CN101005156A - High Gain Broadband Panel Antenna - Google Patents
High Gain Broadband Panel Antenna Download PDFInfo
- Publication number
- CN101005156A CN101005156A CN 200610005483 CN200610005483A CN101005156A CN 101005156 A CN101005156 A CN 101005156A CN 200610005483 CN200610005483 CN 200610005483 CN 200610005483 A CN200610005483 A CN 200610005483A CN 101005156 A CN101005156 A CN 101005156A
- Authority
- CN
- China
- Prior art keywords
- radiation
- department
- antenna
- high gain
- wide band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims abstract description 74
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000000758 substrate Substances 0.000 abstract description 19
- 238000013461 design Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种平板天线结构,尤其涉及一种高增益宽频带的平板天线。The invention relates to a planar antenna structure, in particular to a planar antenna with high gain and wide frequency band.
背景技术Background technique
近年来随着无线通讯的蓬勃发展,人们对于无线通讯的频宽需求以及数据传输率也与日剧增。以无线局域网络(Wi-Fi)而言,其数据传输率由原先的2MB,11MB,一直提升到现今的54MB,但是其传送距离仅局限于一、两百米内,当传送距离提升到数公里时,Wi-Fi即无法达到此要求,因此,促使新的通信技术WiMAX得以开始发展。WiMAX主要是规范广域网络的通讯,其传输的范围可达50公里,符合IEEE 802.16标准。无线局域网络的通讯距离大都在一百到两百米以内,属于短距离的传输方式,而WiMAX则可以提供数公里,甚至是几十公里的通讯范围的数据传输。通过室外的固定天线稳定地收送无线电波,所以WiMAX的无线电波可以传送较远的距离,而IEEE 802.11无线局域网络方面则只能依靠自身搭配的收送天线作信号的传送。With the vigorous development of wireless communication in recent years, people's demand for bandwidth and data transmission rate of wireless communication are also increasing day by day. In the case of wireless local area network (Wi-Fi), its data transmission rate has been increased from the original 2MB and 11MB to the current 54MB, but its transmission distance is limited to within one or two hundred meters. When the transmission distance is increased to several kilometers At this time, Wi-Fi cannot meet this requirement, so the new communication technology WiMAX can be developed. WiMAX mainly regulates the communication of the wide area network, and its transmission range can reach 50 kilometers, which complies with the IEEE 802.16 standard. The communication distance of WLAN is mostly within 100 to 200 meters, which is a short-distance transmission method, while WiMAX can provide data transmission with a communication range of several kilometers, or even tens of kilometers. Radio waves are stably sent and received through an outdoor fixed antenna, so WiMAX radio waves can be transmitted over a longer distance, while IEEE 802.11 wireless local area networks can only rely on their own matching antennas for signal transmission.
上述无论是使用IEEE 802.11a/g或WiMAX的规范,当通过IEEE802.11a/g或WiMAX进行信息传输时,天线就成为无线通讯领域中重要的组件之一,目前天线的制作以印刷电路板方式比较受到制造厂商的青睐,其具有制造容易与成本低廉等优点。Regardless of whether the above specifications use IEEE 802.11a/g or WiMAX, when information is transmitted through IEEE802.11a/g or WiMAX, the antenna becomes one of the important components in the field of wireless communication. At present, the production of the antenna is in the form of a printed circuit board. It is more favored by manufacturers because it has the advantages of easy manufacture and low cost.
目前已有许多专利文献公开对于双频天线结构的改良相关技术,如台湾专利公告号第553507号“宽带的双频偶极天线结构”,其公开一种双频偶极天线结构,使该双频偶极天线得以覆盖2.4~2.5GHz频带与5.0GHz频带,甚至于5.0~6.0GHz全频带的宽频带,具有两个不同频带的辐射收发效果,使用者得以携带随身使用的通讯设备到不同频带的地区使用,无须更换通讯设备,确实具有使用的机动性及便利性。该双频偶极天线的结构示意图请参考图1所示,包括具有相同形状的天线的信号端1与接地端2,该信号端1与接地端2共同设置于PCB基板3上,以同轴馈线4分别连接信号端1与接地端2,构成宽带的双频偶极天线结构,其中该信号端11与接地端12都为U型弯折状。At present, many patent documents disclose related technologies for the improvement of dual-frequency antenna structure, such as Taiwan Patent Publication No. 553507 "Broadband Dual-frequency Dipole Antenna Structure", which discloses a dual-frequency dipole antenna structure, so that the dual-frequency The high-frequency dipole antenna can cover the 2.4-2.5GHz frequency band and the 5.0GHz frequency band, and even the wide frequency band of the 5.0-6.0GHz frequency band. It has two different frequency bands of radiation receiving and receiving effects, and the user can carry the communication equipment used with him to different frequency bands. It does not need to replace the communication equipment, and it does have the mobility and convenience of use. Please refer to FIG. 1 for the structural diagram of the dual-frequency dipole antenna, which includes a
另外,台湾专利公告号第M253918号“平面双频天线”,其公开一种双频天线结构,使其可同时操作于两个不同频段,且每一频段都具有良好的辐射场型,让天线在两个频段都能维持高增益的良好效能。In addition, Taiwan Patent Publication No. M253918 "Planar Dual-band Antenna" discloses a dual-band antenna structure that enables it to operate in two different frequency bands at the same time, and each frequency band has a good radiation pattern, so that the antenna Good performance with high gain maintained in both frequency bands.
另外,台湾专利公告号第M265778号“多频印刷式偶极天线”,其公开一种多频印刷式偶极天线,通过U形偶极天线可达到实现其宽带的效果,并利用电容改善第二偶极天线的阻抗匹配。该多频印刷式偶极天线的平面图请参考图2,包括纵长的绝缘基板5,第一对偶极振子61a、61b,第二对偶极振子62a、62b,第三对偶极振子63a、63b,第一对连接部64a、64b,第二对连接部65a、65b,连接片66,馈线7以及电容8。In addition, Taiwan Patent Publication No. M265778 "Multi-frequency Printed Dipole Antenna" discloses a multi-frequency printed dipole antenna. The U-shaped dipole antenna can achieve its broadband effect, and the capacitor can be used to improve the first dipole antenna. Impedance matching of two dipole antennas. Please refer to FIG. 2 for the plan view of the multi-frequency printed dipole antenna, which includes a lengthwise
目前天线结构的改良大部份都解决如何在IEEE 802.11a/b/g的操作频带范围内获得良好的辐射效率与天线增益,然而,上述公知的三件专利均无法满足WiMAX技术所需的宽频带(3.3~3.8GHz)、高增益的电气需求,并且,此三件专利的天线增益仅有1.8~2dBi不等。因此,如何能提供一种符合IEEE802.11/a/b/g及WiMAX频率的高增益宽频带的平板天线,成为研发人员急欲解决的问题。At present, most of the improvement of the antenna structure is to solve how to obtain good radiation efficiency and antenna gain within the operating frequency band of IEEE 802.11a/b/g. However, the above three known patents cannot meet the broadband required by WiMAX technology. Band (3.3-3.8GHz), high-gain electrical requirements, and the antenna gain of these three patents is only 1.8-2dBi. Therefore, how to provide a high-gain wide-band panel antenna conforming to IEEE802.11/a/b/g and WiMAX frequencies has become a problem that researchers are eager to solve.
发明内容Contents of the invention
鉴于以上的问题,本发明的目的在于提供一种高增益宽频带的平板天线,利用对称型辐射单元辐射及反射板的设置,以制作出高增益宽频带的平板天线。In view of the above problems, the object of the present invention is to provide a high-gain broadband panel antenna, which utilizes symmetrical radiating elements and reflectors to produce a high-gain broadband panel antenna.
因此,为达上述目的,本发明所公开的高增益宽频带的平板天线,包括微波基板,具有第一表面及第二表面;第一对称型辐射单元,配置于该第一表面上,且该第一对称型辐射单元具有第一辐射部与第二辐射部;第二对称型辐射单元,配置于该第二表面上,且该第二对称型辐射单元具有第三辐射部与第四辐射部;及至少一个连接单元,连接该微波基板及反射板。其中该第一辐射部、该第二辐射部、该第三辐射部或该第四辐射部的末端呈步阶状结构。Therefore, in order to achieve the above-mentioned purpose, the high-gain broadband planar antenna disclosed in the present invention includes a microwave substrate having a first surface and a second surface; a first symmetrical radiation unit is arranged on the first surface, and the The first symmetrical radiating unit has a first radiating portion and a second radiating portion; the second symmetric radiating unit is disposed on the second surface, and the second symmetric radiating unit has a third radiating portion and a fourth radiating portion ; and at least one connecting unit, connecting the microwave substrate and the reflecting plate. Wherein the end of the first radiating portion, the second radiating portion, the third radiating portion or the fourth radiating portion has a stepped structure.
根据所述的高增益宽频带的平板天线,还包括第一馈入网络单元,配置于该第一表面上,用以平均分配相应的馈入功率至该第一辐射部与该第二辐射部。According to the high-gain broadband panel antenna, it further includes a first feeding network unit configured on the first surface for evenly distributing the corresponding feeding power to the first radiating part and the second radiating part .
根据所述的高增益宽频带的平板天线,其中该第一馈入网络单元呈T字形结构。According to the high-gain broadband panel antenna, wherein the first feeding network unit has a T-shaped structure.
根据所述的高增益宽频带的平板天线,还包括馈入区,配置于该第一表面上,用以连接传输线及该第一馈入网络单元。According to the high-gain broadband panel antenna, it further includes a feed-in area configured on the first surface for connecting the transmission line and the first feed-in network unit.
根据所述的高增益宽频带的平板天线,还包括第二馈入网络单元,配置于该第二表面上,用以平均分配相应的馈入功率至该第三辐射部与该第四辐射部。According to the high-gain broadband panel antenna, it further includes a second feeding network unit configured on the second surface for evenly distributing the corresponding feeding power to the third radiating part and the fourth radiating part .
根据所述的高增益宽频带的平板天线,其中该第二馈入网络单元呈T字形结构。According to the high-gain broadband panel antenna, wherein the second feeding network unit has a T-shaped structure.
根据所述的高增益宽频带的平板天线,其中该步阶状结构为一阶、二阶、圆弧的其中之一或组合。According to the high-gain broadband planar antenna, the stepped structure is one or a combination of first-order, second-order, and circular arcs.
根据所述的高增益宽频带的平板天线,其中该第一辐射部、该第二辐射部、该第三辐射部或该第四辐射部的末端步阶状结构的长度为0.05个操作波长至0.1个操作波长之间。According to the high-gain broadband planar antenna, wherein the length of the end step-shaped structure of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part is 0.05 operating wavelength to 0.1 between operating wavelengths.
根据所述的高增益宽频带的平板天线,其中该第一辐射部、该第二辐射部、该第三辐射部或该第四辐射部的末端步阶状结构的长度为1至5厘米。According to the high-gain broadband planar antenna, the length of the end step-shaped structure of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part is 1 to 5 cm.
根据所述的高增益宽频带的平板天线,其中该微波基板至该反射板的距离为5至7厘米。According to the high-gain broadband planar antenna, the distance between the microwave substrate and the reflection plate is 5 to 7 centimeters.
根据所述的高增益宽频带的平板天线,其中该第一辐射部或该第二辐射部的宽度为0.05个操作波长至0.1个操作波长之间。According to the high-gain broadband panel antenna, the width of the first radiating portion or the second radiating portion is between 0.05 operating wavelength and 0.1 operating wavelength.
根据所述的高增益宽频带的平板天线,其中该第一辐射部或该第二辐射部的宽度为5至9厘米。According to the high-gain broadband planar antenna, the width of the first radiating portion or the second radiating portion is 5 to 9 cm.
根据所述的高增益宽频带的平板天线,其中该第三辐射部或该第四辐射部的宽度为0.05个操作波长至0.1个操作波长之间。According to the high-gain broadband planar antenna, the width of the third radiating portion or the fourth radiating portion is between 0.05 operating wavelength and 0.1 operating wavelength.
根据所述的高增益宽频带的平板天线,其中该第三辐射部或该第四辐射部的宽度为5至9厘米。According to the high-gain broadband planar antenna, the width of the third radiating portion or the fourth radiating portion is 5 to 9 cm.
通过这种高增益宽频带的平板天线的该对称型辐射单元及反射板的设计,使得此平板天线能够具有6~8dBi的高增益值,同时获得平板天线的操作频段为500MHz,因为该第一辐射部、第二辐射部、第三辐射部或第四辐射部的末端部分采用步阶式设计,所以能够提升平板天线的阻抗频宽。Through the design of the symmetrical radiation unit and reflector of this high-gain broadband panel antenna, the panel antenna can have a high gain value of 6-8dBi, and at the same time, the operating frequency band of the panel antenna is 500MHz, because the first The end portion of the radiation part, the second radiation part, the third radiation part or the fourth radiation part adopts a stepped design, so the impedance bandwidth of the panel antenna can be improved.
有关本发明的特征与实际操作,现结合附图对最佳实施例详细说明如下。Relevant characteristics and actual operation of the present invention, now in conjunction with accompanying drawing, preferred embodiment is described in detail as follows.
附图说明Description of drawings
图1为公知技术的双频偶极天线的结构示意图;Fig. 1 is the structural representation of the dual frequency dipole antenna of known technology;
图2为公知技术的多频印刷式偶极天线的平面图;Fig. 2 is the plan view of the multi-frequency printed dipole antenna of known technology;
图3为本发明第一实施例的第一表面正视图;Fig. 3 is the front view of the first surface of the first embodiment of the present invention;
图4为本发明第一实施例的第二表面正视图;Fig. 4 is the second surface front view of the first embodiment of the present invention;
图5为本发明宽频带平板天线的侧视图;Fig. 5 is the side view of broadband panel antenna of the present invention;
图6A为本发明第一实施例的第一辐射部、第二辐射部、第三辐射部或第四辐射部末端的步阶结构示意图;6A is a schematic diagram of the step structure of the end of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part according to the first embodiment of the present invention;
图6B为本发明第二实施例的第一辐射部、第二辐射部、第三辐射部或第四辐射部末端的步阶设计示意图;FIG. 6B is a schematic diagram of step design at the end of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part according to the second embodiment of the present invention;
图6C为本发明第三实施例的第一辐射部、第二辐射部、第三辐射部或第四辐射部末端的步阶设计示意图;FIG. 6C is a schematic diagram of step design of the end of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part according to the third embodiment of the present invention;
图6D为本发明第四实施例的第一辐射部、第二辐射部、第三辐射部或第四辐射部末端的步阶设计示意图;FIG. 6D is a schematic diagram of step design at the end of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part according to the fourth embodiment of the present invention;
图7A为本发明所提供的E-极化辐射场形图;及Fig. 7A is the E-polarized radiation field diagram provided by the present invention; and
图7B为本发明所提供的H-极化辐射场形图。Fig. 7B is a field diagram of H-polarized radiation provided by the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
信号端1
第一信号端11
第一接地端12The
与接地端2with
基板3
同轴馈线4
绝缘基板5Insulating
第一对偶极振子61a、61bThe first pair of
第二对偶极振子62a、62bThe second pair of
第三对偶极振子63a、63bThe third pair of
第一对连接部64a、64bFirst pair of
第二对连接部65a、65bSecond pair of connecting
连接片66
馈线7
电容8
微波基板90
第一馈入网络单元92The first
侧臂920、922、1100、1102
馈入区92aFeed-in
第一对称型辐射单元94The first
第一辐射部940The
第二辐射部942The
第一表面100
第二表面102
第二馈入网络单元110The second
第二对称型辐射单元112The second
第三辐射部1120The
第四辐射部1122The
连接单元114
反射板116
具体实施方式Detailed ways
本发明提供的高增益宽频带平板天线的微波基板具有第一表面及第二表面,其第一表面及第二表面的正视图分别如图3及图4所示。The microwave substrate of the high-gain broadband planar antenna provided by the present invention has a first surface and a second surface, and the front views of the first surface and the second surface are shown in Fig. 3 and Fig. 4 respectively.
请参考图3,为本发明第一实施例的第一表面正视图,在微波基板90的第一表面100上设有电路层的微带线路图形,该第一表面100包含第一馈入网络单元92、第一对称型辐射单元94及馈入区92a,其中该第一对称型辐射单元94还包括有第一辐射部940及第二辐射部942。Please refer to FIG. 3 , which is a front view of the first surface of the first embodiment of the present invention. On the
该第一馈入网络单元92的两个侧臂920、922分别连接该第一辐射部940及该第二辐射部942,通过传输线(未示出)连接该第一馈入网络单元92与该馈入区92a,以构成完整的宽频带平板天线图形。该第一馈入网络单元92呈T字形的结构,利用该传输线通过该馈入区92a将射频信号馈入该第一馈入网络单元92内,通过该第一馈入网络单元92平均分配相应的馈入功率至该第一辐射部940及第二辐射部942。The two
上述所提及第一实施例的该传输线可为外接式天线,该微波基板90的材质可为玻璃纤维、介电质或类似材质,该第一辐射部940及该第二辐射部942末端于一长度内呈步阶状结构,其步阶状结构的实施方式请参考图6A至图6D所示。The transmission line of the above-mentioned first embodiment can be an external antenna, the material of the
请参考图4,为本发明第一实施例的第二表面正视图,在微波基板90的第二表面102上设有接地层的微带线路图形,该第二表面102包含第二馈入网络单元110及第二对称型辐射单元112,其中该第二对称型辐射单元112还包括有第三辐射部1120及第四辐射部1122。Please refer to FIG. 4 , which is a front view of the second surface of the first embodiment of the present invention. On the
该第二馈入网络单元110的两侧臂1100、1102分别连接该第三辐射部1120及该第四辐射部1122,该第二馈入网络单元110呈T字形的结构。The two
上述所提及第二实施例的该微波基板90的材质可为玻璃纤维、介电质或类似材质,该第三辐射部1120及该第四辐射部1122的末端于一长度内呈步阶状结构,其步阶状结构实施方式请参考图6A至图6D所示。The material of the
请同时参考图3及图4,第二表面102的接地层微带线路图形与第一表面100的电路层微带线路图形对称,且第一对称型辐射单元94的第一辐射部940、第二辐射部942与第二对称型辐射单元112的第三辐射部1120、第四辐射部1122的延伸方向相反。Please refer to FIG. 3 and FIG. 4 at the same time, the ground layer microstrip line pattern of the
请参考图5,为本发明的宽频带平板天线的侧视图,包括有微波基板90,于该微波基板90的任一表面设置至少一个连接单元114,且在该些连接单元上设置反射板116,使得该反射板116与该微波基板90具有一适当距离,在符合通讯频段为3.3~3.8GHz的实际应用下可为5至7厘米,其中该反射板116的材质为金属,而该些连接单元114的材质可为塑料,虽然该反射板116可设置于该微波基板90的任一表面,但在此以设置于第二表面为一实施例作为说明,而反射板116设置的用意在于挡住宽频带平板天线所反射的能量,可将第二表面辐射的能量往第一表面引导。Please refer to FIG. 5 , which is a side view of the broadband panel antenna of the present invention, including a
另外,为了提升宽频带平板天线的阻抗频宽,本发明提出在第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122的末端大约有0.05个操作波长至0.1个操作波长的长度,在符合通讯频段为3.3~3.8GHz的实际应用下可为1至5厘米,且在该长度范围内呈现出步阶式的结构,其步阶式结构可为多样化的形式,如可为一阶、二阶、圆弧…等等的结构。In addition, in order to increase the impedance bandwidth of the broadband panel antenna, the present invention proposes that there are approximately 0.05 operating wavelengths to 0.1 The length of each operating wavelength can be 1 to 5 cm under the practical application of the communication frequency band of 3.3 to 3.8 GHz, and it presents a step structure within this length range, and its step structure can be diversified Form, such as first-order, second-order, circular arc... and so on.
请参考图6A至图6D所示,为了便于图示的简化,在图6A至图6D中仅标示第一辐射部的标号及第三辐射部的标号,图6A为第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122的一端为一阶结构的设计,且另一端为平面,图6B为第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122的一端为二阶结构的设计且另一端为平面,图6C为第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122的一端为一阶及圆弧结构的设计,且另一端为平面,以及图6D为第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122的一端为一阶结构且另一端为喷嘴形结构的设计。Please refer to FIG. 6A to FIG. 6D . In order to simplify the illustration, only the first radiation part and the third radiation part are marked in FIG. 6A to FIG. 6D . One end of the
虽然本实施例及附图公开了本发明的第一辐射部940、第二辐射部942、第三辐射部1120或第四辐射部1122一端大约有1至5厘米的长度,所采用的是步阶式的结构设计,然而在实际实施时并不受本实施例及附图的限制,凡是本领域的技术人员在该距离范围内所得到的功效实质上等同于本发明时,所作的任何结构变化都在本发明专利保护范围内。Although the present embodiment and the accompanying drawings disclose that one end of the
本发明还提供了实际测量的辐射场形图,分别以频率3.3GHz、3.5GHz及3.8GHz作一比较测试,请参考图7A及图7B,其中图7A为E-极化的辐射场形图以及图7B为H-极化的辐射场形图,由图7A及图7B可知,下半部图示比上半部图示小,这是因为反射板的设计为将此天线的背面辐射能量往前导引的缘故所造成的。The present invention also provides the actual measured radiation field diagram, which is used for a comparative test at frequencies of 3.3GHz, 3.5GHz and 3.8GHz respectively, please refer to Figure 7A and Figure 7B, wherein Figure 7A is the radiation field diagram of E-polarization And Fig. 7B is the radiation field diagram of H-polarization. It can be seen from Fig. 7A and Fig. 7B that the diagram in the lower half is smaller than that in the upper half, because the reflector is designed to radiate energy from the back of the antenna Caused by forward guidance.
依据WiMAX技术于天线部份的需求定义,其天线电气规格必须符合(1)天线操作频段为3.3~3.8GHz,(2)天线增益为6dBi,(3)天线操作频宽为500MHz。然而,前述已公开的三件专利的天线设计都无法满足上述WiMAX对于天线电气规格的需求。本发明的宽频带平板天线结构是一个包含有第一辐射部及第二辐射部的阵列天线结构,第一辐射部或第二辐射部等同于传统天线结构,因此第一辐射部及第二辐射部各具有2dBi的天线增益,而第一辐射部与第二辐射部之间的距离约为0.7操作波长至0.9λ操作波长之间,并且,本发明的微波基板具有第一表面及第二表面,在第一表面及第二表面各别设置有第一辐射部、第二辐射部、第三辐射部及第四辐射部,并且第一表面的第一对称型辐射单元及第二表面的第二对称型辐射单元的延伸方向相反,且宽频带平板天线图形对称,亦即本发明也采用阵列方式设计,如此在天线增益上可再增加2~2.5dBi的辐射能量。According to the definition of WiMAX technology in the antenna part, the electrical specifications of the antenna must meet (1) the operating frequency band of the antenna is 3.3-3.8GHz, (2) the gain of the antenna is 6dBi, and (3) the operating bandwidth of the antenna is 500MHz. However, none of the above-mentioned antenna designs of the three disclosed patents can meet the above-mentioned requirements of WiMAX for the electrical specification of the antenna. The broadband planar antenna structure of the present invention is an array antenna structure comprising a first radiating part and a second radiating part, and the first radiating part or the second radiating part is equivalent to a traditional antenna structure, so the first radiating part and the second radiating part Each portion has an antenna gain of 2dBi, and the distance between the first radiating portion and the second radiating portion is about between 0.7 operating wavelength and 0.9λ operating wavelength, and the microwave substrate of the present invention has a first surface and a second surface , the first radiating part, the second radiating part, the third radiating part and the fourth radiating part are arranged on the first surface and the second surface respectively, and the first symmetric radiation unit on the first surface and the first radiating part on the second surface The extension directions of the two symmetrical radiating units are opposite, and the pattern of the wide-band flat panel antenna is symmetrical, that is, the present invention also adopts an array design, so that the radiation energy of the antenna gain can be increased by 2-2.5 dBi.
另外,本发明在微波基板的任一表面设置多个连接单元,且在这些连接单元上设置有反射板,反射板的设置可将背面辐射的能量往正面引导,如此可为天线增益再提升2~3dBi的能量,如此本发明的宽频带平板天线结构的增益可达到大约6~8dBi的能量。然而,因为反射板的尺寸大小和天线主体之间的距离都会影响到天线的增益大小,其反射板的长度必须大于或等于天线整体长度。In addition, the present invention arranges a plurality of connection units on any surface of the microwave substrate, and a reflection plate is provided on these connection units. The setting of the reflection plate can guide the energy radiated from the back to the front, so that the gain of the antenna can be further improved by 2 ~3dBi energy, so the gain of the broadband planar antenna structure of the present invention can reach about 6~8dBi energy. However, since the size of the reflector and the distance between the antenna bodies will affect the gain of the antenna, the length of the reflector must be greater than or equal to the overall length of the antenna.
通过调整这些连接单元的高度造成反射板与天线主体之间距离不同,可以调整平板天线的阻抗匹配。在本发明中,可通过调整第一辐射部、第二辐射部、第三辐射部或第四辐射部的宽度,使其加宽或加粗以增加更多的天线表面电流及增加其辐射效率,在实施其宽度时可加宽为0.05个操作波长至0.1个操作波长(大约为5~9厘米)作为一实施例,特别的是,本发明在第一辐射部、第二辐射部第三辐射部及第四辐射部的末端采用步阶式的结构设计,如此的设计可提升宽频带平板天线的阻抗频宽。The impedance matching of the panel antenna can be adjusted by adjusting the heights of these connecting units to cause different distances between the reflector and the antenna main body. In the present invention, the width of the first radiating part, the second radiating part, the third radiating part or the fourth radiating part can be adjusted to make it wider or thicker to increase more antenna surface current and increase its radiation efficiency , when its width is implemented, it can be widened to 0.05 operating wavelength to 0.1 operating wavelength (about 5-9 cm). The end of the radiating part and the fourth radiating part adopts a stepped structure design, which can increase the impedance bandwidth of the broadband planar antenna.
通过实验证明,本发明的宽频带平板天线具有操作频段为3.3~3.8GHz、频宽百分比为14%以上、天线电压驻波比在操作频段内低于1.5、天线增益为大于6dBi以及天线增益平坦度(Gain Flatness)在操作频带内在3dBi之内的特性。It is proved by experiments that the broadband panel antenna of the present invention has an operating frequency band of 3.3 to 3.8 GHz, a bandwidth percentage of more than 14%, an antenna voltage standing wave ratio lower than 1.5 in the operating frequency band, an antenna gain greater than 6dBi and a flat antenna gain Gain Flatness is a characteristic within 3dBi within the operating frequency band.
虽然本发明以前述较佳实施例公开如上,但是并非用以限制本发明。凡是在不脱离本发明的权利要求书所公开的范围和精神的情况下,所做的更改与修饰,均属本发明的专利保护范围之内。Although the present invention is disclosed above with the aforementioned preferred embodiments, it is not intended to limit the present invention. All changes and modifications made without departing from the scope and spirit disclosed in the claims of the present invention are within the scope of patent protection of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610005483XA CN101005156B (en) | 2006-01-16 | 2006-01-16 | Flat plate antenna of high gain wide band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610005483XA CN101005156B (en) | 2006-01-16 | 2006-01-16 | Flat plate antenna of high gain wide band |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101005156A true CN101005156A (en) | 2007-07-25 |
CN101005156B CN101005156B (en) | 2012-11-07 |
Family
ID=38704131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610005483XA Active CN101005156B (en) | 2006-01-16 | 2006-01-16 | Flat plate antenna of high gain wide band |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101005156B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101453054B (en) * | 2007-12-06 | 2012-10-24 | 智易科技股份有限公司 | The structure of the double symmetrical antenna |
CN103474767A (en) * | 2013-09-18 | 2013-12-25 | 中国科学院长春光学精密机械与物理研究所 | Four-frequency plane microstrip antenna with miniaturized microwave absorption structure |
CN104681975A (en) * | 2015-03-24 | 2015-06-03 | 邝嘉豪 | Single-polar microstrip oscillator with microstrip isolation straight line |
CN104779433A (en) * | 2015-03-24 | 2015-07-15 | 杨海林 | Unipolar microstrip dipole |
CN106068580A (en) * | 2014-04-04 | 2016-11-02 | 思科技术公司 | Two-band printing omnidirectional antenna |
CN106099354A (en) * | 2016-08-05 | 2016-11-09 | 深圳前海科蓝通信有限公司 | A kind of double frequency built-in aerial and method for designing thereof |
CN106129614A (en) * | 2016-08-26 | 2016-11-16 | 良特电子科技(东莞)有限公司 | An LTE high-gain broadband antenna and its composition method |
RU2663548C1 (en) * | 2017-11-09 | 2018-08-07 | Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ") | Symmetric vibrator |
CN110729552A (en) * | 2018-07-16 | 2020-01-24 | 和硕联合科技股份有限公司 | Multiple-input multiple-output antenna structure |
CN111224232A (en) * | 2018-11-23 | 2020-06-02 | 比亚迪股份有限公司 | Dual-band omnidirectional antenna and train |
CN112490653A (en) * | 2020-11-19 | 2021-03-12 | 榆林学院 | Dual-frequency resonance high-isolation two-unit microstrip MIMO antenna |
CN113383464A (en) * | 2021-04-26 | 2021-09-10 | 鸿富锦精密工业(武汉)有限公司 | Dual-frequency dual-polarized antenna and electronic equipment |
CN113809529A (en) * | 2021-08-03 | 2021-12-17 | 北京邮电大学 | Dual-band impedance matching microstrip antenna and antenna array |
CN114843774A (en) * | 2022-05-18 | 2022-08-02 | 深圳市飞比电子科技有限公司 | Antenna device and intelligent electro-acoustic equipment |
TWI813398B (en) * | 2022-07-26 | 2023-08-21 | 啓碁科技股份有限公司 | Antenna system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2241128A1 (en) * | 1997-06-30 | 1998-12-30 | Sony International (Europe) Gmbh | Wide band printed phase array antenna for microwave and mm-wave applications |
-
2006
- 2006-01-16 CN CN200610005483XA patent/CN101005156B/en active Active
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101453054B (en) * | 2007-12-06 | 2012-10-24 | 智易科技股份有限公司 | The structure of the double symmetrical antenna |
CN103474767A (en) * | 2013-09-18 | 2013-12-25 | 中国科学院长春光学精密机械与物理研究所 | Four-frequency plane microstrip antenna with miniaturized microwave absorption structure |
CN103474767B (en) * | 2013-09-18 | 2015-02-18 | 中国科学院长春光学精密机械与物理研究所 | Four-frequency plane microstrip antenna with miniaturized microwave absorption structure |
CN106068580A (en) * | 2014-04-04 | 2016-11-02 | 思科技术公司 | Two-band printing omnidirectional antenna |
CN104681975A (en) * | 2015-03-24 | 2015-06-03 | 邝嘉豪 | Single-polar microstrip oscillator with microstrip isolation straight line |
CN104779433A (en) * | 2015-03-24 | 2015-07-15 | 杨海林 | Unipolar microstrip dipole |
CN106099354B (en) * | 2016-08-05 | 2023-04-07 | 深圳前海科蓝通信有限公司 | Dual-frequency built-in antenna and design method thereof |
CN106099354A (en) * | 2016-08-05 | 2016-11-09 | 深圳前海科蓝通信有限公司 | A kind of double frequency built-in aerial and method for designing thereof |
CN106129614A (en) * | 2016-08-26 | 2016-11-16 | 良特电子科技(东莞)有限公司 | An LTE high-gain broadband antenna and its composition method |
CN106129614B (en) * | 2016-08-26 | 2018-10-02 | 良特电子科技(东莞)有限公司 | L TE high-gain broadband antenna and construction method thereof |
RU2663548C1 (en) * | 2017-11-09 | 2018-08-07 | Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ") | Symmetric vibrator |
CN110729552A (en) * | 2018-07-16 | 2020-01-24 | 和硕联合科技股份有限公司 | Multiple-input multiple-output antenna structure |
CN110729552B (en) * | 2018-07-16 | 2023-08-22 | 和硕联合科技股份有限公司 | Multiple-input multiple-output antenna structure |
CN111224232A (en) * | 2018-11-23 | 2020-06-02 | 比亚迪股份有限公司 | Dual-band omnidirectional antenna and train |
CN112490653A (en) * | 2020-11-19 | 2021-03-12 | 榆林学院 | Dual-frequency resonance high-isolation two-unit microstrip MIMO antenna |
CN112490653B (en) * | 2020-11-19 | 2023-06-06 | 榆林学院 | Dual-frequency resonance high-isolation two-unit microstrip MIMO antenna |
CN113383464A (en) * | 2021-04-26 | 2021-09-10 | 鸿富锦精密工业(武汉)有限公司 | Dual-frequency dual-polarized antenna and electronic equipment |
US11923611B2 (en) | 2021-04-26 | 2024-03-05 | Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. | Dual-frequency and dual-polarization antenna and electronic device |
CN113383464B (en) * | 2021-04-26 | 2024-04-02 | 鸿富锦精密工业(武汉)有限公司 | Dual-frequency dual-polarized antenna and electronic equipment |
CN113809529A (en) * | 2021-08-03 | 2021-12-17 | 北京邮电大学 | Dual-band impedance matching microstrip antenna and antenna array |
CN114843774A (en) * | 2022-05-18 | 2022-08-02 | 深圳市飞比电子科技有限公司 | Antenna device and intelligent electro-acoustic equipment |
TWI813398B (en) * | 2022-07-26 | 2023-08-21 | 啓碁科技股份有限公司 | Antenna system |
Also Published As
Publication number | Publication date |
---|---|
CN101005156B (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101005156A (en) | High Gain Broadband Panel Antenna | |
US7268737B1 (en) | High gain broadband planar antenna | |
CN102005645B (en) | A Miniaturized Dual-Band Antenna | |
CN101043100B (en) | A Multi-frequency Antenna with Slot Conductor and Strip Conductor | |
US7030830B2 (en) | Dual-access monopole antenna assembly | |
JP4171875B2 (en) | Multiband patch antenna and skeleton slot radiator | |
US7095371B2 (en) | Antenna assembly | |
US8907860B2 (en) | Stand-alone multi-band antenna | |
CN101527392A (en) | Dual-band broadband E-shaped microstrip antenna | |
CN102064384A (en) | Ultra-wideband antenna | |
CN106067596A (en) | Miniaturization broadband medium resonator antenna based on coplanar wave guide feedback | |
CN202474229U (en) | Antenna assembly for wireless communication device and wireless communication device | |
KR20050107881A (en) | Multiple meander strip monopole antenna with broadband characteristic | |
TWI747538B (en) | Antenna system | |
Thakur et al. | A review on antenna design for 5G applications | |
US7106254B2 (en) | Single-mode antenna assembly | |
CN207116688U (en) | Dual frequency high gain omnidirectional antenna | |
CN216120733U (en) | Multi-frequency broadband high-gain omnidirectional antenna applied to WiFi frequency band | |
CN212648490U (en) | Dual-band antenna and IOT equipment | |
TWM426892U (en) | Dual-band antenna | |
KR101075583B1 (en) | Triple band antenna | |
CN201081820Y (en) | Broadband antenna and related dual-band antenna | |
TW200803052A (en) | Triple-band single dipole antenna of small coplanar waveguide feed-in type | |
CN100382390C (en) | dual frequency antenna | |
CN110718749A (en) | Miniaturized multi-frequency planar inverted F antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: HUANXU ELECTRONICS CO., LTD. Free format text: FORMER OWNER: HUANLONG ELECTRIC CO LTD Effective date: 20100804 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 000000 NANTOU COUNTY, TAIWAN PROVINCE, CHINA TO: 201203 NO.1558, ZHANGDONG ROAD, IC INDUSTRY ZONE, ZHANGJIANG HIGH-TECHNOLOGY PARK, SHANGHAI CITY |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20100804 Address after: Zhangjiang hi tech park integrated circuit industry Zhang Road 201203 Shanghai City No. 1558 Applicant after: Huanxu Electronics Co., Ltd. Address before: 000000 China Taiwan Nantou County Applicant before: Huanlong Electric Co., Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HUANHONG ELECTRONIC (KUNSHAN) CO., LTD. Free format text: FORMER OWNER: HUANXU ELECTRONICS CO., LTD. Effective date: 20130516 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 201203 PUDONG NEW AREA, SHANGHAI TO: 215300 SUZHOU, JIANGSU PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20130516 Address after: Huangpu road Kunshan City Qiandeng Town in Jiangsu province 215300 No. 497 building 4 Patentee after: HUANHONG ELECTRONIC (KUNSHAN) CO., LTD. Address before: Zhangjiang hi tech park integrated circuit industry Zhang Road 201203 Shanghai City No. 1558 Patentee before: Huanxu Electronics Co., Ltd. |