CN101028702A - Microfeeding system for precisive grinding - Google Patents
Microfeeding system for precisive grinding Download PDFInfo
- Publication number
- CN101028702A CN101028702A CN 200710036439 CN200710036439A CN101028702A CN 101028702 A CN101028702 A CN 101028702A CN 200710036439 CN200710036439 CN 200710036439 CN 200710036439 A CN200710036439 A CN 200710036439A CN 101028702 A CN101028702 A CN 101028702A
- Authority
- CN
- China
- Prior art keywords
- micro
- displacement
- feed
- output
- flexible hinge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 48
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 230000007246 mechanism Effects 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims description 58
- 230000000694 effects Effects 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 5
- 230000009193 crawling Effects 0.000 claims description 4
- 230000010365 information processing Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000005304 optical glass Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000009347 mechanical transmission Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RVRCFVVLDHTFFA-UHFFFAOYSA-N heptasodium;tungsten;nonatriacontahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W] RVRCFVVLDHTFFA-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Landscapes
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种用于精密机床的微进给系统,尤其是一种用于精密磨削的大刚度、高精度压电驱动柔性铰链的微进给系统。The invention relates to a micro-feed system for precision machine tools, in particular to a micro-feed system for precision grinding with large rigidity and high-precision piezoelectrically driven flexible hinges.
背景技术 Background technique
近年来,随着微电子、材料、生物和宇航等学科的发展,尤其是大规模和超大规模集成电路发展、微机电产品的开发需求,具有亚微米和纳米定位精度的微位移技术达到迅速发展和广泛应用[1]。In recent years, with the development of microelectronics, materials, biology and aerospace and other disciplines, especially the development of large-scale and ultra-large-scale integrated circuits, and the development needs of micro-electromechanical products, micro-displacement technology with sub-micron and nanometer positioning accuracy has achieved rapid development And widely used [1] .
微位移机构是指利用微位移技术实现行程小、精度高、灵敏度高的机构,如行程小于毫米级、精度达到亚微米级和纳米级、灵敏度为纳米级位移/牛顿力。Micro-displacement mechanism refers to a mechanism that uses micro-displacement technology to achieve small travel, high precision, and high sensitivity, such as travel less than millimeters, sub-micron and nano-level precision, and nano-level displacement/Newton force sensitivity.
目前,常见的微位移机构包括:机械传动式、扭轮摩擦传动式、电热变形致动式、磁致伸缩式、压电陶瓷驱动式、弹性变形传动式、柔性铰链式、直线电机式等。At present, common micro-displacement mechanisms include: mechanical transmission type, torsion wheel friction transmission type, electrothermal deformation actuation type, magnetostrictive type, piezoelectric ceramic drive type, elastic deformation transmission type, flexible hinge type, linear motor type, etc.
压电陶瓷以其响应快、易于微型化、重复性好、分辨率高、刚度好、无磁场干扰等优点在微位移中得到了广泛的应用。Piezoelectric ceramics have been widely used in micro-displacement due to their advantages such as fast response, easy miniaturization, good repeatability, high resolution, good stiffness, and no magnetic field interference.
但是,在精密机械制造领域,压电陶瓷式微位移机构只有用于车削、镗削小切削力场合的应用研究。其主要技术特征是,行程大约为0.05~0.5mm,精度为0.05μm,刚度小于50N/μm。However, in the field of precision machinery manufacturing, the piezoelectric ceramic micro-displacement mechanism is only used in the application research of turning and boring with small cutting force. Its main technical features are that the stroke is about 0.05-0.5mm, the precision is 0.05μm, and the stiffness is less than 50N/μm.
然而,磨削光学玻璃、陶瓷天线罩等脆硬薄工件时,砂轮架进给量达到亚微米级可使磨屑成为切削塑性材料时的卷曲状,从而通过改善磨削条件,提高工件被磨削表面的精度和表面质量,如将光学玻璃加工成为光玻璃,即磨削成表面粗糙度数值为纳米级的透镜,使磨削陶瓷天线罩时不产生任何微裂纹并保证理想的形线精度等。因此,用于磨床的微进给系统正在成为磨削脆硬等特殊材料,实现精密和超精密加工精度和表面质量的基本工艺装置或机床附件。However, when grinding brittle, hard and thin workpieces such as optical glass and ceramic radome, the feed rate of the grinding wheel frame can reach the sub-micron level, which can make the abrasive chips become curled when cutting plastic materials, thereby improving the grinding conditions and improving the workpiece’s grinding ability. The accuracy and surface quality of the grinding surface, such as processing optical glass into optical glass, that is, grinding into a lens with a surface roughness value of nanometer level, so that no micro-cracks will be generated when grinding the ceramic radome and the ideal shape line accuracy will be guaranteed. wait. Therefore, the micro-feed system for grinding machines is becoming a basic process device or machine tool accessory for grinding special materials such as brittle and hard, and achieving precision and ultra-precision machining accuracy and surface quality.
目前大多数精密磨床解决上述两种问题时,均存在以下几个主要问题:At present, when most precision grinding machines solve the above two problems, there are the following main problems:
1、传统磨床的机械传动进给精度有限,目前,采用伺服电机、滚珠丝杠副直接驱动的磨床砂轮架最小进给分辨率为0.5μm,要进一步精确到0.2~0.1μm是很困难的,甚至是不可能的。1. The mechanical transmission feed accuracy of traditional grinding machines is limited. At present, the minimum feed resolution of the grinding wheel frame of the grinding machine directly driven by the servo motor and the ball screw pair is 0.5 μm, and it is very difficult to be further accurate to 0.2-0.1 μm. It's not even possible.
2、动态补偿时的响应频率低,这是由于砂轮架及其移动部件质量很大、机械传动机构爬行等原因所致,目前,磨床性能指标都不涉及进给运动的响应频率。2. The response frequency during dynamic compensation is low, which is due to the large mass of the grinding wheel frame and its moving parts, and the crawling of the mechanical transmission mechanism. At present, the performance indicators of the grinding machine do not involve the response frequency of the feed movement.
3、直线电机进给装置具有任意工作行程、9.8m/s2以上的进给加速度、系统结构简单等很多优点,但也存在成本高、发热严重、控制系统复杂、隔磁防磁效果尚不理想等主要缺点,影响了该进给系统的综合性能。3. The linear motor feed device has many advantages such as arbitrary working stroke, feed acceleration above 9.8m/s2, and simple system structure, but it also has high cost, serious heat generation, complex control system, and unsatisfactory magnetic isolation and antimagnetic effects, etc. The main disadvantage affects the overall performance of the feed system.
发明内容Contents of Invention
本发明要解决的技术问题在于,提供一种适用于精密磨床的大刚度、高精度压电驱动柔性铰链的微进给系统,该系统能实现最小进给量为0.1~0.05μm,进给定位精度为±0.01~0.005μm,系统刚度为200-400N/μm。The technical problem to be solved by the present invention is to provide a micro-feed system suitable for large rigidity and high-precision piezoelectrically driven flexible hinges suitable for precision grinding machines. The precision is ±0.01~0.005μm, and the system stiffness is 200-400N/μm.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种用于精密磨削的微进给系统,包括驱动装置、执行机构、检测装置和控制系统四部分。A micro-feeding system for precise grinding includes four parts: a driving device, an executing mechanism, a detecting device and a control system.
驱动装置由压电驱动电源、压电陶瓷、人机接口输入装置、位移-电压数据构造表组成,驱动装置的输出刚度与微进给系统刚度的比值为1/3~1/5;The driving device is composed of piezoelectric driving power supply, piezoelectric ceramics, human-machine interface input device, and displacement-voltage data structure table. The ratio of the output stiffness of the driving device to the stiffness of the micro-feeding system is 1/3 to 1/5;
执行机构由柔性铰链机构和微进给工作台组成,柔性铰链机构在驱动装置的电压激励下发生形变,并把相应的微位移传递给微进给工作台;The actuator is composed of a flexible hinge mechanism and a micro-feed workbench. The flexible hinge mechanism is deformed under the voltage excitation of the drive device and transmits the corresponding micro-displacement to the micro-feed workbench;
柔性铰链机构将柔性铰链形变部分和压电陶瓷支撑部分集成为一体,改变柔性铰链形变的输出位置,使系统的输出位移分辨率提高3~5倍,输出刚度增加3~5倍;The flexible hinge mechanism integrates the flexible hinge deformation part and the piezoelectric ceramic support part, changes the output position of the flexible hinge deformation, increases the output displacement resolution of the system by 3 to 5 times, and increases the output stiffness by 3 to 5 times;
检测装置包括用于检测微进给系统实际输出位移的电感或电容式位置传感器或光栅尺、检测信号获取模块、电压-位移补偿数据构造表、信号处理与输出模块,通过输出电压标识实际位移用于实现微进给工作台的位移检测;The detection device includes an inductive or capacitive position sensor or a grating ruler for detecting the actual output displacement of the micro-feeding system, a detection signal acquisition module, a voltage-displacement compensation data construction table, a signal processing and output module, and is used to identify the actual displacement through the output voltage. To realize the displacement detection of the micro-feed table;
控制系统包括微处理器、D/A和A/D转换器、数据输入/输出显示器、信号放大器、信息集成接口、信号处理参考模型和算法等,以实现微进给系统的驱动装置、执行机构、检测装置的数据输入/出、信息处理和协同控制。The control system includes microprocessor, D/A and A/D converter, data input/output display, signal amplifier, information integration interface, signal processing reference model and algorithm, etc., to realize the driving device and actuator of the micro-feeding system , Data input/output, information processing and collaborative control of detection devices.
微进给工作台是在传统磨床砂轮架和砂轮架工作台之间增加一级由在驱动装置电压激励下发生形变的柔性铰链机构驱动的工作台,即二级工作台。The micro-feed workbench is a workbench driven by a flexible hinge mechanism that deforms under the excitation of the driving device voltage between the traditional grinder wheel frame and the wheel frame table, that is, the secondary workbench.
柔性铰链形变部分的结构为直圆、双杠杆组成的平行四边形结构形式。The structure of the deformable part of the flexible hinge is a straight circle and a parallelogram structure composed of double levers.
控制系统信号处理参考模型由位移-电压数据构造表、电压-位移补偿数据构造表的前馈数据模型组成,其主要数据是支持向量机及计算智能算法的处理结果,以解决由于压电陶瓷迟滞、儒变效应及执行机构爬行等问题。The signal processing reference model of the control system is composed of the displacement-voltage data structure table and the feed-forward data model of the voltage-displacement compensation data structure table. , Confucian variable effect and executive agency crawling and other issues.
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:Owing to adopting above-mentioned technical scheme, the present invention has following advantage and positive effect compared with prior art:
1.通过对压电陶瓷驱动器、柔性铰链机构的优化设计与配置,并在相应精度的位移检测装置支持下,实现和保证了精密磨床的微进给精度要求,如实现0.1μm的最小进给量,定位精度为±0.01μm,可以满足光学玻璃、陶瓷天线罩等脆硬薄工件的超精密磨削的精密进给需求。1. Through the optimized design and configuration of the piezoelectric ceramic driver and the flexible hinge mechanism, and with the support of the corresponding precision displacement detection device, the micro-feed accuracy requirements of the precision grinding machine are realized and guaranteed, such as the minimum feed of 0.1μm With a positioning accuracy of ±0.01μm, it can meet the precision feeding requirements of ultra-precision grinding of brittle, hard and thin workpieces such as optical glass and ceramic radomes.
2.通过对压电陶瓷驱动器和铰链机构相关技术参数的优化设计,获得了具有较大刚度的微进给系统,如刚度≥300N/μm的微进给系统,可以满足磨削加工对微进给系统刚度的基本要求。2. Through the optimized design of the relevant technical parameters of the piezoelectric ceramic driver and the hinge mechanism, a micro-feeding system with a relatively large stiffness is obtained, such as a micro-feeding system with a stiffness ≥ 300N/μm, which can meet the requirements of grinding processing for micro-feeding. A basic requirement for the stiffness of the system.
3.微进给系统具有体积小、外型规范、可以灵活根据需要进行配置等特点,可以作为机床附件灵活配置。3. The micro-feed system has the characteristics of small size, standardized appearance, and can be flexibly configured according to needs, and can be flexibly configured as a machine tool accessory.
4.由于借鉴和利用了现有成熟精密磨床的技术优势,使精密磨床的研发成功率提高、周期缩短和开销降低。4. Due to the reference and utilization of the technical advantages of existing mature precision grinding machines, the success rate of research and development of precision grinding machines is improved, the cycle is shortened, and the cost is reduced.
5.通过设置微进给系统中的柔性铰链机构与微进给工作台之间的最小间隙,使普通磨削时产生的磨削力与柔性铰链机构和压电驱动装置无关,即在普通磨削进给精度的要求(如粗磨、半精磨和精磨)下,可以直接使用和发挥原机床功能和磨削效率,而不影响微进给系统的精度或不受微进给系统刚度等的任何限制;当需要微进给系统实现精密进给时,由压电驱动装置消除最小间隙,并使柔性铰链产生形变而驱动微进给工作台,在微进给系统的支持下,一般可提高磨削精度2级或以上。5. By setting the minimum gap between the flexible hinge mechanism in the micro-feed system and the micro-feed table, the grinding force generated during ordinary grinding has nothing to do with the flexible hinge mechanism and the piezoelectric drive device, that is, in ordinary grinding Under the requirements of grinding feed accuracy (such as rough grinding, semi-fine grinding and fine grinding), the original machine tool function and grinding efficiency can be directly used and brought into play without affecting the accuracy of the micro-feeding system or being affected by the stiffness of the micro-feeding system etc.; when the micro-feeding system is required to achieve precision feeding, the piezoelectric drive device eliminates the minimum gap and deforms the flexible hinge to drive the micro-feeding table. With the support of the micro-feeding system, generally It can improve the grinding precision by 2 grades or above.
附图说明Description of drawings
图1为本发明的微进给系统基本组成图;Fig. 1 is the basic composition diagram of the micro-feeding system of the present invention;
图2为采用微进给系统的精密磨床两级进给机构示意图;Figure 2 is a schematic diagram of a two-stage feed mechanism for a precision grinder using a micro-feed system;
图3为微进给系统涉及的压电陶瓷迟滞效应示意图;Figure 3 is a schematic diagram of the piezoelectric ceramic hysteresis effect involved in the micro-feed system;
图4为微进给系统中压电陶瓷的工作能力及其主要工作参数的制约关系示意图;Fig. 4 is a schematic diagram of the restriction relationship between the working capacity of piezoelectric ceramics and its main working parameters in the micro-feeding system;
图5为柔性铰链结构及其相关部件的装配关系示意图;Fig. 5 is a schematic diagram of the assembly relationship of the flexible hinge structure and related components;
图6为微进给系统的控制系统原理图;Fig. 6 is the schematic diagram of the control system of the micro-feed system;
图7为实施例中微进给系统控制原理及其基本配置图。Fig. 7 is a control principle and basic configuration diagram of the micro-feeding system in the embodiment.
具体实施方式 Detailed ways
以下结合实施例及附图对本发明作进一步的描述。The present invention will be further described below in conjunction with the embodiments and accompanying drawings.
一种用于精密磨削的大刚度、高精度微进给系统由驱动装置、执行机构、检测装置和控制系统四部分组成(见图1)。其实现的主要技术参数为:最小进给量为0.1~0.05μm,进给定位精度为±0.01~0.005μm,系统刚度为200-400N/μm。其中:A high-rigidity, high-precision micro-feed system for precision grinding consists of four parts: a drive device, an actuator, a detection device and a control system (see Figure 1). The main technical parameters realized are: the minimum feed rate is 0.1-0.05μm, the feed positioning accuracy is ±0.01-0.005μm, and the system stiffness is 200-400N/μm. in:
1.驱动装置为压电陶瓷驱动装置,它由压电驱动电源、压电陶瓷、人机接口输入装置、位移-电压数据构造表组成,以提供实现微位移的驱动电压。1. The driving device is a piezoelectric ceramic driving device, which is composed of a piezoelectric driving power supply, piezoelectric ceramics, a man-machine interface input device, and a displacement-voltage data structure table to provide a driving voltage for realizing micro-displacement.
2.压电驱动装置的主要技术特征2. The main technical characteristics of the piezoelectric drive device
(1)直线推力式的压电驱动方式。由于磨床砂轮架5总重量一般为2000N,故采用直线推力式的压电陶瓷驱动方式,即在传统磨床砂轮架5和砂轮架工作台(称为一级工作台3)之间增加一级工作台(称为二级工作台,也即微进给工作台4)(见图2)。在工件1磨削过程中,一般可先采用一级进给,即由一级工作台3带动微进给工作台4,包括柔性铰链机构8、位移检测装置7等,以及砂轮架5和砂轮2一起完成磨削进给运动(也称为宏观进给运动),以完成粗磨、半精磨和精磨;当需要进行精细磨削时,启动磨床微进给系统进给,即由控制系统10启动压电驱动装置9,再激励柔性铰链机构8产生形变,并通过钢球6把相应的微位移传递给微进给工作台4,再带动砂轮架5和砂轮2完成精密磨削进给运动(也称为微观进给运动)。(1) Linear thrust piezoelectric drive method. Since the total weight of the
(2)正的工作电压。为了保证和提高压电陶瓷的工作寿命,避免采用正负交替的工作电压。然而,由于压电陶瓷迟滞效应,即在同样的电场作用下,压电陶瓷升压和降压时的位移曲线是不一致的,也即当工作电压逐步上升完成微进给要求之后,逐步恢复电压时微进给系统不能回到相应电压对应的原始位置,如图3所示,电压为0时,位移为0,但电压上升后再下降至0时位移不能恢复到0;电压上升至50V时对应的电压为43μm,但当电压下降至50V时,对应的电压为55μm。为此,采取的解决方案如下:(2) Positive working voltage. In order to ensure and improve the working life of piezoelectric ceramics, avoid using alternating positive and negative working voltages. However, due to the hysteresis effect of piezoelectric ceramics, that is, under the same electric field, the displacement curves of piezoelectric ceramics during boosting and stepping down are inconsistent, that is, when the operating voltage is gradually increased to complete the micro-feeding requirements, the voltage is gradually restored When the micro-feeding system cannot return to the original position corresponding to the corresponding voltage, as shown in Figure 3, when the voltage is 0, the displacement is 0, but when the voltage rises and then drops to 0, the displacement cannot return to 0; when the voltage rises to 50V The corresponding voltage is 43μm, but when the voltage drops to 50V, the corresponding voltage is 55μm. To this end, the solution adopted is as follows:
1)配置驱动装置的工作电压为0~150V,但实际工作时,驱动微位移的工作电压从大于0的初始电压开始(如2~3V),即使微进给系统在初始电压的作用下和位移检测装置的支持下,准确复位。初始电压是压电陶瓷迟滞效应导致微进给工作台不能复位(回零)的修复电压。1) The operating voltage of the configured driving device is 0-150V, but in actual work, the operating voltage for driving the micro-displacement starts from an initial voltage greater than 0 (such as 2-3V), even if the micro-feeding system is under the action of the initial voltage and With the support of the displacement detection device, it can be reset accurately. The initial voltage is the repair voltage at which the micro-feed table cannot be reset (returned to zero) due to the hysteresis effect of piezoelectric ceramics.
2)使柔性铰链机构与微进给工作台之间具有最小间隙量ΔX,即当无工作电压(关机)或工作电压为0(启动)时,微进给系统与磨床砂轮架二级进给工作台处于非接触状态。其目的在于:①采用一级进给工作台驱动砂轮进行粗、半精、精磨等工序时,避免磨削力对压电陶瓷和柔性铰链机构产生任何直接影响;②采用微进给系统进行精细磨削时,首先通过初始电压消除ΔX,以使微进给工作台复位或处于准确的微进给初始位置(见图2)。2) There is a minimum gap ΔX between the flexible hinge mechanism and the micro-feeding table, that is, when there is no working voltage (shutdown) or the working voltage is 0 (starting), the micro-feeding system and the grinding wheel frame of the grinding machine are fed in two stages The workbench is in a non-contact state. Its purpose is to: ①Use the first-stage feed table to drive the grinding wheel for rough, semi-finish, and fine grinding processes, so as to avoid any direct impact of the grinding force on the piezoelectric ceramics and flexible hinge mechanism; ②Use the micro-feed system for grinding. During fine grinding, first eliminate ΔX through the initial voltage, so that the micro-feeding workbench can be reset or in an accurate micro-feeding initial position (see Figure 2).
3)在实现微进给过程中,通过压电陶瓷迟滞效应参考模型、位移检测装置的反馈信息、电压-位移补偿数据构造表等,修正驱动电压的输入值。其中,压电陶瓷迟滞效应参考模型是根据理论模型和相应的压电陶瓷实验数据而建立的,用于补偿压电陶瓷迟滞所引起的位移误差。3) In the process of micro-feeding, the input value of the driving voltage is corrected through the piezoelectric ceramic hysteresis effect reference model, the feedback information of the displacement detection device, the voltage-displacement compensation data construction table, etc. Among them, the piezoelectric ceramic hysteresis effect reference model is established based on the theoretical model and the corresponding piezoelectric ceramic experimental data, which is used to compensate the displacement error caused by the piezoelectric ceramic hysteresis.
(3)压电陶瓷的技术参数设计。压电陶瓷的主要技术参数是最大的输出力Fmax和最大的输出位移Lmax。压电陶瓷的输出位移和输出力是相互制约的,当输出力达到最大值(Fmax)时,输出位移为最小值(0),反之,输出位移达到最大值(Lmax)时,输出力为最小值(0)。因此,可以根据压电陶瓷的输出力范围(0~Fmax)和输出位移范围(0~Lmax)确定压电陶瓷的工作区域(图4中阴影部分),其实际输出力和输出位移函数如公式(1)所示。(3) Design of technical parameters of piezoelectric ceramics. The main technical parameters of piezoelectric ceramics are the maximum output force Fmax and the maximum output displacement Lmax. The output displacement and output force of piezoelectric ceramics are mutually restricted. When the output force reaches the maximum value (Fmax), the output displacement is the minimum value (0). Conversely, when the output displacement reaches the maximum value (Lmax), the output force is the minimum value. value (0). Therefore, the working area of piezoelectric ceramics (the shaded part in Figure 4) can be determined according to the output force range (0-Fmax) and output displacement range (0-Lmax) of piezoelectric ceramics. The actual output force and output displacement functions are as follows: (1) shown.
式中,y为压电陶瓷的实际位移(μm)In the formula, y is the actual displacement of piezoelectric ceramics (μm)
x为压电陶瓷的实际输出力(N)x is the actual output force of piezoelectric ceramics (N)
3.执行机构的主要技术特征3. The main technical characteristics of the actuator
(1)执行机构的基本组成。执行机构即为微位移执行机构,其特征在于,它由柔性铰链机构和微进给工作台组成。柔性铰链机构作用是,在驱动装置的电压激励下发生形变,并将相应的形变微位移传递给微进给工作台。(1) The basic composition of the executive body. The actuator is a micro-displacement actuator, which is characterized in that it consists of a flexible hinge mechanism and a micro-feed workbench. The function of the flexible hinge mechanism is to deform under the voltage excitation of the driving device, and transmit the corresponding micro-displacement of the deformation to the micro-feed workbench.
(2)柔性铰链的基本特征(见图5)。柔性铰链是一个集柔性铰链形变部分和压电陶瓷支撑部分为一体的整体结构。通过钢球11使压电陶瓷驱动器12与柔性铰链8实现点接触的无间隙连接,以减少和避免接触弯矩对压电陶瓷的影响。通过钢球6使柔性铰链8与驱动砂轮架的微进给工作台4实现点接触的无间隙连接。柔性铰链的形变部分的结构为直圆、双杠杆组成的平行四边形结构形式。(2) The basic features of the flexible hinge (see Figure 5). The flexible hinge is an integral structure integrating the flexible hinge deformation part and the piezoelectric ceramic support part. Through the
(3)柔性铰链刚度。可以根据微进给系统的输出目标、关键零部件特性和机构缩放原理等,确定柔性铰链与压电陶瓷的输出位移关系及其输出力关系,相关函数式见公式(2)和(3)。(3) Flexible hinge stiffness. According to the output target of the micro-feeding system, the characteristics of key components, and the scaling principle of the mechanism, the relationship between the output displacement and the output force of the flexible hinge and the piezoelectric ceramic can be determined. The related functions are shown in formulas (2) and (3).
S=Tfy (2)S=T f y (2)
式中,S和P分别为柔性铰链输出位移和输出力,Tf为柔性铰链与压电陶瓷的缩放系数,如Tf<1时,表明柔性铰链的输出位移缩小,刚度增加,反之,输出位移放大,刚度减小。为了提高微进给系统的位移分辨率,通常使Tf<1,Tf的取值与对微进给系统的性能指标要求、压电陶瓷的性能指标设计、柔性铰链机构的性能指标设计有关。In the formula, S and P are the output displacement and output force of the flexible hinge, respectively, and T f is the scaling coefficient of the flexible hinge and piezoelectric ceramics. If T f <1, it indicates that the output displacement of the flexible hinge decreases and the stiffness increases; otherwise, the output The displacement is enlarged and the stiffness is reduced. In order to improve the displacement resolution of the micro-feeding system, T f < 1 is usually used. The value of T f is related to the performance index requirements of the micro-feeding system, the performance index design of piezoelectric ceramics, and the performance index design of flexible hinge mechanisms .
改变柔性铰链的形变输出位置,即在Y轴方向上,钢球11的球心坐标和压电陶瓷驱动器12的轴线坐标之间的距离(见图5),可以使微进给工作台获得不同的输出位移,以及在压电驱动装置作用下柔性铰链的输出刚度。Changing the deformation output position of the flexible hinge, that is, the distance between the center coordinates of the
由公式(2)和(3),可以计算微进给系统的刚度,或者根据微进给系统的刚度分配和配置柔性铰链和压电陶瓷的相关技术参数。From the formulas (2) and (3), the stiffness of the micro-feeding system can be calculated, or the relevant technical parameters of the flexible hinge and piezoelectric ceramics can be assigned and configured according to the stiffness of the micro-feeding system.
将公式(1)分别代入公式(2)和(3),得公式(4)和(5)。Substitute formula (1) into formulas (2) and (3) respectively to get formulas (4) and (5).
当x=0时,由公式(4)得到:Smax=Tf×LmaxWhen x=0, it can be obtained from formula (4): Smax=T f ×Lmax
当x=Fmax时,由公式(2)得到:
则微进给系统的刚度KS如公式(6)所示:Then the stiffness K S of the micro-feed system is shown in formula (6):
微进给系统实际工作时,需要施加预紧力PP,以保证微进给工作台与磨床工作台之间能够实现无间隙的运动。增加预紧力后的输出力和输出位移函数如公式(7)和(8)。When the micro-feeding system is actually working, it is necessary to apply a pre-tightening force P P to ensure that the movement between the micro-feeding table and the grinding machine table can be realized without gaps. The output force and output displacement functions after increasing the pretightening force are shown in formulas (7) and (8).
当x=0时,则有:When x=0, there are:
当x=Fmax时,则有:When x=F max , then:
系统的刚度KS为:The stiffness K S of the system is:
4.检测装置的主要技术特征4. Main technical characteristics of the detection device
检测装置即为用于检测微进给系统实际输出位移的装置,其特征在于,它包括位移信号检测器、检测信号获取模块、电压-位移补偿数据构造表、信号处理与输出模块等,以对微进给工作台的实际位移进行检测、数据处理和补偿电压输出。通常,位移信号检测器包括电感式(电容式)传感器或光栅尺等,可以根据微进给系统的工作行程和定位精度进行选择和配置,如微进给系统的工作行程为50μm,定位精度为±0.3μm,可以选择电感式位置传感器7(见图2)。The detection device is a device used to detect the actual output displacement of the micro-feeding system, and it is characterized in that it includes a displacement signal detector, a detection signal acquisition module, a voltage-displacement compensation data construction table, a signal processing and output module, etc. The actual displacement of the micro-feed workbench is detected, data processed and compensated for voltage output. Usually, the displacement signal detector includes an inductive (capacitive) sensor or a grating ruler, etc., which can be selected and configured according to the working stroke and positioning accuracy of the micro-feeding system. For example, the working stroke of the micro-feeding system is 50 μm, and the positioning accuracy is ±0.3μm, you can choose the inductive position sensor 7 (see Figure 2).
5.控制系统的主要技术特征5. Main technical characteristics of the control system
控制系统即为微进给系统的控制系统,其特征在于,它包括微处理器、D/A和A/D转换器、数据输入/输出显示器、驱动放大电源、信息集成接口、信号处理参考模型和算法、相关电路等(见图6),以实现微进给系统的驱动装置、执行机构、检测装置等的数据输入/出、信息处理和协同控制。The control system is the control system of the micro-feeding system, which is characterized in that it includes a microprocessor, D/A and A/D converters, a data input/output display, a drive amplifier power supply, an information integration interface, and a signal processing reference model And algorithms, related circuits, etc. (see Figure 6), to realize the data input/output, information processing and cooperative control of the drive device, actuator, detection device, etc. of the micro-feeding system.
信号处理参考模型由位移-电压数据构造表、电压-位移补偿数据构造表等前馈数据模型等组成,其主要数据是支持向量机及计算智能算法的处理结果,以解决由于压电陶瓷迟滞、儒变效应及执行机构爬行等问题。The signal processing reference model is composed of displacement-voltage data structure table, voltage-displacement compensation data structure table and other feed-forward data models. Confucianism effect and actuator crawling and other issues.
实施例1Example 1
陶瓷天线罩修磨磨床,其技术指标要求是:磨削直径≤Φ500mm,砂轮架的最小设定单位为0.1μm,实际修磨余量<10μm,但要求磨床包括微进给系统具有良好的刚性和工作平稳性。以MG1520精密磨床为基础,该磨床砂轮架的最小设定单位是1μm。Ceramic radome grinding machine, its technical index requirements are: grinding diameter ≤ Φ500mm, the minimum setting unit of the grinding wheel frame is 0.1μm, the actual grinding allowance is <10μm, but the grinding machine including the micro-feeding system is required to have good rigidity and work stability. Based on the MG1520 precision grinding machine, the minimum setting unit of the grinding wheel frame of the grinding machine is 1 μm.
由此给出微进给系统的基本配置是:The basic configuration of the micro-feeding system is given as follows:
(1)驱动装置的主要技术特征和相关参数:驱动电源电压为0~150V,压电陶瓷的最大输出力为3600N、最大输出位移为60μm;(1) The main technical characteristics and related parameters of the driving device: the driving power supply voltage is 0-150V, the maximum output force of piezoelectric ceramics is 3600N, and the maximum output displacement is 60μm;
(2)执行机构的主要技术特征和相关参数是,柔性铰链采用直圆、双杠杆组成的平行四边形结构形式,取柔性铰链与压电陶瓷的缩放系数Tf=1/3,预紧力PP=150N。按公式(9)计算可知:(2) The main technical characteristics and related parameters of the actuator are that the flexible hinge adopts a parallelogram structure composed of straight circles and double levers, and the scaling factor T f = 1/3 of the flexible hinge and piezoelectric ceramics is taken, and the pre-tightening force P P = 150N. According to formula (9), it can be known that:
(3)检测装置的主要技术特征和相关参数:采用电感式位置检测仪器,其相关技术参数是,检测分辨率为0.01μm。(3) The main technical characteristics and relevant parameters of the detection device: an inductive position detection instrument is adopted, and its relevant technical parameters are that the detection resolution is 0.01 μm.
(4)控制系统的主要技术特征:根据要求和图6所示的控制原理进行本实施例的控制系统配置,如采用32位微处理器、16位D/A和A/D转换器、高精度的位置检测传感器(见图7)。(4) Main technical features of the control system: carry out the control system configuration of this embodiment according to the requirements and the control principle shown in Figure 6, such as adopting 32-bit microprocessors, 16-bit D/A and A/D converters, high precision position detection sensor (see Figure 7).
根据陶瓷天线罩修磨工序的基本要求,所采取的解决方案是,以MG1500磨床为基础,配置微进给系统。微进给系统按上述主要技术特征及其相关参数进行研制,并由此获得陶瓷天线罩修磨磨床微进给工作台的实测刚度为360N/μm,该磨床的其它技术指标为:砂轮架最小设定单位为0.1μm,进给定位精度是±0.02,圆度误差小于10μm。According to the basic requirements of the ceramic radome grinding process, the solution adopted is to configure a micro-feeding system based on the MG1500 grinder. The micro-feeding system is developed according to the above-mentioned main technical features and related parameters, and the measured stiffness of the micro-feeding workbench of the ceramic radome grinding machine is 360N/μm. Other technical indicators of the grinding machine are: the minimum grinding wheel frame The setting unit is 0.1μm, the feed positioning accuracy is ±0.02, and the roundness error is less than 10μm.
实施例2Example 2
锭杆轴承档精密磨床,其技术指标要求是:磨削直径≤Φ300mm以内,砂轮架的最小设定单位为0.5μm,锭杆轴承档的磨削精度为IT5(轴承档最大尺寸对应的公差值为0.023μm),批量磨削时的轴承档直径一致性小于10μm。然而,现有的MG1320E精密磨床的砂轮架最小设定单位是1μm。为此,以MG1320E精密磨床为基础,增加本发明的微进给系统。The technical index requirements of the precision grinding machine for the spindle rod bearing gear are: the grinding diameter is less than or equal to Φ300mm, the minimum setting unit of the grinding wheel frame is 0.5μm, and the grinding accuracy of the spindle rod bearing gear is IT5 (the tolerance corresponding to the maximum size of the bearing gear The value is 0.023μm), and the consistency of the bearing stall diameter during batch grinding is less than 10μm. However, the minimum setting unit of the grinding wheel frame of the existing MG1320E precision grinding machine is 1 μm. For this reason, based on the MG1320E precision grinding machine, the micro-feeding system of the present invention is added.
微进给系统的基本配置是:The basic configuration of the micro-feeding system is:
(1)驱动装置的主要技术特征和相关参数:驱动电源电压为0~150V,压电陶瓷的最大输出力为3500N、最大输出位移为100μm(参见图4);(1) The main technical characteristics and related parameters of the driving device: the driving power supply voltage is 0-150V, the maximum output force of piezoelectric ceramics is 3500N, and the maximum output displacement is 100μm (see Figure 4);
(2)执行机构的主要技术特征和相关参数是,柔性铰链采用直圆、双杠杆组成的平行四边形结构形式,取预紧力PP=150N,柔性铰链与压电陶瓷的缩放系数Tf=1/3.5,即通过缩小工作行程(至28μm),提高微进给系统进给分辨率和输出刚度。按公式(9)计算可知:(2) The main technical characteristics and related parameters of the actuator are that the flexible hinge adopts a parallelogram structure composed of straight circles and double levers, the pre-tightening force P P = 150N, and the scaling factor T f of the flexible hinge and piezoelectric ceramics = 1/3.5, that is, by reducing the working stroke (to 28μm), the feed resolution and output stiffness of the micro-feed system are improved. According to formula (9), it can be known that:
(3)检测装置的主要技术特征和相关参数:采用电感式位置检测仪器,其相关技术参数是,检测分辨率为0.1μm(100μm的检测量程)。(3) Main technical features and relevant parameters of the detection device: an inductive position detection instrument is adopted, and its relevant technical parameters are that the detection resolution is 0.1 μm (100 μm detection range).
(4)控制系统的主要技术特征:根据要求和图6所示的控制原理进行本实施例的控制系统配置,如采用八位微处理器、12位D/A和A/D转换器、一般精度的位置检测传感器。(4) The main technical characteristics of the control system: carry out the control system configuration of the present embodiment according to the control principle shown in Fig. Precision position detection sensor.
根据锭杆轴承档精密磨床的技术指标要求,所采用的解决方案是,以MG1320E磨床为基础,配置微进给系统。微进给系统所涉及的主要技术特征及其相关参数如上所述,由此获得锭杆轴承档精密磨床的技术指标是:砂轮架最小设定单位为0.5μm,进给定位精度是±0.2,采用定程磨削进行批量加工时,可使被加工工件的直径一致性控制在10μm以内。According to the technical index requirements of the precision grinding machine for spindle bar bearing gear, the solution adopted is to configure a micro-feeding system based on the MG1320E grinding machine. The main technical features and relevant parameters involved in the micro-feed system are as above, and the technical indicators of the precision grinding machine for the spindle bearing gear are obtained from this: the minimum setting unit of the grinding wheel frame is 0.5 μm, the feed positioning accuracy is ±0.2, When using fixed-range grinding for batch processing, the diameter consistency of the workpiece to be processed can be controlled within 10 μm.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710036439 CN101028702A (en) | 2007-01-12 | 2007-01-12 | Microfeeding system for precisive grinding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710036439 CN101028702A (en) | 2007-01-12 | 2007-01-12 | Microfeeding system for precisive grinding |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101028702A true CN101028702A (en) | 2007-09-05 |
Family
ID=38714348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710036439 Pending CN101028702A (en) | 2007-01-12 | 2007-01-12 | Microfeeding system for precisive grinding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101028702A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966680A (en) * | 2010-09-26 | 2011-02-09 | 珠海市旺磐精密机械有限公司 | Numerical control system of grinding machine |
CN102091962A (en) * | 2011-02-16 | 2011-06-15 | 厦门大学 | Micro feed mechanism for varying ellipse piston |
CN102139459A (en) * | 2011-04-02 | 2011-08-03 | 赵宏伟 | Cutter servo compensation driving device for micronano cutting |
CN102386801A (en) * | 2011-10-21 | 2012-03-21 | 上海交通大学 | Large-displacement accurate driving mechanism for built-in sensor |
CN102955451A (en) * | 2011-08-24 | 2013-03-06 | 北京工业大学 | Macro and micro combined motion system and control method based on electric combination |
CN103149149A (en) * | 2013-03-11 | 2013-06-12 | 北京矿冶研究总院 | High-temperature high-speed titanium fire-proof material characteristic test machine and test method |
CN104742006A (en) * | 2015-04-14 | 2015-07-01 | 李永军 | Ceramic grinding hole expanding machine |
CN107102174A (en) * | 2017-05-16 | 2017-08-29 | 中国计量科学研究院 | A kind of preparation method for the extraordinary probe that micro-measurement apparatus is scanned for needlepoint type |
CN107470657A (en) * | 2017-09-27 | 2017-12-15 | 嘉兴学院 | The power spindle device and error compensating method of regular polygon turning error compensation |
CN109333361A (en) * | 2018-11-29 | 2019-02-15 | 北京精密机电控制设备研究所 | A kind of cylindrical grinder end face accurate grinding control system |
CN109530937A (en) * | 2018-12-28 | 2019-03-29 | 北京中科镭特电子有限公司 | A kind of method and system laser machining wafer |
CN110595407A (en) * | 2019-10-08 | 2019-12-20 | 青岛理工大学 | A mechanical micro-displacement output platform |
CN111569982A (en) * | 2020-05-18 | 2020-08-25 | 武汉轻工大学 | Rice milling quality control equipment, method and intelligent rice milling system |
CN112904773A (en) * | 2021-01-20 | 2021-06-04 | 南京理工大学 | Capacitor plate micro-displacement generation system based on ARM |
-
2007
- 2007-01-12 CN CN 200710036439 patent/CN101028702A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966680A (en) * | 2010-09-26 | 2011-02-09 | 珠海市旺磐精密机械有限公司 | Numerical control system of grinding machine |
CN101966680B (en) * | 2010-09-26 | 2012-09-19 | 珠海市旺磐精密机械有限公司 | A grinding machine numerical control system |
CN102091962A (en) * | 2011-02-16 | 2011-06-15 | 厦门大学 | Micro feed mechanism for varying ellipse piston |
CN102091962B (en) * | 2011-02-16 | 2012-07-25 | 厦门大学 | Micro feed mechanism for varying ellipse piston |
CN102139459A (en) * | 2011-04-02 | 2011-08-03 | 赵宏伟 | Cutter servo compensation driving device for micronano cutting |
CN102955451A (en) * | 2011-08-24 | 2013-03-06 | 北京工业大学 | Macro and micro combined motion system and control method based on electric combination |
CN102386801A (en) * | 2011-10-21 | 2012-03-21 | 上海交通大学 | Large-displacement accurate driving mechanism for built-in sensor |
CN102386801B (en) * | 2011-10-21 | 2014-10-15 | 上海交通大学 | Large-displacement accurate driving mechanism for built-in sensor |
CN103149149A (en) * | 2013-03-11 | 2013-06-12 | 北京矿冶研究总院 | High-temperature high-speed titanium fire-proof material characteristic test machine and test method |
CN104742006A (en) * | 2015-04-14 | 2015-07-01 | 李永军 | Ceramic grinding hole expanding machine |
CN107102174A (en) * | 2017-05-16 | 2017-08-29 | 中国计量科学研究院 | A kind of preparation method for the extraordinary probe that micro-measurement apparatus is scanned for needlepoint type |
CN107470657A (en) * | 2017-09-27 | 2017-12-15 | 嘉兴学院 | The power spindle device and error compensating method of regular polygon turning error compensation |
CN109333361A (en) * | 2018-11-29 | 2019-02-15 | 北京精密机电控制设备研究所 | A kind of cylindrical grinder end face accurate grinding control system |
CN109530937A (en) * | 2018-12-28 | 2019-03-29 | 北京中科镭特电子有限公司 | A kind of method and system laser machining wafer |
CN109530937B (en) * | 2018-12-28 | 2020-12-04 | 北京中科镭特电子有限公司 | Method and system for processing wafer by laser |
CN110595407A (en) * | 2019-10-08 | 2019-12-20 | 青岛理工大学 | A mechanical micro-displacement output platform |
CN110595407B (en) * | 2019-10-08 | 2021-01-12 | 青岛理工大学 | A mechanical micro-displacement output platform |
CN111569982A (en) * | 2020-05-18 | 2020-08-25 | 武汉轻工大学 | Rice milling quality control equipment, method and intelligent rice milling system |
CN111569982B (en) * | 2020-05-18 | 2022-04-01 | 武汉轻工大学 | Rice milling quality control equipment and method and intelligent rice milling system |
CN112904773A (en) * | 2021-01-20 | 2021-06-04 | 南京理工大学 | Capacitor plate micro-displacement generation system based on ARM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101028702A (en) | Microfeeding system for precisive grinding | |
Cheng et al. | A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism | |
CN102152131B (en) | Series macro-micro driving and guiding device for piezoelectric actuator of ball screw pair | |
CN105252285B (en) | A kind of Piezoelectric Driving three-dimensional elliptical Fine Feed motion platform | |
CN100566898C (en) | Floating type oval-shaped supersonic vibration micro-engraving device | |
CN1282258C (en) | Drive device and its driving method, and small machine tool using same | |
CN101176923B (en) | Processing device of Fresnel structure micro-optical element | |
CN101337330A (en) | Compensation Method and Magnetostriction Compensation Mechanism for Improving Machining Accuracy of CNC Lathe | |
CN102136300A (en) | Three-section combined type ultraprecise positioning table and positioning method thereof | |
CN103278906A (en) | Axial vernier device for lens with flexible ring piece structure | |
CN1986156A (en) | Ultraprecise grinder with two stages of feeding mechanism and its control method | |
CN102139459A (en) | Cutter servo compensation driving device for micronano cutting | |
CN204349758U (en) | A kind of grand micro-positioning table | |
CN2900074Y (en) | Processing cutter mechanism capable of telescopically feeding | |
CN112405108B (en) | Method for realizing ultra-precise parallel linear microstructure machining by using common machine tool | |
CN111732073A (en) | A device and method for processing micro-nano composite structures based on needle tip trajectory motion | |
CN206200568U (en) | A kind of three-dimensional elliptical micro-displacement motion platform of three piezoelectricity vertical drive | |
CN101702329B (en) | One-dimensional micro-displacement device | |
CN103273328B (en) | Large-stroke micro-drive precise two-dimensional worktable | |
CN206066125U (en) | A kind of active compliance grinding and polishing device based on viscoelastic material | |
CN208019986U (en) | Roll shape vibrates auxiliary polishing device | |
CN106312591A (en) | Three-dimensional oval micro displacement motion platform under three-piezoelectric perpendicular drive | |
CN103551864A (en) | High-stiffness high-resolution precision lifting device | |
CN205166404U (en) | Three -dimensional oval little feed movement platform of piezoelectricity drive | |
CN102107375A (en) | Negative stiffness principle-based grinding process system stiffness compensation mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |