CN101020085A - New-type of inorganic bone grafting material and its prepn and use - Google Patents
New-type of inorganic bone grafting material and its prepn and use Download PDFInfo
- Publication number
- CN101020085A CN101020085A CN 200710063903 CN200710063903A CN101020085A CN 101020085 A CN101020085 A CN 101020085A CN 200710063903 CN200710063903 CN 200710063903 CN 200710063903 A CN200710063903 A CN 200710063903A CN 101020085 A CN101020085 A CN 101020085A
- Authority
- CN
- China
- Prior art keywords
- tricalcium phosphate
- bone
- calcium sulfate
- sulfate hemihydrate
- phosphate particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 164
- 239000000463 material Substances 0.000 title claims abstract description 63
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 76
- 239000002245 particle Substances 0.000 claims abstract description 72
- 239000000843 powder Substances 0.000 claims abstract description 46
- 238000002360 preparation method Methods 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 230000007547 defect Effects 0.000 claims abstract description 28
- 230000008439 repair process Effects 0.000 claims abstract description 15
- 239000011148 porous material Substances 0.000 claims abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 229940044683 chemotherapy drug Drugs 0.000 claims description 8
- 239000003242 anti bacterial agent Substances 0.000 claims description 7
- 229940088710 antibiotic agent Drugs 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 230000000735 allogeneic effect Effects 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 230000002138 osteoinductive effect Effects 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000011800 void material Substances 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 3
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 claims description 3
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims description 3
- 229940043256 calcium pyrophosphate Drugs 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- 235000019821 dicalcium diphosphate Nutrition 0.000 claims description 3
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 3
- 238000013012 foaming technology Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 208000018084 Bone neoplasm Diseases 0.000 claims description 2
- 206010031252 Osteomyelitis Diseases 0.000 claims description 2
- 206010052428 Wound Diseases 0.000 claims description 2
- 208000027418 Wounds and injury Diseases 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 claims description 2
- 239000002246 antineoplastic agent Substances 0.000 claims 3
- 230000003115 biocidal effect Effects 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 claims 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 abstract description 26
- 230000015556 catabolic process Effects 0.000 abstract description 11
- 238000006731 degradation reaction Methods 0.000 abstract description 11
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 238000001727 in vivo Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 4
- 230000009193 crawling Effects 0.000 abstract description 3
- 230000008468 bone growth Effects 0.000 abstract description 2
- 239000012567 medical material Substances 0.000 abstract description 2
- 238000007711 solidification Methods 0.000 abstract description 2
- 230000008023 solidification Effects 0.000 abstract description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 9
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 9
- 229940112869 bone morphogenetic protein Drugs 0.000 description 9
- 230000002188 osteogenic effect Effects 0.000 description 8
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 7
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 description 6
- 239000001506 calcium phosphate Substances 0.000 description 6
- 235000011010 calcium phosphates Nutrition 0.000 description 6
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 206010017076 Fracture Diseases 0.000 description 3
- 210000002805 bone matrix Anatomy 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 230000011164 ossification Effects 0.000 description 3
- 239000001117 sulphuric acid Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 2
- 102000012422 Collagen Type I Human genes 0.000 description 2
- 108010022452 Collagen Type I Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 241000242757 Anthozoa Species 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 208000009692 Colles' Fracture Diseases 0.000 description 1
- 206010017088 Fracture nonunion Diseases 0.000 description 1
- 206010020100 Hip fracture Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000002639 bone cement Substances 0.000 description 1
- 239000000316 bone substitute Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005541 medical transmission Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种新型无机植骨材料,属于医用材料领域。新型无机植骨材料,由质量百分数为20%-80%的β-磷酸三钙颗粒和质量百分数为80%-20%α-半水硫酸钙粉体组成,α-半水硫酸钙粉体在β-磷酸三钙颗粒表面和/或其孔隙内部形成层状结构。本发明的优点是:基于α-半水硫酸钙和β-磷酸三钙优良的生物相容性和体内降解性能,制备的具有自固化性能的复合人工骨颗粒,可修复任意形状的骨缺损,原位固化并快速恢复骨骼的力学强度。在体内随着硫酸钙的快速降解,具有微孔结构的β-磷酸三钙颗粒为新骨生长提供较为理想的支架,并可逐渐被新生骨爬行替代。这种复合人工骨来源广泛,储存和使用方便,性能优良,制备工艺简单、实用,制备周期短且成本低廉。
The invention discloses a novel inorganic bone graft material, which belongs to the field of medical materials. A new type of inorganic bone graft material is composed of β-tricalcium phosphate particles with a mass percentage of 20%-80% and α-calcium sulfate hemihydrate powder with a mass percentage of 80%-20%. A layered structure is formed on the surface of β-tricalcium phosphate particles and/or inside their pores. The advantages of the present invention are: based on the excellent biocompatibility and in vivo degradation performance of α-calcium sulfate hemihydrate and β-tricalcium phosphate, the composite artificial bone particles with self-curing properties can repair bone defects of any shape, In-situ solidification and rapid restoration of bone mechanical strength. With the rapid degradation of calcium sulfate in the body, β-tricalcium phosphate particles with microporous structure provide an ideal scaffold for new bone growth, and can be gradually replaced by new bone crawling. The composite artificial bone has wide sources, convenient storage and use, excellent performance, simple and practical preparation process, short preparation period and low cost.
Description
技术领域technical field
本发明涉及一种新型无机植骨材料、其制备方法及用途,具体涉及一种在外科医疗手术中用于替代和修复骨组织缺损的自固化可吸收的复合人工无机骨水泥、其制备方法及用途,属于医用材料领域。The present invention relates to a new type of inorganic bone graft material, its preparation method and application, in particular to a self-curing and absorbable composite artificial inorganic bone cement used in medical surgery for replacing and repairing bone tissue defects, its preparation method and The invention belongs to the field of medical materials.
背景技术Background technique
骨骼由无机成分和有机成分两部分组成,其中无机成分占干重的60-70%,主要成分为羟基磷灰石(Ca10(PO4)6·5H2O)及少量钠盐、镁盐等,有机成分主要是I型胶原。羟基磷灰石晶体的大小约25-50nm×40nm×200-350nm,晶体长轴(c轴)方向和I型胶原纤维的方向一致,构成微孔相互连通的多孔结构材料,在健康成人体骨骼处于动态平衡之中,破骨细胞吸收的骨骼被成骨细胞形成的新骨逐渐取代,人体内大约每10年骨骼全部更新一遍。机械支撑是骨骼的主要生理功能之一,但由于创伤、感染、肿瘤、手术等原因造成的骨缺损和需要植骨的手术十分常见,在美国每年有6.2百万例骨折发生,其中有5-10%会出现骨折延迟愈合或不愈合,每年有80万例脊柱融合手术。这些疾病治疗的目的在于恢复骨骼的连续性和力学强度,通过局部植骨来促进新骨形成和恢复其生理功能。目前临床使用的植骨材料包括自体骨、同种异体骨、骨形态发生蛋白(BMP)、脱钙骨基质(DBM)、人工骨等,可以分为具有天然成份的有机材料和人工合成的无机材料两大类。自体骨是目前最为理想的植骨材料,但由于来源有限,供区容易出现疼痛、感染等并发症,据报道并发症的发生率可达30%,这使人们开始寻找其它更为理想的植骨替代材料,导致各种新型植骨材料的研制和市场需求的快速增长,2005年仅美国植骨材料市场就达到10.74亿美元,并且每年以接近20%的速度递增。Bone is composed of inorganic components and organic components, of which the inorganic components account for 60-70% of the dry weight, and the main components are hydroxyapatite (Ca 10 (PO 4 ) 6 5H 2 O) and a small amount of sodium and magnesium salts etc., the organic ingredients are mainly type I collagen. The size of the hydroxyapatite crystal is about 25-50nm×40nm×200-350nm, and the direction of the long axis (c-axis) of the crystal is consistent with the direction of the type I collagen fiber, forming a porous structure material with interconnected micropores. In a state of dynamic balance, the bone resorbed by osteoclasts is gradually replaced by new bone formed by osteoblasts, and the bones in the human body are completely renewed about every 10 years. Mechanical support is one of the main physiological functions of bones, but bone defects caused by trauma, infection, tumor, surgery, etc. and operations that require bone grafting are very common. There are 6.2 million fractures in the United States every year, of which 5- Delayed union or nonunion of fractures occurs in 10% of fractures, and 800,000 spinal fusion surgeries are performed each year. The purpose of the treatment of these diseases is to restore the continuity and mechanical strength of the bone, and promote the formation of new bone and restore its physiological function through local bone grafting. Currently clinically used bone graft materials include autologous bone, allogeneic bone, bone morphogenetic protein (BMP), decalcified bone matrix (DBM), artificial bone, etc., which can be divided into organic materials with natural ingredients and synthetic inorganic materials. Two categories of materials. Autologous bone is currently the most ideal bone graft material, but due to limited sources, the donor site is prone to complications such as pain and infection. According to reports, the incidence of complications can reach 30%, which makes people start looking for other more ideal bone grafts. Bone substitute materials have led to the development of various new bone graft materials and the rapid growth of market demand. In 2005, the US bone graft material market alone reached 1.074 billion US dollars, and it is increasing at a rate of nearly 20% every year.
目前临床使用的各种植骨材料均存在一定的缺点和不足。同种异体骨虽能保留一定的成骨活性,但来源有限,国内价格400-800元/克,同时存在免疫排斥反应和传播疾病的潜在危险,使用范围受到限制。DBM、BMP等来源于异体骨、异种骨或者通过基因蛋白表达获得,具有骨诱导成骨活性但缺乏传导成骨活性和力学强度,价格极其昂贵,目前临床上只能小范围使用。无机材料主要包括磷酸钙和硫酸钙两大类,具有传导成骨活性和力学强度,但是没有诱导成骨活性。虽然各种植骨材料各具特点,但自体骨仍然是各种植骨材料力求达到的标准。作为理想的植骨材料应该具备以下性能:(1)成骨活性;(2)良好的生物相容性;(3)可生物降解;(4)能够提供结构支撑能力;(5)临床上储存和使用方便;(6)性价比高。根据植骨材料使用部位的不同,以上性能中的一项或一部分可能更为重要,例如填充干骺端骨缺损的植骨材料要求具有一定的力学强度,避免关节软骨面塌陷,而在治疗骨不连时就需要具有成骨活性的植骨材料。随着对机体内骨缺损修复过程和植骨材料结构、化学特性和生物学特性的了解越来越多,人们越来越有能力制备或选择合适的材料来模仿自体骨的特性,研制符合某种需要的更为理想的植骨材料。Various bone graft materials currently used clinically have certain shortcomings and deficiencies. Although the allogeneic bone can retain a certain amount of osteogenic activity, the source is limited, and the domestic price is 400-800 yuan/gram. At the same time, there are potential risks of immune rejection and disease transmission, and the scope of use is limited. DBM, BMP, etc. are derived from allogeneic bone, xenogeneic bone or obtained through gene protein expression. They have osteoinductive osteogenic activity but lack conductive osteogenic activity and mechanical strength. They are extremely expensive and can only be used in a small range of clinical practice. Inorganic materials mainly include calcium phosphate and calcium sulfate, which have conductive osteogenic activity and mechanical strength, but have no osteogenic activity. Although various bone graft materials have their own characteristics, autogenous bone is still the standard that various bone graft materials strive to achieve. As an ideal bone graft material, it should have the following properties: (1) osteogenic activity; (2) good biocompatibility; (3) biodegradable; (4) able to provide structural support; (5) clinical storage and easy to use; (6) cost-effective. Depending on the site where the bone graft material is used, one or a part of the above properties may be more important. For example, the bone graft material for filling metaphyseal bone defects requires a certain mechanical strength to avoid the collapse of the articular cartilage surface. Bone grafting material with osteogenic activity is needed when it is not connected. With the increasing understanding of the bone defect repair process in the body and the structure, chemical and biological properties of bone graft materials, people are more and more able to prepare or select suitable materials to imitate the characteristics of autologous bone A more ideal bone graft material is needed.
由于人工合成的无机植骨材料具有来源丰富、储存和使用方便、良好的生物相容性和避免传播疾病的优点,近年在这方面的研究日渐增多,特别是各种磷酸钙和硫酸钙材料制备的人工骨成为研究热点。目前国外已经商品化的人工无机植骨材料有ChronOSTM(β-磷酸三钙)、Pro-Osteon(多孔珊瑚热转换羟基磷灰石)、Norian SRS(磷酸钙水泥)、NovaBone(生物玻璃)、Bio-OSS(牛脱有机质骨粉)、Osteoset(硫酸钙)等,这些人工无机植骨材料各有特点,但国外这些高技术含量和高附加值的人工无机植骨材料价格极其昂贵,在国内大多数医疗费用控制严格的地区应用受到很大的限制。因此寻求和研制具有自主知识产权的更为理想的人工无机植骨材料是近年医用生物材料领域的一项重要课题。Since the artificially synthesized inorganic bone graft materials have the advantages of abundant sources, convenient storage and use, good biocompatibility and avoiding the transmission of diseases, research in this area has been increasing in recent years, especially the preparation of various calcium phosphate and calcium sulfate materials. Artificial bone has become a research hotspot. At present, artificial inorganic bone graft materials that have been commercialized abroad include ChronOS TM (β-tricalcium phosphate), Pro-Osteon (porous coral thermally converted hydroxyapatite), Norian SRS (calcium phosphate cement), NovaBone (bioglass), Bio-OSS (ox organic bone powder), Osteoset (calcium sulfate), etc., these artificial inorganic bone graft materials have their own characteristics, but these high-tech and high value-added artificial inorganic bone graft materials abroad are extremely expensive, and are widely used in China. The application in most areas with strict control of medical expenses is greatly restricted. Therefore, seeking and developing a more ideal artificial inorganic bone graft material with independent intellectual property rights is an important topic in the field of medical biomaterials in recent years.
磷酸钙类人工骨使用的流行,主要是因为其成分接近骨的矿物相,具有良好的生物相容性,因而其合成和应用从上世纪60年代开始就为人瞩目,主要通过湿热法、干式法和水热法制备羟基磷灰石粉体,再经过高温煅烧制成高密度羟基磷灰石,其压缩强度达到490.3-882.6MPa,弯曲强度达到196.1Mpa,用于骨和牙齿的修复并取得一定的效果。但这种材料结晶度较高和溶解度较低,莫氏硬度达到5,弹性模量是骨的两倍,塑型困难并且在体内难以降解。多孔羟基磷灰石是一种经过改进的具有传导成骨活性的植骨材料,由珊瑚中的碳酸钙经热化学反应衍生而成并具有羟基磷灰石晶体结构,与人类松质骨结构类似的多孔空间结构,新骨可以迅速在这种羟基磷灰石内生长。但应用仅限于非负重、或有坚强固定保护下的骨缺损,一旦新骨长入到材料的孔隙内,其力学强度即会得到明显提高,但是在体内长期临床观察发现基本不能降解。烧结或者块状磷酸钙人工骨的主要不足是塑形困难和操作不便,导致各种磷酸钙水泥的出现,1996年Constanz研制的碳磷灰石水泥被誉为骨缺损修复的革命性进展,这种材料由干粉和固化液两部分组成,使用时将二者调拌成糊状,可修复任意形状的骨缺损,原位固化并具有一定的力学强度,形成一种碳磷灰石(Ca8.8(HPO4)0.7(PO4)4.5(CO3)0.7(OH)1.3),化学组成及晶体结构类似于正常骨组织的矿物相,在Colles骨折、转子间骨折、胫骨平台骨折、脊柱骨折等疾病治疗中取得一定效果。但是这种材料在体内降解速度较慢,最终只有一部分被吸收改建。The popularity of calcium phosphate artificial bone is mainly because its composition is close to the mineral phase of bone and has good biocompatibility. Therefore, its synthesis and application have attracted attention since the 1960s, mainly through wet heat method and dry method. Hydroxyapatite powder is prepared by hydrothermal method and hydrothermal method, and then high-density hydroxyapatite is produced by high-temperature calcination. Its compressive strength reaches 490.3-882.6MPa, and its bending strength reaches 196.1Mpa. It is used for bone and tooth restoration and has obtained certain effect. However, this material has high crystallinity and low solubility, Mohs hardness reaches 5, and elastic modulus is twice that of bone, making it difficult to shape and degrade in the body. Porous hydroxyapatite is an improved bone graft material with conductive osteogenic activity. It is derived from calcium carbonate in corals through thermochemical reactions and has a hydroxyapatite crystal structure similar to that of human cancellous bone. The porous space structure, new bone can grow rapidly in this hydroxyapatite. However, the application is limited to non-weight-bearing or bone defects under strong fixation protection. Once new bone grows into the pores of the material, its mechanical strength will be significantly improved, but long-term clinical observation in vivo shows that it is basically not degradable. The main disadvantage of sintered or massive calcium phosphate artificial bone is the difficulty in shaping and inconvenient operation, leading to the emergence of various calcium phosphate cements. The carbonapatite cement developed by Constanz in 1996 was hailed as a revolutionary progress in bone defect repair. This material is composed of dry powder and curing liquid. When used, the two are mixed into a paste, which can repair bone defects of any shape. It solidifies in situ and has a certain mechanical strength, forming a carbonapatite (Ca 8.8 (HPO 4 ) 0.7 (PO 4 ) 4.5 (CO 3 ) 0.7 (OH) 1.3 ), chemical composition and crystal structure similar to the mineral phase of normal bone tissue, in Colles fracture, intertrochanteric fracture, tibial plateau fracture, spinal fracture, etc. Some effect has been achieved in disease treatment. However, this material degrades slowly in the body, and only a part of it is eventually absorbed and rebuilt.
具有微孔结构的β-磷酸三钙生物支架材料的结构类似于正常松质骨,孔隙率达到90%,75%的孔隙直径在100-1000微米间,其余24%的孔隙直径在1-100微米。大的孔隙允许骨组织长入,发挥生物支架的作用,小的孔隙虽然不能使骨长入,但是可以显著提高骨基质中液体的流动和扩散,改善基质中细胞的代谢。由于这种孔隙结构和本身的成分特性,在植入体内后的吸收速率接近于正常骨愈合速率,3周内便有新骨形成,6周时吸收76%,12周时吸收86%,在52周时只有2%的残留。但是这类多孔材料修复骨缺损缺乏力学强度而不能早期负重,存在塑形困难和使用不便的缺点。The structure of β-tricalcium phosphate biological scaffold material with microporous structure is similar to that of normal cancellous bone, with a porosity of 90%, 75% of the pore diameters are between 100-1000 microns, and the remaining 24% of the pore diameters are between 1-100 microns Micron. Large pores allow bone tissue to grow in and play the role of a biological scaffold. Although small pores cannot allow bone to grow in, they can significantly improve the flow and diffusion of liquid in the bone matrix and improve the metabolism of cells in the matrix. Due to this pore structure and its own component characteristics, the absorption rate after implantation in the body is close to the normal bone healing rate, and new bone is formed within 3 weeks, 76% is absorbed at 6 weeks, and 86% is absorbed at 12 weeks. Only 2% remained at 52 weeks. However, this kind of porous material for repairing bone defects lacks mechanical strength and cannot bear early load, and has the disadvantages of difficult shaping and inconvenient use.
硫酸钙俗称石膏,名字来自巴黎北部一个村庄,由于煅石膏(半水硫酸钙)具有自固化性能,早在1794年即有文献记录使用石膏固定骨折的肢体(Eton,MedicalCommentaries)。而最早开始将石膏植入体内治疗骨缺损的报道出现在1892年,Dreesmann采用糊状硫酸钙混合5%石炭酸填充8例骨缺损患者,其中6例患者获得骨性愈合。但是硫酸钙临床应用的结果差异很大,主要原因是由于所使用的硫酸钙的尺寸和晶体结构不同,造成充填骨缺损后在体内吸收速度过快,在新骨形成前即被完全吸收,导致骨缺损部位形成空腔或者被软组织填塞。通过一系列特殊工艺控制半水硫酸钙的晶体结构,形成整齐一致的α型晶体结构,具有溶解和吸收相对缓慢的医用级硫酸钙(Osteoset)1996年被FDA批准用于临床,包括两种规格的片剂颗粒(4.8×3.3mm,3×2.5mm),主要用于充填各种包容性骨缺损,但是必须保持其片剂颗粒的完整性,否则会影响其吸收速度和骨缺损修复效果。但是其易碎的特性和缺乏力学强度限制其在临床的广泛应用,需要在力学和生物学性能上进一步改进以提高其在临床上的效果。Calcium sulfate is commonly known as gypsum, and its name comes from a village in the north of Paris. Because calcined gypsum (calcium sulfate hemihydrate) has self-curing properties, as early as 1794, there were records of using plaster to fix fractured limbs (Eton, MedicalCommentaries). In 1892, Dreesmann used paste calcium sulfate mixed with 5% carbolic acid to fill 8 patients with bone defects, and 6 of them achieved bone healing. However, the results of clinical application of calcium sulfate are very different, mainly because the calcium sulfate used is different in size and crystal structure, resulting in too fast absorption in the body after filling bone defects, and it is completely absorbed before new bone formation, resulting in The bone defect is cavities or filled with soft tissue. The crystal structure of calcium sulfate hemihydrate is controlled through a series of special processes to form a neat and consistent α-type crystal structure, which has a relatively slow dissolution and absorption of medical grade calcium sulfate (Osteoset). It was approved by FDA for clinical use in 1996, including two specifications. The tablet granules (4.8×3.3mm, 3×2.5mm) are mainly used to fill various inclusive bone defects, but the integrity of the tablet granules must be maintained, otherwise the absorption speed and bone defect repair effect will be affected. However, its fragility and lack of mechanical strength limit its wide clinical application, and further improvement in mechanical and biological properties is needed to improve its clinical effect.
由于单一无机植骨材料的缺点,近年许多研究致力于将几种无机植骨材料复合在一起,发挥各自的优点并弥补相互缺点,以制备更为理想的复合人工骨修复材料。Due to the disadvantages of a single inorganic bone graft material, many studies in recent years have devoted themselves to combining several inorganic bone graft materials to make use of their respective advantages and make up for each other's shortcomings, so as to prepare a more ideal composite artificial bone repair material.
发明内容Contents of the invention
本发明要解决的第一个技术问题是:提供一种可原位固化并具有一定力学强度的自固化可吸收复合无机植骨材料。The first technical problem to be solved by the present invention is to provide a self-curing and resorbable composite inorganic bone graft material that can be solidified in situ and has certain mechanical strength.
本发明要解决的另一个技术问题是:提供一种简单、周期短且成本低廉的制备上述复合无机植骨材料的方法。Another technical problem to be solved by the present invention is to provide a simple, short-cycle and low-cost method for preparing the above-mentioned composite inorganic bone graft material.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种新型无机植骨材料,由质量百分数为20%-80%的β-磷酸三钙颗粒和质量百分数为80%-20%α-半水硫酸钙粉体组成,α-半水硫酸钙粉体在β-磷酸三钙颗粒表面和/或其孔隙内部形成层状结构。两种成分在上述质量百分范围内均可形成适用于临床的无机植骨材料,二者的含量取决于骨材料的预定降解速度,α-半水硫酸钙的含量越高,降解速度越快。A new type of inorganic bone graft material, composed of β-tricalcium phosphate particles with a mass percentage of 20%-80% and α-calcium sulfate hemihydrate powder with a mass percentage of 80%-20%, α-calcium sulfate hemihydrate powder The body forms a layered structure on the surface of β-TCP particles and/or inside their pores. The two components can form an inorganic bone graft material suitable for clinical use within the above mass percentage range. The content of the two components depends on the predetermined degradation rate of the bone material. The higher the content of α-calcium sulfate hemihydrate, the faster the degradation rate .
所述β-磷酸三钙颗粒的直径为0.2-10mm,优选2-5mm。β-磷酸三钙颗粒的直径取决于植骨部位,植骨部位空间越大需要的颗粒越大。The diameter of the β-tricalcium phosphate particles is 0.2-10 mm, preferably 2-5 mm. The diameter of β-TCP particles depends on the bone graft site, and the larger the space of the bone graft site, the larger the particle size is required.
新型无机植骨材料与蒸馏水、血液或生理盐水以0.2-0.6ml/g的液体一固体比混合后能够自行固化。The new inorganic bone graft material can self-cure after being mixed with distilled water, blood or physiological saline at a liquid-solid ratio of 0.2-0.6ml/g.
本发明的原理在于:α型半水硫酸钙及β磷酸三钙与人体骨组织组成成分相近,具有良好的组织相容性,α-半水硫酸钙具有自固化性能并且固化后具有一定的力学强度,但是降解速度相对于骨组织长入速度显得过快,在新生骨组织长入之前,植入的α型半水硫酸钙大部分已经被自体组织吸收,不利于自身骨组织的长入。而具有微孔结构的β-磷酸三钙颗粒具有理想的微孔结构,但是缺乏力学强度和自固化性能,使用和塑形困难,而且β磷酸三钙在体内降解速度过慢,影响新生骨组织的长入,同样不利于被自身骨组织替代。本发明将上述两种物质复合成为复合人工骨,利用两种成分比例的不同调节降解的速度,从而使之与自身骨组织长入速度相匹配,使复合人工骨逐渐被自身骨组织替代,同时利用α型半水硫酸钙原位自行固化的特点,以α型半水硫酸钙为粘合剂制备成颗粒状的复合人工骨颗粒,便于储存和使用。The principle of the present invention is that: α-calcium sulfate hemihydrate and β tricalcium phosphate are similar to the composition of human bone tissue, have good tissue compatibility, and α-calcium sulfate hemihydrate has self-curing properties and has a certain mechanical strength after curing. Strength, but the degradation rate is too fast compared to the growth rate of bone tissue. Before the growth of new bone tissue, most of the implanted α-type calcium sulfate hemihydrate has been absorbed by autologous tissue, which is not conducive to the growth of bone tissue. The microporous structure of β-tricalcium phosphate particles has an ideal microporous structure, but lacks mechanical strength and self-curing properties, making it difficult to use and shape, and the degradation rate of β-tricalcium phosphate in the body is too slow, which affects new bone tissue The ingrowth of the bone is also not conducive to being replaced by its own bone tissue. In the present invention, the above two substances are compounded into a composite artificial bone, and the difference in the ratio of the two components is used to adjust the degradation speed, so as to match the growth rate of the own bone tissue, so that the composite artificial bone is gradually replaced by the own bone tissue, and at the same time Utilizing the in-situ self-curing characteristics of α-type calcium sulfate hemihydrate, the α-type calcium sulfate hemihydrate is used as a binder to prepare granular composite artificial bone particles, which are convenient for storage and use.
新型无机植骨材料的制备方法,包括:A preparation method of a novel inorganic bone graft material, including:
(1)制备具有微孔结构的β-磷酸三钙颗粒;(1) preparing β-tricalcium phosphate particles with a microporous structure;
(2)制备α-半水硫酸钙粉体;(2) prepare α-calcium sulfate hemihydrate powder;
(3)配制质量百分数为20%-80%的β-磷酸三钙颗粒和质量百分数为80%-20%α-半水硫酸钙粉体,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层。(3) The preparation mass percentage is 20%-80% beta-tricalcium phosphate particles and mass percentage is 80%-20% alpha-calcium sulfate hemihydrate powder, on the surface of beta-tricalcium phosphate particles and/or in the void A powder layer of α-calcium sulfate hemihydrate is formed.
所述(1)制备具有微孔结构的β-磷酸三钙颗粒,是采用异种或异体松质骨直接煅烧,取健康松质骨经脱去有机成分后在高温炉中煅烧,800℃条件下3小时,升温速率10℃/分,煅烧骨块取出后浸泡于浓度为1M的(NH4)2HPO4溶液中24小时,去除多余液体,50℃烘干4天,再次放于高温煅烧炉中煅烧,1100℃条件下1小时,升温速率5℃/分,缓慢降温,去离子水漂洗2次,50℃烘干4天。所制备煅烧骨粉碎为具有微孔结构的颗粒。The (1) preparation of β-tricalcium phosphate particles with a microporous structure is to use heterogeneous or allogeneic cancellous bone to be directly calcined, and the healthy cancellous bone is taken to be calcined in a high-temperature furnace after removing the organic components. 3 hours, the heating rate is 10°C/min, the calcined bone is taken out and soaked in (NH 4 ) 2 HPO 4 solution with a concentration of 1M for 24 hours, the excess liquid is removed, dried at 50°C for 4 days, and placed in the high-temperature calciner again Medium calcination, 1 hour at 1100°C, heating rate 5°C/min, slow cooling, rinsing with deionized water twice, and drying at 50°C for 4 days. The prepared calcined bone is pulverized into particles with a microporous structure.
所述(1)制备具有微孔结构的β-磷酸三钙颗粒,还可采用2重量份数的磷酸氢钙在800℃条件下3小时,转变为焦磷酸钙,然后和1重量份数的碳酸钙混合后压片,1100℃条件下1小时后缓慢冷却,粉碎后制成β-磷酸三钙粉体,采用微孔发泡技术制成具有微孔结构的β-磷酸三钙颗粒。In the (1) preparation of β-tricalcium phosphate particles with a microporous structure, 2 parts by weight of calcium hydrogen phosphate can also be converted into calcium pyrophosphate at 800°C for 3 hours, and then mixed with 1 part by weight of Calcium carbonate is mixed and pressed into tablets, cooled slowly at 1100°C for 1 hour, crushed to make β-tricalcium phosphate powder, and microporous foaming technology is used to make β-tricalcium phosphate particles with microporous structure.
所述(2)制备α-半水硫酸钙粉体,是以分析纯二水硫酸钙为原料放置于蒸汽压力为0.13Mpa的密闭高压反应釜中,逐渐升温每分钟升温5℃,加热至123℃,恒温加热7h,然后取出放置在120℃的电热通风干燥箱中干燥4-5h,将所得材料采用气流磨进行粉碎,平均粒径小于等于5μm,遇到水溶液后能够固化,固化后强度应该在80MPa以上。The (2) preparation of α-calcium sulfate hemihydrate powder is based on analyzing pure calcium sulfate dihydrate as raw material and placing it in a closed high-pressure reactor with a steam pressure of 0.13Mpa, gradually increasing the temperature by 5°C per minute, and heating to 123 ℃, heated at a constant temperature for 7 hours, then took it out and placed it in an electric ventilation oven at 120 ℃ to dry for 4-5 hours, and crushed the obtained material with an airflow mill. Above 80MPa.
所述(3)配制质量百分数为20%-80%的β-磷酸三钙颗粒和质量百分数为80%-20%α-半水硫酸钙粉体,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层,是用无水乙醇与α-半水硫酸钙搅拌为糊状,采用喷涂方法直接在β-磷酸三钙颗粒表面喷涂α-半水硫酸钙;或者将β-磷酸三钙颗粒置入上述糊状混合物中搅拌,使α-半水硫酸钙粉体黏附在β-磷酸三钙颗粒颗粒表面和/或其孔隙内部;37℃自然挥发去除无水乙醇。The (3) preparation mass percentage is 20%-80% beta-tricalcium phosphate particles and mass percentage is 80%-20% alpha-calcium sulfate hemihydrate powder, on the surface of beta-tricalcium phosphate particles and/or The α-calcium sulfate hemihydrate powder layer is formed in the gap, which is made into a paste by stirring with absolute ethanol and α-calcium sulfate hemihydrate, and spraying α-calcium sulfate hemihydrate directly on the surface of β-tricalcium phosphate particles by spraying method; Or put the β-tricalcium phosphate particles into the above paste mixture and stir, so that the α-calcium sulfate hemihydrate powder adheres to the surface of the β-tricalcium phosphate particles and/or the inside of the pores; 37°C naturally volatilizes to remove anhydrous ethanol.
所述(3)配制质量百分数为20%-80%的β-磷酸三钙颗粒和质量百分数为80%-20%α-半水硫酸钙粉体,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层,是将α-半水硫酸钙粉体采用等离子方法直接喷涂固定在β-磷酸三钙颗粒表面和/或空隙内。The (3) preparation mass percentage is 20%-80% beta-tricalcium phosphate particles and mass percentage is 80%-20% alpha-calcium sulfate hemihydrate powder, on the surface of beta-tricalcium phosphate particles and/or The α-calcium sulfate hemihydrate powder layer is formed in the gap, which is to directly spray and fix the α-calcium sulfate hemihydrate powder on the surface of the β-tricalcium phosphate particle and/or in the gap by plasma method.
已经有大量的文献证明α型半水硫酸钙和β磷酸三钙均是抗生素和DBM(脱钙骨基质)、BMP(骨形态发生蛋白)等具有骨诱导活性的物质的良好载体,因此,复合人工骨也可以作为载体复合上述材料从而扩展其用途。例如,在原料中添加具有骨诱导活性的DBM、BMP等修复骨缺损,或复合抗生素、化疗药物治疗开放性复杂战创伤、各种原因引起的骨髓炎或者骨肿瘤。A large number of documents have proved that both α-type calcium sulfate hemihydrate and β-tricalcium phosphate are good carriers of antibiotics and substances with osteoinductive activity such as DBM (decalcified bone matrix), BMP (bone morphogenetic protein), and so on. Artificial bone can also be used as a carrier to compound the above materials to expand its use. For example, adding DBM and BMP with osteoinductive activity to the raw materials to repair bone defects, or compounding antibiotics and chemotherapy drugs to treat open complex war wounds, osteomyelitis or bone tumors caused by various reasons.
复合人工骨再复合DBM、BMP、抗生素或者化疗药物的方法,是将DBM、BMP、抗生素或者化疗药物与α-半水硫酸钙粉体混合,然后一同喷涂固定在β-磷酸三钙颗粒表面,或者直接在复合人工骨中添加DBM、BMP、抗生素或者化疗药物。为保证药物活性,通常采用冻干法去除乙醇。The method of compounding artificial bone with DBM, BMP, antibiotics or chemotherapy drugs is to mix DBM, BMP, antibiotics or chemotherapy drugs with α-calcium sulfate hemihydrate powder, and then spray and fix them on the surface of β-tricalcium phosphate particles. Or directly add DBM, BMP, antibiotics or chemotherapy drugs to the composite artificial bone. To ensure drug activity, ethanol is usually removed by lyophilization.
本发明的优点是:本发明基于α-半水硫酸钙和β-磷酸三钙优良的生物相容性和体内降解性能,采用具有微孔结构的β-磷酸三钙颗粒表面喷涂一定剂量α-半水硫酸钙粉体,制备具有自固化性能的复合人工骨颗粒,从而修复任意形状的骨缺损,原位固化并快速恢复骨骼的力学强度。在体内随着硫酸钙的快速降解,具有微孔结构的β-磷酸三钙颗粒为新骨生长提供较为理想的支架,并可逐渐被新生骨爬行替代。通过研究其在体内降解和成骨机理,调节α-半水硫酸钙喷涂剂量和β-磷酸三钙颗粒直径及含量大小,使其植入体内的降解速度与周围的成骨速度相一致,从而达到更好的骨缺损修复和植骨融合的效果。这种复合人工骨来源广泛,储存和使用方便,可使大量骨缺损和需要植骨手术的患者得到快速和有效的治疗。本发明提供的复合人工骨性能优良,制备工艺简单,使用、制备周期短且成本低廉。The advantages of the present invention are: based on the excellent biocompatibility and in vivo degradation performance of α-calcium sulfate hemihydrate and β-tricalcium phosphate, the present invention adopts a certain dose of α- Calcium sulfate hemihydrate powder is used to prepare composite artificial bone particles with self-curing properties, so as to repair bone defects of any shape, solidify in situ and quickly restore the mechanical strength of bones. With the rapid degradation of calcium sulfate in the body, β-tricalcium phosphate particles with microporous structure provide an ideal scaffold for new bone growth, and can be gradually replaced by new bone crawling. By studying its degradation and osteogenesis mechanism in vivo, adjust the spray dosage of α-calcium sulfate hemihydrate and the diameter and content of β-tricalcium phosphate particles, so that the degradation rate in the implanted body is consistent with the surrounding bone formation rate, thus To achieve a better effect of bone defect repair and bone graft fusion. The composite artificial bone has a wide range of sources, is convenient to store and use, and can quickly and effectively treat a large number of bone defects and patients who need bone grafting. The composite artificial bone provided by the invention has excellent performance, simple preparation process, short use and preparation period and low cost.
下面结合具体实施方式对本发明作进一步说明,本发明的实施方式并不限于此,凡是根据本发明公开的内容或原理,实施的任何本领域的等同替换,均属于本发明的保护范围。The present invention will be further described below in conjunction with specific embodiments. Embodiments of the present invention are not limited thereto. Any equivalent replacement in the field implemented according to the disclosed content or principles of the present invention shall fall within the scope of protection of the present invention.
附图说明Description of drawings
图1复合人工骨颗粒表观结构图。Fig. 1 Apparent structure diagram of composite artificial bone particles.
图2复合人工骨电镜结构图。Fig. 2 Structural diagram of composite artificial bone electron microscope.
图3复合人工骨固化后表面图。Fig. 3 Surface view of composite artificial bone after solidification.
图4复合人工骨X线衍射图谱。Fig. 4 Composite artificial bone X-ray diffraction pattern.
图5a植入家兔股骨髁上修复骨缺损术后1天X光图。Fig. 5a X-ray images of rabbits implanted on the supracondyle of femur to repair bone defect 1 day after operation.
图5b植入家兔股骨髁上修复骨缺损术后12周X光图。Fig. 5b X-ray images at 12 weeks after implantation of rabbit femoral condyle to repair bone defect.
图6a植入家兔股骨髁上修复骨缺损术后4周外观图。Fig. 6a Appearance at 4 weeks after implantation on the supracondyle of rabbit femur to repair bone defect.
图6b植入家兔股骨髁上修复骨缺损术后12周外观图。Fig. 6b Appearance at 12 weeks after implantation of rabbit femoral condyle to repair bone defect.
具体实施方式Detailed ways
实施例1:Example 1:
1.制备具有微孔结构的β-磷酸三钙颗粒:取健康牛松质骨粉碎为直径为2-3mm颗粒,冲洗干净后在800℃高温炉中煅烧3小时,取出后浸泡于浓度为1M的(NH4)2HPO4溶液中24小时,50℃烘干4天,再次放于1100℃高温煅烧炉中煅烧1小时,升温速率5℃/分,缓慢降温,去离子水漂洗2次,50℃烘干4天,制备主要成份为β-磷酸三钙的颗粒。该颗粒已经脱除了有机质成分。颗粒的直径为4mm。1. Preparation of β-tricalcium phosphate particles with a microporous structure: take healthy bovine cancellous bone and crush it into particles with a diameter of 2-3mm, rinse it and calcinate it in a high-temperature furnace at 800°C for 3 hours, take it out and soak it in a concentration of 1M (NH 4 ) 2 HPO 4 solution for 24 hours, dried at 50°C for 4 days, then placed in a high-temperature calciner at 1100°C for 1 hour, with a heating rate of 5°C/min, slowly cooling down, and rinsing with deionized water twice. Dry at 50° C. for 4 days to prepare granules whose main component is β-tricalcium phosphate. The pellets have been stripped of organic matter. The diameter of the particles was 4 mm.
2.制备α-半水硫酸钙粉体:将分析纯二水硫酸钙置于蒸汽压力为0.13Mpa的密闭高压反应釜中加热至123℃,恒温加热7h,然后取出放置在120℃的电热通风干燥箱中干燥4-5h,将所得材料采用气流磨粉碎为直径5μm的α-半水硫酸粉体。2. Preparation of α-calcium sulfate hemihydrate powder: put analytically pure calcium sulfate dihydrate in a closed high-pressure reactor with a steam pressure of 0.13Mpa and heat it to 123°C, heat it at a constant temperature for 7 hours, and then take out the electric heating ventilator placed at 120°C Dry in a drying oven for 4-5 hours, and use a jet mill to pulverize the obtained material into α-sulfuric acid hemihydrate powder with a diameter of 5 μm.
3.将β-磷酸三钙与α-半水硫酸钙按1∶1的重量份数比配制,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层:将5g α-半水硫酸粉体与10ml无水乙醇混匀,然后加入5g β-磷酸三钙颗粒,充分混匀后置于37℃烤箱中使无水乙醇逐渐挥发,即可制得复合植骨颗粒(图1)。3. Prepare β-tricalcium phosphate and α-calcium sulfate hemihydrate in a ratio of 1:1 by weight, and form α-calcium sulfate hemihydrate powder layer on the surface of β-tricalcium phosphate particles and/or in the voids: Mix 5g of α-sulphuric acid hemihydrate powder with 10ml of absolute ethanol, then add 5g of β-tricalcium phosphate particles, mix thoroughly and place in an oven at 37°C to gradually volatilize the absolute ethanol to obtain a composite plant. Bone particles (Figure 1).
实施例2:Example 2:
1.制备具有微孔结构的β-磷酸三钙颗粒:取健康牛松质骨粉碎为直径为2-3mm颗粒,冲洗干净后在800℃高温炉中煅烧3小时,取出后浸泡于浓度为1M的(NH4)2HPO4溶液中24小时,50℃烘干4天,再次放于1100℃高温煅烧炉中煅烧1小时,升温速率5℃/分,缓慢降温,去离子水漂洗2次,50℃烘干4天,制备主要成份为β-磷酸三钙的颗粒。该颗粒已经脱除了有机质成分。颗粒的直径为10mm。1. Preparation of β-tricalcium phosphate particles with a microporous structure: take healthy bovine cancellous bone and crush it into particles with a diameter of 2-3mm, rinse it and calcinate it in a high-temperature furnace at 800°C for 3 hours, take it out and soak it in a concentration of 1M (NH 4 ) 2 HPO 4 solution for 24 hours, dried at 50°C for 4 days, then placed in a high-temperature calciner at 1100°C for 1 hour, with a heating rate of 5°C/min, slowly cooling down, and rinsing with deionized water twice. Dry at 50° C. for 4 days to prepare granules whose main component is β-tricalcium phosphate. The pellets have been stripped of organic matter. The diameter of the particles was 10 mm.
2.制备α-半水硫酸钙粉体:将分析纯二水硫酸钙置于蒸汽压力为0.13Mpa的密闭高压反应釜中加热至123℃,恒温加热7h,然后取出放置在120℃的电热通风干燥箱中干燥4-5h,将所得材料采用气流磨粉碎为直径5μm的α-半水硫酸粉体。2. Preparation of α-calcium sulfate hemihydrate powder: put analytically pure calcium sulfate dihydrate in a closed high-pressure reactor with a steam pressure of 0.13Mpa and heat it to 123°C, heat it at a constant temperature for 7 hours, and then take out the electric heating ventilator placed at 120°C Dry in a drying oven for 4-5 hours, and use a jet mill to pulverize the obtained material into α-sulfuric acid hemihydrate powder with a diameter of 5 μm.
3.将β-磷酸三钙与α-半水硫酸钙按2∶8的重量份数比配制,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层:将8gα-半水硫酸粉体与10ml无水乙醇混匀,然后直接喷涂到2g β-磷酸三钙颗粒表面和其孔隙内,置于37℃烤箱中使无水乙醇逐渐挥发,即可制得复合植骨颗粒。3. β-tricalcium phosphate and α-calcium sulfate hemihydrate are prepared in a ratio of 2:8 in parts by weight, and an α-calcium sulfate hemihydrate powder layer is formed on the surface of the β-tricalcium phosphate particles and/or in the voids: Mix 8g of α-sulphuric acid hemihydrate powder with 10ml of absolute ethanol, then spray directly onto the surface and pores of 2g of β-tricalcium phosphate particles, and place it in an oven at 37°C to gradually volatilize the absolute ethanol. Composite bone graft particles.
实施例3:Example 3:
1.制备具有微孔结构的β-磷酸三钙颗粒:2重量份的磷酸氢钙在800℃条件下3小时,转变为焦磷酸钙,然后和1重量份的碳酸钙混合后压片,1100℃条件下1小时后缓慢冷却,粉碎后制成β-磷酸三钙粉体,采用微孔发泡技术(常规方法)制成具有微孔结构的β-磷酸三钙颗粒。颗粒的直径为0.2mm。1. Preparation of β-tricalcium phosphate particles with a microporous structure: 2 parts by weight of calcium hydrogen phosphate was converted into calcium pyrophosphate at 800°C for 3 hours, then mixed with 1 part by weight of calcium carbonate and pressed into tablets, 1100 After 1 hour under the condition of ℃, cool slowly, and make β-tricalcium phosphate powder after pulverization, and adopt microporous foaming technology (conventional method) to make β-tricalcium phosphate particles with microporous structure. The diameter of the particles is 0.2 mm.
2.制备α-半水硫酸钙粉体:将分析纯二水硫酸钙置于蒸汽压力为0.13Mpa的密闭高压反应釜中加热至123℃,恒温加热7h,然后取出放置在120℃的电热通风干燥箱中干燥4-5h,将所得材料采用气流磨粉碎为直径5μm的α-半水硫酸粉体。2. Preparation of α-calcium sulfate hemihydrate powder: put analytically pure calcium sulfate dihydrate in a closed high-pressure reactor with a steam pressure of 0.13Mpa and heat it to 123°C, heat it at a constant temperature for 7 hours, and then take out the electric heating ventilator placed at 120°C Dry in a drying oven for 4-5 hours, and use a jet mill to pulverize the obtained material into α-sulfuric acid hemihydrate powder with a diameter of 5 μm.
3.将β-磷酸三钙与α-半水硫酸钙按8∶2的重量份数比配制,在β-磷酸三钙颗粒表面和/或空隙内形成α-半水硫酸钙粉体层:将2g α-半水硫酸粉体与10ml无水乙醇混匀,然后采用等离子喷涂法喷涂到8g β-磷酸三钙颗粒表面及其孔隙内,充分混匀后置于37℃烤箱中使无水乙醇逐渐挥发,即可制得复合植骨颗粒。3. β-tricalcium phosphate and α-calcium sulfate hemihydrate are prepared in a ratio of 8:2 in parts by weight, and an α-calcium sulfate hemihydrate powder layer is formed on the surface of the β-tricalcium phosphate particles and/or in the voids: Mix 2g of α-sulphuric acid hemihydrate powder with 10ml of absolute ethanol, and then spray it onto the surface and pores of 8g of β-tricalcium phosphate particles by plasma spraying method. The ethanol is gradually volatilized, and the composite bone graft particles can be prepared.
实施例4:Example 4:
将实施例1制备的复合植骨颗粒采用扫描电子显微镜观察可以见到具有微孔结构的脱有机质松质骨颗粒表面覆着α-半水硫酸钙粉体(图2)。这种复合人工骨遇到水溶液可以固化为具有一定力学强度的团块(图3),固化1h后采用生物力学试验机(MTS 858 Mini.Bionix 2,USA)测试压缩强度,5个时间压缩强度在10-15MPa之间。复合人工骨颗粒X线衍射图谱可以见到同时具有β-磷酸三钙和α-半水硫酸的波峰(图4)。Observing the composite bone graft particles prepared in Example 1 with a scanning electron microscope, it can be seen that the surface of the deorganized cancellous bone particles with a microporous structure is covered with α-calcium sulfate hemihydrate powder ( FIG. 2 ). This composite artificial bone can be solidified into a mass with certain mechanical strength when it encounters an aqueous solution (Fig. 3). After curing for 1 hour, the compressive strength is tested with a biomechanical testing machine (MTS 858 Mini.Bionix 2, USA). Between 10-15MPa. The X-ray diffraction pattern of the composite artificial bone particle can be seen to have peaks of both β-tricalcium phosphate and α-sulfuric acid hemihydrate (Figure 4).
实施例5:Example 5:
将实施例1制作的复合人工骨颗粒按照适当重量分装后包装,可以采用Co60灭菌后用于修复骨缺损动物模型。采用家兔制作股骨髁上直径5mm骨缺损动物模型,采用复合植骨颗粒修复骨缺损,术后1天X线可以见到植骨材料完全充填骨缺损(图5a)。术后4周处死家兔,剖开股骨髁可以见到复合植骨材料充填在骨缺损内,与骨界面结合紧密,界面未见到炎性反应和纤维组织生成(图6a)。术后12周X线可以见到植骨材料大部分已经降解,处死家兔剖开股骨髁,可以见到复合植骨材料大部分已经降解,被新生骨爬行替代(图6b)。The composite artificial bone granules produced in Example 1 are subpackaged according to appropriate weight and packaged, and can be used to repair bone defect animal models after being sterilized with Co60. Rabbits were used to make an animal model of bone defect with a diameter of 5 mm above the femoral condyle, and the bone defect was repaired with composite bone graft particles. The bone defect could be completely filled with the bone graft material on X-ray 1 day after operation (Fig. 5a). The rabbits were sacrificed 4 weeks after the operation, and the femoral condyle was cut open to see that the composite bone graft material filled the bone defect and was tightly combined with the bone interface, and no inflammatory reaction or fibrous tissue formation was seen at the interface (Fig. 6a). X-rays at 12 weeks after the operation showed that most of the bone graft material had degraded. The rabbit was killed and the femoral condyle was cut open. It can be seen that most of the composite bone graft material had degraded and was replaced by new bone crawling (Fig. 6b).
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100639034A CN100536936C (en) | 2007-02-14 | 2007-02-14 | A kind of inorganic bone graft material, its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100639034A CN100536936C (en) | 2007-02-14 | 2007-02-14 | A kind of inorganic bone graft material, its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101020085A true CN101020085A (en) | 2007-08-22 |
CN100536936C CN100536936C (en) | 2009-09-09 |
Family
ID=38708011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100639034A Expired - Fee Related CN100536936C (en) | 2007-02-14 | 2007-02-14 | A kind of inorganic bone graft material, its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100536936C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102085389A (en) * | 2011-01-14 | 2011-06-08 | 北京大清生物技术有限公司 | Preparation method of injectable bone repair material |
CN102170922A (en) * | 2008-08-27 | 2011-08-31 | 诺拉克公司 | Bone substitute containing porous bio-glass and calcium sulphate |
CN102626526A (en) * | 2012-04-20 | 2012-08-08 | 无锡圆容生物医药股份有限公司 | Novel active absorbable bone cement material |
CN101596330B (en) * | 2009-07-09 | 2013-04-10 | 毛克亚 | Alpha-calcium sulfate hemihydrates/beta-tertiary calcium phosphate porous granular-type composite artificial bones and preparation method thereof |
CN106310363A (en) * | 2015-07-01 | 2017-01-11 | 李亚屏 | Degradable magnesium/zinc-containing calcium phosphate-calcium sulfate porous composite biological scaffold |
JP2017505159A (en) * | 2013-12-13 | 2017-02-16 | アグノヴォス ヘルスケア,エルエルシー | Multiphase bone graft substitute material |
CN108525004A (en) * | 2018-05-09 | 2018-09-14 | 湖北民族学院 | Alpha-semi water plaster stone/hydroxyapatite composite microspheres and preparation method thereof |
WO2018209579A1 (en) * | 2017-05-17 | 2018-11-22 | 高雄医学大学 | Composite scaffold containing drug |
CN109793922A (en) * | 2019-03-01 | 2019-05-24 | 昆明理工大学 | A kind of calcium sulfate dihydrate/monetite core-shell structure material and preparation method thereof |
CN109821066A (en) * | 2019-03-04 | 2019-05-31 | 昆明理工大学 | A kind of preparation method of gelatin/calcium hydrogen phosphate dihydrate/calcium sulfate dihydrate porous scaffold |
CN110236710A (en) * | 2018-03-09 | 2019-09-17 | 中日友好医院 | A method for promoting bone formation of bone graft material after dental implant maxillary sinus lifting |
CN110251723A (en) * | 2019-08-01 | 2019-09-20 | 陶合体科技(苏州)有限责任公司 | A kind of porous composite ceramics and preparation method thereof being able to guide osteanagenesis |
CN110282998A (en) * | 2019-08-01 | 2019-09-27 | 陶合体科技(苏州)有限责任公司 | Calcium phosphate porous ceramics and preparation method thereof based on calcium sulfate salt cladding |
CN112479737A (en) * | 2020-12-09 | 2021-03-12 | 南京航空航天大学 | Controllable porous biological ceramic support and preparation method and application thereof |
CN114404654A (en) * | 2022-01-28 | 2022-04-29 | 河南科技大学 | A kind of high-strength magnetic bone cement and preparation method thereof |
-
2007
- 2007-02-14 CN CNB2007100639034A patent/CN100536936C/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102170922A (en) * | 2008-08-27 | 2011-08-31 | 诺拉克公司 | Bone substitute containing porous bio-glass and calcium sulphate |
CN101596330B (en) * | 2009-07-09 | 2013-04-10 | 毛克亚 | Alpha-calcium sulfate hemihydrates/beta-tertiary calcium phosphate porous granular-type composite artificial bones and preparation method thereof |
CN102085389B (en) * | 2011-01-14 | 2013-10-16 | 北京大清生物技术有限公司 | Preparation method of injectable bone repair material |
CN102085389A (en) * | 2011-01-14 | 2011-06-08 | 北京大清生物技术有限公司 | Preparation method of injectable bone repair material |
CN102626526A (en) * | 2012-04-20 | 2012-08-08 | 无锡圆容生物医药股份有限公司 | Novel active absorbable bone cement material |
AU2018204187B2 (en) * | 2013-12-13 | 2019-12-05 | Agnovos Healthcare, Llc | Multiphasic bone graft substitute material |
JP2017505159A (en) * | 2013-12-13 | 2017-02-16 | アグノヴォス ヘルスケア,エルエルシー | Multiphase bone graft substitute material |
EP3269399A1 (en) * | 2013-12-13 | 2018-01-17 | Agnovos Healthcare, LLC | Multiphasic bone graft substitute material |
AU2014362175B2 (en) * | 2013-12-13 | 2018-07-05 | Agnovos Healthcare, Llc | Multiphasic bone graft substitute material |
US10973949B2 (en) | 2013-12-13 | 2021-04-13 | Agnovos Healthcare, Llc | Multiphasic bone graft substitute material |
CN106310363A (en) * | 2015-07-01 | 2017-01-11 | 李亚屏 | Degradable magnesium/zinc-containing calcium phosphate-calcium sulfate porous composite biological scaffold |
WO2018209579A1 (en) * | 2017-05-17 | 2018-11-22 | 高雄医学大学 | Composite scaffold containing drug |
CN110236710A (en) * | 2018-03-09 | 2019-09-17 | 中日友好医院 | A method for promoting bone formation of bone graft material after dental implant maxillary sinus lifting |
CN108525004B (en) * | 2018-05-09 | 2020-11-17 | 湖北民族学院 | Alpha-hemihydrate gypsum/hydroxyapatite composite microsphere and preparation method thereof |
CN108525004A (en) * | 2018-05-09 | 2018-09-14 | 湖北民族学院 | Alpha-semi water plaster stone/hydroxyapatite composite microspheres and preparation method thereof |
CN109793922A (en) * | 2019-03-01 | 2019-05-24 | 昆明理工大学 | A kind of calcium sulfate dihydrate/monetite core-shell structure material and preparation method thereof |
CN109821066A (en) * | 2019-03-04 | 2019-05-31 | 昆明理工大学 | A kind of preparation method of gelatin/calcium hydrogen phosphate dihydrate/calcium sulfate dihydrate porous scaffold |
CN110251723A (en) * | 2019-08-01 | 2019-09-20 | 陶合体科技(苏州)有限责任公司 | A kind of porous composite ceramics and preparation method thereof being able to guide osteanagenesis |
CN110282998A (en) * | 2019-08-01 | 2019-09-27 | 陶合体科技(苏州)有限责任公司 | Calcium phosphate porous ceramics and preparation method thereof based on calcium sulfate salt cladding |
CN112479737A (en) * | 2020-12-09 | 2021-03-12 | 南京航空航天大学 | Controllable porous biological ceramic support and preparation method and application thereof |
CN112479737B (en) * | 2020-12-09 | 2022-04-22 | 南京航空航天大学 | Controllable porous biological ceramic support and preparation method and application thereof |
CN114404654A (en) * | 2022-01-28 | 2022-04-29 | 河南科技大学 | A kind of high-strength magnetic bone cement and preparation method thereof |
CN114404654B (en) * | 2022-01-28 | 2022-11-01 | 河南科技大学 | A kind of high-strength magnetic bone cement and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100536936C (en) | 2009-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100536936C (en) | A kind of inorganic bone graft material, its preparation method and application | |
Meng et al. | Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration | |
CN104056305B (en) | A kind of calcium orthophosphate base is combined self-curing bone renovating material and preparation method thereof | |
Hayashi et al. | Granular honeycombs composed of carbonate apatite, hydroxyapatite, and β-tricalcium phosphate as bone graft substitutes: effects of composition on bone formation and maturation | |
EP2396046B1 (en) | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds | |
US6132463A (en) | Cell seeding of ceramic compositions | |
Nandi et al. | Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat | |
US20080033572A1 (en) | Bone graft composites and methods of treating bone defects | |
Hu et al. | Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair | |
ES2802374T3 (en) | Multiple Ion Substitution Injectable Apatite Cement for Regenerative Vertebroplasty and Kyphoplasty | |
Ana | Bone substituting materials in dental implantology | |
Arahira et al. | Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement | |
Ning | Biomaterials for bone tissue engineering | |
CN111773432A (en) | Magnesium-based amorphous-calcium phosphate/calcium silicate composite filler and its preparation and application | |
Daculsi et al. | The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering | |
Dorozhkin | Calcium-orthophosphate-based bioactive ceramics | |
Chen et al. | Calcium phosphate bone cements: their development and clinical applications | |
Manassero et al. | Coral scaffolds in bone tissue engineering and bone regeneration | |
Döbelin et al. | Synthetic calcium phosphate ceramics for treatment of bone fractures | |
Mills | The role of polymer additives in enhancing the response of calcium phosphate cement | |
Daculsi et al. | Tricalcium phosphate/hydroxyapatite biphasic ceramics | |
Daculsi et al. | The essential role of calcium phosphate bioceramics in bone regeneration | |
Sandeep et al. | Characterization of novel bioactive glass coated hydroxyapatite granules in correlation with in vitro and in vivo studies | |
CN111773434A (en) | Magnesium strontium-calcium phosphate/calcium silicate composite bone cement filler and its preparation and application | |
Dorozhkin | Calcium Orthophosphates in Tissue Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090909 Termination date: 20150214 |
|
EXPY | Termination of patent right or utility model |