hereinafter, Embodiment 3 and Embodiment 4 of the present invention will be described.

最近,特别是伴随所述携带通讯器械的小型化,对成像透镜而言,在具有较高光学性能的同时更加小型化以及低造价的要求也越来越强烈。因此,人们期望在降低透镜枚数、实现小型化以及结构简洁化的同时还具有超过现有技术的高度光学性能的成像透镜的出现。另外,玻璃成本高于塑料成本两倍以上,而且在加工玻璃透镜时,其口径越小越困难。Recently, especially with the miniaturization of the portable communication devices, the imaging lens has a higher optical performance and more miniaturization and lower cost requirements are becoming more and more intense. Therefore, people expect the appearance of an imaging lens with high optical performance exceeding the prior art while reducing the number of lenses, realizing miniaturization and simplifying the structure. In addition, the cost of glass is more than twice the cost of plastic, and when processing glass lenses, the smaller the caliber, the more difficult it is.

本发明是鉴于上述现有技术的问题而提出的,其目的在于提供一种不增加透镜枚数、能够实现小型化且能够对像差进行良好修正的成像透镜。The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide an imaging lens capable of miniaturization and excellent correction of aberrations without increasing the number of lenses.

涉及本发明的成像透镜是由从物体侧开始依次具有孔径光阑、第一透镜以及第二透镜的透镜系统所构成的成像透镜。所述第一透镜是在物体侧凸出并具有正折射力的弯月形透镜。所述第二透镜是双凹透镜。在所述第一透镜以及第二透镜中的任何一个透镜中,至少其中一方的透镜面具有非球面形状,所述透镜系统满足以下条件:The imaging lens according to the present invention is an imaging lens composed of a lens system including an aperture stop, a first lens, and a second lens in this order from the object side. The first lens is a meniscus lens that is convex on the object side and has positive refractive power. The second lens is a biconcave lens. In any one of the first lens and the second lens, at least one of the lens surfaces has an aspheric shape, and the lens system satisfies the following conditions:

0.6<f1/f<1.0        ……(3),0.6<f1/f<1.0 ... (3),

1.8<(n1-1)f/r1<2.5  ……(4)。1.8<(n1-1)f/r1<2.5 ... (4).

其中,f是透镜系统的焦距,f1是第一透镜的焦距,n1是第一透镜的折射率,r1是第一透镜的物体侧的面的曲率半径。Wherein, f is the focal length of the lens system, f1 is the focal length of the first lens, n1 is the refractive index of the first lens, and r1 is the radius of curvature of the object-side surface of the first lens.

此处,本发明中的条件式(3)是针对第一透镜的焦距进行规定的条件式,表示在获得小型化的同时,具有良好的像差性能的条件。Here, the conditional expression (3) in the present invention is a conditional expression that defines the focal length of the first lens, and represents a condition for attaining miniaturization and excellent aberration performance.

即,当第一透镜的焦距与透镜系统的焦距的比为条件式(3)的下限值以下时,难以对歪曲像差等像差进行修正。另一方便,当为条件式(3)的上限值以上时,设备整体趋于大型化,无法实现小型化透镜。That is, when the ratio of the focal length of the first lens to the focal length of the lens system is equal to or less than the lower limit value of conditional expression (3), it is difficult to correct aberrations such as distortion. On the other hand, when the value exceeds the upper limit of the conditional expression (3), the overall size of the device tends to increase, making it impossible to realize a miniaturized lens.

另外,本发明中的条件式(4)是针对第一透镜的折射力进行规定的条件式,表示在获得小型化的同时,具有良好的像差性能的条件。In addition, the conditional expression (4) in the present invention is a conditional expression that specifies the refractive power of the first lens, and represents a condition for achieving miniaturization and excellent aberration performance.

即,涉及第一透镜的物体侧面的曲率半径r1、第一透镜的折射率n1以及透镜系统的焦距f的规定值(n1-1)f/r1为条件式(4)的下限值以下时,第一透镜的轴上芯厚在中心厚度增大,无法实现小型化的透镜。另一方面,当为条件式(4)的上限值以上时,难以使轴外光束充分地通过第一透镜,并且使球面像差的修正也变得困难。That is, when the predetermined value (n1-1)f/r1 concerning the curvature radius r1 of the object side surface of the first lens, the refractive index n1 of the first lens, and the focal length f of the lens system is equal to or less than the lower limit value of the conditional expression (4) , the axial core thickness of the first lens increases at the center, and a miniaturized lens cannot be realized. On the other hand, when the value is equal to or greater than the upper limit of conditional expression (4), it is difficult to sufficiently pass the off-axis light beam through the first lens, and it is also difficult to correct spherical aberration.

根据本发明的成像透镜,通过使所谓两组两枚的结构非常简单的透镜系统满足条件式(3)以及条件式(4)而能够获得全长非常短,大约为焦距的1.2倍以下并且具有良好像差性能的成像透镜。According to the imaging lens of the present invention, by satisfying the conditional expression (3) and the conditional expression (4) of the so-called two-group lens system with a very simple structure, it is possible to obtain a very short overall length, which is about 1.2 times or less of the focal length and has Imaging lens with good aberration performance.

另外,本发明的第一透镜以及第二透镜优选均使用树脂材料。通过所有透镜均使用树脂材料而能够降低造价并便于生产制造。In addition, it is preferable to use a resin material for both the first lens and the second lens of the present invention. By using resin material for all the lenses, the manufacturing cost can be reduced and the manufacturing is facilitated.

以下,参照附图,对本发明的优选实施方式进行说明。Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(实施方式3)(Embodiment 3)

图5表示的是涉及本发明的实施方式3的成像透镜的截面图。FIG. 5 is a cross-sectional view of an imaging lens according to Embodiment 3 of the present invention.

如图5所示,本实施方式的成像透镜由从物体侧开始依次具有孔径光阑503、第一透镜501、以及第二透镜502的透镜系统所构成。第一透镜501是在物体侧透镜面(第一透镜第一面)506凸出并具有正折射力的弯月形透镜。第二透镜502是双凹透镜。在本实施方式中,第一透镜501以及第二透镜502均使用树脂材料,任何一个透镜面506、507、508、509均具有非球面形状。As shown in FIG. 5 , the imaging lens of this embodiment is constituted by a lens system including an aperture stop 503 , a first lens 501 , and a second lens 502 in order from the object side. The first lens 501 is a meniscus lens that is convex on the object side lens surface (first lens first surface) 506 and has positive refractive power. The second lens 502 is a biconcave lens. In this embodiment, resin materials are used for both the first lens 501 and the second lens 502 , and any one of the lens surfaces 506 , 507 , 508 , and 509 has an aspherical shape.

具有所述结构的本实施方式的成像透镜的各参数值如表3所示。Table 3 shows the parameter values of the imaging lens of the present embodiment having the above structure.

此处,rj是涉及从物体侧开始依次至第j个面序号Rj的曲率半径(mm)。面序号R1是第一透镜501的物体侧透镜面506、R2是第一透镜501的图像侧透镜面(第一透镜第二面)507、R3是第二透镜502的物体侧透镜面(第二透镜第一面)508、R4是第二透镜501的图像侧透镜面(第二透镜第二面)509。dj是从物体侧开始依次至第j个的面的中心间隔(mm)。Nd是涉及d线的透镜的折射率,νd是d线的各透镜的阿贝数,f是透镜系统的焦距(mm),Fno.是全孔径F值。Here, rj is the radius of curvature (mm) related to the j-th surface number Rj sequentially from the object side. The surface number R1 is the object-side lens surface 506 of the first lens 501, R2 is the image-side lens surface (first lens second surface) 507 of the first lens 501, and R3 is the object-side lens surface (second lens surface) of the second lens 502. Lens first surface) 508 , R4 is the image-side lens surface (second lens second surface) 509 of the second lens 501 . dj is the center-to-center distance (mm) from the object side to the j-th surface in order. Nd is the refractive index of the lens related to the d-line, νd is the Abbe number of each lens on the d-line, f is the focal length (mm) of the lens system, and Fno. is the full-aperture F value.

另外,令距离面顶点的切面的光轴方向的距离(下陷量(sag))为x、距离光轴的高度为h、近轴曲率半径为r、圆锥常数为κ、第m次的非球面系数为Am(m=4、6、8、10、12),则非球面形状可以用下式表示:In addition, let the distance (sag) in the optical axis direction of the tangent plane from the vertex of the surface be x, the height from the optical axis be h, the paraxial curvature radius be r, the conic constant be κ, and the mth aspheric surface The coefficient is A m (m=4, 6, 8, 10, 12), then the aspheric shape can be expressed by the following formula:

x={(1/r)h2}/[1+{1-(1+κ)(1/r)2h2}1/2]+A4h4+A6h6+A8h8+A10h10+A12h12……(X)。x={(1/r)h 2 }/[1+{1-(1+κ)(1/r) 2 h 2 } 1/2 ]+A 4 h 4 +A 6 h 6 +A 8 h 8 +A 10 h 10 +A 12 h 12 ... (X).

因此,以下显示上式(X)中κ和Am值,对非球面形状进行特定。Therefore, the values of κ and A m in the above formula (X) are shown below to specify the shape of the aspheric surface.

【表3】【table 3】

f=4.64,Fno=4.02f=4.64, Fno=4.02

透镜数据 面序号 rj dj Nd νd   孔径光阑   ∞   0.00   R1   1.332   0.84   1.5247   56.40   R2   2.608   1.06   R3   -51.691   2.00   1.5247   56.40   R4   7.318   1.06   IMA   ∞ lens data Face number r j dj Nd νd Aperture stop 0.00 R1 1.332 0.84 1.5247 56.40 R2 2.608 1.06 R3 -51.691 2.00 1.5247 56.40 R4 7.318 1.06 IMA

非球面系数   R1   R2   R3   R4   κ   -1.7046E+00   -6.2653E+01   0.0000E+00   -2.5790E+00   A4   8.3075E-02   4.3744E-01   -8.6810E-02   -1.8699E-02   A6   1.3124E-01   -7.0522E-01   -1.2928E-02   -5.8500E-03   A8   -1.8008E-01   1.0322E+00   5.3340E-03   1.2880E-03   A10   9.4460E-04   -4.4363E-02   5.7170E-02   -1.3600E-05   A12   0.0000E+00   0.0000E+00   0.0000E+00   0.0000E-00 Aspheric coefficient R1 R2 R3 R4 kappa -1.7046E+00 -6.2653E+01 0.0000E+00 -2.5790E+00 A 4 8.3075E-02 4.3744E-01 -8.6810E-02 -1.8699E-02 A 6 1.3124E-01 -7.0522E-01 -1.2928E-02 -5.8500E-03 A 8 -1.8008E-01 1.0322E+00 5.3340E-03 1.2880E-03 A 10 9.4460E-04 -4.4363E-02 5.7170E-02 -1.3600E-05 A 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E-00

此外,本实施方式中,第一透镜501的焦距f1为4.21mm,透镜系统的焦距f为4.64mm。因此,0.6<f1/f=0.91<1.0,满足条件式(3)。另外,第一透镜501的折射率n1为1.5247,第一透镜501的物体侧面506的曲率半径r1为1.332mm。因此,1.8<(n1-1)f/r1=1.83<2.5,满足条件式(4)。In addition, in this embodiment, the focal length f1 of the first lens 501 is 4.21 mm, and the focal length f of the lens system is 4.64 mm. Therefore, 0.6<f1/f=0.91<1.0, satisfying the conditional expression (3). In addition, the refractive index n1 of the first lens 501 is 1.5247, and the curvature radius r1 of the object side surface 506 of the first lens 501 is 1.332 mm. Therefore, 1.8<(n1-1)f/r1=1.83<2.5, satisfying conditional expression (4).

图6A~图6C表示的是图5所示的关于成像透镜的像差图。图6A表示的是球面像差,图6B表示的是像散,图6C表示的是歪曲像差。6A to 6C show aberration diagrams of the imaging lens shown in FIG. 5 . FIG. 6A shows spherical aberration, FIG. 6B shows astigmatism, and FIG. 6C shows distortion aberration.

如图6所示,由于通过使两组两枚的结构非常简单的透镜系统满足条件式(21)以及条件式(22),而能够获得大约为焦距的1.2倍以下且非常短的并且具有良好像差性能的成像透镜。另外,由于所有的透镜均使用树脂材料,所以能够降低造价并便于生产制造。As shown in FIG. 6 , since conditional expressions (21) and conditional expressions (22) are satisfied by making two groups of lens systems with a very simple structure, it is possible to obtain a very short lens system that is less than 1.2 times the focal length and has a good Imaging lenses with aberration performance. In addition, since all the lenses are made of resin material, the manufacturing cost can be reduced and the manufacturing is facilitated.

(第四实施方式)(fourth embodiment)

图7表示的是涉及本发明实施方式4的成像透镜的截面图。FIG. 7 is a cross-sectional view of an imaging lens according to Embodiment 4 of the present invention.

本实施方式4采用与实施方式3相同的透镜系统而构成。本实施方式中的成像透镜的各参数值(包括非球面系数)如(表4)所示。This fourth embodiment is configured using the same lens system as that of the third embodiment. The parameter values (including aspheric coefficients) of the imaging lens in this embodiment are shown in (Table 4).

其中,本实施方式中,第一透镜501的焦距f1为3.316,透镜系统的焦距f为4.11mm。因此,0.6<f1/f=0.81<1.0,满足条件式(3)。另外,第一透镜501的折射率n1为1.5247,第一透镜501的物体侧透镜面506的曲率半径r1为1.154mm。因此,1.8<(n1-1)f/r1=1.87<2.5,满足条件式(4)。Wherein, in this embodiment, the focal length f1 of the first lens 501 is 3.316, and the focal length f of the lens system is 4.11 mm. Therefore, 0.6<f1/f=0.81<1.0, satisfying the conditional expression (3). In addition, the refractive index n1 of the first lens 501 is 1.5247, and the curvature radius r1 of the object-side lens surface 506 of the first lens 501 is 1.154 mm. Therefore, 1.8<(n1-1)f/r1=1.87<2.5, satisfying conditional expression (4).

图8A~图8C表示的是图7所示的关于成像透镜的像差图。图8A表示的是球面像差,图8B表示的是像散,图8C表示的是歪曲像差。8A to 8C show aberration diagrams for the imaging lens shown in FIG. 7 . FIG. 8A shows spherical aberration, FIG. 8B shows astigmatism, and FIG. 8C shows distortion aberration.

【表4】【Table 4】

f=4.11,Fno=4.03f=4.11, Fno=4.03

透镜数据 面序号 rj dj Nd νd   孔径光阑   ∞   0.00   R1   1.154   0.75   1.5247   56.40   R2   2.636   0.41   R3   -6.224   3.11   1.5247   56.40   R4   25.748   0.62   IMA   ∞ lens data Face number r j dj Nd νd Aperture stop 0.00 R1 1.154 0.75 1.5247 56.40 R2 2.636 0.41 R3 -6.224 3.11 1.5247 56.40 R4 25.748 0.62 IMA

非球面系数   R1   R2   R3   R4   κ   -1.0874E+00   -5.0163E+00   0.0000E+00   0.0000E+00   A4   1.2063E-01   2.8418E-02   -1.6794E-01   1.0059E-02   A6   -6.8300E-03   8.5405E-01   -1.3217E-01   -1.3965E-02   A8   3.4094E-01   2.3830E+00   1.2616E-01   2.4960E-03   A10   -3.3592E-02   3.1384E-01   4.6397E-02   -1.6400E-05   A12   0.0000E+00   0.0000E+00   -1.3222E-02   0.0000E+00 Aspheric coefficient R1 R2 R3 R4 kappa -1.0874E+00 -5.0163E+00 0.0000E+00 0.0000E+00 A 4 1.2063E-01 2.8418E-02 -1.6794E-01 1.0059E-02 A 6 -6.8300E-03 8.5405E-01 -1.3217E-01 -1.3965E-02 A 8 3.4094E-01 2.3830E+00 1.2616E-01 2.4960E-03 A 10 -3.3592E-02 3.1384E-01 4.6397E-02 -1.6400E-05 A 12 0.0000E+00 0.0000E+00 -1.3222E-02 0.0000E+00

在本实施方式种,如图7,图8所示,由于通过使两组两枚结构非常简单的透镜系统满足条件式(3)以及条件式(4),而能够获得大约为焦距的1.2倍以下且非常短并且具有良好像差性能的成像透镜。另外,由于所有的透镜均使用树脂材料,所以能够降低造价并便于生产制造。In the present embodiment, as shown in Fig. 7 and Fig. 8, by making two groups of two lens systems with very simple structures satisfy conditional formula (3) and conditional formula (4), approximately 1.2 times of the focal length can be obtained An imaging lens that is below and very short and has good aberration performance. In addition, since all the lenses are made of resin material, the manufacturing cost can be reduced and the manufacturing is facilitated.

此外,在以上实施方式中,对第一透镜501以及第二透镜502中的任一面均由非球面形状构成的例子进行说明。但是并不局限于此,也可以采用以下构成方式,即:第一透镜501的透镜面506以及507中至少任意一方为非球面形状,并且第二透镜502的透镜面508以及509的至少任意一方为非球面形状。In addition, in the above-mentioned embodiment, the example which both the surface of the 1st lens 501 and the 2nd lens 502 are comprised with an aspheric shape was demonstrated. But it is not limited to this, and the following configuration can also be adopted, that is: at least any one of the lens surfaces 506 and 507 of the first lens 501 is an aspherical shape, and at least any one of the lens surfaces 508 and 509 of the second lens 502 is an aspherical shape.

产业上可利用性Industrial availability

本发明的成像透镜,其透镜系统由两枚透镜构成,能够实现小型化以及能够良好对各像差进行修正,而且具有良好的加工性。因此,适于作为搭载在数码相机以及小型摄影机等装置中的成像透镜而进行使用。The imaging lens of the present invention has a lens system composed of two lenses, which can realize miniaturization and correct various aberrations well, and has good processability. Therefore, it is suitable for use as an imaging lens mounted in devices such as digital cameras and compact cameras.

Claims (5)

1.一种成像透镜,其特征在于:1. An imaging lens, characterized in that: 其是由至少包括第一透镜、孔径光阑以及第二透镜的透镜系统构成的成像透镜,其中,It is an imaging lens composed of a lens system including at least a first lens, an aperture stop, and a second lens, wherein, 所述第一透镜是在物体侧透镜面上具有凸面的正弯月形透镜,The first lens is a positive meniscus lens having a convex surface on the object side lens surface, 令所述第一透镜的焦距为f1、所述透镜系统的焦距为f、所述第一透镜物体侧透镜面的曲率半径为r1,则所述透镜系统满足以下两个条件:Let the focal length of the first lens be f1, the focal length of the lens system be f, and the radius of curvature of the object-side lens surface of the first lens be r1, then the lens system satisfies the following two conditions: 0.5<f1/f<1.5    ……(1),0.5<f1/f<1.5 ... (1), 1.0<f/r1<4.0    ……(2)。1.0<f/r1<4.0 ... (2). 2.如权利要求1所述的成像透镜,其特征在于:2. The imaging lens according to claim 1, characterized in that: 所述透镜系统从物体侧依次配置有所述第一透镜、所述孔径光阑、以及所述第二透镜,其中,The lens system is sequentially arranged with the first lens, the aperture stop, and the second lens from the object side, wherein, 所述第二透镜具有正折射率。The second lens has a positive refractive index. 3.如权利要求1所述的成像透镜,其特征在于:3. The imaging lens according to claim 1, characterized in that: 所述透镜系统从物体侧依次配置有所述孔径光阑、所述第一透镜、以及所述第二透镜,其中,The lens system is sequentially arranged with the aperture stop, the first lens, and the second lens from the object side, wherein, 所述第二透镜为负弯月形透镜。The second lens is a negative meniscus lens. 4.一种成像透镜,其特征在于,4. An imaging lens, characterized in that, 其是从物体侧依次至少具有孔径光阑、第一透镜以及第二透镜的透镜系统而构成的成像透镜,其中,It is an imaging lens composed of a lens system having at least an aperture stop, a first lens, and a second lens in order from the object side, wherein, 所述第一透镜是在物体侧透镜面上具有凸面的正弯月形透镜,The first lens is a positive meniscus lens having a convex surface on the object side lens surface, 所述第二透镜是双凹透镜,The second lens is a biconcave lens, 在所述第一透镜以及所述第二透镜的任何一个透镜中,至少其中一方的透镜面具有非球面形状,In any one of the first lens and the second lens, at least one of the lens surfaces has an aspheric shape, 令透镜系统的焦距为f、第一透镜的焦距为f1、第一透镜的折射率为n1、第一透镜的物体侧面的曲率半径为r1,则所述透镜系统满足以下两个条件式:If the focal length of the lens system is f, the focal length of the first lens is f1, the refractive index of the first lens is n1, and the radius of curvature of the object side of the first lens is r1, then the lens system satisfies the following two conditional expressions: 0.6<f1/f<1.0          ……(3),0.6<f1/f<1.0 ……(3), 1.8<(n1-1)f/r1<2.5    ……(4)。1.8<(n1-1)f/r1<2.5 ... (4). 5.如权利要求1至4中任一项所述的成像透镜,其特征在于:5. The imaging lens according to any one of claims 1 to 4, characterized in that: 所述第一透镜以及第二透镜均使用树脂材料。Both the first lens and the second lens are made of resin material.
CN 200580032903 2004-09-28 2005-09-28 Imaging lens Pending CN101031836A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004281830A JP2006098504A (en) 2004-09-28 2004-09-28 Shooting lens
JP281830/2004 2004-09-28
JP368808/2004 2004-12-21

Publications (1)

Publication Number Publication Date
CN101031836A true CN101031836A (en) 2007-09-05

Family

ID=36238419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580032903 Pending CN101031836A (en) 2004-09-28 2005-09-28 Imaging lens

Country Status (2)

Country Link
JP (1) JP2006098504A (en)
CN (1) CN101031836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393317B (en) * 2007-09-21 2010-08-18 大立光电股份有限公司 Two-piece photographic lens
CN102736216A (en) * 2011-04-05 2012-10-17 夏普株式会社 Image pickup lens and image pickup module
CN108415152A (en) * 2015-11-16 2018-08-17 董润 One kind wearing display and sets alternative optical eyepiece camera lens

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411812B (en) * 2006-03-31 2013-10-11 Hitachi Maxell Camera lens assembly
JP5022066B2 (en) * 2006-03-31 2012-09-12 日立マクセル株式会社 Imaging lens unit
JP4861797B2 (en) 2006-11-21 2012-01-25 株式会社エンプラス Imaging lens and imaging apparatus provided with the same
EP2113800A4 (en) 2007-02-19 2012-03-07 Konica Minolta Opto Inc Imaging lens, imaging device, and mobile terminal
WO2008102773A1 (en) 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
US8363339B2 (en) 2007-02-19 2013-01-29 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal, and method for manufacturing imaging lens
KR101008704B1 (en) 2008-10-17 2011-01-17 (주)이오시스템 Objective lens system for thermal imaging devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891837B2 (en) * 2001-12-07 2007-03-14 株式会社長野光学研究所 Photo lens with 2 elements in 2 groups
JP3595308B2 (en) * 2002-02-07 2004-12-02 株式会社エンプラス Imaging lens
JP2004170460A (en) * 2002-11-15 2004-06-17 Matsushita Electric Ind Co Ltd Imaging optical system, and digital still camera, video camera and mobile device using the same
JP3593530B2 (en) * 2002-12-06 2004-11-24 株式会社エンプラス Imaging lens
JP3820213B2 (en) * 2002-12-16 2006-09-13 株式会社エンプラス Imaging lens
JP3452919B1 (en) * 2003-01-22 2003-10-06 マイルストーン株式会社 Imaging lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393317B (en) * 2007-09-21 2010-08-18 大立光电股份有限公司 Two-piece photographic lens
CN102736216A (en) * 2011-04-05 2012-10-17 夏普株式会社 Image pickup lens and image pickup module
CN108415152A (en) * 2015-11-16 2018-08-17 董润 One kind wearing display and sets alternative optical eyepiece camera lens
CN108415152B (en) * 2015-11-16 2020-04-07 深圳市柏英特电子科技有限公司 Optical eyepiece lens for head-mounted display equipment

Also Published As

Publication number Publication date
JP2006098504A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
CN1246720C (en) Wide-angle lenses
CN201417337Y (en) Camera shooting lens, camera module and camera shooting device
CN1866068A (en) Wide-angle lens system and image -taking device
CN1215351C (en) Focal length extending lens and camera with same
CN1287186C (en) Zoom lens and imaging device
CN101051110A (en) Imaging lens and imaging apparatus
CN101046542A (en) Imaging lens
CN101046541A (en) Imaging lens
CN1940628A (en) Image-forming lens
CN101038413A (en) Imaging lens
CN1821828A (en) Wide-angle lens system
CN1768290A (en) Zoom lens and imaging device
CN1940626A (en) Single focal point lens
CN1296743C (en) Single focus wide-angle lens
CN1677134A (en) Imaging lens
CN1766690A (en) Micro Camera Lens System
CN1828355A (en) Taking lens system
CN1690733A (en) Imaging lens
CN101078805A (en) Imaging lens
JP2004252312A (en) Imaging lens
CN1296744C (en) Single focus wide-angle lens
CN1685268A (en) Imaging lens
CN101031836A (en) Imaging lens
CN101046546A (en) Imaging lens
CN1959455A (en) Zoom lens optical system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication