CN101003005A - Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type - Google Patents
Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type Download PDFInfo
- Publication number
- CN101003005A CN101003005A CN 200610130496 CN200610130496A CN101003005A CN 101003005 A CN101003005 A CN 101003005A CN 200610130496 CN200610130496 CN 200610130496 CN 200610130496 A CN200610130496 A CN 200610130496A CN 101003005 A CN101003005 A CN 101003005A
- Authority
- CN
- China
- Prior art keywords
- membrane
- solution
- polyethersulfone
- polyvinyl alcohol
- ultrafiltration membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 58
- 239000004695 Polyether sulfone Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title abstract description 19
- 238000011109 contamination Methods 0.000 title 1
- 239000012528 membrane Substances 0.000 claims abstract description 117
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229920006393 polyether sulfone Polymers 0.000 claims abstract description 48
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 29
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 29
- 239000008367 deionised water Substances 0.000 claims abstract description 28
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 28
- 229910021538 borax Inorganic materials 0.000 claims abstract description 18
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 18
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 16
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 239000003361 porogen Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 9
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000002209 hydrophobic effect Effects 0.000 abstract description 3
- 238000004132 cross linking Methods 0.000 abstract description 2
- 238000004065 wastewater treatment Methods 0.000 abstract description 2
- 238000005232 molecular self-assembly Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 54
- 230000004907 flux Effects 0.000 description 20
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 11
- 229940098773 bovine serum albumin Drugs 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- 238000011084 recovery Methods 0.000 description 10
- 239000007853 buffer solution Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000007872 degassing Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004626 scanning electron microscopy Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000008157 edible vegetable oil Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000009285 membrane fouling Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002569 water oil cream Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种聚醚砜抗蛋白质污染超滤膜的制备方法。属于超滤膜制备技术。该方法基于分子自组装的原理,利用聚乙烯醇在疏水性膜表面的吸附以及聚乙烯醇与硼砂之间的交联反应,对聚醚砜超滤膜进行改性。该方法过程如下:配制一定浓度的聚乙烯醇和硼砂溶液,将空白聚醚砜超滤膜用去离子水清洗表面,晾干水分后,浸入到聚乙烯醇溶液中后取出,清洗晾干后浸入到硼砂溶液中,然后取出清洗晾干,再浸入到聚乙烯醇溶液中,重复上述步骤达到一定的循环次数,获得聚乙烯醇改性的聚醚砜超滤膜。该制备方法操作简单,条件温和,获得的改性超滤膜具有良好的分离性能和抗污染性能,可用于生物分离以及含油废水处理等领域。The invention discloses a preparation method of a polyethersulfone anti-protein pollution ultrafiltration membrane. It belongs to ultrafiltration membrane preparation technology. Based on the principle of molecular self-assembly, the method utilizes the adsorption of polyvinyl alcohol on the surface of the hydrophobic membrane and the cross-linking reaction between polyvinyl alcohol and borax to modify the polyethersulfone ultrafiltration membrane. The process of the method is as follows: prepare a certain concentration of polyvinyl alcohol and borax solution, clean the surface of the blank polyethersulfone ultrafiltration membrane with deionized water, dry the water, immerse it in the polyvinyl alcohol solution, take it out, wash and dry it, and then immerse it in into the borax solution, then take it out, wash and dry it, then immerse it in the polyvinyl alcohol solution, repeat the above steps to reach a certain number of cycles, and obtain a polyethersulfone ultrafiltration membrane modified by polyvinyl alcohol. The preparation method has simple operation and mild conditions, and the obtained modified ultrafiltration membrane has good separation performance and anti-pollution performance, and can be used in the fields of biological separation, oily wastewater treatment and the like.
Description
技术领域technical field
本发明涉及一种聚醚砜抗蛋白质污染超滤膜的制备方法。属于超滤膜制备技术。The invention relates to a preparation method of a polyethersulfone anti-protein pollution ultrafiltration membrane. It belongs to ultrafiltration membrane preparation technology.
背景技术Background technique
超滤是在静压差推动力作用下进行的液相筛孔分离过程,根据被分离物质的分子量差异对其进行分离,筛分过程与膜孔径大小相关。超滤的截留分子量为500~500000左右,通常应用于大分子物质的净化、分离和浓缩等领域。超滤过程具有以下优点:(1)没有相态间转化,可以在常温及低压下进行分离,因而能耗较低;(2)设备体积小,结构简单,投资费用低;(3)膜分离过程只是简单的加压输送流体,工艺流程简单,易于操作管理;(4)物质在浓缩分离过程中不发生质的变化,适合于保味和热敏性物质的处理;(5)适合稀溶液中微量贵重大分子的回收和低浓度大分子物质的浓缩;(6)能将不同相对分子质量的物质分级分馏;(7)膜是由高分子聚合物制成的均匀的连续体,在使用过程中无任何杂质脱落,保证了滤液的纯净。由于具有上述优点,超滤技术在工业分离过程中具有广阔的应用前景。Ultrafiltration is a liquid phase sieve separation process under the driving force of static pressure difference. The separated substances are separated according to the molecular weight difference. The sieving process is related to the membrane pore size. The molecular weight cut-off of ultrafiltration is about 500 to 500,000, and it is usually used in the fields of purification, separation and concentration of macromolecular substances. The ultrafiltration process has the following advantages: (1) There is no transition between phases, and it can be separated at room temperature and low pressure, so the energy consumption is low; (2) The equipment is small in size, simple in structure, and low in investment costs; (3) Membrane separation The process is only a simple pressurized delivery of fluid, the process flow is simple, and it is easy to operate and manage; (4) There is no qualitative change in the substance during the concentration and separation process, which is suitable for the treatment of taste-preserving and heat-sensitive substances; (5) It is suitable for trace amounts in dilute solutions Recovery of precious macromolecules and concentration of low-concentration macromolecular substances; (6) Fractionation of substances with different relative molecular masses; (7) The membrane is a uniform continuum made of high molecular polymers. No impurities fall off, ensuring the purity of the filtrate. Due to the above advantages, ultrafiltration technology has broad application prospects in industrial separation processes.
限制超滤技术广泛应用的最主要原因是膜污染。影响膜污染的因素有很多,包括膜材料、操作条件、料液性质等等。其中膜对溶质分子的吸附是一个主要原因。目前工业应用的超滤膜多是由疏水性材料制备的,在生物制品分离、含油废水处理等领域,处理体系中的大分子易在疏水性的膜表面发生吸附,影响超滤膜的分离性能。研究表明增大膜表面的亲水性,可以增加其对溶质分子的排斥力,降低溶质分子在膜表面的吸附作用,从而提高超滤膜的抗蛋白质污染性能。The most important factor limiting the wide application of ultrafiltration technology is membrane fouling. There are many factors that affect membrane fouling, including membrane materials, operating conditions, properties of feed liquid, and so on. One of the main reasons is the adsorption of solute molecules by the membrane. At present, most of the ultrafiltration membranes used in industry are made of hydrophobic materials. In the fields of biological product separation and oily wastewater treatment, macromolecules in the treatment system are easy to adsorb on the surface of hydrophobic membranes, which affects the separation performance of ultrafiltration membranes. . Studies have shown that increasing the hydrophilicity of the membrane surface can increase its repulsion to solute molecules and reduce the adsorption of solute molecules on the membrane surface, thereby improving the anti-protein fouling performance of ultrafiltration membranes.
聚醚砜是一种常见的膜材料,具有机械强度高、物理和化学稳定性好、成膜特性优良、价廉易得等优点,因此得到广泛应用。但是聚醚砜疏水性较强,容易引起蛋白质或油滴分子在膜表面的大量吸附,造成严重的膜污染,分离效率下降。文献中有多种方法被应用于聚醚砜超滤膜表面改性,以提高膜表面的亲水性,增强其抗污染能力。常用的方法如化学接枝、紫外接枝、低温等离子体接枝等。多数改性方法操作复杂,条件苛刻,且改性效果难以控制,因而新改性技术的开发具有重要意义;现有改性剂以亲水性的链状聚合物为主,如聚乙二醇,磷脂类。聚乙烯醇具有强亲水性,研究表明其具有优良的抗蛋白质和油类吸附性能,目前多用于无孔表面的亲水性改善,也有研究表明聚乙烯醇在多孔表面改性中具有巨大的发展潜力。Polyethersulfone is a common membrane material, which has the advantages of high mechanical strength, good physical and chemical stability, excellent film-forming properties, low price and easy availability, etc., so it is widely used. However, polyethersulfone has strong hydrophobicity, and it is easy to cause a large amount of adsorption of protein or oil droplet molecules on the membrane surface, resulting in serious membrane fouling and a decrease in separation efficiency. A variety of methods have been applied in the literature to modify the surface of polyethersulfone ultrafiltration membranes to improve the hydrophilicity of the membrane surface and enhance its anti-fouling ability. Common methods such as chemical grafting, ultraviolet grafting, low temperature plasma grafting and so on. Most modification methods are complicated to operate, harsh conditions, and difficult to control the modification effect, so the development of new modification technology is of great significance; existing modifiers are mainly hydrophilic chain polymers, such as polyethylene glycol , Phospholipids. Polyvinyl alcohol has strong hydrophilicity. Studies have shown that it has excellent anti-protein and oil adsorption properties. At present, it is mostly used to improve the hydrophilicity of non-porous surfaces. Studies have also shown that polyvinyl alcohol has a huge role in the modification of porous surfaces. Development potential.
发明内容Contents of the invention
本发明的目的在于提供一种聚醚砜抗蛋白质污染超滤膜的制备方法,该方法过程简单,以此方法制备的超滤膜,对蛋白质及油类分子有较强的抗污染能力。The object of the present invention is to provide a method for preparing a polyethersulfone anti-protein pollution ultrafiltration membrane. The process of the method is simple, and the ultrafiltration membrane prepared by this method has strong anti-pollution ability to protein and oil molecules.
本发明是通过如下技术方案实现的。一种聚醚砜抗蛋白质污染超滤膜的制备方法,其特征在于包括以下步骤:The present invention is achieved through the following technical solutions. A preparation method of polyethersulfone anti-protein fouling ultrafiltration membrane is characterized in that it comprises the following steps:
(1)聚醚砜在110℃~150℃下干燥12小时后,溶于60℃ N,N-二甲基甲酰胺中,配制成质量浓度为16~18%的溶液,加入质量浓度为10~15%、分子量为2000的聚乙二醇做为致孔剂,混合搅拌充分后即配制成铸膜液a;(1) After drying polyethersulfone at 110°C to 150°C for 12 hours, dissolve it in N,N-dimethylformamide at 60°C, prepare a solution with a mass concentration of 16 to 18%, and add a mass concentration of 10 ~15% polyethylene glycol with a molecular weight of 2000 is used as a porogen, and the casting solution a is prepared after mixing and stirring sufficiently;
(2)将步骤(1)所制得的铸膜液a在50~70℃下静置脱泡2~4小时,冷却至室温后将铸膜液倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜b;(2) Put the casting solution a prepared in step (1) at 50-70°C for 2-4 hours for defoaming, and after cooling to room temperature, pour the casting solution on a glass plate to scrape the film, and put it in the air After standing for 10-30 seconds, put it into a water bath to solidify to form a membrane, and soak it in deionized water for 24-36 hours to obtain a blank polyethersulfone ultrafiltration membrane b;
(3)将聚乙烯醇加入去离子水中,90℃下搅拌溶解,配制成质量浓度为0.1~2.0%的聚乙烯醇溶液c;(3) adding polyvinyl alcohol into deionized water, stirring and dissolving at 90°C, and preparing a polyvinyl alcohol solution c with a mass concentration of 0.1-2.0%;
(4)将硼砂和质量浓度为0.001%的氢氧化钠溶于去离子水中,配制成质量浓度为0.5~1.0%的硼砂溶液d;(4) dissolving borax and 0.001% sodium hydroxide in deionized water with a mass concentration of 0.5 to 1.0% borax solution d;
(5)将步骤(2)所得的空白膜b用去离子水清洗表面,晾干表面水分,放入步骤(3)所得的溶液c中,浸泡10分钟;(5) Clean the surface of the blank film b obtained in step (2) with deionized water, dry the surface moisture, put it into the solution c obtained in step (3), and soak for 10 minutes;
(6)将膜从溶液c中取出,用去离子水清洗表面,晾干水分,放入步骤(4)所得的溶液d中,浸泡10分钟;(6) Take the membrane out of the solution c, wash the surface with deionized water, dry the water, put it into the solution d obtained in step (4), and soak for 10 minutes;
(7)按步骤(5)和(6)的过程重复操作3~6次,获得改性聚醚砜抗蛋白质污染超滤膜。(7) Repeat steps (5) and (6) for 3 to 6 times to obtain a modified polyethersulfone anti-protein fouling ultrafiltration membrane.
本发明的优点在于:抗污染超滤膜的制备方法简便,条件温和,通过硼砂对聚乙烯醇交联反应,可以控制膜表面聚乙烯醇的吸附量,同时提高聚乙烯醇改性膜的稳定性,通过该方法获得的改性膜,表面亲水性有明显的改善,提高了抗蛋白质及油类分子污染的能力,同时具有较好的稳定性。The invention has the advantages of: the preparation method of the anti-pollution ultrafiltration membrane is simple and the conditions are mild; the adsorption amount of polyvinyl alcohol on the membrane surface can be controlled through the cross-linking reaction of polyvinyl alcohol by borax, and the stability of the polyvinyl alcohol modified membrane can be improved at the same time The modified membrane obtained by this method has obvious improvement in surface hydrophilicity, improves the ability to resist protein and oil molecule pollution, and has good stability at the same time.
具体实施方式Detailed ways
实施例一Embodiment one
改性聚醚砜抗蛋白质污染超滤膜(膜1)的制备Preparation of modified polyethersulfone anti-protein fouling ultrafiltration membrane (membrane 1)
称取7.2克聚醚砜和26.8克N,N-二甲基甲酰胺放入三口烧瓶中,在60℃的恒温水浴中加热搅拌约0.5小时。聚醚砜全部溶解后,称取6.0克分子量为2000的聚乙二醇作为致孔剂加入溶液中,在60℃下加热搅拌溶解4小时左右,混合均匀后得到铸膜液a,在60℃下静置脱泡2小时。冷却至室温后将铸膜液a倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜b;Weigh 7.2 g of polyethersulfone and 26.8 g of N,N-dimethylformamide into a three-necked flask, heat and stir in a constant temperature water bath at 60° C. for about 0.5 hours. After the polyethersulfone is completely dissolved, weigh 6.0 grams of polyethylene glycol with a molecular weight of 2000 as a porogen and add it to the solution, heat and stir at 60°C for about 4 hours, and mix well to obtain the casting solution a. Let stand for degassing for 2 hours. After cooling to room temperature, pour the casting solution a on a glass plate to scrape the film, place it in the air for 10-30 seconds, then put it in a water bath to solidify to form a film, soak it in deionized water for 24-36 hours, and obtain a blank polyether Sulfone ultrafiltration membrane b;
称取1.0克聚乙烯醇,加入199.0克去离子水中,在90℃下加热搅拌配制成质量浓度为0.5%的聚乙烯醇溶液c;称取5克硼砂,10毫克氢氧化钠溶于去离子水中配制成1000克质量浓度为0.5%的硼砂溶液d;Weigh 1.0 g of polyvinyl alcohol, add 199.0 g of deionized water, heat and stir at 90°C to prepare a polyvinyl alcohol solution c with a mass concentration of 0.5%; weigh 5 g of borax, and dissolve 10 mg of sodium hydroxide in deionized Be mixed with 1000 grams of mass concentration in water and be the borax solution d of 0.5%;
将空白膜b用去离子水清洗表面,晾干表面水分,放入溶液c中浸泡10分钟;然后将膜从溶液c中取出,用去离子水清洗表面,晾干水分,放入溶液d中,浸泡10分钟;随后再将膜清洗后依次浸泡到溶液c和溶液d中重复上述过程,完成3个循环,获得改性聚醚砜超滤膜(膜1)。Clean the surface of the blank membrane b with deionized water, dry the surface moisture, soak in solution c for 10 minutes; then take the membrane out of solution c, wash the surface with deionized water, dry the water, and put it into solution d , soaked for 10 minutes; then the membrane was washed and soaked in solution c and solution d in turn to repeat the above process to complete 3 cycles to obtain a modified polyethersulfone ultrafiltration membrane (membrane 1).
在上述超滤膜制备过程中发生如式1所示的反应,推动制备过程的进行:During the preparation process of the above-mentioned ultrafiltration membrane, the reaction shown in formula 1 occurs, which promotes the preparation process:
式1Formula 1
所制得的改性聚醚砜抗蛋白质污染超滤膜经过扫描电镜、接触角和X光电子能谱分析,发现该膜具有典型的超滤膜复合结构,膜孔分布均匀,孔径分布范围窄,膜表面亲水性增强,有聚乙烯醇分子存在。膜纯水通量达到108.8L/(m2h),分离1g/L牛血清白蛋白缓冲溶液,对牛血清白蛋白截留率为100%,经水力清洗后,该膜具有较高的通量恢复率,且在长期超滤操作后通量仍处于较高水平。The prepared modified polyethersulfone anti-protein fouling ultrafiltration membrane was analyzed by scanning electron microscopy, contact angle and X-ray photoelectron spectroscopy. It was found that the membrane had a typical ultrafiltration membrane composite structure, with uniform distribution of membrane pores and narrow pore size distribution. The hydrophilicity of the membrane surface is enhanced, and polyvinyl alcohol molecules exist. The pure water flux of the membrane reaches 108.8L/(m 2 h), separates 1g/L bovine serum albumin buffer solution, and the rejection rate of bovine serum albumin is 100%. After hydraulic cleaning, the membrane has a higher flux Recovery rate, and the flux is still at a high level after long-term ultrafiltration operation.
实施例二Embodiment two
改性聚醚砜抗蛋白质污染超滤膜(膜2)的制备Preparation of modified polyethersulfone anti-protein fouling ultrafiltration membrane (membrane 2)
称取7.2克聚醚砜和26.8克N,N-二甲基甲酰胺放入三口烧瓶中,在60℃的恒温水浴中加热搅拌约0.5小时。聚醚砜全部溶解后,称取6.0克分子量为2000的聚乙二醇作为致孔剂加入溶液中,在60℃下加热搅拌溶解4小时左右,混合均匀后得到铸膜液a,在60℃下静置脱泡2小时。冷却至室温后将铸膜液a倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜b;Weigh 7.2 g of polyethersulfone and 26.8 g of N,N-dimethylformamide into a three-necked flask, heat and stir in a constant temperature water bath at 60° C. for about 0.5 hours. After the polyethersulfone is completely dissolved, weigh 6.0 grams of polyethylene glycol with a molecular weight of 2000 as a porogen and add it to the solution, heat and stir at 60°C for about 4 hours, and mix well to obtain the casting solution a. Let stand for degassing for 2 hours. After cooling to room temperature, pour the casting solution a on a glass plate to scrape the film, place it in the air for 10-30 seconds, then put it in a water bath to solidify to form a film, soak it in deionized water for 24-36 hours, and obtain a blank polyether Sulfone ultrafiltration membrane b;
称取2.0克聚乙烯醇,加入198.0克去离子水中,在90℃下加热搅拌配制成质量浓度为1.0%的聚乙烯醇溶液c;称取5克硼砂,10毫克氢氧化钠溶于去离子水中配制成1000克质量浓度为0.5%的硼砂溶液d;Weigh 2.0 grams of polyvinyl alcohol, add 198.0 grams of deionized water, heat and stir at 90 ° C to prepare a polyvinyl alcohol solution c with a mass concentration of 1.0%; weigh 5 grams of borax, and dissolve 10 mg of sodium hydroxide in deionized Be mixed with 1000 grams of mass concentration in water and be the borax solution d of 0.5%;
将空白膜b用去离子水清洗表面,晾干表面水分,放入溶液c中浸泡10分钟;然后将膜从溶液c中取出,用去离子水清洗表面,晾干水分,放入溶液d中,浸泡10分钟;随后再将膜清洗后依次浸泡到溶液c和溶液d中重复上述过程,完成3个循环,获得改性聚醚砜超滤膜(膜2)。Clean the surface of the blank membrane b with deionized water, dry the surface moisture, soak in solution c for 10 minutes; then take the membrane out of solution c, wash the surface with deionized water, dry the water, and put it into solution d , soaked for 10 minutes; then the membrane was washed and soaked in solution c and solution d in turn to repeat the above process to complete 3 cycles to obtain a modified polyethersulfone ultrafiltration membrane (membrane 2).
所制得的改性聚醚砜抗蛋白质污染超滤膜经过扫描电镜、接触角和X光电子能谱分析,发现该膜具有典型的超滤膜复合结构,膜孔分布均匀,孔径分布范围窄,膜表面亲水性增强,有聚乙烯醇分子存在。膜纯水通量达到128.7L/(m2h),分离1g/L牛血清白蛋白缓冲溶液,对牛血清白蛋白截留率为100%,经水力清洗后,该膜具有较高的通量恢复率,且在长期超滤操作后通量仍处于较高水平;分离900ppm食用油配置的油水乳化液,对油的截留率为100%,通量恢复率较空白聚醚砜膜高。The prepared modified polyethersulfone anti-protein fouling ultrafiltration membrane was analyzed by scanning electron microscopy, contact angle and X-ray photoelectron spectroscopy. It was found that the membrane had a typical ultrafiltration membrane composite structure, with uniform distribution of membrane pores and narrow pore size distribution. The hydrophilicity of the membrane surface is enhanced, and polyvinyl alcohol molecules exist. The pure water flux of the membrane reaches 128.7L/(m 2 h), separates 1g/L bovine serum albumin buffer solution, and the rejection rate of bovine serum albumin is 100%. After hydraulic cleaning, the membrane has a higher flux Recovery rate, and the flux is still at a high level after long-term ultrafiltration operation; the oil-water emulsion prepared by separating 900ppm edible oil has a rejection rate of 100% for oil, and the flux recovery rate is higher than that of the blank polyethersulfone membrane.
实施例三Embodiment three
改性聚醚砜抗蛋白质污染超滤膜(膜3)的制备Preparation of modified polyethersulfone anti-protein fouling ultrafiltration membrane (membrane 3)
称取7.2克聚醚砜和26.8克N,N-二甲基甲酰胺放入三口烧瓶中,在60℃的恒温水浴中加热搅拌约0.5小时。聚醚砜全部溶解后,称取6.0克分子量为2000的聚乙二醇作为致孔剂加入溶液中,在60℃下加热搅拌溶解4小时左右,混合均匀后得到铸膜液a,在60℃下静置脱泡2小时。冷却至室温后将铸膜液a倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜b;Weigh 7.2 g of polyethersulfone and 26.8 g of N,N-dimethylformamide into a three-necked flask, heat and stir in a constant temperature water bath at 60° C. for about 0.5 hours. After the polyethersulfone is completely dissolved, weigh 6.0 grams of polyethylene glycol with a molecular weight of 2000 as a porogen and add it to the solution, heat and stir at 60°C for about 4 hours, and mix well to obtain the casting solution a. Let stand for degassing for 2 hours. After cooling to room temperature, pour the casting solution a on a glass plate to scrape the film, place it in the air for 10-30 seconds, then put it in a water bath to solidify to form a film, soak it in deionized water for 24-36 hours, and obtain a blank polyether Sulfone ultrafiltration membrane b;
称取4.0克聚乙烯醇,加入196.0克去离子水中,在90℃下加热搅拌配制成质量浓度为2.0%的聚乙烯醇溶液c;称取5克硼砂,10毫克氢氧化钠溶于去离子水中配制成1000克质量浓度为0.5%的硼砂溶液d;Weigh 4.0 grams of polyvinyl alcohol, add 196.0 grams of deionized water, heat and stir at 90 ° C to prepare a polyvinyl alcohol solution c with a mass concentration of 2.0%; weigh 5 grams of borax, and dissolve 10 mg of sodium hydroxide in deionized Be mixed with 1000 grams of mass concentration in water and be the borax solution d of 0.5%;
将空白膜b用去离子水清洗表面,晾干表面水分,放入溶液c中浸泡10分钟;然后将膜从溶液c中取出,用去离子水清洗表面,晾干水分,放入溶液d中,浸泡10分钟;随后再将膜清洗后依次浸泡到溶液c和溶液d中重复上述过程,完成3个循环,获得改性聚醚砜超滤膜(膜3)。Clean the surface of the blank membrane b with deionized water, dry the surface moisture, soak in solution c for 10 minutes; then take the membrane out of solution c, wash the surface with deionized water, dry the water, and put it into solution d , soaked for 10 minutes; then the membrane was washed and soaked in solution c and solution d in turn to repeat the above process to complete 3 cycles to obtain a modified polyethersulfone ultrafiltration membrane (membrane 3).
所制得的改性聚醚砜抗蛋白质污染超滤膜经过扫描电镜、接触角和X光电子能谱分析,发现该膜具有典型的超滤膜复合结构,膜孔分布均匀,孔径分布范围窄,膜表面亲水性增强,有聚乙烯醇分子存在。膜纯水通量达到113.0L/(m2h),分离1g/L牛血清白蛋白缓冲溶液,对牛血清白蛋白截留率为100%,经水力清洗后,该膜具有较高的通量恢复率,且在长期超滤操作后通量仍处于较高水平;分离900ppm食用油配制的油水乳化液,对油的截留率为100%,通量恢复率较空白聚醚砜膜高。The prepared modified polyethersulfone anti-protein fouling ultrafiltration membrane was analyzed by scanning electron microscopy, contact angle and X-ray photoelectron spectroscopy. It was found that the membrane had a typical ultrafiltration membrane composite structure, with uniform distribution of membrane pores and narrow pore size distribution. The hydrophilicity of the membrane surface is enhanced, and polyvinyl alcohol molecules exist. The pure water flux of the membrane reaches 113.0L/(m 2 h), and the 1g/L bovine serum albumin buffer solution is separated, and the rejection rate of bovine serum albumin is 100%. After hydraulic cleaning, the membrane has a higher flux Recovery rate, and the flux is still at a high level after long-term ultrafiltration operation; the oil-water emulsion prepared by separating 900ppm edible oil has a rejection rate of 100% for oil, and the flux recovery rate is higher than that of the blank polyethersulfone membrane.
实施例四Embodiment four
改性聚醚砜抗蛋白质污染超滤膜(膜4)的制备Preparation of modified polyethersulfone anti-protein fouling ultrafiltration membrane (membrane 4)
称取7.2克聚醚砜和26.8克N,N-二甲基甲酰胺放入三口烧瓶中,在60℃的恒温水浴中加热搅拌约0.5小时。聚醚砜全部溶解后,称取6.0克分子量为2000的聚乙二醇作为致孔剂加入溶液中,在60℃下加热搅拌溶解4小时左右,混合均匀后得到铸膜液a,在60℃下静置脱泡2小时。冷却至室温后将铸膜液a倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜b;Weigh 7.2 g of polyethersulfone and 26.8 g of N,N-dimethylformamide into a three-necked flask, heat and stir in a constant temperature water bath at 60° C. for about 0.5 hours. After the polyethersulfone is completely dissolved, weigh 6.0 grams of polyethylene glycol with a molecular weight of 2000 as a porogen and add it to the solution, heat and stir at 60°C for about 4 hours, and mix well to obtain the casting solution a. Let stand for degassing for 2 hours. After cooling to room temperature, pour the casting solution a on a glass plate to scrape the film, place it in the air for 10-30 seconds, then put it in a water bath to solidify to form a film, soak it in deionized water for 24-36 hours, and obtain a blank polyether Sulfone ultrafiltration membrane b;
称取1.0克聚乙烯醇,加入199.0克去离子水中,在90℃下加热搅拌配制成质量浓度为0.5%的聚乙烯醇溶液c;称取5克硼砂,10毫克氢氧化钠溶于去离子水中配制成1000克质量浓度为0.5%的硼砂溶液d;Weigh 1.0 g of polyvinyl alcohol, add 199.0 g of deionized water, heat and stir at 90°C to prepare a polyvinyl alcohol solution c with a mass concentration of 0.5%; weigh 5 g of borax, and dissolve 10 mg of sodium hydroxide in deionized Be mixed with 1000 grams of mass concentration in water and be the borax solution d of 0.5%;
将空白膜b用去离子水清洗表面,晾干表面水分,放入溶液c中浸泡10分钟;然后将膜从溶液c中取出,用去离子水清洗表面,晾干水分,放入溶液d中,浸泡10分钟;随后再将膜清洗后依次浸泡到溶液c和溶液d中重复上述过程,完成6个循环,获得改性聚醚砜超滤膜(膜4)。Clean the surface of the blank membrane b with deionized water, dry the surface moisture, soak in solution c for 10 minutes; then take the membrane out of solution c, wash the surface with deionized water, dry the water, and put it into solution d , soaked for 10 minutes; then the membrane was washed and soaked in solution c and solution d in turn to repeat the above process to complete 6 cycles to obtain a modified polyethersulfone ultrafiltration membrane (membrane 4).
所制得的改性聚醚砜抗蛋白质污染超滤膜经过扫描电镜、接触角和X光电子能谱分析,发现该膜具有典型的超滤膜复合结构,膜孔分布均匀,孔径分布范围窄,膜表面亲水性增强,有聚乙烯醇分子存在。膜纯水通量达到84.0L/(m2h),分离1g/L牛血清白蛋白缓冲溶液,对牛血清白蛋白截留率为100%,经水力清洗后,该膜具有较高的通量恢复率,且在长期超滤操作后通量仍处于较高水平。The prepared modified polyethersulfone anti-protein fouling ultrafiltration membrane was analyzed by scanning electron microscopy, contact angle and X-ray photoelectron spectroscopy. It was found that the membrane had a typical ultrafiltration membrane composite structure, with uniform distribution of membrane pores and narrow pore size distribution. The hydrophilicity of the membrane surface is enhanced, and polyvinyl alcohol molecules exist. The pure water flux of the membrane reaches 84.0L/(m 2 h), and the separation of 1g/L bovine serum albumin buffer solution has a rejection rate of 100% for bovine serum albumin. After hydraulic cleaning, the membrane has a higher flux Recovery rate, and the flux is still at a high level after long-term ultrafiltration operation.
对比例一Comparative example one
聚醚砜超滤膜(膜5)的制备Preparation of polyethersulfone ultrafiltration membrane (membrane 5)
称取7.2克聚醚砜和26.8克N,N-二甲基甲酰胺放入三口烧瓶中,在60℃的恒温水浴中加热搅拌约0.5小时。聚醚砜全部溶解后,称取6.0克分子量为2000的聚乙二醇作为致孔剂加入溶液中,在60℃下加热搅拌溶解4小时左右,混合均匀后得到铸膜液a,在60℃下静置脱泡2小时。冷却至室温后将铸膜液a倒在玻璃板上刮膜,在空气中放置10~30秒后,再放入水浴中凝固成膜,用去离子水浸泡24~36小时,得到空白聚醚砜超滤膜(膜5);Weigh 7.2 g of polyethersulfone and 26.8 g of N,N-dimethylformamide into a three-necked flask, heat and stir in a constant temperature water bath at 60° C. for about 0.5 hours. After the polyethersulfone is completely dissolved, weigh 6.0 grams of polyethylene glycol with a molecular weight of 2000 as a porogen and add it to the solution, heat and stir at 60°C for about 4 hours, and mix well to obtain the casting solution a. Let stand for degassing for 2 hours. After cooling to room temperature, pour the casting solution a on a glass plate to scrape the film, place it in the air for 10-30 seconds, then put it in a water bath to solidify to form a film, soak it in deionized water for 24-36 hours, and obtain a blank polyether Sulfone ultrafiltration membrane (membrane 5);
所制得的空白聚醚砜超滤膜经过扫描电镜、接触角和X光电子能谱分析,发现该膜具有典型的超滤膜复合结构,膜孔分布均匀,孔径分布范围窄。膜纯水通量达到154.3L/(m2h),分离1g/L牛血清白蛋白缓冲溶液,对牛血清白蛋白截留率为100%,经水力清洗后,通量恢复率较低。The prepared blank polyethersulfone ultrafiltration membrane was analyzed by scanning electron microscopy, contact angle and X-ray photoelectron spectroscopy. It was found that the membrane had a typical composite structure of ultrafiltration membranes, and the membrane pores were evenly distributed and the pore size distribution range was narrow. The pure water flux of the membrane reaches 154.3L/(m 2 h), and the 1g/L bovine serum albumin buffer solution is separated, and the rejection rate of bovine serum albumin is 100%. After hydraulic cleaning, the flux recovery rate is low.
表1所示为实施例以及对比例所制得的膜的超滤分离浓缩1g/L牛血清白蛋白缓冲溶液的分离特性。Table 1 shows the separation characteristics of the ultrafiltration separation concentrated 1g/L bovine serum albumin buffer solution of the membranes prepared in Examples and Comparative Examples.
表1Table 1
表2所示为实施例以及对比例所制得的膜的超滤分离浓缩食用油配制的900ppm油水乳化液的分离特性。Table 2 shows the separation characteristics of the 900ppm oil-water emulsion prepared by the ultrafiltration separation of the membranes prepared in the examples and comparative examples and concentrated edible oil.
表2Table 2
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200610130496XA CN100435920C (en) | 2006-12-21 | 2006-12-21 | Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200610130496XA CN100435920C (en) | 2006-12-21 | 2006-12-21 | Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101003005A true CN101003005A (en) | 2007-07-25 |
CN100435920C CN100435920C (en) | 2008-11-26 |
Family
ID=38702518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200610130496XA Expired - Fee Related CN100435920C (en) | 2006-12-21 | 2006-12-21 | Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100435920C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101574629B (en) * | 2008-05-09 | 2011-04-20 | 中国石油天然气股份有限公司 | Preparation method of polyvinyl alcohol/polyether sulfone pervaporation composite membrane |
CN105013336A (en) * | 2015-06-30 | 2015-11-04 | 天津大学 | Preparation method of nano silver/poly dopamine composite membrane |
CN110292865A (en) * | 2019-06-27 | 2019-10-01 | 三达膜科技(厦门)有限公司 | A kind of automatically cleaning carbonitride/titanium dioxide/polyvinyl alcohol composite nanometer filtering film preparation method |
CN111389233A (en) * | 2020-03-20 | 2020-07-10 | 北京碧水源膜科技有限公司 | Preparation method of microfiltration membrane repairing liquid for functional layer damage and microfiltration membrane repairing method |
CN111389226A (en) * | 2020-04-17 | 2020-07-10 | 浙江理工大学 | A kind of permanent hydrophilic ultrafiltration membrane and preparation method thereof |
CN113578056A (en) * | 2021-07-05 | 2021-11-02 | 启成(江苏)净化科技有限公司 | Preparation method of organic and inorganic hybrid ultrafiltration membrane |
CN113956480A (en) * | 2021-11-22 | 2022-01-21 | 彩虹高新材料(莱阳)有限公司 | Chemically modified polyether sulfone and preparation method thereof |
CN115569536A (en) * | 2022-09-28 | 2023-01-06 | 浙江大学 | Anti-pollution ultrafiltration membrane and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4618533A (en) * | 1984-11-30 | 1986-10-21 | Millipore Corporation | Porous membrane having hydrophilic surface and process |
KR960700098A (en) * | 1993-02-02 | 1996-01-19 | 에이 피 버클리 | Polymer porous structure and its manufacturing method |
US6837996B2 (en) * | 2000-05-23 | 2005-01-04 | Ge Osmonics, Inc. | Polysulfonamide matrices |
AUPS295702A0 (en) * | 2002-06-17 | 2002-07-04 | Proteome Systems Intellectual Property Pty Ltd | Coated hydrophilic membranes for electrophoresis applications |
JP4778518B2 (en) * | 2004-10-13 | 2011-09-21 | スリーエム イノベーティブ プロパティーズ カンパニー | Preparation method of hydrophilic polyethersulfone membrane |
-
2006
- 2006-12-21 CN CNB200610130496XA patent/CN100435920C/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101574629B (en) * | 2008-05-09 | 2011-04-20 | 中国石油天然气股份有限公司 | Preparation method of polyvinyl alcohol/polyether sulfone pervaporation composite membrane |
CN105013336A (en) * | 2015-06-30 | 2015-11-04 | 天津大学 | Preparation method of nano silver/poly dopamine composite membrane |
CN110292865A (en) * | 2019-06-27 | 2019-10-01 | 三达膜科技(厦门)有限公司 | A kind of automatically cleaning carbonitride/titanium dioxide/polyvinyl alcohol composite nanometer filtering film preparation method |
CN111389233A (en) * | 2020-03-20 | 2020-07-10 | 北京碧水源膜科技有限公司 | Preparation method of microfiltration membrane repairing liquid for functional layer damage and microfiltration membrane repairing method |
CN111389226A (en) * | 2020-04-17 | 2020-07-10 | 浙江理工大学 | A kind of permanent hydrophilic ultrafiltration membrane and preparation method thereof |
CN111389226B (en) * | 2020-04-17 | 2022-07-05 | 浙江理工大学 | A kind of permanent hydrophilic ultrafiltration membrane and preparation method thereof |
CN113578056A (en) * | 2021-07-05 | 2021-11-02 | 启成(江苏)净化科技有限公司 | Preparation method of organic and inorganic hybrid ultrafiltration membrane |
CN113956480A (en) * | 2021-11-22 | 2022-01-21 | 彩虹高新材料(莱阳)有限公司 | Chemically modified polyether sulfone and preparation method thereof |
CN113956480B (en) * | 2021-11-22 | 2023-05-05 | 彩虹高新材料(莱阳)有限公司 | Chemically modified polyethersulfone and preparation method thereof |
CN115569536A (en) * | 2022-09-28 | 2023-01-06 | 浙江大学 | Anti-pollution ultrafiltration membrane and preparation method and application thereof |
CN115569536B (en) * | 2022-09-28 | 2023-04-28 | 浙江大学 | Anti-pollution ultrafiltration membrane and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100435920C (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100435920C (en) | Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type | |
CN105642133B (en) | A kind of polyamide/COFs hydridization Nano filtering composite membranes and preparation method thereof | |
CN102614783B (en) | Method for preparing high-flux composite membrane from dopamine-modified nanometer material | |
CN103977718B (en) | Positive osmosis composite membrane of a kind of high water flux and preparation method thereof | |
CN108404686B (en) | Preparation method of metal ion adsorption sewage separation membrane | |
CN101703898B (en) | PDMS/PVDF pervaporation composite membrane, preparation method and application thereof | |
CN104209022A (en) | High-flux polyamide/ZIF-8 nanofiltration composite film and preparation method thereof | |
CN104209021A (en) | Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material | |
CN102327746A (en) | Anti-pollution cyclodextrin-polymer composite nano-filtration membrane and preparation method thereof | |
CN107198972B (en) | Membrane chromatography material for removing micropollutants from water body and preparation method thereof | |
CN104941466B (en) | A kind of preparation method for being used to remove the hepatotoxic mesoporous carbon organic hybrid films of macromolecular in water removal | |
CN102085459A (en) | Preparation method of anti-pollution oil-water separation ultrafiltration membrane | |
CN101733025A (en) | Polyacrylonitrile hydrolyzed modified ultrafiltration membrane resisting protein pollution and preparation method thereof | |
CN113509847A (en) | Method for preparing porous nano particle/polydimethylsiloxane membrane by spreading on water surface | |
CN101259387A (en) | Controllable flux anti-protein fouling polyethersulfone ultrafiltration membrane and preparation method thereof | |
Ma et al. | Nanosponge membrane with 3D-macrocycle β-cyclodextrin as molecular cage to simultaneously enhance antifouling properties and efficient separation of dye/oil mixtures | |
CN100402134C (en) | Preparation method of a polymer/montmorillonite nanocomposite hydrophilic membrane | |
CN105107395A (en) | Preparation method of hollow mesoporous silica sphere/polyether sulfone composite ultrafiltration membrane | |
Rojjanapinun et al. | Rice husk ash and Zr-MOF nanoparticles improve the properties and ultrafiltration performance of PVDF nanomembranes | |
CN101003003A (en) | Method for preparing anti-protein-contamination type acrylonitrile-sulfonamide polymer ultrafitration film | |
CN103861464B (en) | A kind of preparation method of molecular sieve micro mist modification polyvinylidene fluoride film | |
CN104998550B (en) | The antipollution milipore filter and preparation method of amphipathic surface modifying material of the filling with crosslinking hydrophobic section | |
CN115318110B (en) | A method for preparing highly selective nanofiltration membranes based on weakly polar organic solvent regulation | |
CN106731880A (en) | Visible light catalytic hollow fiber ultrafiltration membrane and preparation method based on dopen Nano ZnO | |
CN102500247B (en) | Modified cellulose acetate ultrafiltration membrane preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081126 Termination date: 20101221 |