CN101028867A - Aircraft with changeable wing shape - Google Patents
Aircraft with changeable wing shape Download PDFInfo
- Publication number
- CN101028867A CN101028867A CN 200710071974 CN200710071974A CN101028867A CN 101028867 A CN101028867 A CN 101028867A CN 200710071974 CN200710071974 CN 200710071974 CN 200710071974 A CN200710071974 A CN 200710071974A CN 101028867 A CN101028867 A CN 101028867A
- Authority
- CN
- China
- Prior art keywords
- wing
- aircraft
- cylinder
- memory alloy
- shape memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Toys (AREA)
Abstract
一种可改变机翼形状的飞行器,它涉及一种飞行器。针对现有的变形机翼飞行器存在机翼运动机构复杂、重量大、研制成本高,飞行器操作难度大、飞行性能低的问题。本发明由机身(1)和两个机翼(2)组成;每个机翼(2)由固定机翼(3)、滑动机翼(4)、形状记忆合金棒(5)、圆柱体(6)、滑轮(7)组成;固定机翼(3)的一端与机身(1)固接,固定机翼(3)的骨架内装有圆柱体(6)和与圆柱体(6)固接的形状记忆合金棒(5),圆柱体(6)上设有螺旋形凹槽(8),滑动机翼(4)装在固定机翼(3)的骨架内,滑动机翼(4)的首端装有滑轮(7),滑轮(7)装在螺旋形凹槽(8)内。本发明利用形状记忆合金棒作为变形机翼的驱动源,其质量轻、机构简单、维修方便,通过机翼形状的变化解决了飞行器高、低速飞行性能的矛盾。
An aircraft capable of changing the shape of its wings relates to an aircraft. Aiming at the problems of complex wing motion mechanism, heavy weight, high development cost, difficult operation of the aircraft and low flight performance in the existing deformed wing aircraft. The invention consists of a fuselage (1) and two wings (2); each wing (2) consists of a fixed wing (3), a sliding wing (4), a shape memory alloy rod (5), a cylinder (6), pulley (7) is formed; One end of fixed wing (3) is affixed with fuselage (1), and cylinder (6) and solid with cylinder (6) are housed in the skeleton of fixed wing (3). connected shape memory alloy rod (5), the cylinder (6) is provided with a spiral groove (8), the sliding wing (4) is contained in the skeleton of the fixed wing (3), and the sliding wing (4) The first end of the pulley (7) is equipped with, and the pulley (7) is contained in the spiral groove (8). The invention uses the shape memory alloy rod as the driving source of the deformed wing, which has light weight, simple mechanism and convenient maintenance, and solves the contradiction between the high and low speed flight performance of the aircraft through the change of the shape of the wing.
Description
技术领域technical field
本发明涉及一种飞行器。The invention relates to an aircraft.
背景技术Background technique
机翼是飞行器在飞行中可重新构型的主要部件。在飞行中有目地的改变机翼外形(如机翼后掠、改变翼展和弯度等)可以有效地增加机翼的飞行性能。其中,改变翼展和机翼面积的效果最为突出。比如,飞机在巡航时通常要求机翼具有高展弦比和大机翼面积,而飞机要想高速飞行,就要求低展弦比和小机翼面积。现代超音速飞机广泛采用的小展弦比大后掠机翼,超音速阻力较小,但低速时气动效率低,升力特性不好,用低速性能好的大展弦比小后掠角的机翼又会使超音速性能变坏。变展弦比飞机通过机翼展弦比的变化可以解决高、低速性能要求的矛盾。飞机在起飞着陆和低速飞行时用较大的展弦比,因而具有较高的低速巡航效率和较大的起飞着陆升力;在超音速飞行时用较小的展弦比,对于减小超音速飞行的阻力很有利。此外,超音速轰炸机和强击机作超低空高速飞行时,为了减少不平稳气流引起的颠簸,也要求机翼具有较小的展弦比。Wings are the main components of an aircraft that are reconfigurable in flight. Purposefully changing the shape of the wing during flight (such as wing sweep, changing the wingspan and camber, etc.) can effectively increase the flight performance of the wing. Among them, the effect of changing the wingspan and wing area is the most prominent. For example, an aircraft usually requires a high aspect ratio and a large wing area when cruising, and a low aspect ratio and a small wing area are required for an aircraft to fly at high speed. The small aspect ratio and large swept wings widely used in modern supersonic aircraft have small supersonic resistance, but the aerodynamic efficiency is low at low speeds, and the lift characteristics are not good. Wings would again degrade supersonic performance. The variable aspect ratio aircraft can solve the contradiction between high and low speed performance requirements through the change of wing aspect ratio. The aircraft uses a larger aspect ratio when taking off, landing and low-speed flight, so it has higher low-speed cruising efficiency and greater take-off and landing lift; when flying at a supersonic speed, a smaller aspect ratio is used to reduce the supersonic speed. The drag of flight is good. In addition, when supersonic bombers and attack aircraft fly at ultra-low altitude and high speed, in order to reduce the turbulence caused by unsteady airflow, the wings are also required to have a smaller aspect ratio.
而当今的一些变形机翼飞行器,机翼需要通过一套强有力的驱动装置方可在飞行中快速改变其形状,这就势必存在机翼运动机构复杂、重量大、研制成本高,飞行器操作难度大、飞行性能低的问题。However, in some of today's deformable wing aircraft, the wing needs to pass through a set of powerful driving devices to quickly change its shape in flight, which will inevitably lead to complex wing motion mechanisms, heavy weight, high development costs, and difficulty in aircraft operation. Large, low flight performance issues.
发明内容Contents of the invention
本发明的目的是提供一种可改变机翼形状的飞行器,它可解决现有的变形机翼飞行器存在机翼运动机构复杂、重量大、研制成本高、操作难度大、飞行性能低的问题。The object of the present invention is to provide an aircraft capable of changing the shape of the wing, which can solve the problems of complex wing motion mechanism, heavy weight, high development cost, difficult operation and low flight performance in the existing deformed wing aircraft.
本发明由机身和两个机翼组成;所述每个机翼由固定机翼、滑动机翼、形状记忆合金棒、圆柱体、滑轮组成;所述固定机翼的一端与机身固接,固定机翼的骨架内沿固定机翼的尾端至首端的方向上依次装有圆柱体和与圆柱体固接的形状记忆合金棒,圆柱体的外表面上沿圆柱体的长度方向设有螺旋形凹槽,所述滑动机翼装在固定机翼的骨架内,滑动机翼的首端装有滑轮,所述滑轮装在所述螺旋形凹槽内。The present invention consists of a fuselage and two wings; each wing is composed of a fixed wing, a sliding wing, a shape memory alloy rod, a cylinder, and a pulley; one end of the fixed wing is fixedly connected to the fuselage A cylinder and a shape memory alloy rod affixed to the cylinder are sequentially installed in the skeleton of the fixed wing along the direction from the tail end to the head end of the fixed wing, and the outer surface of the cylinder is arranged along the length direction of the cylinder A spiral groove, the sliding wing is installed in the skeleton of the fixed wing, and the head end of the sliding wing is equipped with a pulley, and the pulley is installed in the spiral groove.
本发明具有以下有益效果:在本发明中,驱动滑动机翼线性移动的驱动器是形状记忆合金棒,预先给形状记忆合金棒施加一定角度的旋转,利用电阻丝加热的方式对形状记忆合金棒加热,当形状记忆合金棒加热后,热驱动使形状记忆合金棒恢复到原来的形状,这样,随着形状记忆合金棒的扭转带动圆柱体转动,带动滑动机翼上的滑轮在圆柱体的螺旋形凹槽内滑动,从而实现了滑动机翼的伸出与收回。因此,本发明同现在广泛采用的大型枢轴装置相比,具有质量轻、机构简单、维修方便等优点,不仅可大大降低飞行器的整体质量,提高武器系统的作战机动性和安全性,同时还可减少武器在服役过程中的风险性,降低维护成本。从长远来看,飞行器这种机翼外形上的变化能够使飞机达到更高的速度,并且拥有高燃油效率、高飞行质量、高安全性能以及更好的可操作性、更快的着陆速度,适应各种条件的起飞场,如战斗机可以借助其较大的展弦比和较大的机翼助其在较短的跑道上起飞,或在敌方目标的上空慢速徘徊,当需要投下炸弹时,机翼可以并拢缩短机翼,减小展弦比,以便为快速攻击做好准备。类似地,一些民航客机也可以在飞行时改变其机翼形状,便于省油和更迅速地抵达目的地。也就是说,本发明既可以使飞行器具有较短的起飞距离、较长的滞空时间;在必要时又可以使飞行器具有较快的飞行速度,较高的灵活性。因此,本发明不仅可以改变机翼形状,利用此相关技术还可以用于可变翼巡航导弹、舰船潜艇结构等军用武器结构中,为实现武器系统的安全化、智能化、自适应化提供有力的基础保障,大大地提高了武器系统(尤其是无人机)的作战性能和安全性。The present invention has the following beneficial effects: In the present invention, the driver that drives the sliding wing to move linearly is a shape memory alloy rod, and a certain angle of rotation is applied to the shape memory alloy rod in advance, and the shape memory alloy rod is heated by means of resistance wire heating , when the shape memory alloy rod is heated, the thermal drive makes the shape memory alloy rod return to its original shape, so that the twisting of the shape memory alloy rod drives the cylinder to rotate, and drives the pulley on the sliding wing to rotate in the helical shape of the cylinder Sliding in the groove, thereby realizing the extension and retraction of the sliding wing. Therefore, compared with the large-scale pivot device widely used at present, the present invention has the advantages of light weight, simple mechanism, convenient maintenance, etc., which can not only greatly reduce the overall quality of the aircraft, but also improve the combat maneuverability and safety of the weapon system. It can reduce the risk of weapons in service and reduce maintenance costs. In the long run, the change in the wing shape of the aircraft can enable the aircraft to achieve higher speeds, and have high fuel efficiency, high flight quality, high safety performance, better maneuverability, and faster landing speeds. The take-off field adapts to various conditions. For example, fighter jets can use their larger aspect ratio and larger wings to help them take off on a short runway, or hover slowly over enemy targets, when it is necessary to drop bombs When , the wings can be brought together to shorten the wings and reduce the aspect ratio in order to prepare for a rapid attack. Similarly, some commercial airliners can also change the shape of their wings during flight to save fuel and reach their destinations more quickly. That is to say, the present invention can not only make the aircraft have a shorter take-off distance and longer time in the air, but also enable the aircraft to have a faster flying speed and higher flexibility when necessary. Therefore, the present invention can not only change the shape of the wing, but also can be used in military weapon structures such as variable-wing cruise missiles, ship submarine structures, etc., to provide security, intelligence, and self-adaptation for realizing weapon systems. A strong basic support greatly improves the combat performance and safety of weapon systems (especially unmanned aerial vehicles).
附图说明Description of drawings
图1是本发明的俯视图(机翼形状不变),图2是本发明的俯视图(改变机翼形状)。Fig. 1 is a top view of the present invention (wing shape is constant), and Fig. 2 is a top view of the present invention (wing shape is changed).
具体实施方式Detailed ways
具体实施方式一:结合图1和图2说明本实施方式,本实施方式由机身1和两个机翼2组成;两个机翼2对称设置在机身1的左右两侧,所述每个机翼2由固定机翼3、滑动机翼4、形状记忆合金棒5、圆柱体6、滑轮7组成;所述固定机翼3的一端与机身1固接,固定机翼3的骨架内沿固定机翼3的尾端至首端的方向上依次装有圆柱体6和与圆柱体6固接的形状记忆合金棒5,圆柱体6的外表面上沿圆柱体6的长度方向设有螺旋形凹槽8,所述滑动机翼4装在固定机翼3的骨架内,滑动机翼4的首端装有滑轮7,所述滑轮7装在所述螺旋形凹槽8内,固定机翼3和滑动机翼4所用材料与现有机翼材料相同;所述形状记忆合金棒5的加热方式是直接通电加热或通过电阻丝加热。Specific embodiment one: this embodiment is described in conjunction with Fig. 1 and Fig. 2, and this embodiment is made up of
具体实施方式二:结合图1和图2说明本实施方式,本实施方式的形状记忆合金棒5是TiNi形状记忆合金棒、Cu-Zn形状记忆合金棒、Cu-Al-Ni形状记忆合金棒、Cu-Sn形状记忆合金棒、Mn-Cu形状记忆合金棒、Fe-Pt形状记忆合金棒或Fe-Mn-Si形状记忆合金棒其中的一种。形状记忆合金棒在外界扭转力作用下(环境温度低于形状记忆合金马氏体转化温度),形状记忆合金棒产生一定的扭转变形(扭转应变低于10%),然后对形状记忆合金棒加热,形状记忆合金棒发生奥氏体向马氏体的转变,扭转变形回复至原始形状。如此设置,以上形状记忆合金棒具有扭矩大、可回复扭转角度大、响应速度快、热-机械循环可重复性高的特点。另外,如采用通电加热,以上形状记忆合金棒还有电响应特性,便于控制系统的运动。其它组成及连接关系与具体实施方式一相同。Specific embodiment two: This embodiment is described in conjunction with Fig. 1 and Fig. 2, the shape
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100719749A CN100429120C (en) | 2007-03-30 | 2007-03-30 | Aircraft with changeable wing shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100719749A CN100429120C (en) | 2007-03-30 | 2007-03-30 | Aircraft with changeable wing shape |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101028867A true CN101028867A (en) | 2007-09-05 |
CN100429120C CN100429120C (en) | 2008-10-29 |
Family
ID=38714460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100719749A Expired - Fee Related CN100429120C (en) | 2007-03-30 | 2007-03-30 | Aircraft with changeable wing shape |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100429120C (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102167155A (en) * | 2011-04-01 | 2011-08-31 | 哈尔滨工业大学 | Aircraft with twistable wings |
CN102351045A (en) * | 2011-07-29 | 2012-02-15 | 哈尔滨工业大学 | Wing folding mechanism suitable for folding wings at any angle |
CN103419925A (en) * | 2012-05-16 | 2013-12-04 | 波音公司 | Shape memory alloy active spars for blade twist |
CN104943850A (en) * | 2014-03-27 | 2015-09-30 | 杨文建 | Main wing retractable type fixed wing airplane |
KR20150125864A (en) * | 2014-04-30 | 2015-11-10 | 서울대학교산학협력단 | Apparatus for Improving Aerodynamic Performance of Unmanned Aerial Vehicle |
CN105083532A (en) * | 2015-08-14 | 2015-11-25 | 中国航空工业集团公司西安飞机设计研究所 | Variable unmanned aerial vehicle |
CN105109667A (en) * | 2015-08-24 | 2015-12-02 | 清华大学 | Variable structure with deflection hinge locking and shape memory alloy driving |
CN105620722A (en) * | 2014-10-29 | 2016-06-01 | 北京临近空间飞行器系统工程研究所 | Folding wing rudder miniaturized unfolding structure based on thermosensitive shape memory alloy |
GB2535580A (en) * | 2015-02-17 | 2016-08-24 | Airbus Operations Ltd | Actuation assembly for moving a wing tip device on an aircraft wing |
CN106516079A (en) * | 2016-10-28 | 2017-03-22 | 北京电子工程总体研究所(航天科工防御技术研究开发中心) | Assembly type aircraft based on micro electromechanical system |
CN106741848A (en) * | 2017-01-03 | 2017-05-31 | 北京临近空间飞行器系统工程研究所 | A kind of flexible wing spreading device based on marmem |
CN107750222A (en) * | 2015-04-20 | 2018-03-02 | 乔治·迈克尔·库克 | Aircraft for aerial delivery |
CN111232184A (en) * | 2020-01-21 | 2020-06-05 | 南京航空航天大学 | A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy |
CN111688911A (en) * | 2020-05-26 | 2020-09-22 | 哈尔滨工业大学 | Deformation wing device based on four-corner star-shaped scissor mechanism and rib plates with variable lengths |
CN111924086A (en) * | 2020-07-07 | 2020-11-13 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
CN112960108A (en) * | 2021-04-07 | 2021-06-15 | 西北工业大学 | Folding wing unfolding mechanism based on shape memory alloy driving and unmanned aerial vehicle |
CN113386946A (en) * | 2021-07-21 | 2021-09-14 | 西北工业大学 | Folding wing driven by rotating structure and shape memory alloy |
CN117289722A (en) * | 2023-11-24 | 2023-12-26 | 西安现代控制技术研究所 | Directional hitting route planning method considering initial heading |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101618956B1 (en) * | 2014-06-09 | 2016-05-10 | 서울대학교산학협력단 | Device for Enhancing Aerodynamic Performance of Unmanned Aerial Vehicle |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4113504A1 (en) * | 1991-04-25 | 1992-11-05 | Messerschmitt Boelkow Blohm | Use of shape-memory alloys - by means of wire-wound torsion element |
DE19742314C2 (en) * | 1997-09-25 | 2000-06-21 | Daimler Chrysler Ag | Supporting structure |
US6260795B1 (en) * | 1998-06-02 | 2001-07-17 | Kenneth Earl Gay | Oya computerized glider |
US6588709B1 (en) * | 2002-03-20 | 2003-07-08 | The Boeing Company | Apparatus for variation of a wall skin |
-
2007
- 2007-03-30 CN CNB2007100719749A patent/CN100429120C/en not_active Expired - Fee Related
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102167155B (en) * | 2011-04-01 | 2013-01-09 | 哈尔滨工业大学 | Aircraft with turnable wings |
CN102167155A (en) * | 2011-04-01 | 2011-08-31 | 哈尔滨工业大学 | Aircraft with twistable wings |
CN102351045A (en) * | 2011-07-29 | 2012-02-15 | 哈尔滨工业大学 | Wing folding mechanism suitable for folding wings at any angle |
CN103419925A (en) * | 2012-05-16 | 2013-12-04 | 波音公司 | Shape memory alloy active spars for blade twist |
CN103419925B (en) * | 2012-05-16 | 2018-12-28 | 波音公司 | Marmem active spar for blade twist |
CN104943850A (en) * | 2014-03-27 | 2015-09-30 | 杨文建 | Main wing retractable type fixed wing airplane |
KR101583469B1 (en) * | 2014-04-30 | 2016-01-11 | 서울대학교산학협력단 | Apparatus for Improving Aerodynamic Performance of Unmanned Aerial Vehicle |
KR20150125864A (en) * | 2014-04-30 | 2015-11-10 | 서울대학교산학협력단 | Apparatus for Improving Aerodynamic Performance of Unmanned Aerial Vehicle |
CN105620722A (en) * | 2014-10-29 | 2016-06-01 | 北京临近空间飞行器系统工程研究所 | Folding wing rudder miniaturized unfolding structure based on thermosensitive shape memory alloy |
GB2535580A (en) * | 2015-02-17 | 2016-08-24 | Airbus Operations Ltd | Actuation assembly for moving a wing tip device on an aircraft wing |
US9889920B2 (en) | 2015-02-17 | 2018-02-13 | Airbus Operations Limited | Actuation assembly for moving a wing tip device on an aircraft wing |
CN107750222A (en) * | 2015-04-20 | 2018-03-02 | 乔治·迈克尔·库克 | Aircraft for aerial delivery |
CN107771152A (en) * | 2015-04-20 | 2018-03-06 | 乔治·迈克尔·库克 | Aerial delivery components |
CN105083532A (en) * | 2015-08-14 | 2015-11-25 | 中国航空工业集团公司西安飞机设计研究所 | Variable unmanned aerial vehicle |
CN105109667A (en) * | 2015-08-24 | 2015-12-02 | 清华大学 | Variable structure with deflection hinge locking and shape memory alloy driving |
CN106516079A (en) * | 2016-10-28 | 2017-03-22 | 北京电子工程总体研究所(航天科工防御技术研究开发中心) | Assembly type aircraft based on micro electromechanical system |
CN106516079B (en) * | 2016-10-28 | 2019-06-14 | 北京电子工程总体研究所(航天科工防御技术研究开发中心) | A kind of combined type aircraft based on MEMS |
CN106741848B (en) * | 2017-01-03 | 2019-06-18 | 北京临近空间飞行器系统工程研究所 | A telescopic wing deployment device based on shape memory alloy |
CN106741848A (en) * | 2017-01-03 | 2017-05-31 | 北京临近空间飞行器系统工程研究所 | A kind of flexible wing spreading device based on marmem |
CN111232184B (en) * | 2020-01-21 | 2022-05-24 | 南京航空航天大学 | Driving mechanism for changing helicopter rotor wing tip into sweepback by utilizing shape memory alloy |
CN111232184A (en) * | 2020-01-21 | 2020-06-05 | 南京航空航天大学 | A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy |
CN111688911A (en) * | 2020-05-26 | 2020-09-22 | 哈尔滨工业大学 | Deformation wing device based on four-corner star-shaped scissor mechanism and rib plates with variable lengths |
CN111924086A (en) * | 2020-07-07 | 2020-11-13 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
CN111924086B (en) * | 2020-07-07 | 2021-12-10 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
CN112960108A (en) * | 2021-04-07 | 2021-06-15 | 西北工业大学 | Folding wing unfolding mechanism based on shape memory alloy driving and unmanned aerial vehicle |
CN113386946A (en) * | 2021-07-21 | 2021-09-14 | 西北工业大学 | Folding wing driven by rotating structure and shape memory alloy |
CN113386946B (en) * | 2021-07-21 | 2024-06-04 | 西北工业大学 | Rotary structure and shape memory alloy driven folding wing |
CN117289722A (en) * | 2023-11-24 | 2023-12-26 | 西安现代控制技术研究所 | Directional hitting route planning method considering initial heading |
CN117289722B (en) * | 2023-11-24 | 2024-05-14 | 西安现代控制技术研究所 | Directional hitting route planning method considering initial heading |
Also Published As
Publication number | Publication date |
---|---|
CN100429120C (en) | 2008-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100429120C (en) | Aircraft with changeable wing shape | |
CN100429119C (en) | Aircraft with wing sweepback angle change | |
CN202414160U (en) | Vertical take-off and landing morphing aircraft | |
CN102530238B (en) | Unmanned aerial vehicle with variable sweepbacks and spans of wings | |
CN200995782Y (en) | Airplane | |
CN206273678U (en) | The unmanned plane that a kind of variable empennage is controlled with folded wing | |
WO2013192483A1 (en) | Morphing wing for an aircraft | |
CN104691739A (en) | High-lift-force laminar flow aerofoil profile with low-resistance and high-drag-divergence Mach number | |
CN104139847A (en) | Trailing edge and leading edge with adjustable degrees of curvature for aircraft wing | |
CN114560084A (en) | Self-unfolding deformation wing of bionic flapping wing flying robot | |
CN102167155A (en) | Aircraft with twistable wings | |
CN111824415A (en) | Aerodynamic layout of a swarm drone that can fly in series | |
US2918229A (en) | Ducted aircraft with fore elevators | |
CN114467003A (en) | Missile (missile) | |
CN107187595A (en) | A kind of VTOL fixed-wing unmanned plane with bending moment propeller | |
CN204660024U (en) | A kind of dish-type rotor unmanned helicopter | |
CN108100226B (en) | Variable radius wing leading edge structure | |
CN212423467U (en) | An unmanned aerial vehicle capable of long-duration, wide-speed, and high-maneuvering cruise | |
CN105486177A (en) | Target drone capable of achieving great maneuver | |
CN110816827A (en) | A bionic butterfly flapping aircraft | |
CN110422314A (en) | It can front and back deformation Bionic flexible wing | |
CN107380452B (en) | Deformation embedded type bullet cabin flow control device | |
CN107697284A (en) | A kind of two section type bionic flapping-wing unmanned plane wing | |
CN114812291A (en) | Completely-contractible flexible wing-changing mechanism | |
CN210116639U (en) | A variable-configuration multi-modal unmanned aerial vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081029 Termination date: 20200330 |
|
CF01 | Termination of patent right due to non-payment of annual fee |