[go: up one dir, main page]

CN100593357C - Organic Electroluminescent Devices - Google Patents

Organic Electroluminescent Devices Download PDF

Info

Publication number
CN100593357C
CN100593357C CN200510136109A CN200510136109A CN100593357C CN 100593357 C CN100593357 C CN 100593357C CN 200510136109 A CN200510136109 A CN 200510136109A CN 200510136109 A CN200510136109 A CN 200510136109A CN 100593357 C CN100593357 C CN 100593357C
Authority
CN
China
Prior art keywords
hole injection
injection layer
layer
organic electroluminescent
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200510136109A
Other languages
Chinese (zh)
Other versions
CN1832647A (en
Inventor
游宗烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CN200510136109A priority Critical patent/CN100593357C/en
Publication of CN1832647A publication Critical patent/CN1832647A/en
Application granted granted Critical
Publication of CN100593357C publication Critical patent/CN100593357C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention provides an organic electroluminescent device, which comprises a substrate, an anode formed on the substrate, a first hole injection layer formed on the anode, a second hole injection layer formed on the first hole injection layer, an electroluminescent layer formed on the second hole injection layer and a cathode formed on the electroluminescent layer, wherein the first hole injection layer is made of fluorocarbon, and the second hole injection layer contains P-type dopant.

Description

有机电致发光器件 Organic Electroluminescent Devices

技术领域 technical field

本发明涉及一种有机电致发光器件,特别是一种同时使用碳氟化合物与掺杂有P-型掺杂物的空穴注入层的有机电致发光器件。The invention relates to an organic electroluminescent device, in particular to an organic electroluminescent device using fluorocarbon compound and a hole injection layer doped with P-type dopant.

背景技术 Background technique

近年来,随着电子产品发展技术的进步及其日益广泛的应用,例如移动电话、PDA及笔记本计算机的问市,使得与传统显示器相比具有较小体积及电力消耗特性的平面显示器的需求与日俱增,成为目前最重要的电子应用产品之一。在平面显示器之中,由于有机电致发光器件具有自发光、高亮度、广视角、高响应速度及制程容易等特性,使得有机电致发光器件将成为下一代平面显示器的最佳选择。In recent years, with the advancement of electronic product development technology and its increasingly wide application, such as the advent of mobile phones, PDAs and notebook computers, the demand for flat-panel displays with smaller volume and power consumption characteristics compared with traditional displays has increased day by day , has become one of the most important electronic application products at present. Among flat-panel displays, organic electroluminescent devices will become the best choice for next-generation flat-panel displays due to their characteristics such as self-luminescence, high brightness, wide viewing angle, high response speed, and easy manufacturing process.

有机电致发光器件是一种使用有机材料的自发光型装置。请参照图1,典型的有机电致发光器件10包括基板11和依序形成于基板11之上的阳极12、空穴注入层(hole injection layer)13、空穴传输层(hole transport layer)14、有机发光层(emissive layer)15、电子传输层(electron transport layer)16以及阴极17。An organic electroluminescent device is a self-luminous type device using organic materials. 1, a typical organic electroluminescent device 10 includes a substrate 11 and an anode 12, a hole injection layer (hole injection layer) 13, and a hole transport layer (hole transport layer) 14 formed sequentially on the substrate 11 , an organic light emitting layer (emissive layer) 15, an electron transport layer (electron transport layer) 16 and a cathode 17.

有机电致发光器件10的发光原理为:通过阴极17注入电子,阳极12注入空穴,并利用外加电场所产生的电位差而促使这些电子和空穴移动至有机发光层15中,进行再结合(recombination)以达到发光的目的。The light-emitting principle of the organic electroluminescent device 10 is: electrons are injected through the cathode 17, holes are injected into the anode 12, and the potential difference generated by an external electric field is used to promote these electrons and holes to move to the organic light-emitting layer 15 for recombination. (recombination) to achieve the purpose of luminescence.

当电子与空穴由电极(例如阳极12与阴极17)移动至有机发光层15中进行再结合时,上述载流子(carriers)必需克服各层之间交界面(interface)所存在的能障(energy barriers)。以阳极侧为例,载流子(空穴)必须克服阳极12与空穴注入层13之间、空穴注入层13与空穴传输层14之间、以及空穴传输层14与有机发光层15之间交界面处所存在的能障;当较大的能障存在于上述各层的交界面处时,载流子(空穴)较不易进入有机发光层15,而会在各层的交界面处产生累积,如此一来,将导致器件操作电压上升以及器件寿命下降。When electrons and holes move from the electrodes (such as the anode 12 and the cathode 17) to the organic light-emitting layer 15 for recombination, the above-mentioned carriers (carriers) must overcome the energy barrier existing at the interface (interface) between the layers. (energy barriers). Taking the anode side as an example, the carriers (holes) must overcome between the anode 12 and the hole injection layer 13, between the hole injection layer 13 and the hole transport layer 14, and between the hole transport layer 14 and the organic light-emitting layer. The energy barrier existing at the interface between 15; when a larger energy barrier exists at the interface of the above-mentioned layers, carriers (holes) are less likely to enter the organic light-emitting layer 15, and will be at the interface of each layer. Buildup occurs at the interface, which, in turn, leads to an increase in device operating voltage and a decrease in device lifetime.

为了避免器件操作电压的上升,传统的作法是减少阳极12与有机发光层15之间的有机膜厚度,但有机膜厚愈薄时,会导致器件效率降低,造成稳定度下降,以及容易形成短路等多种缺点。In order to avoid the rise of the operating voltage of the device, the traditional method is to reduce the thickness of the organic film between the anode 12 and the organic light-emitting layer 15, but the thinner the organic film, the lower the efficiency of the device, the lower the stability, and the easy formation of short circuits. And many other shortcomings.

在有机电致发光器件制造过程中,微粒的残留容易导致像素(pixel)短路而形成暗点,然而,即使在无尘室中,不论面板或其它设备清洗得多么干净,依然会有少许的微粒等其它污染物存在,造成像素短路,使其无法正常作用,并影响器件的发光效率、器件寿命与制程优良率。微粒的问题一直是困扰着有机电致发光显示器无法大量生产与大型化的主要原因之一。In the manufacturing process of organic electroluminescent devices, the residue of particles can easily lead to the short circuit of pixels and form dark spots. However, even in a clean room, no matter how clean the panel or other equipment is, there will still be a small amount of particles The existence of other pollutants, such as other pollutants, will cause a short circuit of the pixel, making it unable to function normally, and affecting the luminous efficiency of the device, the life of the device and the yield of the process. The particle problem has always been one of the main reasons why organic electroluminescent displays cannot be mass-produced and enlarged.

请继续参照图1,在一般有机电致发光器件10的结构中,空穴注入层13加上空穴传输层14的总厚度大约为80-170纳米左右,这样的厚度虽然可阻绝制程中存在于环境里的少部分细小微粒,但是却无法避免一般较大微粒所带来的问题。Please continue to refer to FIG. 1. In the structure of a general organic electroluminescent device 10, the total thickness of the hole injection layer 13 plus the hole transport layer 14 is about 80-170 nanometers. There are a small number of small particles in the environment, but the problems caused by generally larger particles cannot be avoided.

为了解决微粒所造成的上述问题,面板制造者必须花费庞大的人力、物力与财力来更新设备或清洗面板与机台,所费不赀,但效果有限。In order to solve the above-mentioned problems caused by particles, panel manufacturers must spend huge manpower, material resources and financial resources to update equipment or clean panels and machines. The cost is expensive, but the effect is limited.

美国专利US 6,849,345披露一种OLED结构,其通过研发新的空穴传输层材料,以促进OLED的发光效率。US Patent US 6,849,345 discloses an OLED structure, which promotes the luminous efficiency of OLEDs by developing new hole transport layer materials.

美国专利US 6,841,267披露一种OLED结构,其通过研发新的发光掺杂材料,以促进OLED的发光效率及器件寿命。US Patent US 6,841,267 discloses an OLED structure, which promotes the luminous efficiency and device life of OLEDs by developing new luminescent doping materials.

美国专利US 6,818,329披露一种OLED结构,其通过将金属层夹杂在空穴传输层之间,以提高OLED的发光效率。US Patent No. 6,818,329 discloses an OLED structure, which improves the luminous efficiency of the OLED by inserting a metal layer between the hole transport layers.

美国专利US 6,692,846披露一种OLED结构,其通过形成两层空穴传输层,其中一层掺杂有稳定掺杂剂(stabilizing dopant),另一层未掺杂稳定掺杂剂,由此提高OLED的器件寿命。U.S. Patent No. 6,692,846 discloses a kind of OLED structure, and it forms two-layer hole-transporting layer, wherein one layer is doped with stabilizing dopant (stabilizing dopant), another layer is not doped with stabilizing dopant, thereby improves OLED device lifetime.

美国专利US 6,208,077披露一种OLED结构,其通过在空穴传输层与阳极之间形成一层由碳氟化合物(fluorocarbon)所构成的高分子层,以增加装置的操作稳定性。US Patent No. 6,208,077 discloses an OLED structure, which increases the operational stability of the device by forming a polymer layer made of fluorocarbon between the hole transport layer and the anode.

然而,上述专利中所披露的技术内容皆无法有效解决前述缺点,因此,如何改善前述缺点是产业界亟需克服的问题。However, none of the technical contents disclosed in the above-mentioned patents can effectively solve the above-mentioned shortcomings. Therefore, how to improve the above-mentioned shortcomings is a problem that the industry needs to overcome.

发明内容 Contents of the invention

有鉴于此,本发明提供一种有机电致发光器件,在本发明实施例中的有机电致发光器件包括基板、形成于基板上的阳极、形成于阳极上的第一空穴注入层、形成于第一空穴注入层上的第二空穴注入层、形成于第二空穴注入层上的电致发光层以及形成于电致发光层上的阴极,其中,第一空穴注入层是由碳氟化合物所构成,而第二空穴注入层含有P-型掺杂物。In view of this, the present invention provides an organic electroluminescent device. The organic electroluminescent device in the embodiment of the present invention comprises a substrate, an anode formed on the substrate, a first hole injection layer formed on the anode, a A second hole injection layer on the first hole injection layer, an electroluminescent layer formed on the second hole injection layer, and a cathode formed on the electroluminescent layer, wherein the first hole injection layer is It is made of fluorocarbon, and the second hole injection layer contains P-type dopant.

为让本发明的上述目的、特征和优点能更明显易懂,下文特列举优选实施例,并结合附图,作详细说明如下:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the preferred embodiments are specifically listed below, and in conjunction with the accompanying drawings, the detailed description is as follows:

附图说明 Description of drawings

图1绘示出传统的有机电致发光器件。FIG. 1 illustrates a conventional organic electroluminescent device.

图2a是根据本发明的一实施例所绘示的有机电致发光器件。Fig. 2a is an organic electroluminescence device according to an embodiment of the present invention.

图2b是根据本发明的另一实施例所绘示的有机电致发光器件。Fig. 2b is an organic electroluminescent device according to another embodiment of the present invention.

图3a绘示出辉度与操作电压的关系图。FIG. 3a shows the relationship between luminance and operating voltage.

图3b绘示出发光效率与辉度的关系图。Fig. 3b is a graph showing the relationship between luminous efficiency and luminance.

附图标记说明Explanation of reference signs

10、20a、20b~有机电致发光器件;10, 20a, 20b ~ organic electroluminescent devices;

11、21~基板;11, 21 ~ substrate;

12、22~阳极;12, 22 ~ anode;

13~空穴注入层;13~hole injection layer;

14、25~空穴传输层;14, 25~hole transport layer;

15、26~有机发光层;15, 26~organic light-emitting layer;

16、27~电子传输层;16, 27 ~ electron transport layer;

17、28~阴极;17, 28 ~ cathode;

23~第一空穴注入层;23~the first hole injection layer;

24~第二空穴注入层;24~second hole injection layer;

29~第三空穴注入层;29~the third hole injection layer;

A、B、C、D~曲线。A, B, C, D ~ curve.

具体实施方式 Detailed ways

依照产品需求的不同,可能需要形成具有不同空穴注入层厚度的有机电致发光器件。因此,本发明一实施例中的目的,在于通过同时使用碳氟化合物与掺杂有P-型掺杂物的空穴注入层,使空穴注入效果提高,让器件即使增加有机发光层与阳极之间的有机膜厚,亦可有效地避免器件的操作电压上升,进而提高器件寿命。According to different product requirements, it may be necessary to form organic electroluminescent devices with different hole injection layer thicknesses. Therefore, the purpose of an embodiment of the present invention is to improve the effect of hole injection by using fluorocarbons and a hole injection layer doped with P-type dopants at the same time, so that even if the device adds an organic light-emitting layer and an anode The thickness of the organic film between them can also effectively prevent the operating voltage of the device from rising, thereby improving the life of the device.

本发明另一实施例中的目的,在于通过增加有机发光层与阳极之间的有机膜厚,以降低制程环境中的微粒对有机电致发光器件所造成的影响,进而提高大量生产与大型化的可能性与可靠度(reliability),同时有效地避免器件的操作电压上升。The purpose of another embodiment of the present invention is to reduce the impact of particles in the process environment on the organic electroluminescent device by increasing the thickness of the organic film between the organic light-emitting layer and the anode, thereby improving mass production and large-scale possibility and reliability (reliability), while effectively avoiding an increase in the operating voltage of the device.

请参照图2a,图2a是根据本发明的一实施例所绘示的有机电致发光器件20a,此有机电致发光器件20a包括基板21和依序形成在基板21上的阳极22、第一空穴注入层23、第二空穴注入层24、空穴传输层25、有机发光层26、电子传输层27与阴极28,通过施加电位差于阴极28与阳极22之间,使电子及空穴分别从阴极28与阳极22注入有机发光层26中重新结合,以达到发光的目的。Please refer to FIG. 2a. FIG. 2a is an organic electroluminescence device 20a illustrated according to an embodiment of the present invention. The hole injection layer 23, the second hole injection layer 24, the hole transport layer 25, the organic light-emitting layer 26, the electron transport layer 27 and the cathode 28, by applying a potential difference between the cathode 28 and the anode 22, electrons and holes The holes are respectively injected into the organic light-emitting layer 26 from the cathode 28 and the anode 22 to recombine to achieve the purpose of emitting light.

在本发明的一实施例中,有机电致发光器件20a可由下列步骤制造而成。In an embodiment of the present invention, the organic electroluminescent device 20a can be manufactured by the following steps.

首先,将具有阳极22的基板21进行紫外光臭氧(ultraviolet ozone)处理,用以分解基板21与阳极22表面的有机物,达到清洁效果。First, the substrate 21 with the anode 22 is subjected to ultraviolet ozone (ultraviolet ozone) treatment to decompose organic matter on the surface of the substrate 21 and the anode 22 to achieve a cleaning effect.

然后,在三氟甲烷(CHF3)以及氧气存在的环境下,利用化学气相沉积法(chemical vapor deposition)在阳极22上沉积一层由碳氟化合物(fluorocarbon)所构成的第一空穴注入层23,其厚度约介于1-10纳米之间。Then, in the presence of trifluoromethane (CHF 3 ) and oxygen, a first hole injection layer made of fluorocarbon is deposited on the anode 22 by chemical vapor deposition. 23, the thickness of which is approximately between 1-10 nanometers.

然后,利用蒸镀的方式在第一空穴注入层23上形成厚度约介于数十至数百纳米之间的第二空穴注入层24,该第二空穴注入层24掺杂有P-型掺杂物(P-type dopant),掺杂浓度约介于1-25vol%(体积百分比)之间,且该第二空穴注入层24的迁移率大体上介于10-3~10-6cm2V-1s-1之间。Then, a second hole injection layer 24 with a thickness of tens to hundreds of nanometers is formed on the first hole injection layer 23 by evaporation, and the second hole injection layer 24 is doped with P -type dopant (P-type dopant), the doping concentration is between 1-25vol% (volume percentage), and the mobility of the second hole injection layer 24 is generally between 10 −3 to 10 -6 cm 2 V -1 s -1 .

在一实施例中,第一空穴注入层23与第二空穴注入层24的总厚度约介于150-1000纳米之间;在另一实施例中,第一空穴注入层23与第二空穴注入层24的总厚度约介于300-1000纳米之间。In one embodiment, the total thickness of the first hole injection layer 23 and the second hole injection layer 24 is approximately between 150-1000 nanometers; in another embodiment, the first hole injection layer 23 and the second hole injection layer The total thickness of the two hole injection layers 24 is about 300-1000 nm.

然后,利用蒸镀的方式在上述第二空穴注入层24上形成厚约10-100纳米的空穴传输层25。Then, a hole transport layer 25 with a thickness of about 10-100 nm is formed on the second hole injection layer 24 by evaporation.

其次,利用蒸镀的方式在上述空穴传输层25上形成厚约10-100纳米的有机发光层26。Secondly, an organic light-emitting layer 26 with a thickness of about 10-100 nanometers is formed on the hole transport layer 25 by evaporation.

然后,利用蒸镀的方式在上述有机发光层26上形成厚约10-100纳米的电子传输层27。Then, an electron transport layer 27 with a thickness of about 10-100 nanometers is formed on the organic light-emitting layer 26 by evaporation.

接着,利用蒸镀的方式在上述电子传输层27上形成阴极28,其是由厚度约1纳米的氟化锂(LiF)及厚度约100纳米的铝(Al)组合而成,在此,氟化锂可作为电子注入层,然而,在另一实施例中,亦可在阴极28与电子传输层27之间选择性地形成由其它材料所构成的电子注入层(图中未绘示)。Next, the cathode 28 is formed on the above-mentioned electron transport layer 27 by vapor deposition, which is composed of lithium fluoride (LiF) with a thickness of about 1 nanometer and aluminum (Al) with a thickness of about 100 nanometers. Here, fluorine Lithium chloride can be used as the electron injection layer. However, in another embodiment, an electron injection layer (not shown) made of other materials can also be selectively formed between the cathode 28 and the electron transport layer 27 .

请参照图2b,图2b是根据本发明的另一实施例所绘示的有机电致发光器件20b,此有机电致发光器件20b包括基板21和依序形成在基板21上的阳极22、第一空穴注入层23、第二空穴注入层24、第三空穴注入层29、空穴传输层25、有机发光层26、电子传输层27与阴极28。通过施加电位差于阴极28与阳极22之间,使电子及空穴分别从阴极28与阳极22注入有机发光层26中重新结合而发光,达到发光的目的。Please refer to FIG. 2b. FIG. 2b is an organic electroluminescent device 20b according to another embodiment of the present invention. This organic electroluminescent device 20b includes a substrate 21 and an anode 22 formed on the substrate 21 in sequence, A hole injection layer 23 , a second hole injection layer 24 , a third hole injection layer 29 , a hole transport layer 25 , an organic light emitting layer 26 , an electron transport layer 27 and a cathode 28 . By applying a potential difference between the cathode 28 and the anode 22, electrons and holes are respectively injected from the cathode 28 and the anode 22 into the organic light-emitting layer 26 to recombine to emit light, thereby achieving the purpose of emitting light.

在本发明的一实施例中,有机电致发光器件20b可由类似于上述有机电致发光器件20a的步骤制造而成,不同之处在于,有机电致发光器件20b进一步包括第三空穴注入层29,由于有机电致发光器件20b其余各层的制造步骤皆与有机电致发光器件20a相同,在此不再赘述,以下仅针对第三空穴注入层29进行说明。In an embodiment of the present invention, the organic electroluminescent device 20b can be manufactured by steps similar to the above-mentioned organic electroluminescent device 20a, the difference is that the organic electroluminescent device 20b further includes a third hole injection layer 29. Since the manufacturing steps of the remaining layers of the organic electroluminescent device 20b are the same as those of the organic electroluminescent device 20a, details will not be repeated here, and only the third hole injection layer 29 will be described below.

在依序形成基板21、阳极22、第一空穴注入层23与第二空穴注入层24之后,接着,利用蒸镀的方式在第二空穴注入层24上形成厚度约介于数十至数百纳米之间的第三空穴注入层29,该第三空穴注入层29不含有P-型掺杂物。在一实施例中,第一、第二与第三空穴注入层23、24与29的总厚度约介于150-1000纳米之间;在另一实施例中,第一、第二与第三空穴注入层23、24与29的总厚度约介于300-1000纳米之间。After sequentially forming the substrate 21, the anode 22, the first hole injection layer 23 and the second hole injection layer 24, then, on the second hole injection layer 24, a layer with a thickness of about tens of The third hole injection layer 29 between hundreds of nanometers, the third hole injection layer 29 does not contain P-type dopant. In one embodiment, the total thickness of the first, second and third hole injection layers 23, 24 and 29 is approximately between 150-1000 nanometers; in another embodiment, the first, second and third The total thickness of the three hole injection layers 23 , 24 and 29 is about 300-1000 nm.

然后,利用蒸镀的方式在上述第三空穴注入层29上依序形成空穴传输层25、有机发光层26、电子传输层27与阴极28,而完成有机电致发光器件20b的制作。Then, a hole transport layer 25 , an organic light emitting layer 26 , an electron transport layer 27 and a cathode 28 are sequentially formed on the third hole injection layer 29 by evaporation to complete the fabrication of the organic electroluminescent device 20 b.

在上述有机电致发光器件20a与20b中,各层所使用的材料如下:In the above organic electroluminescent devices 20a and 20b, the materials used in each layer are as follows:

基板21可以是玻璃基板、陶瓷基板、塑料基板或是半导体基板。基板21可视需要选用材料,例如,若欲形成上发光式(top-emission)有机电致发光器件,则基板可为不透明基板;若欲形成两面发光式有机电致发光器件,则基板可为透明基板。The substrate 21 may be a glass substrate, a ceramic substrate, a plastic substrate or a semiconductor substrate. Substrate 21 can be selected from materials as required. For example, if it is desired to form a top-emission organic electroluminescent device, the substrate can be an opaque substrate; if it is desired to form a double-sided emission organic electroluminescent device, the substrate can be transparent substrate.

阳极22可以是透明电极或是金属电极,其材质的至少一种可选自锂、镁、钙、铝、银、铟、金、钨、镍、铂、氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌铝(AZO)、氧化锌(ZnO)、氮化镓、氮化镓铟、硫化镉、硫化锌、镉化硒及硒化锌,或上述材料的组合,而其形成方式可为热蒸镀(thermalevaporation)、溅镀(sputtering)或等离子体增强化学气相沉积(plasma-enhancedchemical vapor deposition)等。The anode 22 can be a transparent electrode or a metal electrode, and at least one of its materials can be selected from lithium, magnesium, calcium, aluminum, silver, indium, gold, tungsten, nickel, platinum, indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), zinc oxide (ZnO), gallium nitride, gallium indium nitride, cadmium sulfide, zinc sulfide, cadmium selenide, and zinc selenide, or combinations of the above materials, and the manner in which they are formed It can be thermal evaporation (thermal evaporation), sputtering (sputtering) or plasma-enhanced chemical vapor deposition (plasma-enhanced chemical vapor deposition).

第一空穴注入层23可由碳氟化合物所构成,其可表示为CFxH(4-x),一般简称为CFxThe first hole injection layer 23 can be made of fluorocarbon, which can be expressed as CF x H (4-x) , generally referred to as CF x .

第二空穴注入层24可选自CuPc(铜酞菁)、m-MTDATA(4,4′,4″-Tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine,4,4′,4″-三(N-3-甲基苯基-N-苯基-氨基)-三苯基胺)、TPTE(N,N-Bis(4-diphenylaminobiphenyl)-N,N-diphenylbenzidine,N,N-双(4-二苯基氨基联苯基)-N,N-对二氨基联苯)、NPB:F4-TCNQ(N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-bisphenyl)-4,4′-diamine:tetrafluoro-tetracyano-quinodimethane,N,N′-二苯基-N,N′-双(1-萘基)-(1,1′-联苯基)-4,4′-二胺:四氟-四氰基-醌二甲烷)、F4-TCNQ:WO3(四氟-四氰基-醌二甲烷:氧化钨)、上述材料的聚合物及上述材料的衍生物中的至少一种。The second hole injection layer 24 can be selected from CuPc (copper phthalocyanine), m-MTDATA (4,4′,4″-Tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine, 4,4′ , 4″-tri(N-3-methylphenyl-N-phenyl-amino)-triphenylamine), TPTE (N, N-Bis(4-diphenylaminobiphenyl)-N, N-diphenylbenzidine, N, N-bis(4-diphenylaminobiphenyl)-N,N-p-diaminobiphenyl), NPB: F 4 -TCNQ(N,N′-diphenyl-N,N′-bis(1-naphthyl )-(1,1'-bisphenyl)-4,4'-diamine: tetrafluoro-tetracyano-quinodimethane, N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1 '-biphenyl)-4,4'-diamine: tetrafluoro-tetracyano-quinodimethane), F 4 -TCNQ: WO 3 (tetrafluoro-tetracyano-quinodimethane: tungsten oxide), At least one of polymers of the above materials and derivatives of the above materials.

第二空穴注入层24中所含的P-型掺杂物选自F4-TCNQ、FeCl3、V2O5、WO3、MoO3、Nb2O5、Ir(OH)3、上述材料的聚合物及上述材料的衍生物中的至少一种。The P-type dopant contained in the second hole injection layer 24 is selected from F 4 -TCNQ, FeCl 3 , V 2 O 5 , WO 3 , MoO 3 , Nb 2 O 5 , Ir(OH) 3 , the above At least one of polymers of materials and derivatives of the above materials.

第三空穴注入层29可由形成上述第二空穴注入层24的材料所构成,但其可不含P-型掺杂物。The third hole injection layer 29 may be composed of the material forming the second hole injection layer 24 above, but it may not contain P-type dopant.

空穴传输层25可由烯丙基胺类或二胺(diamine)衍生物所构成,上述二胺衍生物包括NPB、T-PD(N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-bisphenyl)-4,4′-diamine;N,N′-二苯基-N,N′-双(3-甲基苯基)-(1,1′-联苯基)-4,4′-二胺)、1T-NATA(4,4′,4″-tris(N-(1-naphthyl)-N-phenyl-amino)-trisphenyl-amine;4,4′,4″-三(N-(1-萘基)-N-苯基-氨基)-三苯基胺)、或2T-NATA(4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)-trisphenyl-amine;4,4′,4″-三(N-(2-萘基)-N-苯基-氨基)-三苯基胺)。The hole-transporting layer 25 can be made of allylamines or diamine (diamine) derivatives, and the above-mentioned diamine derivatives include NPB, T-PD (N, N'-diphenyl-N, N'-bis(3- methylphenyl)-(1,1′-bisphenyl)-4,4′-diamine; N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-linked phenyl)-4,4′-diamine), 1T-NATA (4,4′,4″-tris(N-(1-naphthyl)-N-phenyl-amino)-trisphenyl-amine; 4,4′ , 4″-tris(N-(1-naphthyl)-N-phenyl-amino)-triphenylamine), or 2T-NATA (4,4′,4″-tris(N-(2-naphthyl )-N-phenyl-amino)-trisphenyl-amine; 4,4',4"-tris(N-(2-naphthyl)-N-phenyl-amino)-trisphenylamine).

有机发光层26可由Alq3:C545T、MADN:DSA-ph或其它有机发光材料The organic light-emitting layer 26 can be made of Alq3: C545T, MADN: DSA-ph or other organic light-emitting materials

所构成,在此,Alq3为Tris(8-hydroxyquinoline)aluminum(三(8-羟基喹啉)铝),C545T为1H,5H,11H-[1]苯并吡喃[6,7,8,-ij]喹嗪-11-酮,10-(2-苯并噻唑基)-2,3,6,7-四氢-1,1,7,7,-四甲基-(9CI)(1H,5H,11H-[1]Benzopyrano[6,7,8,-ij]quinolizin-11-one,10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-(9CI)),MADN为2-(甲基)-9,10-二(2-萘基)蒽(2-methyl-9,10-di(2-naphthyl)anthracene),DSA-ph为对-双(对-N,N-二苯基-氨基苯乙烯基)苯(p-bis(p-N,N-di-phenyl-aminostyryl)benzene)。Constituted, here, Alq3 is Tris (8-hydroxyquinoline) aluminum (three (8-hydroxyquinoline) aluminum), C545T is 1H, 5H, 11H-[1] benzopyran [6, 7, 8, - ij] quinozin-11-one, 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-(9CI) (1H, 5H, 11H-[1]Benzopyrano[6,7,8,-ij]quinolizin-11-one,10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7, -tetramethyl-(9CI)), MADN is 2-(methyl)-9,10-bis(2-naphthyl)anthracene (2-methyl-9,10-di(2-naphthyl)anthracene), DSA-ph It is p-bis (p-N, N-di-phenyl-aminostyryl) benzene (p-bis (p-N, N-di-phenyl-aminostyryl) benzene).

电子传输层27选自Alq3、铝络合物、金属喹啉酸盐化合物(metalquinolinate)、噁二唑(oxadiazole)、三唑化合物(triazoles)、二氮杂菲(phenanthroline)、上述材料的聚合物及上述材料的衍生物。Electron transport layer 27 is selected from Alq3, aluminum complex, metal quinolinate compound (metalquinolinate), oxadiazole (oxadiazole), triazole compound (triazoles), phenanthroline (phenanthroline), the polymer of above-mentioned material and derivatives of the above materials.

上述第一空穴注入层23、第二空穴注入层24、第三空穴注入层29、空穴传输层25、有机发光层26与电子传输层27可分别为低分子材料或高分子材料,可利用真空蒸镀方式或旋转涂布(spin coating)、喷墨(ink jet)或丝网印刷(screen printing)等方式形成。此外,有机发光层26可包含有机电致发光材料及掺杂物(dopant),熟悉本技术者可视所使用的有机电致发光材料及所需的器件特性而改变所搭配的掺杂物的掺杂量。The first hole injection layer 23, the second hole injection layer 24, the third hole injection layer 29, the hole transport layer 25, the organic light-emitting layer 26 and the electron transport layer 27 can be made of low-molecular materials or high-molecular materials respectively. , can be formed by vacuum evaporation, spin coating, ink jet or screen printing. In addition, the organic light-emitting layer 26 may include organic electroluminescent materials and dopants, and those skilled in the art may change the properties of the matched dopants depending on the organic electroluminescent materials used and the required device characteristics. Doping amount.

阴极28可由铝、铝:锂合金、镁:银合金或其它阴极材料所构成。Cathode 28 may be composed of aluminum, aluminum:lithium alloy, magnesium:silver alloy, or other cathode materials.

在上述有机电致发光器件20a与20b中,由于第二空穴注入层24掺杂有P-型掺杂物,因此可提高第二空穴注入层24的HOMO(highest occupiedmolecular orbit,最高占据分子轨道)能级,降低了第二空穴注入层24与空穴传输层25之间的能障,而第一空穴注入层23(由碳氟化合物所构成)的使用,则降低了阳极22与第二空穴注入层24之间的能障,使空穴容易经由阳极22,通过有机膜23、24与25而到达有机发光层26,因此可提高有机电致发光器件的空穴注入效果,避免器件的操作电压上升,进而提高器件寿命。In the above-mentioned organic electroluminescent devices 20a and 20b, since the second hole injection layer 24 is doped with a P-type dopant, the HOMO (highest occupied molecular orbit, highest occupied molecule) of the second hole injection layer 24 can be improved. Orbit) energy level, which reduces the energy barrier between the second hole injection layer 24 and the hole transport layer 25, and the use of the first hole injection layer 23 (made of fluorocarbons), reduces the anode 22 The energy barrier between the second hole injection layer 24 makes the holes easily pass through the anode 22, pass through the organic films 23, 24 and 25 and reach the organic light-emitting layer 26, so the hole injection effect of the organic electroluminescent device can be improved , to prevent the operating voltage of the device from rising, thereby improving the life of the device.

此外,由于同时使用掺杂有P-型掺杂物的空穴注入层24以及碳氟化合物23可避免器件的操作电压上升,因此,可增加有机膜23、24与25的厚度,以降低环境中的微粒对有机电致发光器件所造成的影响,而器件依然维持良好的性能。In addition, since the use of the hole injection layer 24 doped with P-type dopants and the fluorocarbon compound 23 can prevent the operating voltage of the device from rising, therefore, the thickness of the organic films 23, 24 and 25 can be increased to reduce the environmental The impact of the particles in the organic electroluminescent device, and the device still maintains good performance.

以下将以图2b为主要架构,列举三种具有不同空穴注入层厚度的有机电致发光器件作为实施例,详述其形成步骤,进行实验测试,并与比较例的实验结果进行比较。Taking FIG. 2b as the main framework, three organic electroluminescent devices with different hole injection layer thicknesses will be listed as examples below, the formation steps will be described in detail, experimental tests will be carried out, and the experimental results will be compared with the experimental results of the comparative example.

比较例comparative example

比较例的有机电致发光器件可由下列步骤制造而成。The organic electroluminescence device of the comparative example can be manufactured by the following steps.

首先,将具有75纳米厚的ITO阳极的基板进行紫外光臭氧(ultravioletozone)处理,用以分解基板与阳极表面的有机物,达到清洁目的。First, the substrate with a 75nm-thick ITO anode is subjected to ultraviolet ozone (ultravioletozone) treatment to decompose the organic matter on the surface of the substrate and the anode to achieve the purpose of cleaning.

然后,利用蒸镀的方式在阳极上形成厚约150纳米的苯胺(phenyl amine)衍生物作为空穴注入层,此空穴注入层掺杂有2vol%的F4-TCNQ作为P-型掺杂物。Then, form a phenyl amine derivative with a thickness of about 150 nanometers on the anode as a hole injection layer by means of evaporation, and this hole injection layer is doped with 2 vol% of F 4 -TCNQ as a P-type dopant things.

然后,利用蒸镀的方式在上述空穴注入层上形成厚约20纳米的NPB作为空穴传输层。Then, NPB with a thickness of about 20 nanometers was formed as a hole transport layer on the hole injection layer by evaporation.

然后,利用蒸镀的方式在上述空穴传输层上形成厚约30纳米的Alq3:C545T作为有机发光层。Then, Alq3:C545T with a thickness of about 30 nanometers was formed on the hole transport layer by evaporation as an organic light-emitting layer.

接着,利用蒸镀的方式在上述有机发光层上形成厚约30纳米的Alq3作为电子传输层。Next, Alq3 with a thickness of about 30 nanometers was formed on the organic light-emitting layer by evaporation as an electron transport layer.

接着,利用蒸镀的方式依序在上述电子传输层上形成厚约1纳米的氟化锂(LiF)及厚约100纳米的铝(Al)作为阴极,而完成比较例的有机电致发光器件的制作。Next, lithium fluoride (LiF) with a thickness of about 1 nanometer and aluminum (Al) with a thickness of about 100 nanometers were sequentially formed on the above-mentioned electron transport layer by evaporation as a cathode, and the organic electroluminescent device of the comparative example was completed. production.

实施例1Example 1

实施例1的有机电致发光器件可由下列步骤制造而成。The organic electroluminescence device of Example 1 can be manufactured by the following steps.

首先,将具有75纳米厚的ITO阳极的基板进行紫外光臭氧处理,用以分解基板与阳极表面的有机物,达到清洁目的。First, the substrate with a 75nm-thick ITO anode is treated with ultraviolet light and ozone to decompose the organic matter on the surface of the substrate and the anode to achieve the purpose of cleaning.

然后,在存在三氟甲烷(CHF3)以及氧气的环境下,利用化学气相沉积法在阳极上沉积一层由碳氟化合物所构成的薄膜,此薄膜即第一空穴注入层。Then, in the presence of trifluoromethane (CHF 3 ) and oxygen, a film made of fluorocarbon is deposited on the anode by chemical vapor deposition, and this film is the first hole injection layer.

然后,利用蒸镀的方式在第一空穴注入层上形成厚约60纳米的苯胺衍生物作为第二空穴注入层,此第二空穴注入层掺杂有2vol%的F4-TCNQ作为P-型掺杂物。Then, aniline derivatives with a thickness of about 60 nanometers are formed on the first hole injection layer by evaporation as a second hole injection layer, and the second hole injection layer is doped with 2 vol% of F 4 -TCNQ as P-type dopant.

接着,利用蒸镀的方式在第二空穴注入层上形成厚约90纳米的苯胺衍生物作为第三空穴注入层,此第三空穴注入层不含有P-型掺杂物。Next, an aniline derivative with a thickness of about 90 nanometers is formed on the second hole injection layer by evaporation as a third hole injection layer, and the third hole injection layer does not contain P-type dopant.

然后,利用蒸镀的方式在上述空穴注入层上形成厚约20纳米的NPB作为空穴传输层。Then, NPB with a thickness of about 20 nanometers was formed as a hole transport layer on the hole injection layer by evaporation.

然后,利用蒸镀的方式在上述空穴传输层上形成厚约30纳米的Alq3:C545T作为有机发光层。Then, Alq3:C545T with a thickness of about 30 nanometers was formed on the hole transport layer by evaporation as an organic light-emitting layer.

接着,利用蒸镀的方式在上述有机发光层上形成厚约30纳米的Alq3作为电子传输层。Next, Alq3 with a thickness of about 30 nanometers was formed on the organic light-emitting layer by evaporation as an electron transport layer.

接着,利用蒸镀的方式依序在上述电子传输层上形成厚约1纳米的氟化锂(LiF)及厚约100纳米的铝(Al)作为阴极,而完成实施例1的有机电致发光器件的制作。Next, lithium fluoride (LiF) with a thickness of about 1 nanometer and aluminum (Al) with a thickness of about 100 nanometers are sequentially formed on the above-mentioned electron transport layer by evaporation as the cathode, and the organic electroluminescence in Example 1 is completed. device fabrication.

实施例2Example 2

实施例2的有机电致发光器件可由下列步骤制造而成。在此须注意的是,由于实施例2与实施例1的区别仅在于第二空穴注入层的形成厚度不同,其余各层的材料与制程方法皆相同,在此不再赘述,仅针对第二空穴注入层进行描述。The organic electroluminescent device of Example 2 can be manufactured by the following steps. It should be noted here that, since the difference between Embodiment 2 and Embodiment 1 is only the formation thickness of the second hole injection layer is different, and the materials and manufacturing methods of the other layers are the same, so it will not be repeated here, only for the second hole injection layer. Two hole injection layers are described.

在形成ITO阳极与第一空穴注入层之后,接着,利用蒸镀的方式在碳氟化合物构成的第一空穴注入层上形成厚约150纳米的苯胺衍生物作为第二空穴注入层,此第二空穴注入层掺杂有2vol%的F4-TCNQ作为P-型掺杂物,之后,利用蒸镀的方式依序在第二空穴注入层上形成不含有P-型掺杂物的第三空穴注入层、空穴传输层、有机发光层、电子传输层以及阴极。After forming the ITO anode and the first hole injection layer, aniline derivatives with a thickness of about 150 nanometers are formed as the second hole injection layer on the first hole injection layer made of fluorocarbon by evaporation, The second hole injection layer is doped with 2vol% of F 4 -TCNQ as a P-type dopant, and then the second hole injection layer is sequentially formed on the second hole injection layer by evaporation and does not contain P-type dopant. The third hole injection layer, hole transport layer, organic light emitting layer, electron transport layer and cathode of the material.

实施例3Example 3

实施例3的有机电致发光器件可由下列步骤制造而成。在此须注意的是,由于实施例3与实施例1的区别仅在于第二空穴注入层的形成厚度不同,其余各层的材料与制程方法皆相同,在此不再赘述,仅针对第二空穴注入层进行描述。The organic electroluminescent device of Example 3 can be manufactured by the following steps. It should be noted here that, since the difference between Embodiment 3 and Embodiment 1 is only the formation thickness of the second hole injection layer is different, and the materials and manufacturing methods of the other layers are the same, so it will not be repeated here, only for the second hole injection layer. Two hole injection layers are described.

在形成ITO阳极与第一空穴注入层之后,接着,利用蒸镀的方式在碳氟化合物构成的第一空穴注入层上形成厚约200纳米的苯胺衍生物作为第二空穴注入层,此第二空穴注入层掺杂有2vol%的F4-TCNQ作为P-型掺杂物,之后,利用蒸镀的方式依序在第二空穴注入层上形成不含P-型掺杂物的第三空穴注入层、空穴传输层、有机发光层、电子传输层以及阴极。After forming the ITO anode and the first hole injection layer, aniline derivatives with a thickness of about 200 nanometers are formed as the second hole injection layer on the first hole injection layer made of fluorocarbon by evaporation, The second hole injection layer is doped with 2vol% of F 4 -TCNQ as a P-type dopant, and then the second hole injection layer is sequentially formed on the second hole injection layer by evaporation without P-type dopant. The third hole injection layer, hole transport layer, organic light emitting layer, electron transport layer and cathode of the material.

在此须注意的是,上述以图2b为主要架构的有机电致发光器件(实施例1、2与3)的制造步骤仅作为举例说明之用,并非用以限制本发明。以图2a为主要架构的有机电致发光器件,由于亦同时具有碳氟化合物以及含有P-型掺杂物的空穴注入层,因此其亦具有类似图2b的实施例的优异特性。It should be noted here that the above manufacturing steps of the organic electroluminescent device (Example 1, 2 and 3) with the main structure shown in FIG. 2b are for illustration purposes only, and are not intended to limit the present invention. The organic electroluminescent device with the main structure shown in FIG. 2a also has excellent characteristics similar to the embodiment shown in FIG. 2b because it also has a fluorocarbon compound and a hole injection layer containing a P-type dopant.

此外,在上述实施例3中,第一、第二与第三空穴注入层的总厚度约为300纳米,然本发明不限于此,在其它实施例中,亦可将更厚的空穴注入层形成在有机电致发光器件中。In addition, in the above-mentioned embodiment 3, the total thickness of the first, second and third hole injection layers is about 300 nanometers, but the present invention is not limited thereto, and in other embodiments, thicker holes can also be used. An injection layer is formed in an organic electroluminescence device.

此外,在上述实施例中,以实施例3为例,第一、第二与第三空穴注入层的总厚度约为300纳米,其中第二空穴注入层的厚度为200纳米,第三空穴注入层的厚度为90纳米,然而本发明不限于此,在其它总厚度约为300纳米的实施例中,亦可使用其它不同厚度的第二与第三空穴注入层,使总厚度达到300纳米。In addition, in the above embodiments, taking Embodiment 3 as an example, the total thickness of the first, second and third hole injection layers is about 300 nanometers, wherein the thickness of the second hole injection layer is 200 nanometers, and the thickness of the third hole injection layer is about 300 nanometers. The thickness of the hole injection layer is 90 nanometers, but the present invention is not limited thereto. In other embodiments with a total thickness of about 300 nanometers, other second and third hole injection layers with different thicknesses can also be used, so that the total thickness up to 300 nm.

上述实施例与比较例的实验结果如图3a与3b所示。图3a所绘示的是辉度与操作电压的关系图;图3b所绘示的是发光效率与辉度的关系图。其中,曲线A、B、C与D分别代表比较例、实施例1、实施例2与实施例3的实验结果。The experimental results of the above-mentioned embodiments and comparative examples are shown in FIGS. 3 a and 3 b. FIG. 3a shows the relationship between luminance and operating voltage; FIG. 3b shows the relationship between luminous efficiency and luminance. Wherein, curves A, B, C and D represent the experimental results of Comparative Example, Example 1, Example 2 and Example 3, respectively.

如图3a所示,在相同的操作电压之下,曲线A、B、C与D皆有几乎相同的辉度值,图3b亦显示曲线A、B、C与D具有非常类似的发光效率。As shown in Figure 3a, under the same operating voltage, curves A, B, C and D all have almost the same luminance value, and Figure 3b also shows that curves A, B, C and D have very similar luminous efficiencies.

以曲线A与D(比较例与实施例3)为例,在辉度达到3000cd/m2时,此时曲线A与D的操作电压皆为6伏特左右,而发光效率皆为5.8cd/A左右,显示本发明的有机电致发光器件,在增加空穴注入层的总厚度至300纳米后,依然可维持与比较例(150纳米)相同的操作性能,例如操作电压并不会因此升高,且发光效率并不会因此降低,而实施例3较比较例的有机电致发光器件更具有以下优点:Taking curves A and D (comparative example and embodiment 3) as an example, when the luminance reaches 3000cd/ m2 , the operating voltage of curves A and D are both about 6 volts, and the luminous efficiency is both 5.8cd/A Left and right, it shows that the organic electroluminescent device of the present invention can still maintain the same operating performance as the comparative example (150 nanometers) after increasing the total thickness of the hole injection layer to 300 nanometers, for example, the operating voltage will not increase accordingly , and the luminous efficiency will not be reduced, and the organic electroluminescent device of embodiment 3 has the following advantages more than the comparative example:

通过同时使用碳氟化合物与掺杂有P-型掺杂物的空穴注入层,使空穴注入效果提高,让器件即使依照产品需求的不同而必须增加有机发光层与阳极之间的有机膜厚,亦可有效地避免器件的操作电压上升,进而提高器件的寿命。By using the fluorocarbon compound and the hole injection layer doped with P-type dopants at the same time, the hole injection effect is improved, so that even if the device needs to increase the organic film between the organic light-emitting layer and the anode according to different product requirements Thickness can also effectively prevent the operating voltage of the device from rising, thereby improving the life of the device.

通过有机膜厚的增加,使存在于环境中的微粒即使在制造过程中沉降于有机膜上,较厚的有机膜亦可覆盖住微粒,避免其造成像素短路使该像素无法正常作用,进而提高大量生产与大型化的可能性与可靠度,同时有效地避免器件的操作电压上升。By increasing the thickness of the organic film, even if the particles in the environment settle on the organic film during the manufacturing process, the thicker organic film can also cover the particles, avoiding the short circuit of the pixel and making the pixel unable to function normally, thereby improving The possibility and reliability of mass production and large-scale, while effectively avoiding the rise of the operating voltage of the device.

虽然本发明已以多个优选实施例披露如上,然其并非用以限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,应当可作各种更动与润饰,因此本发明的保护范围应以所附权利要求书所限定的为准。Although the present invention has been disclosed above with a number of preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art should be able to make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (12)

1.一种有机电致发光器件,包括:1. An organic electroluminescence device, comprising: 基板;Substrate; 阳极,形成于基板上;an anode formed on the substrate; 第一空穴注入层,形成于阳极上,其中该第一空穴注入层由碳氟化合物所构成;a first hole injection layer formed on the anode, wherein the first hole injection layer is made of fluorocarbon; 第二空穴注入层,形成于第一空穴注入层上,其中该第二空穴注入层含有P-型掺杂物;a second hole injection layer formed on the first hole injection layer, wherein the second hole injection layer contains a P-type dopant; 第三空穴注入层,形成于第二空穴注入层上,且该第三空穴注入层不含P-型掺杂物;a third hole injection layer formed on the second hole injection layer, and the third hole injection layer does not contain P-type dopant; 电致发光层,形成于第三空穴注入层上;以及an electroluminescent layer formed on the third hole injection layer; and 阴极,形成于电子传输层上。The cathode is formed on the electron transport layer. 2.如权利要求1所述的有机电致发光器件,其中电致发光层包括空穴传输层、有机发光层与电子传输层,空穴传输层形成于第三空穴注入层上,有机发光层形成于空穴传输层上,电子传输层形成于有机发光层上。2. The organic electroluminescent device as claimed in claim 1, wherein the electroluminescent layer comprises a hole transport layer, an organic light emitting layer and an electron transport layer, the hole transport layer is formed on the third hole injection layer, and the organic light emitting layer The layer is formed on the hole transport layer, and the electron transport layer is formed on the organic light emitting layer. 3.如权利要求1所述的有机电致发光器件,进一步包括形成在电致发光层与阴极之间的电子注入层。3. The organic electroluminescence device of claim 1, further comprising an electron injection layer formed between the electroluminescence layer and the cathode. 4.如权利要求1所述的有机电致发光器件,其中第二空穴注入层的迁移率介于10-3~10-6cm2V-1s-1之间。4. The organic electroluminescence device according to claim 1, wherein the mobility of the second hole injection layer is between 10 −3 and 10 −6 cm 2 V −1 s −1 . 5.如权利要求1所述的有机电致发光器件,其中第一空穴注入层的厚度介于1-10纳米之间。5. The organic electroluminescence device as claimed in claim 1, wherein the thickness of the first hole injection layer is between 1-10 nanometers. 6.如权利要求1所述的有机电致发光器件,其中第二空穴注入层的材料选自铜酞菁、4,4′,4″-三(N-3-甲基苯基-N-苯基-氨基)-三苯基胺、N,N-双(4-二苯基氨基联苯基)-N,N-对二氨基联苯、N,N′-二苯基-N,N′-双(1-萘基)-(1,1′-联苯基)-4,4′-二胺:四氟-四氰基-醌二甲烷、四氟-四氰基-醌二甲烷:氧化钨、上述材料的聚合物及上述材料的衍生物。6. The organic electroluminescence device as claimed in claim 1, wherein the material of the second hole injection layer is selected from copper phthalocyanine, 4,4', 4 "-three (N-3-methylphenyl-N -Phenyl-amino)-triphenylamine, N,N-bis(4-diphenylaminobiphenyl)-N,N-p-diaminobiphenyl, N,N'-diphenyl-N, N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine: tetrafluoro-tetracyano-quinodimethane, tetrafluoro-tetracyano-quinone di Methane: tungsten oxide, polymers of the above materials and derivatives of the above materials. 7.如权利要求1所述的有机电致发光器件,其中P-型掺杂物选自四氟-四氰基-醌二甲烷、FeCl3、V2O5、WO3、MoO3、Nb2O5、Ir(OH)3、上述材料的聚合物及上述材料的衍生物。7. The organic electroluminescent device as claimed in claim 1, wherein the P-type dopant is selected from tetrafluoro-tetracyano-quinodimethane, FeCl 3 , V 2 O 5 , WO 3 , MoO 3 , Nb 2 O 5 , Ir(OH) 3 , polymers of the above materials, and derivatives of the above materials. 8.如权利要求1所述的有机电致发光器件,其中第一空穴注入层紧邻于第二空穴注入层。8. The organic electroluminescent device of claim 1, wherein the first hole injection layer is immediately adjacent to the second hole injection layer. 9.如权利要求1所述的有机电致发光器件,其中P-型掺杂物的浓度介于1-25vol%之间。9. The organic electroluminescent device as claimed in claim 1, wherein the concentration of the P-type dopant is between 1-25 vol%. 10.如权利要求1所述的有机电致发光器件,其中第一、第二与第三空穴注入层的总厚度介于150-1000纳米之间。10. The organic electroluminescent device as claimed in claim 1, wherein the total thickness of the first, second and third hole injection layers is between 150-1000 nm. 11.如权利要求1所述的有机电致发光器件,其中第一、第二与第三空穴注入层的总厚度介于300-1000纳米之间。11. The organic electroluminescent device as claimed in claim 1, wherein the total thickness of the first, second and third hole injection layers is between 300-1000 nm. 12.如权利要求1所述的有机电致发光器件,其中第三空穴注入层的材料选自铜酞菁、4,4′,4″-三(N-3-甲基苯基-N-苯基-氨基)-三苯基胺、N,N-双(4-二苯基氨基联苯基)-N,N-对二氨基联苯、N,N′-二苯基-N,N′-双(1-萘基)-(1,1′-联苯基)-4,4′-二胺:四氟-四氰基-醌二甲烷、四氟-四氰基-醌二甲烷:氧化钨、上述材料的聚合物及上述材料的衍生物。12. The organic electroluminescent device as claimed in claim 1, wherein the material of the third hole injection layer is selected from copper phthalocyanine, 4,4', 4"-three (N-3-methylphenyl-N -Phenyl-amino)-triphenylamine, N,N-bis(4-diphenylaminobiphenyl)-N,N-p-diaminobiphenyl, N,N'-diphenyl-N, N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine: tetrafluoro-tetracyano-quinodimethane, tetrafluoro-tetracyano-quinone di Methane: tungsten oxide, polymers of the above materials and derivatives of the above materials.
CN200510136109A 2005-12-21 2005-12-21 Organic Electroluminescent Devices Active CN100593357C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200510136109A CN100593357C (en) 2005-12-21 2005-12-21 Organic Electroluminescent Devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200510136109A CN100593357C (en) 2005-12-21 2005-12-21 Organic Electroluminescent Devices

Publications (2)

Publication Number Publication Date
CN1832647A CN1832647A (en) 2006-09-13
CN100593357C true CN100593357C (en) 2010-03-03

Family

ID=36994595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510136109A Active CN100593357C (en) 2005-12-21 2005-12-21 Organic Electroluminescent Devices

Country Status (1)

Country Link
CN (1) CN100593357C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233201B2 (en) 2017-06-30 2022-01-25 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent devices and preparation methods thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051258A1 (en) * 2008-10-27 2010-05-06 The Regents Of The University Of Michigan Inverted organic photosensitive devices
CN101834280B (en) * 2009-03-09 2012-05-30 元欣科技材料股份有限公司 Method for manufacturing organic light emitting element
CN102403462B (en) * 2010-09-13 2014-01-08 周卓辉 Organic light emitting diode and method of manufacturing the same
CN103311443A (en) * 2012-03-06 2013-09-18 海洋王照明科技股份有限公司 Electroluminescent device and preparation method thereof
GB201204670D0 (en) 2012-03-16 2012-05-02 Cambridge Display Tech Ltd Optoelectronic device
CN104037330A (en) * 2013-03-06 2014-09-10 海洋王照明科技股份有限公司 Organic light emitting diode and preparation method thereof
CN106549113B (en) 2017-01-16 2019-10-01 上海天马有机发光显示技术有限公司 A kind of organic light emitting display panel and device
KR102283121B1 (en) * 2018-08-10 2021-07-28 주식회사 엘지화학 Organic light emitting diode
JP7295824B2 (en) * 2020-03-31 2023-06-21 双葉電子工業株式会社 Organic EL device
CN111554824B (en) * 2020-06-17 2023-01-24 云谷(固安)科技有限公司 Organic light emitting device and display apparatus
US12167617B2 (en) 2020-09-28 2024-12-10 Beijing Boe Technology Development Co., Ltd. Organic light emitting device and display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031901A1 (en) * 2003-08-05 2005-02-10 Lg Electronics Inc. Organic electroluminescent device
CN1589073A (en) * 2004-06-28 2005-03-02 友达光电股份有限公司 Organic light emitting display element and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031901A1 (en) * 2003-08-05 2005-02-10 Lg Electronics Inc. Organic electroluminescent device
CN1589073A (en) * 2004-06-28 2005-03-02 友达光电股份有限公司 Organic light emitting display element and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233201B2 (en) 2017-06-30 2022-01-25 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent devices and preparation methods thereof

Also Published As

Publication number Publication date
CN1832647A (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US20070126348A1 (en) Organic electroluminescent device
CN101005116B (en) Organic electroluminescence display device and preparation method thereof
US9118033B2 (en) Organic light-emitting diode and display device employing the same
CN100590906C (en) Organic electroluminescent element, display, and electronic device
US8390549B2 (en) Organic luminescent display device
JP6060361B2 (en) Organic light emitting device
KR20090095022A (en) White organic light emitting device
CN100593357C (en) Organic Electroluminescent Devices
US20070236140A1 (en) System for displaying images including electroluminescent device and method for fabricating the same
CN102388477A (en) Organic electroluminescent element and manufacturing method thereof
CN105070845B (en) A kind of organic electroluminescence device and preparation method thereof, display device
KR100565639B1 (en) Organic EL element
US20080024059A1 (en) System for displaying images incluidng electroluminescent device and method for fabricating the same
JP2011249436A (en) Organic el element
CN102456844A (en) Organic light emitting diode and method of fabricating the same
CN102208430A (en) Organic light-emitting device and organic light-emitting diode display
CN100420066C (en) Organic electroluminescent element and display device comprising same
EP1843411A1 (en) System for displaying images including electroluminescent device and method for fabricating the same
US8384073B2 (en) System for displaying images
WO2017202082A1 (en) Organic light-emitting diode device and preparation method therefor, and array substrate and display apparatus
US20080116793A1 (en) Organic electroluminescent device
CN101452945A (en) Tandem type organic light emitting diode device, image display system and lighting device thereof
CN102148233B (en) Image display system
Kim et al. Fabrication of red, green, and blue organic light-emitting diodes using m-MTDATA as a common hole-injection layer
CN1645642A (en) Organic light emitting diode and display comprising the organic light emitting diode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant