CN100590516C - projection device - Google Patents
projection device Download PDFInfo
- Publication number
- CN100590516C CN100590516C CN200610137429A CN200610137429A CN100590516C CN 100590516 C CN100590516 C CN 100590516C CN 200610137429 A CN200610137429 A CN 200610137429A CN 200610137429 A CN200610137429 A CN 200610137429A CN 100590516 C CN100590516 C CN 100590516C
- Authority
- CN
- China
- Prior art keywords
- projection device
- conduit
- light valve
- working fluid
- reflective light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
技术领域 technical field
本发明关于一种投影装置(projection apparatus),且特别关于一种散热效果优选的投影装置。The present invention relates to a projection apparatus, and in particular to a projection apparatus with an optimal heat dissipation effect.
背景技术 Background technique
请参考图1,传统的数字光源处理投影装置(Digital light processingprojection apparatus)100包括一照明系统(illumination system)110、一数字微镜装置(Digital Micro-mirror Device,DMD)120以及一成像系统(imagingsystem)130。照明系统110具有一光源112,且光源112适于提供一照明光束114。数字微镜装置120配置在照明光束114的传递路径上并适于将照明光束114转变成影像光束122。此外,成像系统130配置在影像光束122的传递路径上,以将影像光束122投影在屏幕(未示出)上。Please refer to Fig. 1, a traditional digital light processing projection apparatus (Digital light processing projection apparatus) 100 includes an illumination system (illumination system) 110, a digital micromirror device (Digital Micro-mirror Device, DMD) 120 and an imaging system (imagingsystem) )130. The
随着光源112的所需瓦数升高,数字微镜装置120的操作温度也随之上升。由于数字微镜装置120在高温下操作会出现组件寿命缩短以及使数字光源处理投影装置100的整体显示质量下降等问题,因此,如何降低数字微镜装置120的操作温度已成为积极研发的重点之一。As the required wattage of the
在传统的的数字光源处理投影装置100中,多采用高转速风扇搭配散热片的散热设计来使累积在数字微镜装置120的热量消散(dissipate),以避免数字微镜装置120出现过热的现象。高转速风扇搭配散热片的散热设计所造成的热阻(thermal resistance)约为2℃/W至5℃/W之间,若要达到更低的热阻,则必须使用大量的鳍片设计,而造成整体散热模块过于笨重。当所需散走的热量逐渐增加(即热密度提高)时,单纯以高转速风扇搭配散热鳍片便无法达到所需的散热效果,此时,便需利用高转速风扇搭配热管(heat pipe)来对数字微镜装置120进行散热。以下将搭配图2对热管进行详细的说明。In the traditional digital light source
图2是传统的一种热管的示意图。请参考图2,传统的热管200具有一蒸发端210、一冷凝端220、一毛细结构230与工作流体240。热管200的一端为蒸发端210,另一端为冷凝端220,而毛细结构230配置在热管200的内管璧上,且工作流体240位于热管200内。其中,蒸发端210贴附在数字微镜装置120的背面,以传递数字微镜装置120所产生的热量Q,而冷凝端220则会连接至散热器250,且散热器250会借由高转速风扇所造成的强制对流来达到降温的目的。当数字微镜装置120所产生的热量Q传递至热管200的蒸发部210时,位于蒸发端210的工作流体240便会吸收此热量Q而蒸发成蒸气240’,此时,蒸气会朝向冷凝端220流动。当蒸气流动至冷凝端220时,蒸气会冷凝成液态,此时,蒸气冷凝所放出的热量便会由冷凝端220传递至散热器上。在冷凝端220所产生的液态工作流体240会借由毛细结构230传送回蒸发端210,以使得工作流体240能够重复地被汽化(蒸发部210)后再冷凝(冷凝端220)。Fig. 2 is a schematic diagram of a conventional heat pipe. Please refer to FIG. 2 , the
从图2可知,由于毛细结构230位于热管200的绝大部分的内管璧上,因此热管200在经过折弯或打扁之后,毛细结构230便会遭受破坏,使得冷凝端220的工作流体240无法有效地被传送回蒸发端210,进而影响到热管200的整体散热效能。除此之外,当热管200的冷凝端220位于蒸发端210下方时,蒸发端210所产生的水蒸气不易往下流动至冷凝端220,且在冷凝端220所产生的工作流体240不易沿着逆重力的方向在毛细结构230中传递,使得工作流体240无法有效地被传送回蒸发端210。由于每一根热管的散热量有限,所以在大瓦特数的散热模块中,通常需使用到多根热管。It can be seen from FIG. 2 that since the
除了前述的散热设计以外,传统的技术亦可以利用液冷方式来降低数字微镜装置120的温度。一般而言,液冷方式的散热设计,其热阻约为0.3℃/W至0.5℃/W之间。在此散热设计中,带动工作流体循环的泵会有寿命上的限制,且此散热设计需搭配一蓄液槽以维持工作流体的量,故成本较高。In addition to the above-mentioned heat dissipation design, conventional technology can also use liquid cooling to reduce the temperature of the
以输出功率为8000流明(lumen)的投影装置100为例,其照明系统110照射至数字微镜装置120(0.7英寸的芯片)上所产生的热量Q约为50瓦特(Watt),若要使数字微镜装置120上的微镜阵列的温度低于65℃,必须使数字微镜装置120的基板温度低于45℃。假设投影装置100的操作环境温度是介于25℃至35℃之间,对数字微镜装置120进行散热的散热模块的热阻必须低于0.2℃/W,方可使数字微镜装置120的基板温度低于45℃。若要达到如此低的热阻(低于0.2℃/W),必须同时使用很多根热管200。然而,若要将多根热管200同时配置在数字微镜装置120的背面,实有其困难度。Taking the
发明内容 Contents of the invention
本发明的目的是提供一种具有良好散热效能的投影装置。The object of the present invention is to provide a projection device with good heat dissipation performance.
为达上述或是其它目的,本发明提出一种投影装置,其包括一照明系统、一反射式光阀(reflective light valve)、一成像系统、一回路式热管(loop heatpipe)与一散热器(heat sink)。照明系统适于提供一照明光束,反射式光阀配置在照明光束的传递路径上,且反射式光阀适于将照明光束转换成一影像,而成像系统配置在影像的传递路径上。回路式热管包括蒸发部、毛细结构、至少一导管与工作流体。蒸发部具有液体回流端及气体排出端,蒸发部的外表面与反射式光阀接触。毛细结构位于蒸发部内且与液体回流端连通。导管连结蒸发部的液体回流端及气体排出端。工作流体位于导管与毛细结构中。To achieve the above or other objects, the present invention proposes a projection device, which includes an illumination system, a reflective light valve, an imaging system, a loop heat pipe (loop heatpipe) and a radiator ( heat sink). The illumination system is adapted to provide an illumination beam, the reflective light valve is arranged on the transmission path of the illumination beam, and the reflection light valve is adapted to convert the illumination beam into an image, and the imaging system is arranged on the transmission path of the image. The loop heat pipe includes an evaporation part, a capillary structure, at least one conduit and working fluid. The evaporation part has a liquid return end and a gas discharge end, and the outer surface of the evaporation part is in contact with the reflective light valve. The capillary structure is located in the evaporation part and communicates with the liquid return port. The conduit connects the liquid return end and the gas discharge end of the evaporation part. The working fluid resides in the conduits and capillaries.
由于本发明使用热阻较低的回路式热管对反射式光阀进行散热,因此可吸收累积在反射式光阀的热量,以降低反射式光阀的操作温度。除此之外,由于本发明的回路式热管中的导管可任意弯曲,所以本发明可以充分配合投影装置的空间设计,并搭配不同型态的散热器,以达到优选的散热效果。Since the present invention uses a loop heat pipe with low thermal resistance to dissipate heat from the reflective light valve, the heat accumulated in the reflective light valve can be absorbed to reduce the operating temperature of the reflective light valve. In addition, since the conduit in the loop heat pipe of the present invention can be bent arbitrarily, the present invention can fully match the space design of the projection device, and can be matched with different types of radiators to achieve optimal heat dissipation effects.
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail with accompanying drawings.
附图说明 Description of drawings
图1是传统的一种数字光源处理投影装置的示意图。FIG. 1 is a schematic diagram of a conventional digital light source processing projection device.
图2是传统的一种热管的示意图。Fig. 2 is a schematic diagram of a conventional heat pipe.
图3是依照本发明的一种投影装置的示意图。FIG. 3 is a schematic diagram of a projection device according to the present invention.
图4是图3中的回路式热管与反射式光阀放大的示意图。FIG. 4 is an enlarged schematic view of the loop heat pipe and the reflective light valve in FIG. 3 .
图5是图4中沿着I-I’的回路式热管的剖面示意图。Fig. 5 is a schematic cross-sectional view of the loop heat pipe along I-I' in Fig. 4 .
图6是依照本发明的另一种投影装置的示意图。FIG. 6 is a schematic diagram of another projection device according to the present invention.
图7至图9是本实施例的不同型态的导管的示意图。7 to 9 are schematic diagrams of different types of catheters in this embodiment.
图10与图11分别是不同型态的散热器与回路式热管搭配的立体图。10 and 11 are perspective views of collocation of different types of radiators and loop heat pipes.
图12是蒸发部与散热鳍片组立的剖面示意图。12 is a schematic cross-sectional view of the assembly of the evaporating portion and the cooling fins.
主要组件符号说明Explanation of main component symbols
100:数字光源处理投影装置100: Digital light source processing projection device
110:照明系统110: Lighting system
112:光源112: light source
114:照明光束114: Lighting Beam
120:数字微镜装置120: Digital Micromirror Device
122:影像光束122: image beam
130:成像系统130: Imaging system
200:热管200: heat pipe
210:蒸发端210: Evaporation end
220:冷凝端220: condensation end
230:毛细结构230: capillary structure
240:工作流体240: working fluid
240’:水蒸气240': water vapor
300、300’:数字光源处理投影装置300, 300': digital light source processing projection device
310:照明系统310: Lighting system
312:照明光束312: Lighting Beam
320:反射式光阀320: reflective light valve
322:影像322: Image
330:成像系统330: Imaging system
340:回路式热管340: loop heat pipe
342、342’:导管342, 342': Conduit
342a:液体回流端342a: Liquid return port
342b:气体排出端342b: gas discharge port
342c:冷凝部342c: Condenser
344:工作流体344: Working fluid
344’:蒸气344': steam
346、346’:毛细结构346, 346': capillary structure
348、348’:蒸发部348, 348': evaporation department
348a:外表面348a: Outer surface
350:散热器350: Radiator
350’:散热板350': cooling plate
350”:散热鳍片350": cooling fins
360:热电致冷芯片360: Thermoelectric Cooling Chip
362:冷端362: cold end
364:热端364: hot end
370、380:子导管370, 380: sub-ducts
390:散热风扇390: cooling fan
395:散热鳍片395: cooling fins
Q:热量Q: heat
S:内部空间S: inner space
具体实施方式 Detailed ways
图3是依照本发明的一种投影装置的示意图。请参考图3,本实施例的投影装置300包括一照明系统310、一反射式光阀320、一成像系统330、一回路式热管340与一散热器350。照明系统310适于提供一照明光束312,反射式光阀320配置在照明光束312的传递路径上,且反射式光阀320适于将照明光束312转变成影像322。成像系统330配置在影像322的传递路径上,以将影像322投射至屏幕(未示出)上。有关于回路式热管340的详细结构将详述于后。FIG. 3 is a schematic diagram of a projection device according to the present invention. Please refer to FIG. 3 , the projection device 300 of this embodiment includes an illumination system 310 , a reflective light valve 320 , an imaging system 330 , a
图4是图3中的回路式热管与反射式光阀放大的示意图,而图5是图4中沿着I-I’的回路式热管的剖面示意图。请同时参考图4与图5,本实施例的回路式热管340包括一蒸发部348、一毛细结构346、至少一导管342(图4仅示出出一个导管)与一工作流体344。其中,蒸发部348具有一液体回流端342a及一气体排出端342b,且蒸发部348的外表面348a适于与反射式光阀320接触。毛细结构346位于蒸发部348内且与液体回流端342a连通。导管342连结液体回流端342a及气体排出端342b,且具有一冷凝部342c,由图4可知,散热器350与导管342的冷凝部342c连接,以使回路式热管340的导管342降温。工作流体344位于导管342与毛细结构346中。FIG. 4 is an enlarged schematic view of the loop heat pipe and the reflective light valve in FIG. 3 , and FIG. 5 is a schematic cross-sectional view of the loop heat pipe along I-I' in FIG. 4 . Please refer to FIG. 4 and FIG. 5 at the same time. The
请继续参考图4,由于蒸发部348的外表面348a与反射式光阀320接触,所以累积在反射式光阀320的热量Q会通过所接触的外表面348a将热量Q经蒸发部348传递至毛细结构346,此时,渗透至毛细结构346中的工作流体344便会吸收热量Q,并且在蒸发部348的内部空间S中汽化为蒸气344’。在内部空间S中所生成的蒸气344’会使内部空间S以及导管342内的蒸气压上升,有助于工作流体344在导管342内的流动。在回路式热管340中,工作流体344流动的驱动力主要来自于蒸气344’所带来的蒸气压上升以及毛细结构346对于工作流体344的牵引(毛细现象),在此两大驱动力的作用下,本实施例的回路式热管340的散热效率将不会受到重力的影响,故可视需求而采用任何摆放方向。Please continue to refer to FIG. 4, since the
在导管342内流动的工作流体344会由液体回流端342a流进蒸发部348内。而工作流体344被汽化之后,蒸气344’便会从气体排出端342b再流至导管342内,当蒸气344’在导管342中流动一段距离后,蒸气344’会将热量Q传递至导管342的冷凝部342c以及散热器350上,并且会冷凝成工作流体344,因此,经过冷凝后的工作流体344可对反射式光阀320进行持续的散热动作。The working
反射式光阀320的尺寸可以是任意尺寸的数字微镜装置或单晶硅液晶光阀。一般而言,若反射式光阀320的尺寸很小(例如0.7英寸、0.55英寸或更小)时,其所搭配的散热模块的热阻必须非常低,方可有效地将小尺寸的反射式光阀320中的累积热量Q排出。在本实施例的回路式热管340中,从反射式光阀320到蒸发部348的热阻仅为0.1℃/W左右,而从反射式光阀320到外界环境的热阻仅为0.2℃/W左右。因此,本实施例的回路式热管340有足够能力来对反射式光阀320进行散热。此外,蒸发部348的尺寸与外型可配合反射式光阀320的尺寸与外型来设计,以使得蒸发部348能够完全与反射式光阀320的背面接触,而进一步降低从反射式光阀320到蒸发部348的热阻。The size of the reflective light valve 320 can be any size digital micromirror device or single crystal silicon liquid crystal light valve. Generally speaking, if the size of the reflective light valve 320 is small (for example, 0.7 inches, 0.55 inches or smaller), the thermal resistance of the cooling module must be very low, so that the small-sized reflective light valve 320 can be effectively used. The accumulated heat Q in the light valve 320 is discharged. In the
承上述,本工作流体344的汽化温度例如是介于20℃至60℃之间,而在本发明一优选实施例中,工作流体344例如是水或其它容易被汽化的液体。Based on the above, the vaporization temperature of the working
图6是依照本发明的另一种投影装置的示意图。请参考图6,投影装置300’还包括一配置在反射式光阀320与回路式热管340之间的热电致冷芯片360,热电致冷芯片360具有冷端362以及热端364。其中,热电致冷芯片360之冷端362与反射式光阀320的背面接触,而回路式热管340则贴附在热电致冷芯片360的热端364。FIG. 6 is a schematic diagram of another projection device according to the present invention. Referring to FIG. 6 , the projection device 300' further includes a thermoelectric cooling chip 360 disposed between the reflective light valve 320 and the
若欲搭配大散热面积的冷凝器设计,可将导管342的长度变更,使其均匀散布在散热器350上,则蒸气344’在冷凝部342c内与外界环境作热交换的机率便增加,所以蒸气344’流动在的导管342中就可完全转变成工作流体344。以下将会针对不同型态的导管342作说明。If it is desired to match the design of the condenser with a large heat dissipation area, the length of the
图7至图9是本实施例的不同型态的导管的示意图。请先参考图7,为了使导管342’与散热器350的接触面积增加,可将导管342’任意折弯,以使其具有多个转折处B。此时,导管342’内的蒸气344’所具有的热量Q便可有效率地经由导管342’传递至散热器350上,进而散逸至外界环境中。此外,本实施例亦可使用一散热风扇390对散热器350进行散热的动作,而在此情况下,回路式热管340将具有更加的散热效能。7 to 9 are schematic diagrams of different types of catheters in this embodiment. Please refer to FIG. 7 first, in order to increase the contact area between the conduit 342' and the
接着请参考图8,除了采用具有转折处B的导管342’(示出于图7)之外,本发明亦可将导管342设计成其它型态。举例而言,本发明的导管342可包括多个彼此相连通的子导管370(如图8所示出),在各个子导管370内流动的工作流体344会在进入液体回流端342a之前先汇流,之后才流进蒸发部348内的液体回流端342a。而在工作流体344被汽化之后,蒸气344’便会由蒸发部348的单一个气体排出端342b分流至不同的子导管370内,以使得各的子导管370内的蒸气344’能够同时将其所携带的热量Q传递给散热器350。Next, please refer to FIG. 8 . In addition to adopting a conduit 342' (shown in FIG. 7 ) with a turning point B, the present invention can also design the
请参考图9,本发明的导管342亦可包括多个彼此不相连通的子导管380(如图9所示出),在各个子导管380内流动的工作流体344会分别由液体回流端342a流进蒸发部348内。而工作流体344被汽化之后,蒸气344’便会从不同的气体排出端342b分别流至不同的子导管380内,以使得各子导管380内的蒸气344’能够同时将其所携带的热量Q传递给散热器350。Please refer to FIG. 9 , the
承上述,图4、图7、图8以及图9中所述的导管342、342’可以是完全由铜导管、铝导管或是高导热系数的材质所制成的导管,而为增加组装弹性,也可仅在导管与散热器350接触之处采用铜导管、铝导管或是高导热系数的导管,其它部分的导管可以采用软管(如塑料软管或其它可饶性材质所制成的软管)。Based on the above, the
图10与图11分别是不同型态的散热器与回路式热管搭配的立体图。上述的回路式热管340可搭配散热板350’(如图10所示),或者是散热鳍片350”(如图11所示)。不论是散热板350’还是散热鳍片350”均是借由大面积来将热量Q快速地传递之外界环境中。10 and 11 are perspective views of collocation of different types of radiators and loop heat pipes. The above-mentioned
图12是蒸发部与散热鳍片组立的剖面示意图,请参考图12,蒸发部348的外表面348a上亦可配置有散热鳍片395,以进一步降低蒸发部348的温度。换句话说,可直接通过其外表面348a上的散热鳍片395而将热量Q直接散逸至环境中。12 is a schematic cross-sectional view of the assembly of the evaporator and the cooling fins. Please refer to FIG. In other words, the heat Q can be directly dissipated to the environment through the
综上所述,本发明的投影装置至少具有下列优点:In summary, the projection device of the present invention has at least the following advantages:
1.本发明所使用的回路式热管具有相当低的热阻(低于0.2℃/W),可以有效地降低反射式光阀的操作温度。1. The loop heat pipe used in the present invention has relatively low thermal resistance (less than 0.2°C/W), which can effectively reduce the operating temperature of the reflective light valve.
2.在本发明所使用的回路式热管中,导管可任意弯曲而不致破坏到毛细结构,以充分配合投影装置的空间设计。2. In the loop heat pipe used in the present invention, the pipe can be bent arbitrarily without damaging the capillary structure, so as to fully match the spatial design of the projection device.
3.在本发明所使用的回路式热管中,其热阻并不会因为导管的长度增加而大幅度地增加。3. In the loop heat pipe used in the present invention, its thermal resistance will not be greatly increased due to the increase in the length of the conduit.
4.本发明所使用的回路式热管可以任意方式摆放,其散热效能不受到重力的影响。4. The loop heat pipe used in the present invention can be placed in any way, and its heat dissipation performance is not affected by gravity.
5.本发明所使用的回路式热管适用于高热密度的情况,具有良好的散热效能。5. The loop heat pipe used in the present invention is suitable for high heat density and has good heat dissipation performance.
虽然本发明已以优选实施例公开如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined in the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610137429A CN100590516C (en) | 2006-10-25 | 2006-10-25 | projection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610137429A CN100590516C (en) | 2006-10-25 | 2006-10-25 | projection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101169583A CN101169583A (en) | 2008-04-30 |
CN100590516C true CN100590516C (en) | 2010-02-17 |
Family
ID=39390250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610137429A Expired - Fee Related CN100590516C (en) | 2006-10-25 | 2006-10-25 | projection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100590516C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI427255B (en) * | 2009-01-16 | 2014-02-21 | Foxconn Tech Co Ltd | Evaporator and loop type heat pipe employing it |
CN103486474B (en) * | 2013-09-27 | 2016-05-18 | 中国科学院半导体研究所 | The indoor projection type illuminator that a kind of hot spot is adjustable |
CN111271997B (en) * | 2018-12-05 | 2023-02-17 | 多美达(深圳)电器有限公司 | Condensate liquid return pipe for heat pipe radiator |
CN112764301B (en) * | 2019-11-05 | 2024-08-02 | 青岛海信激光显示股份有限公司 | Light processing projector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1652017A (en) * | 2004-01-13 | 2005-08-10 | 精工爱普生株式会社 | Light source device and projection display device |
JP2005321525A (en) * | 2004-05-07 | 2005-11-17 | Seiko Epson Corp | projector |
-
2006
- 2006-10-25 CN CN200610137429A patent/CN100590516C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1652017A (en) * | 2004-01-13 | 2005-08-10 | 精工爱普生株式会社 | Light source device and projection display device |
JP2005321525A (en) * | 2004-05-07 | 2005-11-17 | Seiko Epson Corp | projector |
Also Published As
Publication number | Publication date |
---|---|
CN101169583A (en) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080030688A1 (en) | Projection apparatus | |
US7775262B2 (en) | Loop-type heat exchange device | |
US6894900B2 (en) | Heat sink with heat pipe and base fins | |
RU2239226C2 (en) | Heat-dissipating device for interface boards | |
JP3651790B2 (en) | High density chip mounting equipment | |
US8371700B2 (en) | Heat dissipation module and projection apparatus using the same | |
US20120063092A1 (en) | Heat-dissipating device and electric apparatus having the same | |
CN101242729A (en) | Capillary microgroove group and thermoelectric combination heat control method and system | |
US20030019610A1 (en) | Rapidly self - heat-conductive heat - dissipating module | |
US7525801B2 (en) | Computer module | |
JPWO2011122332A1 (en) | Phase change cooler and electronic device equipped with the same | |
TWM357650U (en) | Heat-dissipation module and electronic device using the same | |
JP2009532871A (en) | Cooling system | |
JP2001110967A (en) | Heat dissipating structure of electronic element | |
US20060021737A1 (en) | Liquid cooling device | |
WO2015146110A1 (en) | Phase-change cooler and phase-change cooling method | |
CN100590516C (en) | projection device | |
TWM493087U (en) | Closed circulation heat dissipation module | |
CN108106473B (en) | Vapor-liquid phase flow heat transfer module | |
US11953272B2 (en) | Cycling heat dissipation module | |
WO2013089162A1 (en) | Cooling structure for thin-profile electronics, and electronic device employing same | |
CN116744635A (en) | Radiating assembly and elevator control cabinet | |
CN114727559A (en) | Circulation cooling system based on Tesla valve | |
TWI876895B (en) | Liquid cooling system and electronic device | |
TWI857383B (en) | Heat dissipation module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100217 Termination date: 20121025 |