CN100594600C - Complementary metal-oxide-semiconductor transistor and manufacturing method thereof - Google Patents
Complementary metal-oxide-semiconductor transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN100594600C CN100594600C CN200710005947A CN200710005947A CN100594600C CN 100594600 C CN100594600 C CN 100594600C CN 200710005947 A CN200710005947 A CN 200710005947A CN 200710005947 A CN200710005947 A CN 200710005947A CN 100594600 C CN100594600 C CN 100594600C
- Authority
- CN
- China
- Prior art keywords
- conductivity type
- metal oxide
- oxide semiconductor
- semiconductor device
- device district
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 208
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 230000000295 complement effect Effects 0.000 title abstract description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 117
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 117
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000002019 doping agent Substances 0.000 claims description 26
- 238000005468 ion implantation Methods 0.000 claims description 25
- 238000002955 isolation Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 abstract description 56
- 230000002265 prevention Effects 0.000 abstract description 5
- 238000005192 partition Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- 125000005843 halogen group Chemical group 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明关于一种互补式金属氧化物半导体晶体管及其制作方法,尤指一种具有优良闭锁防制能力(latch-up robustness)的互补式金属氧化物半导体晶体管及其制作方法。The present invention relates to a complementary metal oxide semiconductor transistor and a manufacturing method thereof, in particular to a complementary metal oxide semiconductor transistor with excellent latch-up robustness and a manufacturing method thereof.
背景技术 Background technique
互补式金属氧化物半导体(CMOS)晶体管是由一个N型金属氧化物半导体(NMOS)晶体管与一个P型金属氧化物半导体(PMOS)晶体管所组成的半导体基本元件。A Complementary Metal Oxide Semiconductor (CMOS) transistor is a semiconductor basic element composed of an N-type Metal Oxide Semiconductor (NMOS) transistor and a P-type Metal Oxide Semiconductor (PMOS) transistor.
请参考图1,图1为已有互补式金属氧化物半导体晶体管的结构示意图。如图1所示,已有互补式金属氧化物半导体晶体管包含有一P型的半导体基底10,而由仰视方向的半导体基底10可区分P型金属氧化物半导体元件区20与N型金属氧化物半导体元件区40,并利用隔离结构12加以隔离。P型金属氧化物半导体元件区20内设置有N型阱22位于半导体基底10中、栅极绝缘层24位于半导体基底10的表面、栅极电极26位于栅极绝缘层24的表面、二个间隔壁28位于栅极电极26的两侧,以及二个P型的源极/漏极掺杂区30分别位于二个间隔壁28两侧的半导体基底10中。另外,栅极电极26两侧的间隔壁28下方的半导体基底10中另分别设置有一的轻掺杂漏极32,而各轻掺杂漏极32下方的半导体基底10内则设置有口袋型(halo orpocket)掺杂区34。Please refer to FIG. 1 , which is a schematic structural diagram of a conventional CMOS transistor. As shown in FIG. 1, the existing complementary metal oxide semiconductor transistor includes a P-
另一方面,N型金属氧化物半导体元件区40内设置有P型阱42位于半导体基底10中、栅极绝缘层44位于半导体基底10的表面、栅极电极46位于栅极绝缘层44的表面、二个间隔壁48位于栅极电极46的两侧,以及二个N型的源极/漏极掺杂区50分别位于二个间隔壁48两侧的半导体基底10中。另外,栅极电极46两侧的间隔壁48下方的半导体基底10中另分别设置有轻掺杂漏极52。On the other hand, in the
目前集成电路中已广泛使用互补式金属氧化物半导体晶体管作为主要的基本电子元件,但在工艺线宽的不断精进的情况下,P型金属氧化物半导体晶体管与N型金属氧化物半导体晶体管彼此间的隔离更显得重要,否则容易发生闭锁现象。另外,对于某些具备高电流或高电压的集成电路而言,例如模拟电路(analogue IC)或电源管理电路(PMIC)而言,互补式金属氧化物半导体晶体管更是容易产生闭锁现象。At present, complementary metal-oxide-semiconductor transistors have been widely used as the main basic electronic components in integrated circuits. The isolation is more important, otherwise it is prone to lock-up. In addition, for some integrated circuits with high current or high voltage, such as analogue ICs or power management circuits (PMICs), CMOS transistors are more prone to latch-up.
请继续参考图2与图3,并一并参考图1。图2为pnpn二极管的示意图,图3为图2的pnpn二极管的电流对电压的关图。如图1所示,互补式金属氧化物半导体晶体管以反相器(inverter)的方式连接,以测试闭锁现象。在P型金属氧化物半导体元件区20中,P型的源极/漏极30、N型阱22与P型的半导体基底10会形成直立式pnp双极性晶体管,而另一方面N型金属氧化物半导体元件区40中,N型的源极/漏极50与P型阱42,与P型金属氧化物半导体元件区20的N型阱22则会形成横向式npn双极性晶体管。由于直立式pnp双极性晶体管的基极(base)与横向式npn双极性晶体管的集电极(collector)相接,同时直立式pnp双极性晶体管的集电极亦与横向式npn双极性晶体管的基极相接,在此状况下任一双极性晶体管的基极都处于被另一双极性晶体管的集电极驱动(driven)的状态,因而使直立式pnp双极性晶体管与横向式npn双极性晶体管形成正回馈回路(positive feedback loop)。Please continue to refer to FIG. 2 and FIG. 3 , and refer to FIG. 1 together. FIG. 2 is a schematic diagram of a pnpn diode, and FIG. 3 is a graph showing the relationship between current and voltage of the pnpn diode in FIG. 2 . As shown in FIG. 1 , CMOS transistors are connected in an inverter manner to test the latch-up phenomenon. In the P-type metal oxide
上述正回馈回路可视为寄生pnpn二极管,如图2所示,而pnpn二极管的电流(I)与电压(V)的操作曲线如图3所示。pnpn二极管的引发电流(triggering currcnt)为IH,当电流大于引发电流(I>IH)时,pnpn二极管会处于运作的状态,而使互补式金属氧化物半导体晶体管产生闭锁现象。一旦发生闭锁现象,将使互补式金属氧化物半导体晶体管暂时性甚至永久性丧失功能,而影响互补式金属氧化物半导体晶体管的正常运作,因此在互补式金属氧化物半导体晶体管的设计与制作过程中,如何避免闭锁现象的发生成为研发上的重要课题。The above-mentioned positive feedback loop can be regarded as a parasitic pnpn diode, as shown in FIG. 2 , and the operating curve of the current (I) and voltage (V) of the pnpn diode is shown in FIG. 3 . The triggering currcnt of the pnpn diode is I H , and when the current is greater than the triggering current (I>I H ), the pnpn diode will be in an operating state, causing the CMOS transistor to lock up. Once the latch-up phenomenon occurs, the complementary metal oxide semiconductor transistor will temporarily or even permanently lose its function, which will affect the normal operation of the complementary metal oxide semiconductor transistor. Therefore, in the design and production process of the complementary metal oxide semiconductor transistor , How to avoid the occurrence of latch-up phenomenon has become an important topic in research and development.
发明内容 Contents of the invention
本发明的一个目的在于提供一种制作互补式金属氧化物半导体晶体管的方法,以提升互补式金属氧化物半导体晶体管的闭锁防制能力。An object of the present invention is to provide a method for fabricating a complementary metal-oxide-semiconductor transistor to improve the latch-up prevention capability of the complementary metal-oxide-semiconductor transistor.
本发明的另一个目的在于提供一种具有优良闭锁防制能力的互补式金属氧化物半导体晶体管。Another object of the present invention is to provide a CMOS transistor with excellent latch-up prevention capability.
为达成上述目的,本发明的一实施例提供一种制作互补式金属氧化物半导体晶体管的方法。首先提供半导体基底,其包含有第一导电型金属氧化物半导体元件区与第二导电型金属氧化物半导体元件区,且该半导体基底于该第一导电型金属氧化物半导体元件区包含有第二导电型掺杂阱,而于该第二导电型金属氧化物半导体元件区包含有第一导电型掺杂阱。接着于该半导体基底的表面形成多个隔离结构,并于该第一导电型金属氧化物半导体元件区形成栅极结构。之后,于该半导体基底的表面形成第一掩模图案,其中该第一掩模图案曝露出该第一导电型金属氧化物半导体元件区的该栅极结构以及该栅极结构两侧的半导体基底。随后,利用该第一掩模图案作为掩模,通过离子注入于该第一导电型金属氧化物半导体元件区的该栅极结构两侧的该第二导电型掺杂阱中形成二个轻掺杂漏极。再次利用该第一掩模图案作为掩模,通过离子注入于该第一导电型金属氧化物半导体元件区的该栅极结构两侧的该第二导电型掺杂阱中形成二个深口袋型掺杂区,其中该二个深口袋型掺杂区为第二导电型。之后,去除该第一掩模图案,并于该第一导电型金属氧化物半导体元件区的该栅极结构以及该第二导电型金属氧化物半导体元件区的该栅极结构的侧壁形成间隔壁。然后于该半导体基底的表面形成第二掩模图案,其中该第二掩模图案曝露出该第一导电型金属氧化物半导体元件区的该栅极结构以及该栅极结构的该间隔壁两侧的该半导体基底。接着利用该第二掩模图案作为掩模,通过离子注入于该第一导电型金属氧化物半导体元件区的该栅极结构两侧的该第二导电型掺杂阱中形成二个源极/漏极掺杂区。随后去除该第二掩模图案。To achieve the above object, an embodiment of the present invention provides a method for fabricating a CMOS transistor. First, a semiconductor substrate is provided, which includes a first conductivity type metal oxide semiconductor element region and a second conductivity type metal oxide semiconductor element region, and the semiconductor substrate includes a second conductivity type metal oxide semiconductor element region. The doped well of the conductivity type includes the doped well of the first conductivity type in the metal oxide semiconductor element region of the second conductivity type. Then a plurality of isolation structures are formed on the surface of the semiconductor substrate, and a gate structure is formed in the first conductive type metal oxide semiconductor element region. After that, a first mask pattern is formed on the surface of the semiconductor substrate, wherein the first mask pattern exposes the gate structure of the first conductivity type metal oxide semiconductor element region and the semiconductor substrate on both sides of the gate structure . Subsequently, using the first mask pattern as a mask, two lightly doped Miscellaneous drain. Using the first mask pattern again as a mask, two deep pocket-type wells are formed in the doped wells of the second conductivity type on both sides of the gate structure of the first conductivity type metal oxide semiconductor element region by ion implantation. Doped regions, wherein the two deep pocket doped regions are of the second conductivity type. Afterwards, the first mask pattern is removed, and a gap is formed on the sidewalls of the gate structure of the first conductivity type metal oxide semiconductor device region and the gate structure of the second conductivity type metal oxide semiconductor device region next door. Then, a second mask pattern is formed on the surface of the semiconductor substrate, wherein the second mask pattern exposes the gate structure of the first conductivity type metal oxide semiconductor device region and both sides of the partition wall of the gate structure of the semiconductor substrate. Next, using the second mask pattern as a mask, two source electrodes/ Drain doped region. The second mask pattern is subsequently removed.
本发明制作互补式金属氧化物半导体晶体管的方法利用制作轻掺杂漏极的掩模图案作为掩模,一并制作出深口袋型掺杂区,不仅可提升闭锁防制能力,同时又不会增加额外的掩模成本。The method for manufacturing complementary metal-oxide-semiconductor transistors of the present invention uses the lightly doped drain mask pattern as a mask to create a deep pocket-type doped region, which can not only improve the lock-up prevention ability, but also prevent Add additional mask cost.
为了使本领域普通技术人员能更近一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图。然而所附图式仅供参考与辅助说明用,并非用来对本发明加以限制。In order for those skilled in the art to further understand the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the accompanying drawings are only for reference and auxiliary description, and are not intended to limit the present invention.
附图说明 Description of drawings
图1为已有的互补式金属氧化物半导体晶体管的结构示意图。FIG. 1 is a schematic structural diagram of an existing CMOS transistor.
图2为pnpn二极管的示意图。Figure 2 is a schematic diagram of a pnpn diode.
图3为图2的pnpn二极管的电流对电压的关图。FIG. 3 is a graph of current versus voltage for the pnpn diode of FIG. 2 .
图4为本发明的第一优选实施例制作互补式金属氧化物半导体晶体管的方法流程图。FIG. 4 is a flowchart of a method for fabricating a CMOS transistor according to the first preferred embodiment of the present invention.
图5至图11为本发明的第一实施例制作互补式金属氧化物半导体晶体管的方法示意图。5 to 11 are schematic diagrams of a method for fabricating a complementary metal-oxide-semiconductor transistor according to a first embodiment of the present invention.
图12为本发明的第二优选实施例制作互补式金属氧化物半导体晶体管的方法流程图。FIG. 12 is a flowchart of a method for fabricating a CMOS transistor according to a second preferred embodiment of the present invention.
图13至图19为本发明的第二实施例制作互补式金属氧化物半导体晶体管的方法示意图。13 to 19 are schematic diagrams of a method for fabricating a complementary metal-oxide-semiconductor transistor according to a second embodiment of the present invention.
【主要元件符号说明】[Description of main component symbols]
10半导体基底 12隔离结构10 Semiconductor substrate 12 Isolation structure
20P型金属氧化物半导体元件区 22N型阱20P type metal oxide semiconductor element area 22N type well
24栅极绝缘层 26栅极电极24 gate insulating layer 26 gate electrode
28间隔壁 30源极/漏极掺杂区28
32轻掺杂漏极 34口袋型掺杂区32 lightly doped
40N型金属氧化物半导体元件区 42P型阱40N type metal oxide semiconductor element area 42P type well
44栅极绝缘层 46栅极电极44 gate insulating layer 46 gate electrode
48间隔壁 50源极/漏极掺杂区48
52轻掺杂漏极 70半导体基底52 lightly doped
72P型金属氧化物半导体元件区 74N型金属氧化物半导体元件区72P type metal oxide semiconductor element area 74N type metal oxide semiconductor element area
76N型掺杂阱 78P型掺杂阱76N-type doped well 78P-type doped well
80隔离结构 82栅极绝缘层80 isolation structure 82 gate insulating layer
84栅极绝缘层 86栅极电极84
88栅极电极 89掩模图案88
90轻掺杂漏极 92间隔壁90 Lightly doped
93掩模图案 94源极/漏极掺杂区93
96N型掺杂区 98第一掩模图案96 N-type doped region 98 first mask pattern
100轻掺杂漏极 102口袋型掺杂区100 lightly doped
104深口袋型掺杂区 106源极/漏极掺杂区104 deep pocket doped
108P型掺杂区 118第二掩模图案108P-type doped
120半导体基底 122P型金属氧化物半导体元件区120 semiconductor substrate 122P type metal oxide semiconductor element area
124N型金属氧化物半导体元件区 126N型掺杂阱124N type metal oxide semiconductor element region 126N type doped well
128P型掺杂阱 130隔离结构128P doped well 130 isolation structure
132栅极绝缘层 134栅极绝缘层132
136栅极电极 138栅极电极136 grid electrodes
139掩模图案 140二个轻掺杂漏极139
142间隔壁 143掩模图案142 partition wall 143 mask pattern
144源极/漏极掺杂区 146N型掺杂区144 source/drain doped region 146 N-type doped region
148第一掩模图案 150轻掺杂漏极148
152口袋型掺杂区 154深口袋型掺杂区152
156源极/漏极掺杂区 158P型掺杂区156 source/drain doped region 158P type doped region
160第二掩模图案160 second mask pattern
具体实施方式 Detailed ways
请参考图4,图4为本发明的第一优选实施例制作互补式金属氧化物半导体晶体管的方法流程图。如图4所示,本实施例制作互补式金属氧化物半导体晶体管的主要流程步骤包含有:Please refer to FIG. 4 . FIG. 4 is a flowchart of a method for fabricating a CMOS transistor according to a first preferred embodiment of the present invention. As shown in FIG. 4 , the main process steps of manufacturing a complementary metal-oxide-semiconductor transistor in this embodiment include:
步骤60:提供半导体基底;Step 60: providing a semiconductor substrate;
步骤61:形成掺杂阱;Step 61: forming a doped well;
步骤62:形成隔离结构;Step 62: forming an isolation structure;
步骤63:制作栅极结构;Step 63: making a gate structure;
步骤64:制作轻掺杂漏极、口袋型掺杂区与深口袋掺杂区;Step 64: making a lightly doped drain, a pocket-type doped region, and a deep-pocket doped region;
步骤65:制作间隔壁;以及Step 65: making partition walls; and
步骤66:制作源极/漏极。Step 66: Make Source/Drain.
请继续参考图5至图11,图5至图11为本发明的第一实施例制作互补式金属氧化物半导体晶体管的方法示意图。于本实施例中,第一导电型为P型,而第二导电型为N型,但并不限于此,于其它实施方式中,第一导电型亦可为N型,而第二导电型则为P型。如图5所示,首先提供P型的半导体基底70,由仰视方向的半导体基底70包含有P型金属氧化物半导体元件区72,用以制作P型金属氧化物半导体晶体管,以及N型金属氧化物半导体元件区74,用以制作N型金属氧化物半导体晶体管。接着于P型金属氧化物半导体元件区72的半导体基底70中形成有N型掺杂阱76,并于N型金属氧化物半导体元件区74的半导体基底70中形成P型掺杂阱78。随后,于半导体基底70的表面形成多个隔离结构80,例如场氧化层或浅沟隔离结构。Please continue to refer to FIG. 5 to FIG. 11 . FIG. 5 to FIG. 11 are schematic diagrams of a method for fabricating a CMOS transistor according to a first embodiment of the present invention. In this embodiment, the first conductivity type is P-type, and the second conductivity type is N-type, but it is not limited thereto. In other embodiments, the first conductivity type can also be N-type, and the second conductivity type It is P type. As shown in Figure 5, a P-
如图6所示,接着于半导体基底70的表面依序形成介电层如氧化硅层,以及导电层如多晶硅层,并利用光刻与蚀刻技术分别于P型金属氧化物半导体元件区72的半导体基底70上形成栅极绝缘层82与栅极电极86,以及于N型金属氧化物半导体元件区74的半导体基底70上形成栅极绝缘层84与栅极电极88。As shown in FIG. 6, a dielectric layer such as a silicon oxide layer and a conductive layer such as a polysilicon layer are sequentially formed on the surface of the
如图7所示,接着利用掩模图案89遮蔽P型金属氧化物半导体元件区72的表面以及部分N型金属氧化物半导体元件区74的表面,并通过离子注入工艺于N型金属氧化物半导体元件区74的栅极电极88两侧的半导体基底70中形成二个轻掺杂漏极90,再去除掩模图案89。As shown in FIG. 7, the surface of the P-type metal oxide
如图8所示,随后于半导体基底70的表面形成第一掩模图案98,例如光刻胶图案,第一掩模图案98覆盖N型金属氧化物半导体元件区74与部分P型金属氧化物半导体元件区72,而曝露出P型金属氧化物半导体元件区72的栅极电极86以及栅极电极86两侧的半导体基底70。随后,利用第一掩模图案98作为掩模,通过离子注入于P型金属氧化物半导体元件区72的栅极结构两侧的N型掺杂阱76中形成二个轻度P型(P-)的轻掺杂漏极100,以及二个轻度N型(N-)的口袋型掺杂区102。利用同样的第一掩模图案作98为掩模,通过离子注入于P型金属氧化物半导体元件区72的栅极电极86两侧的N型掺杂阱76中形成二个重度N型(N+)的深口袋型(deep halo)掺杂区104。As shown in FIG. 8, a first mask pattern 98, such as a photoresist pattern, is then formed on the surface of the
轻掺杂漏极100、口袋型掺杂区102与深口袋型掺杂区104利用相同的第一掩模图案98作为掩模,并分别利用不同的离子注入工艺形成于N型掺杂阱76中,再伴随一次或数次退火工艺以驱入掺质。值得说明的是用以形成轻掺杂漏极100、口袋型掺杂区102与深口袋型掺杂区104的离子注入工艺的进行先后顺序并不受本实施例上述说明所限定而可适状况加以变更,而其中深口袋型掺杂区104利用高能高剂量离子注入工艺加以形成,使其位于口袋型掺杂区102与轻掺杂漏极100的下方并对应口袋型掺杂区102与轻掺杂漏极100。在本实施例中,高能高剂量离子注入工艺的离子注入能量约介于150至180kev之间,而离子注入浓度约介于1013至1014原子/cm3之间,但并不限于此。深口袋型掺杂区104的存在可增加位于P型金属氧化物半导体元件区72中的直立式pnp双极性晶体管的基极宽度(base width),并降低其β增益(beta gain),因此可避免闭锁现象的发生。The lightly doped
如图9所示,随后去除第一掩模图案98,并于P型金属氧化物半导体元件区72的栅极电极86与N型金属氧化物半导体元件区74的栅极电极88的两侧壁形成间隔壁92。接着利用掩模图案93遮蔽部分P型金属氧化物半导体元件区72的表面以及部分N型金属氧化物半导体元件区74的表面,并通过离子注入工艺于N型金属氧化物半导体元件区74的间隔壁92两侧的半导体基底70中形成二个源极/漏极掺杂区94,并同时于P型金属氧化物半导体元件区72的半导体基底70中形成用来与N型掺杂阱76电连接的N型掺杂区96。随后去除掩模图案93。As shown in FIG. 9, the first mask pattern 98 is subsequently removed, and the two side walls of the
如图10所示,随后于半导体基底70的表面再形成第二掩模图案118,第二掩模图案118遮蔽部分P型金属氧化物半导体元件区72的表面以及部分N型金属氧化物半导体元件区74的表面,并通过第二掩模图案118为掩模以离子注入工艺于P型金属氧化物半导体元件区78的间隔壁92两侧的半导体基底70中形成二个源极/漏极掺杂区106,同时于N型金属氧化物半导体元件区74的半导体基底70中形成用来与P型掺杂阱78电连接的P型掺杂区108。如图11所示,最后去除第二掩模图案118,即制作出具有深口袋型掺杂区104的互补式金属氧化物半导体晶体管。As shown in FIG. 10, a
由上述可知,本实施例的深口袋型掺杂区104与口袋型掺杂区102以及轻掺杂漏极100通过同一第一掩模图案98分别进行离子注入工艺所制作出,因此不需另行增加额外掩模即可达到避免闭锁现象的作用。From the above, it can be known that the deep pocket doped
请参考图12,图12为本发明的第二优选实施例制作互补式金属氧化物半导体晶体管的方法流程图。如图12所示,本实施例制作互补式金属氧化物半导体晶体管的主要流程步骤包含有:Please refer to FIG. 12 . FIG. 12 is a flowchart of a method for fabricating a CMOS transistor according to a second preferred embodiment of the present invention. As shown in FIG. 12 , the main process steps of manufacturing a complementary metal-oxide-semiconductor transistor in this embodiment include:
步骤110:提供半导体基底;Step 110: providing a semiconductor substrate;
步骤111:形成掺杂阱;Step 111: forming a doped well;
步骤112:形成隔离结构;Step 112: forming an isolation structure;
步骤113:制作栅极结构;Step 113: making a gate structure;
步骤114:制作轻掺杂漏极与口袋型掺杂区;Step 114: making a lightly doped drain and a pocket doped region;
步骤115:制作间隔壁;以及Step 115: making partition walls; and
步骤116:制作源极/漏极与深口袋掺杂区。Step 116: Fabricate source/drain and deep pocket doped regions.
请继续参考图13至图19,图13至图19为本发明的第二实施例制作互补式金属氧化物半导体晶体管的方法示意图。于本实施例中,第一导电型为P型,而第二导电型为N型,但本发明的方法及应用并不限于此,于其它实施方式中,第一导电型亦可为N型,而第二导电型则为P型。如图13所示,首先提供P型的半导体基底120,由仰视方向观的半导体基底120包含有P型金属氧化物半导体元件区122,用以制作P型金属氧化物半导体晶体管,以及N型金属氧化物半导体元件区124,用以制作N型金属氧化物半导体晶体管。接着于P型金属氧化物半导体元件区122的半导体基底120中形成有N型掺杂阱126,并于N型金属氧化物半导体元件区124的半导体基底120中形成P型掺杂阱128。随后,于半导体基底120的表面形成多个隔离结构130,例如场氧化层或浅沟隔离结构。Please continue to refer to FIG. 13 to FIG. 19 . FIG. 13 to FIG. 19 are schematic diagrams of a method for fabricating a CMOS transistor according to a second embodiment of the present invention. In this embodiment, the first conductivity type is P-type, and the second conductivity type is N-type, but the method and application of the present invention are not limited thereto. In other embodiments, the first conductivity type can also be N-type , while the second conductivity type is P-type. As shown in FIG. 13 , firstly, a P-
如图14所示,接着于半导体基底120的表面依序形成介电层如氧化硅层,以及导电层如多晶硅层,并利用光刻与蚀刻技术分别于P型金属氧化物半导体元件区122的半导体基底120上形成栅极绝缘层132与栅极电极136,以及于N型金属氧化物半导体元件区124的半导体基底120上形成栅极绝缘层134与栅极电极138。As shown in FIG. 14 , a dielectric layer such as a silicon oxide layer and a conductive layer such as a polysilicon layer are sequentially formed on the surface of the
如图15所示,接着利用掩模图案139遮蔽N型金属氧化物半导体元件区124的表面以及部分P型金属氧化物半导体元件区122的表面,并通过离子注入工艺于N型金属氧化物半导体元件区124的栅极电极138两侧的半导体基底120中形成二个轻掺杂漏极140,再去除掩模图案139。As shown in FIG. 15, the surface of the N-type metal oxide
如图16所示,随后于半导体基底120的表面形成第一掩模图案148,例如光刻胶图案,第一掩模图案148覆盖N型金属氧化物半导体元件区124与部分P型金属氧化物半导体元件区122,而曝露出P型金属氧化物半导体元件区122的栅极结构以及栅极结构两侧的半导体基底120。随后,利用第一掩模图案148作为掩模,通过离子注入于P型金属氧化物半导体元件区122的栅极结构两侧的N型掺杂阱126中形成二个轻度P型(P-)的轻掺杂漏极150,以及二个轻度N型(N-)的口袋型掺杂区152。As shown in FIG. 16, a
如图17所示,随后去除第一掩模图案148,再于P型金属氧化物半导体元件区122的栅极电极136与N型金属氧化物半导体元件区124的栅极电极138的两侧壁形成间隔壁142。接着利用掩模图案143遮蔽部分P型金属氧化物半导体元件区122的表面以及部分N型金属氧化物半导体元件区124的表面,并通过离子注入工艺于N型金属氧化物半导体元件区124的间隔壁142两侧的半导体基底120中形成二个源极/漏极掺杂区144,并同时于P型金属氧化物半导体元件区122的半导体基底120中形成用来与N型掺杂阱126电连接的N型掺杂区146。随后去除掩模图案143。As shown in FIG. 17, the
如图18所示,随后于半导体基底120的表面再形成第二掩模图案160,第二掩模图案160遮蔽部分P型金属氧化物半导体元件区122的表面以及部分N型金属氧化物半导体元件区124的表面,并通过第二掩模图案160为掩模以离子注入工艺于P型金属氧化物半导体元件区128的间隔壁142两侧的半导体基底120中形成二个源极/漏极掺杂区156,并于N型金属氧化物半导体元件区124的半导体基底120中形成用来与P型掺杂阱128电连接的P型掺杂区158。同时再次通过第二掩模图案160作为掩模,并以离子注入工艺于P型金属氧化物半导体元件区122的栅极结构两侧的N型掺杂阱126中形成二个重度N型(N+)的深口袋型(deep halo)掺杂区154。As shown in FIG. 18, a
N型掺杂阱126中的深口袋型掺杂区154与源极/漏极掺杂区156利用相同的第二掩模图案160作为掩模,并分别利用不同的离子注入工艺形成于N型掺杂阱126中。值得说明的是用以形成源极/漏极掺杂区156与深口袋型掺杂区154的离子注入工艺的进行先后顺序并不受本实施例上述说明所限定而可适状况加以变更,而其中深口袋型掺杂区154利用高能高剂量离子注入工艺加以形成,使其位于源极/漏极掺杂区156的下方并对应源极/漏极掺杂区156。在本实施例中,高能高剂量离子注入工艺的离子注入能量约介于150至180kev之间,而离子注入浓度约介于1013至1014原子/cm3之间,但并不限于此。深口袋型掺杂区154的存在可增加位于P型金属氧化物半导体元件区122的直立式pnp双极性晶体管的基极宽度,并降低其β增益(beta gain),因此可避免闭锁现象的发生。The deep pocket doped
最后如图19所示,最后去除第二掩模图案160,即制作出具有深口袋型掺杂区154的互补式金属氧化物半导体晶体管。Finally, as shown in FIG. 19 , the
由上述可知,本实施例的深口袋型掺杂区154与源极/漏极掺杂区156通过同一第二掩模图案160分别进行离子注入工艺所制作出,因此不需另行增加额外掩模即可达到避免闭锁现象的作用。From the above, it can be seen that the deep pocket doped
综上所述,本发明的互补式金属氧化物半导体晶体管通过设置深口袋掺杂区来增加直立式pnp双极性晶体管的基极宽度,进而降低其β增益,因此可避免闭锁现象的发生,且深口袋掺杂区的制作整合于轻掺杂漏极工艺或源极/漏极掺杂区工艺中,因此不需增加额外掩模成本,即可有效提升闭锁防制能力。In summary, the complementary metal oxide semiconductor transistor of the present invention increases the base width of the vertical pnp bipolar transistor by setting the deep pocket doped region, thereby reducing its β gain, thus avoiding the occurrence of latch-up phenomenon, Moreover, the fabrication of the deep pocket doped region is integrated in the lightly doped drain process or the source/drain doped region process, so that the latch-up prevention capability can be effectively improved without adding additional mask costs.
以上所述仅为本发明的优选实施例,凡依权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims shall fall within the scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710005947A CN100594600C (en) | 2007-02-15 | 2007-02-15 | Complementary metal-oxide-semiconductor transistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710005947A CN100594600C (en) | 2007-02-15 | 2007-02-15 | Complementary metal-oxide-semiconductor transistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101246854A CN101246854A (en) | 2008-08-20 |
CN100594600C true CN100594600C (en) | 2010-03-17 |
Family
ID=39947199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710005947A Active CN100594600C (en) | 2007-02-15 | 2007-02-15 | Complementary metal-oxide-semiconductor transistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100594600C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544092A (en) * | 2010-12-16 | 2012-07-04 | 无锡华润上华半导体有限公司 | CMOS (complementary metal oxide semiconductor) device and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1171629A (en) * | 1996-06-29 | 1998-01-28 | 现代电子产业株式会社 | Semiconductor device and method for fabricating same |
JP2000340676A (en) * | 1999-05-31 | 2000-12-08 | Mitsumi Electric Co Ltd | Cmos device and manufacture of the same |
US20020142566A1 (en) * | 1999-09-22 | 2002-10-03 | Intel Corporation | Silicon wafers for CMOS and other integrated circuits |
CN1385895A (en) * | 2002-06-20 | 2002-12-18 | 上海华虹(集团)有限公司 | Deep submicrometer CMOS channel and source drain making technology integrating method |
US20040063264A1 (en) * | 2002-10-01 | 2004-04-01 | Chartered Semiconductor Manufacturing Ltd. | Method of forming a high performance and low cost CMOS device |
-
2007
- 2007-02-15 CN CN200710005947A patent/CN100594600C/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1171629A (en) * | 1996-06-29 | 1998-01-28 | 现代电子产业株式会社 | Semiconductor device and method for fabricating same |
JP2000340676A (en) * | 1999-05-31 | 2000-12-08 | Mitsumi Electric Co Ltd | Cmos device and manufacture of the same |
US20020142566A1 (en) * | 1999-09-22 | 2002-10-03 | Intel Corporation | Silicon wafers for CMOS and other integrated circuits |
CN1385895A (en) * | 2002-06-20 | 2002-12-18 | 上海华虹(集团)有限公司 | Deep submicrometer CMOS channel and source drain making technology integrating method |
US20040063264A1 (en) * | 2002-10-01 | 2004-04-01 | Chartered Semiconductor Manufacturing Ltd. | Method of forming a high performance and low cost CMOS device |
Also Published As
Publication number | Publication date |
---|---|
CN101246854A (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9647069B2 (en) | Drain extended field effect transistors and methods of formation thereof | |
JP3462301B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100275962B1 (en) | Semiconductor device and manufacturing method thereof | |
JP2006510206A (en) | Integrated circuit structure | |
US9698147B2 (en) | Semiconductor integrated circuit device having low and high withstanding-voltage MOS transistors | |
US8232158B2 (en) | Compensated isolated p-well DENMOS devices | |
US8318559B2 (en) | Method of fabricating CMOS transistor | |
JP2001284540A (en) | Semiconductor device and method of manufacturing the same | |
CN100594600C (en) | Complementary metal-oxide-semiconductor transistor and manufacturing method thereof | |
US10825896B2 (en) | Silicon carbide-based transistor and method for manufacturing the same | |
CN110707043B (en) | Field-reinforced total dose radiation resistant CMOS device with silicide and process | |
CN100499167C (en) | Semiconductor structure | |
CN110957218B (en) | Method for manufacturing semiconductor component and semiconductor component | |
KR19990069745A (en) | CMOS device and its manufacturing method | |
JPH0234936A (en) | Semiconductor device and its manufacturing method | |
CN112466950A (en) | SOI MOS structure with edge leakage resistance and forming method thereof | |
US8609483B2 (en) | Method of building compensated isolated P-well devices | |
JP5463698B2 (en) | Semiconductor element, semiconductor device, and method of manufacturing semiconductor element | |
CN112466951B (en) | MOS device and method for preventing parasitic transistor of MOS device from being started | |
CN112466949B (en) | BTS type MOSFET structure and preparation method thereof | |
US8962410B2 (en) | Transistors with different threshold voltages | |
JP2008235567A (en) | Semiconductor device manufacturing method and semiconductor device | |
JP2006120801A (en) | Semiconductor device and manufacturing method therefor | |
KR100501935B1 (en) | Semiconductor device manufacturing technology using second side wall process | |
JP2002299615A (en) | Semiconductor device and method for manufacturing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |