CN101015841A - Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar - Google Patents
Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar Download PDFInfo
- Publication number
- CN101015841A CN101015841A CN 200710071787 CN200710071787A CN101015841A CN 101015841 A CN101015841 A CN 101015841A CN 200710071787 CN200710071787 CN 200710071787 CN 200710071787 A CN200710071787 A CN 200710071787A CN 101015841 A CN101015841 A CN 101015841A
- Authority
- CN
- China
- Prior art keywords
- extrusion
- magnesium alloy
- punch
- cylinder
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001125 extrusion Methods 0.000 title claims abstract description 121
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 94
- 239000007788 liquid Substances 0.000 title claims abstract description 28
- 230000003068 static effect Effects 0.000 title claims abstract description 10
- 239000004359 castor oil Substances 0.000 claims abstract description 21
- 235000019438 castor oil Nutrition 0.000 claims abstract description 21
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000000314 lubricant Substances 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 238000005485 electric heating Methods 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims description 11
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims description 10
- 238000000886 hydrostatic extrusion Methods 0.000 claims description 10
- 229920001973 fluoroelastomer Polymers 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 claims description 5
- 239000010425 asbestos Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 229910052895 riebeckite Inorganic materials 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 4
- 229920001971 elastomer Polymers 0.000 claims 4
- 229910052731 fluorine Inorganic materials 0.000 claims 4
- 239000011737 fluorine Substances 0.000 claims 4
- 239000004033 plastic Substances 0.000 abstract description 8
- 229920003023 plastic Polymers 0.000 abstract description 8
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000002706 hydrostatic effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010099 solid forming Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Extrusion Of Metal (AREA)
- Forging (AREA)
Abstract
镁合金丝材或棒材温静液挤压制造方法及其挤压模具,它涉及一种镁合金丝材或棒材温静液挤压制造的方法及该方法的专用挤压模具。本发明有效解决了镁合金塑性加工时存在塑性差、流动摩擦阻力较大、易产生龟裂、加工成本高的问题。本方法的具体工序包括:镁合金坯料加工、涂润滑剂、蓖麻油加热、温静液挤压模具加热及温度控制、放镁合金坯料、注蓖麻油、放活动凸模、加压、挤出成形。镁合金丝材或棒材温静液挤压模具包括活动凸模(26),活动凸模(26)置于凸模(6)的正下方并与凸模(6)同轴,活动凸模(26)的下端穿过凹模压板(17)中间设有的凸模通孔(8)装在挤压筒(13)内的上部,所述的挤压筒(13)为多层冷压组合挤压筒。该方法和该专用模具制造出的丝材与棒材具有更高的力学性能和更好的表面质量,比强度、比刚度指标也有所提高。
The invention relates to a method for manufacturing magnesium alloy wire or rod by thermostatic extrusion and an extrusion die thereof, which relates to a method for manufacturing magnesium alloy wire or rod by thermostatic extrusion and a special extrusion die for the method. The invention effectively solves the problems of poor plasticity, large flow friction resistance, easy cracks and high processing cost during the plastic processing of the magnesium alloy. The specific steps of the method include: magnesium alloy billet processing, lubricant coating, castor oil heating, warm static liquid extrusion die heating and temperature control, magnesium alloy billet injection, castor oil injection, movable punch release, pressurization, extrusion take shape. Magnesium alloy wire or bar thermostatic extrusion die comprises movable punch (26), and movable punch (26) is placed directly below punch (6) and is coaxial with punch (6), and movable punch The lower end of (26) passes through the punch through hole (8) provided in the middle of the die platen (17) and is installed on the upper part of the extrusion cylinder (13). The extrusion cylinder (13) is a multi-layer cold-pressed Combination extrusion barrel. The wires and rods produced by the method and the special mold have higher mechanical properties and better surface quality, and the specific strength and specific stiffness indexes are also improved.
Description
技术领域technical field
本发明涉及一种镁合金丝材或棒材温静液挤压制造的方法及该方法的专用挤压模具。The invention relates to a method for manufacturing magnesium alloy wire or rod by thermostatic liquid extrusion and a special extrusion die for the method.
背景技术Background technique
镁合金是目前最轻的工程金属材料,其密度约为1.78g/cm3,为钢的1/4,铝的2/3,锌的1/4。由于密度小,和常用工程材料相比,镁合金的比强度、比刚度指标高出很多。此外,镁合金还具有优良的导热性、吸振性和耐磨性,电磁屏蔽性能良好,并易于铸造成型和机械加工。同时,镁合金还是一种可重复使用的环保材料。由于镁合金具有这些显著的优点,因此被日益广泛地应用在汽车、航空航天、信息通讯等工业领域。从轻量化方面考虑,镁合金常被用于替代比重较大的钢铁及铝合金零件;从提高强度及环保方面考虑,它还用于替代工程塑料及木材。镁合金每年的用量现在正以15%的速率快速增长,远远高于钢铁、铝、铜、镍和锌的增长速度。Magnesium alloy is currently the lightest engineering metal material, its density is about 1.78g/cm 3 , which is 1/4 of steel, 2/3 of aluminum, and 1/4 of zinc. Due to the low density, compared with commonly used engineering materials, the specific strength and specific stiffness of magnesium alloys are much higher. In addition, magnesium alloy also has excellent thermal conductivity, vibration absorption and wear resistance, good electromagnetic shielding performance, and is easy to cast and machine. At the same time, magnesium alloy is also a reusable and environmentally friendly material. Due to these remarkable advantages, magnesium alloys are increasingly widely used in industrial fields such as automobiles, aerospace, and information communications. From the perspective of light weight, magnesium alloy is often used to replace steel and aluminum alloy parts with large specific gravity; from the perspective of improving strength and environmental protection, it is also used to replace engineering plastics and wood. The annual consumption of magnesium alloys is now growing rapidly at a rate of 15%, much higher than the growth rate of steel, aluminum, copper, nickel and zinc.
目前工程上镁合金成形加工主要采用压铸、半固态成形及触变成形等铸造加工技术,全世界范围内镁合金产品有90%以上是铸件,通过金属塑性变形方式加工的产品还不足5%。由于塑性加工技术的不成熟,使镁合金结构件的普及应用受到了很大限制,尤其是镁合金丝材与棒材的生产。镁合金是一种常温塑性很差的金属材料,其塑性加工存在下面几个主要困难:镁合金的晶体结构为密排六方晶格,只有一个滑移面共三个滑移系,稀少的滑移系使常温镁合金塑性很差;镁合金高温时表面摩擦系数较大,在进行塑性加工时,其流动摩擦阻力较大;镁合金导热性能良好,进行温或热塑性加工时和模具接触部分容易激冷而产生龟裂;高温镁合金会在空气中激烈氧化,因此要使用阻燃剂等填加物,这会大大增加镁合金塑性加工的生产成本。由于上述问题,镁合金塑性加工产品的应用受到了很大限制。At present, magnesium alloy forming processing in engineering mainly adopts casting processing technologies such as die casting, semi-solid forming and thixoforming. More than 90% of magnesium alloy products worldwide are castings, and less than 5% of products are processed by metal plastic deformation. . Due to the immaturity of plastic processing technology, the popularization and application of magnesium alloy structural parts has been greatly restricted, especially the production of magnesium alloy wire and rod. Magnesium alloy is a metal material with poor plasticity at room temperature. There are several major difficulties in its plastic processing: the crystal structure of magnesium alloy is a close-packed hexagonal lattice, and there are only three slip systems in one slip plane. The shift system makes the plasticity of magnesium alloy at room temperature very poor; the surface friction coefficient of magnesium alloy is large at high temperature, and its flow friction resistance is relatively large during plastic processing; the thermal conductivity of magnesium alloy is good, and it is easy to contact the mold when performing warm or thermoplastic processing. Chilling causes cracks; high-temperature magnesium alloys will be oxidized violently in the air, so additives such as flame retardants must be used, which will greatly increase the production cost of plastic processing of magnesium alloys. Due to the above problems, the application of plastically processed products of magnesium alloys has been greatly restricted.
发明内容Contents of the invention
本发明解决了镁合金塑性加工时存在塑性差、流动摩擦阻力较大、易产生龟裂、加工成本高的问题。The invention solves the problems of poor plasticity, large flow friction resistance, easy cracks and high processing cost during the plastic processing of the magnesium alloy.
镁合金丝材或棒材温静液挤压制造方法的技术方案是按以下步骤实现的:一、镁合金坯料加工:选取镁合金棒料,将镁合金棒料头加工成锥角为20~60°的圆锥面;二、涂润滑剂:将蓖麻油和石墨按重量比3~5∶1的比例混合后涂在加工后的镁合金坯料表面上;三、蓖麻油加热:将蓖麻油预热到250~300℃;四、温静液挤压模具加热及温度控制:将温静液挤压模具加热到250~300℃并将温度控制在250~300℃之间;五、放镁合金坯料:把完成步骤二的镁合金坯料放入温度为250~300℃的温静液挤压模具的挤压凹模内,镁合金坯料的圆锥头和挤压模口的圆锥面相配合,通过温静液挤压模具直接给坯料加热,使镁合金坯料温度达到250~300℃;六、注蓖麻油:将温度为250~300℃的蓖麻油注入温静液挤压模具的挤压凹模内腔中;七、放活动凸模:将活动凸模的下端放入挤压筒内腔的上部;八、加压:对活动凸模加压,镁合金坯料挤压温度控制在250~300℃;九、挤出成形:在活动凸模完成了挤压行程之后,温静液挤压成形镁合金丝材或棒材就从挤压嘴处挤压成形。The technical scheme of the magnesium alloy wire or bar thermostatic extrusion manufacturing method is realized according to the following steps: 1. Magnesium alloy billet processing: select the magnesium alloy bar stock, and process the magnesium alloy bar stock head into a cone angle of 20 ~ 60° conical surface; 2. Apply lubricant: mix castor oil and graphite in a ratio of 3 to 5:1 by weight and apply it on the surface of the processed magnesium alloy blank; 3. Heating castor oil: Preheat castor oil Heat to 250-300°C; 4. Heating and temperature control of the warm-static liquid extrusion die: heat the warm-static liquid extrusion die to 250-300°C and control the temperature between 250-300°C; 5. Put magnesium alloy Billet: Put the magnesium alloy billet completed in
前面所述制造方法的实现必须借助镁合金丝材或棒材温静液挤压模具才能实现,该挤压模具包括上模板、凸模固定套、凸模垫块、凸模、挤压筒、凹模压板、挤压凹模、垫块、模座盖板、模座、铠装热电偶、温度控制器、电热管、导线和导线,上模板置于凸模固定套的上端且与凸模固定套连接,凸模垫块置于凸模固定套中设有的圆柱孔内,凸模的上端置于凸模固定套中设有的圆锥孔内,圆柱孔和圆锥孔是相通的,模座盖板、垫块、挤压筒、凹模压板按从下到上的顺序依次置放,挤压凹模置于挤压筒内的底部垫块的上方,凹模压板、模座盖板和模座固定连接,电热管装在挤压筒内的电热管孔内,电热管通过导线与温度控制器电连接,温度控制器通过导线与铠装热电偶电连接,它还包括活动凸模,所述的活动凸模置于凸模的正下方并与凸模同轴,活动凸模的下端穿过凹模压板中间设有的凸模通孔装在挤压筒内的上部,所述的挤压筒为多层冷压组合挤压筒。The realization of the above-mentioned manufacturing method must be realized with the help of a magnesium alloy wire or rod thermostatic extrusion die, which includes an upper plate, a punch fixing sleeve, a punch pad, a punch, an extrusion cylinder, Die platen, extrusion die, spacer, mold base cover, mold base, armored thermocouple, temperature controller, electric heating tube, wires and wires, the upper template is placed on the upper end of the punch fixed sleeve and The fixed sleeve is connected, the punch pad is placed in the cylindrical hole provided in the punch fixed sleeve, and the upper end of the punch is placed in the conical hole provided in the punch fixed sleeve. The cylindrical hole and the conical hole are connected. The seat cover, spacer, extrusion cylinder, and die platen are placed in order from bottom to top, the extrusion die is placed above the bottom cushion block in the extrusion cylinder, the die platen, die base cover It is fixedly connected with the mold base, and the electric heating tube is installed in the electric heating tube hole in the extrusion cylinder. The electric heating tube is electrically connected to the temperature controller through the wire, and the temperature controller is electrically connected to the armored thermocouple through the wire. It also includes a movable punch , the movable punch is placed directly below the punch and coaxial with the punch, the lower end of the movable punch passes through the punch through hole provided in the middle of the die platen and is installed in the upper part of the extrusion barrel, the said The extruded barrel is a multi-layer cold-pressed combined extruded barrel.
镁合金丝材或棒材温静液挤压制造方法能使常温塑性较差的镁合金坯料在变形过程中始终处于三向静水压力状态,使其塑性显著提高;合适的温度也进一步提高了镁合金坯料的塑性,降低了塑性变形抗力;蓖麻油既是液体压力介质又是润滑剂,使工件与模具之间形成液体隔离及流体动力润滑,大大降低了金属流动的摩擦阻力;液体压力介质还避免了镁合金和模具的直接接触,使镁合金散热速度大大降低,避免了工件表面龟裂纹的产生;液体压力介质把镁合金和空气隔离,大大减轻了高温镁合金的氧化程度;温静液挤压还可获得细小的晶粒组织,静水高压还可以减少甚至消除坯料内部的微裂纹缺陷。与挤压、拉拔、轧制等传统方法相比,用该方法制造出的丝材与棒材具有更高的力学性能、更好的表面质量,比强度和比刚度指标有了很大的提高。是一种替代钢和铝合金零件的理想材料,非常适合于航空、航天、汽车、摩托车、电动车、自行车及童车等领域机械零部件的制造。镁合金丝材或棒材温静液挤压模具采用多层冷压组合挤压筒和密封结构,大大提高了镁合金丝材或棒材温静液挤压的压力,温度控制装置确保了温静液挤压温度,活动凸模的使用实现了在不用导柱、导套的情况下的温静液挤压。The thermostatic extrusion manufacturing method of magnesium alloy wire or rod can make the magnesium alloy billet with poor plasticity at room temperature always in the state of three-way hydrostatic pressure during the deformation process, so that the plasticity is significantly improved; the appropriate temperature also further improves the magnesium alloy. The plasticity of the alloy billet reduces the resistance to plastic deformation; castor oil is both a liquid pressure medium and a lubricant, forming a liquid isolation and hydrodynamic lubrication between the workpiece and the mold, which greatly reduces the frictional resistance of metal flow; the liquid pressure medium also avoids The direct contact between the magnesium alloy and the mold greatly reduces the heat dissipation speed of the magnesium alloy and avoids the generation of cracks on the surface of the workpiece; the liquid pressure medium isolates the magnesium alloy from the air, which greatly reduces the degree of oxidation of the high-temperature magnesium alloy; Extrusion can also obtain fine grain structure, and hydrostatic high pressure can also reduce or even eliminate micro-crack defects inside the billet. Compared with traditional methods such as extrusion, drawing, rolling, etc., the wires and rods produced by this method have higher mechanical properties, better surface quality, and a great improvement in specific strength and specific stiffness. improve. It is an ideal material to replace steel and aluminum alloy parts, and is very suitable for the manufacture of mechanical parts in the fields of aviation, aerospace, automobiles, motorcycles, electric vehicles, bicycles and baby carriages. Magnesium alloy wire or rod thermostatic extrusion die adopts multi-layer cold pressing combined extrusion cylinder and sealing structure, which greatly improves the pressure of magnesium alloy wire or rod thermostatic extrusion, and the temperature control device ensures the temperature The hydrostatic extrusion temperature and the use of the movable punch have realized the hydrostatic extrusion without the use of guide pillars and guide sleeves.
附图说明Description of drawings
图1是镁合金丝材或棒材温静液挤压模具的剖视图,图2是多层冷压组合挤压筒压配前的结构图,图3是多层冷压组合挤压筒压配后结构图;图4是挤压筒的上密封结构的放大图;图5是挤压筒的下密封结构的放大图;图6是镁合金坯料图。Figure 1 is a cross-sectional view of a magnesium alloy wire or rod thermostatic extrusion die, Figure 2 is a structural diagram of a multi-layer cold-press combined extrusion barrel before press-fitting, and Figure 3 is a multi-layer cold-press combined extrusion barrel press-fit Rear structural diagram; Fig. 4 is an enlarged view of the upper sealing structure of the extrusion barrel; Fig. 5 is an enlarged view of the lower sealing structure of the extrusion barrel; Fig. 6 is a view of the magnesium alloy billet.
具体实施方式Detailed ways
具体实施方式一:本实施方式所述的一种镁合金丝材或棒材温静液挤压制造力法,它是按以下步骤实现的:一、镁合金坯料加工:选取镁合金棒料,将镁合金棒料头加工成锥角为20~60°的圆锥面;二、涂润滑剂:将蓖麻油和石墨按重量比3~5∶1的比例混合后涂在加工后的镁合金坯料表面上;三、蓖麻油加热:将蓖麻油预热到250~300℃;四、温静液挤压模具加热及温度控制:将温静液挤压模具加热到250~300℃并将温度控制在250~300℃之间;五、放镁合金坯料:把完成步骤二的镁合金坯料放入温度为250~300℃的温静液挤压模具的挤压凹模内,镁合金坯料的圆锥头和挤压模口的圆锥面相配合,通过温静液挤压模具直接给坯料加热,使镁合金坯料温度达到250~300℃;六、注蓖麻油:将温度为250~300℃的蓖麻油注入温静液挤压模具的挤压凹模内腔中;七、放活动凸模:将活动凸模的下端放入挤压筒内腔的上部;八、加压:对活动凸模加压,镁合金坯料挤压温度控制在250~300℃;九、挤出成形:在活动凸模完成了挤压行程之后,温静液挤压成形镁合金丝材或棒材就从挤压嘴处挤压成形。Specific embodiment one: a kind of magnesium alloy wire or bar material thermostatic extrusion manufacturing method described in this embodiment, it is realized according to the following steps: 1, magnesium alloy billet processing: choose magnesium alloy bar stock, Process the magnesium alloy bar head into a conical surface with a cone angle of 20-60°; 2. Apply lubricant: mix castor oil and graphite in a weight ratio of 3-5:1 and apply it to the processed magnesium alloy blank On the surface; 3. Castor oil heating: preheat the castor oil to 250-300°C; 4. Heating and temperature control of the warm static liquid extrusion die: heat the warm static liquid extrusion die to 250-300°C and control the temperature Between 250 and 300°C; 5. Put the magnesium alloy billet: put the magnesium alloy billet that has completed
具体实施方式二:本实施方式与具体实施方式一不同点在于,先将镁合金坯料加热到250~300℃,并保持加热速度在6~8℃/min,达到加热温度后,坯料要在加热炉中保温至少15~45分钟,然后再将加热后镁合金坯料放入静液挤压模具的挤压凹模内腔中。采用这样的工序步骤可以大大提高生产效率。Embodiment 2: The difference between this embodiment and
具体实施方式三:本实施方式与具体实施方式一不同点在于步骤一中镁合金棒料头加工成锥角α为38°的圆锥面,和挤压模口的锥角γ为40°的圆锥面相配合,能够形成有效的密封。Specific embodiment three: the difference between this embodiment and specific embodiment one is that in step one, the magnesium alloy bar head is processed into a conical surface with a cone angle α of 38°, and a cone with a cone angle γ of the extrusion die mouth of 40° The surfaces cooperate to form an effective seal.
具体实施方式四:本实施方式与具体实施方式一不同点在于步骤二中将蓖麻油和石墨按重量比4∶1的比例混合配制润滑剂,滑润效果最佳。Embodiment 4: The difference between this embodiment and
具体实施方式五:本实施方式与具体实施方式一不同点在于步骤四中温静液挤压模具温度控制在270℃,温度较易控制。Embodiment 5: This embodiment differs from
具体实施方式六:本实施方式与具体实施方式一不同点在于步骤八中活动凸模的移动速度为5~15mm/s,有效地保证了挤压效果。Embodiment 6: This embodiment differs from
具体实施方式七:如附图1所示的镁合金丝材或棒材温静液挤压模具,它由上模板1、凸模固定套2、凸模垫块5、凸模6、挤压筒13、凹模压板17、挤压凹模18、垫块19、模座盖板20、模座21、铠装热电偶31、温度控制器29、电热管28和导线30、导线34和活动凸模26组成,上模板1置于凸模固定套2的上端且与凸模固定套2连接,凸模垫块5置于凸模固定套2中设有的圆柱孔3内,凸模6的上端置于凸模固定套2中设有的圆锥孔4内,圆柱孔3和圆锥孔4是相通的,模座盖板20、垫块19、挤压筒13、凹模压板17按从下到上的顺序依次置放,挤压凹模18置于挤压筒13内的底部垫块19的上方,凹模压板17、模座盖板20和模座21固定连接,电热管28装在挤压筒13内的电热管孔7内,电热管28通过导线34与温度控制器29电连接,温度控制器29通过导线30与铠装热电偶31电连接,所述的活动凸模26置于凸模6的正下方并与凸模6同轴,活动凸模26的下端穿过凹模压板17中间设有的凸模通孔8装在挤压筒13内的上部,所述的挤压筒13为多层冷压组合挤压筒。镁合金丝材或棒材温静液挤压模具在工作状态下,上模板1与液压机滑块32连接,模座21固定安装在工作台33上,镁合金坯料14放在挤压筒13内挤压凹模18内腔中,通过和压力机相连的凸模6给挤压筒13型腔内的蓖麻油液体介质施加高压,使镁合金坯料14受到周围高压液体的静水压力。静水压力和适当的温度使镁合金坯料14的塑性显著提高,变形抗力下降。在高压蓖麻油液体产生的静水压力作用下,镁合金坯料14被温静液挤压模具挤压成丝材或棒材,并经挤压嘴25、垫块19内的圆锥腔23、模座盖板20内的圆柱腔24挤出。Specific embodiment seven: as shown in accompanying
具体实施方式八:如附图2和附图3所示,本实施方式所述的挤压筒13由外筒9、中筒10和内筒11相套组成,外筒9、中筒10和内筒11通过冷压的方式装配到一起,外筒9的内表面、中筒10的内外表面及内筒11的外表面倾斜角β均为1.5°,该装置可完成0~1500Mpa压力范围内的挤压加工。Embodiment 8: As shown in accompanying
具体实施方式九:如附图1、附图4和附图5所示,本实施方式与具体实施方式七、八的不同点是,本实施方式还包括氟橡胶O型圈15与铍铜楔形环16,所述的氟橡胶O型圈15和铍铜楔形环16置放在活动凸模26的下端周围和挤压筒13之间且铍铜楔形环16叠放在氟橡胶O型圈15的上端;所述的氟橡胶O型圈15和铍铜楔形环16还置放在凹模18的上端周围和挤压筒13之间且氟橡胶O型圈15叠放在铍铜楔形环16的上端,采用这样的结构可实现在0~380℃温度范围内及0~1500Mpa压力范围内的顺序密封。Specific embodiment nine: as shown in accompanying drawing 1, accompanying drawing 4 and accompanying drawing 5, the difference between this embodiment and
具体实施方式十:如附图1所示,本实施方式与具体实施方式七、八、九的不同点是,本实施方式还包括石棉隔热板27和硅酸铝纤维隔热套12,所述的石棉隔热板27置于挤压筒13的底面,所述的硅酸铝纤维隔热套12套在挤压筒13的外表面。圆板形的石棉隔热板27使挤压筒13和垫块19隔开,硅酸铝纤维隔热套12使挤压筒13和空气相隔离。这种保温隔热方式能够很好地保证镁合金坯料及蓖麻油液体挤压介质的加热速度。Embodiment 10: As shown in Figure 1, the difference between this embodiment and
具体实施方式十一:如附图5所示,本实施方式所述的挤压凹模18的挤压模口22的圆锥面的锥角γ为的22~62°,挤压模口22能与棒料头锥面的锥角α为20~60°的镁合金坯料相配合。Embodiment 11: As shown in accompanying drawing 5, the cone angle γ of the conical surface of the extrusion die opening 22 of the extrusion die 18 described in this embodiment is 22~62°, and the extrusion die opening 22 can It is compatible with the magnesium alloy blank whose cone angle α of the cone surface of the bar head is 20-60°.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100717870A CN100450654C (en) | 2007-02-14 | 2007-02-14 | Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100717870A CN100450654C (en) | 2007-02-14 | 2007-02-14 | Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101015841A true CN101015841A (en) | 2007-08-15 |
CN100450654C CN100450654C (en) | 2009-01-14 |
Family
ID=38725156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100717870A Expired - Fee Related CN100450654C (en) | 2007-02-14 | 2007-02-14 | Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100450654C (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549362B (en) * | 2009-05-08 | 2011-02-02 | 重庆大学 | Small-scale magnesium alloy bar pipe hot extrusion shaping mold |
CN102427894A (en) * | 2009-05-19 | 2012-04-25 | Lkr轻金属能力中心兰斯霍芬有限责任公司 | Method for producing a small thin-walled tube from a magnesium alloy |
CN102975395A (en) * | 2012-11-08 | 2013-03-20 | 余义水 | Mold heating forming device |
CN103143581A (en) * | 2013-02-06 | 2013-06-12 | 和龙双昊高新技术有限公司 | Cold state aluminum alloy profile extrusion equipment |
CN103143584A (en) * | 2013-04-09 | 2013-06-12 | 河南理工大学 | Device for preparing alloy with uniform organization and performance |
CN103209778A (en) * | 2010-09-14 | 2013-07-17 | Sms米尔股份有限公司 | Extrusion press and method for continuously pressing metal |
CN103433315A (en) * | 2013-08-23 | 2013-12-11 | 中国兵器工业第五二研究所 | Method for reinforcing hydrostatic extrusion deformation of high-speed steel |
CN103464498A (en) * | 2012-06-06 | 2013-12-25 | 镇江建华轴承有限公司 | Precise processing method for specially-shaped cavity of bearing outer ring |
CN104117547A (en) * | 2014-07-21 | 2014-10-29 | 王元琪 | Continuous extrusion die of warm extrusion gear stick and machining method thereof |
CN106427049A (en) * | 2016-10-28 | 2017-02-22 | 无锡市威特机械有限公司 | Cooling structure for extrusion barrel |
CN106540976A (en) * | 2015-09-22 | 2017-03-29 | 南京理工大学 | A kind of shaped device and its moulding process of the long tubing of hydrostatic extrusion magnesium alloy |
CN106903217A (en) * | 2017-04-12 | 2017-06-30 | 徐庭星 | A kind of manufacture craft of magnesium alloy chest and obtained magnesium alloy suitcase |
CN107597870A (en) * | 2017-10-18 | 2018-01-19 | 山东大学 | A kind of die device and method for being used to study Splicing Mechanism soldering process |
CN108215036A (en) * | 2016-12-13 | 2018-06-29 | 虎尾科技大学 | High-temperature hot-pressing forming machine |
CN111545644A (en) * | 2020-05-16 | 2020-08-18 | 寇俊祥 | Aluminum product embossing mold utensil |
CN112077163A (en) * | 2020-09-02 | 2020-12-15 | 江苏亚太轻合金科技股份有限公司 | Valve body aluminium alloy inclination rounding off feeding mould |
CN114905793A (en) * | 2022-05-09 | 2022-08-16 | 深圳技术大学 | Method for high temperature compression molding of silicon mold |
CN115026150A (en) * | 2022-06-14 | 2022-09-09 | 江阴旭初科技有限公司 | Oblique closed type large cantilever shunting die |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794048A (en) * | 1993-09-24 | 1995-04-07 | Nippon Katan Chutetsusho:Kk | Insulator fitting used also for stringing and fastening wire |
CN1325191C (en) * | 2005-07-22 | 2007-07-11 | 哈尔滨工业大学 | Shaping device of solid hot extrusion magnesium alloy wheel hub and shaping method thereof |
-
2007
- 2007-02-14 CN CNB2007100717870A patent/CN100450654C/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549362B (en) * | 2009-05-08 | 2011-02-02 | 重庆大学 | Small-scale magnesium alloy bar pipe hot extrusion shaping mold |
US9227235B2 (en) | 2009-05-19 | 2016-01-05 | Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh | Method for producing a small thin-walled tube from a magnesium alloy |
CN102427894A (en) * | 2009-05-19 | 2012-04-25 | Lkr轻金属能力中心兰斯霍芬有限责任公司 | Method for producing a small thin-walled tube from a magnesium alloy |
CN103209778A (en) * | 2010-09-14 | 2013-07-17 | Sms米尔股份有限公司 | Extrusion press and method for continuously pressing metal |
CN103464498A (en) * | 2012-06-06 | 2013-12-25 | 镇江建华轴承有限公司 | Precise processing method for specially-shaped cavity of bearing outer ring |
CN102975395A (en) * | 2012-11-08 | 2013-03-20 | 余义水 | Mold heating forming device |
CN103143581A (en) * | 2013-02-06 | 2013-06-12 | 和龙双昊高新技术有限公司 | Cold state aluminum alloy profile extrusion equipment |
CN103143584A (en) * | 2013-04-09 | 2013-06-12 | 河南理工大学 | Device for preparing alloy with uniform organization and performance |
CN103433315B (en) * | 2013-08-23 | 2016-02-24 | 北方材料科学与工程研究院有限公司 | High-speed steel hydrostatic liquid extrusion pressing deforming strengthening method |
CN103433315A (en) * | 2013-08-23 | 2013-12-11 | 中国兵器工业第五二研究所 | Method for reinforcing hydrostatic extrusion deformation of high-speed steel |
CN104117547B (en) * | 2014-07-21 | 2016-04-27 | 王元琪 | A kind of Warm Extrusion gear stick continuous extrusion die and processing method thereof |
CN104117547A (en) * | 2014-07-21 | 2014-10-29 | 王元琪 | Continuous extrusion die of warm extrusion gear stick and machining method thereof |
CN106540976A (en) * | 2015-09-22 | 2017-03-29 | 南京理工大学 | A kind of shaped device and its moulding process of the long tubing of hydrostatic extrusion magnesium alloy |
CN106427049A (en) * | 2016-10-28 | 2017-02-22 | 无锡市威特机械有限公司 | Cooling structure for extrusion barrel |
CN108215036A (en) * | 2016-12-13 | 2018-06-29 | 虎尾科技大学 | High-temperature hot-pressing forming machine |
CN106903217A (en) * | 2017-04-12 | 2017-06-30 | 徐庭星 | A kind of manufacture craft of magnesium alloy chest and obtained magnesium alloy suitcase |
CN107597870A (en) * | 2017-10-18 | 2018-01-19 | 山东大学 | A kind of die device and method for being used to study Splicing Mechanism soldering process |
CN111545644A (en) * | 2020-05-16 | 2020-08-18 | 寇俊祥 | Aluminum product embossing mold utensil |
CN111545644B (en) * | 2020-05-16 | 2022-01-28 | 佛山市南海驰腾模具有限公司 | Aluminum product embossing mold utensil |
CN112077163A (en) * | 2020-09-02 | 2020-12-15 | 江苏亚太轻合金科技股份有限公司 | Valve body aluminium alloy inclination rounding off feeding mould |
CN114905793A (en) * | 2022-05-09 | 2022-08-16 | 深圳技术大学 | Method for high temperature compression molding of silicon mold |
CN114905793B (en) * | 2022-05-09 | 2024-02-23 | 深圳技术大学 | Method for high-temperature compression molding of silicon mold |
CN115026150A (en) * | 2022-06-14 | 2022-09-09 | 江阴旭初科技有限公司 | Oblique closed type large cantilever shunting die |
Also Published As
Publication number | Publication date |
---|---|
CN100450654C (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101015841A (en) | Warm static liquid extrusion method and mould for producing magnesium alloy wire or bar | |
CN101850376B (en) | Method and die for forward extrusion and variable diameter bending extrusion of magnesium alloy semi-solid billets | |
CN101279331B (en) | Wire Rod Hydrostatic Extrusion Device and Method for Extruding Ultrafine Grain Wire Rod Using the Device | |
CN104060203B (en) | A kind of production technique of alloy extrusion bar | |
CN103862228B (en) | A kind of preparation processing method of aluminum matrix composite large thin-wall housing | |
CN100464890C (en) | A method and device for forming a magnesium alloy pipe fitting | |
CN104162555B (en) | A semi-solid thixotropic-plastic composite forming method | |
CN101157099A (en) | Processing method and die of magnesium alloy extrusion deformation | |
CN103736894A (en) | Isothermal forging die and forging technology thereof of magnesium alloy die forge piece of step type structure | |
CN101020201A (en) | Semi-solid multi-blank extruding process and apparatus for forming double-layer composite pipe | |
CN104493167A (en) | Method for forming powder high-temperature alloy annular member | |
CN101219451A (en) | Forming method of long tube part with local convex shape | |
US10946448B2 (en) | Cold additive and hot forging combined forming method of amorphous alloy parts | |
CN103240292A (en) | Production method and device for magnesium alloy thin-wall pipe | |
CN102691021B (en) | Device and method for preparing aluminum-base composite material by using vacuum impregnation andsolid-liquid direct extrusion | |
CN109940156B (en) | Method for preparing diamond/copper heat-conducting composite material part through 3D printing near-net-shape forming | |
CN113560362A (en) | High-performance magnesium-aluminum alloy variable-section extrusion-twist composite processing device and its preparation process | |
CN100488707C (en) | Extrusion method for producing welding wire of magnesium alloy | |
CN101480691B (en) | Hot Forging Method of Magnesium Alloy Spur Bevel Gear | |
CN103920795A (en) | Solid particle thermal expansion vibration composite forming process of car rear axle housing | |
CN104801558A (en) | Machining method of enhanced magnesium-aluminum laminar composite tubular product | |
CN104551545B (en) | A strain-induced semi-solid forming device and process for fine-grained bearing bushes | |
CN103978060A (en) | Dual-layer metal composite pipe semi-solid inverted extrusion molding die and applications thereof | |
CN109807272A (en) | A thixotropic soft core composite forging method for aluminum-steel bimetallic components | |
CN108941412A (en) | GH4037 cake class part semisolid-solid union precision forging device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090114 Termination date: 20220214 |