[go: up one dir, main page]

CN100590516C - projection device - Google Patents

projection device Download PDF

Info

Publication number
CN100590516C
CN100590516C CN200610137429A CN200610137429A CN100590516C CN 100590516 C CN100590516 C CN 100590516C CN 200610137429 A CN200610137429 A CN 200610137429A CN 200610137429 A CN200610137429 A CN 200610137429A CN 100590516 C CN100590516 C CN 100590516C
Authority
CN
China
Prior art keywords
projection device
conduit
light valve
working fluid
reflective light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610137429A
Other languages
Chinese (zh)
Other versions
CN101169583A (en
Inventor
李璟柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coretronic Corp
Original Assignee
Coretronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coretronic Corp filed Critical Coretronic Corp
Priority to CN200610137429A priority Critical patent/CN100590516C/en
Publication of CN101169583A publication Critical patent/CN101169583A/en
Application granted granted Critical
Publication of CN100590516C publication Critical patent/CN100590516C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A projection device comprises an illumination system, a reflective light valve, an imaging system, a loop type heat pipe and a radiator. The illumination system is adapted to provide an illumination beam, the reflective light valve is disposed in a transmission path of the illumination beam to convert the illumination beam into an image, and the imaging system is disposed in a transmission path of the image. The loop heat pipe includes an evaporation portion, a capillary structure, at least one conduit and a working fluid. The evaporation part is provided with a liquid backflow end and a gas discharge end, and the outer surface of the evaporation part is contacted with the reflection type light valve. The capillary structure is located in the evaporation part and communicated with the liquid return end. The conduit connects the liquid return end and the gas discharge end of the evaporation section. The working fluid is located in the conduit and the capillary structure.

Description

投影装置 projection device

技术领域 technical field

本发明关于一种投影装置(projection apparatus),且特别关于一种散热效果优选的投影装置。The present invention relates to a projection apparatus, and in particular to a projection apparatus with an optimal heat dissipation effect.

背景技术 Background technique

请参考图1,传统的数字光源处理投影装置(Digital light processingprojection apparatus)100包括一照明系统(illumination system)110、一数字微镜装置(Digital Micro-mirror Device,DMD)120以及一成像系统(imagingsystem)130。照明系统110具有一光源112,且光源112适于提供一照明光束114。数字微镜装置120配置在照明光束114的传递路径上并适于将照明光束114转变成影像光束122。此外,成像系统130配置在影像光束122的传递路径上,以将影像光束122投影在屏幕(未示出)上。Please refer to Fig. 1, a traditional digital light processing projection apparatus (Digital light processing projection apparatus) 100 includes an illumination system (illumination system) 110, a digital micromirror device (Digital Micro-mirror Device, DMD) 120 and an imaging system (imagingsystem) )130. The illumination system 110 has a light source 112 adapted to provide an illumination beam 114 . The DMD 120 is disposed on the transmission path of the illumination beam 114 and is suitable for converting the illumination beam 114 into an image beam 122 . In addition, the imaging system 130 is disposed on the transmission path of the image beam 122 to project the image beam 122 on a screen (not shown).

随着光源112的所需瓦数升高,数字微镜装置120的操作温度也随之上升。由于数字微镜装置120在高温下操作会出现组件寿命缩短以及使数字光源处理投影装置100的整体显示质量下降等问题,因此,如何降低数字微镜装置120的操作温度已成为积极研发的重点之一。As the required wattage of the light source 112 increases, the operating temperature of the DMD 120 also increases. Since the digital micromirror device 120 operates at high temperature, there will be problems such as shortened component life and a decrease in the overall display quality of the digital light source processing projection device 100. Therefore, how to reduce the operating temperature of the digital micromirror device 120 has become one of the key points of active research and development. one.

在传统的的数字光源处理投影装置100中,多采用高转速风扇搭配散热片的散热设计来使累积在数字微镜装置120的热量消散(dissipate),以避免数字微镜装置120出现过热的现象。高转速风扇搭配散热片的散热设计所造成的热阻(thermal resistance)约为2℃/W至5℃/W之间,若要达到更低的热阻,则必须使用大量的鳍片设计,而造成整体散热模块过于笨重。当所需散走的热量逐渐增加(即热密度提高)时,单纯以高转速风扇搭配散热鳍片便无法达到所需的散热效果,此时,便需利用高转速风扇搭配热管(heat pipe)来对数字微镜装置120进行散热。以下将搭配图2对热管进行详细的说明。In the traditional digital light source processing projection device 100, a high-speed fan is used in conjunction with a cooling fin design to dissipate the heat accumulated in the digital micromirror device 120, so as to avoid overheating of the digital micromirror device 120. . The thermal resistance caused by the heat dissipation design of high-speed fans and heat sinks is between 2°C/W and 5°C/W. To achieve lower thermal resistance, a large number of fins must be used. As a result, the overall cooling module is too bulky. When the heat to be dissipated gradually increases (that is, the heat density increases), simply using a high-speed fan with cooling fins cannot achieve the required cooling effect. At this time, it is necessary to use a high-speed fan with a heat pipe (heat pipe) To dissipate heat from the DMD 120 . The heat pipe will be described in detail below with reference to FIG. 2 .

图2是传统的一种热管的示意图。请参考图2,传统的热管200具有一蒸发端210、一冷凝端220、一毛细结构230与工作流体240。热管200的一端为蒸发端210,另一端为冷凝端220,而毛细结构230配置在热管200的内管璧上,且工作流体240位于热管200内。其中,蒸发端210贴附在数字微镜装置120的背面,以传递数字微镜装置120所产生的热量Q,而冷凝端220则会连接至散热器250,且散热器250会借由高转速风扇所造成的强制对流来达到降温的目的。当数字微镜装置120所产生的热量Q传递至热管200的蒸发部210时,位于蒸发端210的工作流体240便会吸收此热量Q而蒸发成蒸气240’,此时,蒸气会朝向冷凝端220流动。当蒸气流动至冷凝端220时,蒸气会冷凝成液态,此时,蒸气冷凝所放出的热量便会由冷凝端220传递至散热器上。在冷凝端220所产生的液态工作流体240会借由毛细结构230传送回蒸发端210,以使得工作流体240能够重复地被汽化(蒸发部210)后再冷凝(冷凝端220)。Fig. 2 is a schematic diagram of a conventional heat pipe. Please refer to FIG. 2 , the conventional heat pipe 200 has an evaporation end 210 , a condensation end 220 , a capillary structure 230 and a working fluid 240 . One end of the heat pipe 200 is an evaporation end 210 , and the other end is a condensation end 220 . The capillary structure 230 is disposed on the inner pipe wall of the heat pipe 200 , and the working fluid 240 is located in the heat pipe 200 . Wherein, the evaporating end 210 is attached to the back of the DMD 120 to transmit the heat Q generated by the DMD 120, and the condensing end 220 is connected to the radiator 250, and the radiator 250 will be driven by a high rotating speed. The forced convection caused by the fan achieves the purpose of cooling. When the heat Q generated by the digital micromirror device 120 is transferred to the evaporation part 210 of the heat pipe 200, the working fluid 240 at the evaporation end 210 will absorb the heat Q and evaporate into a vapor 240'. At this time, the vapor will move toward the condensation end. 220 flow. When the steam flows to the condensing end 220 , the steam will condense into a liquid state. At this time, the heat released by the condensation of the steam will be transferred from the condensing end 220 to the radiator. The liquid working fluid 240 generated at the condensing end 220 is sent back to the evaporating end 210 through the capillary structure 230 , so that the working fluid 240 can be repeatedly vaporized (the evaporating portion 210 ) and then condensed (the condensing end 220 ).

从图2可知,由于毛细结构230位于热管200的绝大部分的内管璧上,因此热管200在经过折弯或打扁之后,毛细结构230便会遭受破坏,使得冷凝端220的工作流体240无法有效地被传送回蒸发端210,进而影响到热管200的整体散热效能。除此之外,当热管200的冷凝端220位于蒸发端210下方时,蒸发端210所产生的水蒸气不易往下流动至冷凝端220,且在冷凝端220所产生的工作流体240不易沿着逆重力的方向在毛细结构230中传递,使得工作流体240无法有效地被传送回蒸发端210。由于每一根热管的散热量有限,所以在大瓦特数的散热模块中,通常需使用到多根热管。It can be seen from FIG. 2 that since the capillary structure 230 is located on most of the inner tube wall of the heat pipe 200, after the heat pipe 200 is bent or flattened, the capillary structure 230 will be destroyed, so that the working fluid 240 at the condensation end 220 The heat cannot be effectively sent back to the evaporating end 210 , thereby affecting the overall heat dissipation performance of the heat pipe 200 . In addition, when the condensing end 220 of the heat pipe 200 is located below the evaporating end 210, the water vapor generated at the evaporating end 210 is not easy to flow down to the condensing end 220, and the working fluid 240 generated at the condensing end 220 is not easy to flow along. The direction of anti-gravity is transmitted in the capillary structure 230 so that the working fluid 240 cannot be effectively transported back to the evaporation end 210 . Since the heat dissipation of each heat pipe is limited, multiple heat pipes are usually required in a heat dissipation module with a large wattage.

除了前述的散热设计以外,传统的技术亦可以利用液冷方式来降低数字微镜装置120的温度。一般而言,液冷方式的散热设计,其热阻约为0.3℃/W至0.5℃/W之间。在此散热设计中,带动工作流体循环的泵会有寿命上的限制,且此散热设计需搭配一蓄液槽以维持工作流体的量,故成本较高。In addition to the above-mentioned heat dissipation design, conventional technology can also use liquid cooling to reduce the temperature of the DMD 120 . Generally speaking, the heat dissipation design of the liquid cooling method has a thermal resistance of about 0.3°C/W to 0.5°C/W. In this heat dissipation design, the life of the pump driving the working fluid circulation is limited, and the heat dissipation design needs to be equipped with a liquid storage tank to maintain the amount of working fluid, so the cost is relatively high.

以输出功率为8000流明(lumen)的投影装置100为例,其照明系统110照射至数字微镜装置120(0.7英寸的芯片)上所产生的热量Q约为50瓦特(Watt),若要使数字微镜装置120上的微镜阵列的温度低于65℃,必须使数字微镜装置120的基板温度低于45℃。假设投影装置100的操作环境温度是介于25℃至35℃之间,对数字微镜装置120进行散热的散热模块的热阻必须低于0.2℃/W,方可使数字微镜装置120的基板温度低于45℃。若要达到如此低的热阻(低于0.2℃/W),必须同时使用很多根热管200。然而,若要将多根热管200同时配置在数字微镜装置120的背面,实有其困难度。Taking the projection device 100 with an output power of 8000 lumens (lumen) as an example, the heat Q generated by the lighting system 110 irradiating the digital micromirror device 120 (0.7-inch chip) is about 50 watts (Watt). The temperature of the micromirror array on the DMD 120 is lower than 65°C, and the temperature of the substrate of the DMD 120 must be lower than 45°C. Assuming that the operating environment temperature of the projection device 100 is between 25° C. and 35° C., the thermal resistance of the cooling module for dissipating heat from the DMD 120 must be lower than 0.2° C./W in order to make the DMD 120 The substrate temperature is below 45°C. To achieve such a low thermal resistance (less than 0.2° C./W), many heat pipes 200 must be used simultaneously. However, it is difficult to arrange multiple heat pipes 200 on the back of the DMD 120 at the same time.

发明内容 Contents of the invention

本发明的目的是提供一种具有良好散热效能的投影装置。The object of the present invention is to provide a projection device with good heat dissipation performance.

为达上述或是其它目的,本发明提出一种投影装置,其包括一照明系统、一反射式光阀(reflective light valve)、一成像系统、一回路式热管(loop heatpipe)与一散热器(heat sink)。照明系统适于提供一照明光束,反射式光阀配置在照明光束的传递路径上,且反射式光阀适于将照明光束转换成一影像,而成像系统配置在影像的传递路径上。回路式热管包括蒸发部、毛细结构、至少一导管与工作流体。蒸发部具有液体回流端及气体排出端,蒸发部的外表面与反射式光阀接触。毛细结构位于蒸发部内且与液体回流端连通。导管连结蒸发部的液体回流端及气体排出端。工作流体位于导管与毛细结构中。To achieve the above or other objects, the present invention proposes a projection device, which includes an illumination system, a reflective light valve, an imaging system, a loop heat pipe (loop heatpipe) and a radiator ( heat sink). The illumination system is adapted to provide an illumination beam, the reflective light valve is arranged on the transmission path of the illumination beam, and the reflection light valve is adapted to convert the illumination beam into an image, and the imaging system is arranged on the transmission path of the image. The loop heat pipe includes an evaporation part, a capillary structure, at least one conduit and working fluid. The evaporation part has a liquid return end and a gas discharge end, and the outer surface of the evaporation part is in contact with the reflective light valve. The capillary structure is located in the evaporation part and communicates with the liquid return port. The conduit connects the liquid return end and the gas discharge end of the evaporation part. The working fluid resides in the conduits and capillaries.

由于本发明使用热阻较低的回路式热管对反射式光阀进行散热,因此可吸收累积在反射式光阀的热量,以降低反射式光阀的操作温度。除此之外,由于本发明的回路式热管中的导管可任意弯曲,所以本发明可以充分配合投影装置的空间设计,并搭配不同型态的散热器,以达到优选的散热效果。Since the present invention uses a loop heat pipe with low thermal resistance to dissipate heat from the reflective light valve, the heat accumulated in the reflective light valve can be absorbed to reduce the operating temperature of the reflective light valve. In addition, since the conduit in the loop heat pipe of the present invention can be bent arbitrarily, the present invention can fully match the space design of the projection device, and can be matched with different types of radiators to achieve optimal heat dissipation effects.

为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail with accompanying drawings.

附图说明 Description of drawings

图1是传统的一种数字光源处理投影装置的示意图。FIG. 1 is a schematic diagram of a conventional digital light source processing projection device.

图2是传统的一种热管的示意图。Fig. 2 is a schematic diagram of a conventional heat pipe.

图3是依照本发明的一种投影装置的示意图。FIG. 3 is a schematic diagram of a projection device according to the present invention.

图4是图3中的回路式热管与反射式光阀放大的示意图。FIG. 4 is an enlarged schematic view of the loop heat pipe and the reflective light valve in FIG. 3 .

图5是图4中沿着I-I’的回路式热管的剖面示意图。Fig. 5 is a schematic cross-sectional view of the loop heat pipe along I-I' in Fig. 4 .

图6是依照本发明的另一种投影装置的示意图。FIG. 6 is a schematic diagram of another projection device according to the present invention.

图7至图9是本实施例的不同型态的导管的示意图。7 to 9 are schematic diagrams of different types of catheters in this embodiment.

图10与图11分别是不同型态的散热器与回路式热管搭配的立体图。10 and 11 are perspective views of collocation of different types of radiators and loop heat pipes.

图12是蒸发部与散热鳍片组立的剖面示意图。12 is a schematic cross-sectional view of the assembly of the evaporating portion and the cooling fins.

主要组件符号说明Explanation of main component symbols

100:数字光源处理投影装置100: Digital light source processing projection device

110:照明系统110: Lighting system

112:光源112: light source

114:照明光束114: Lighting Beam

120:数字微镜装置120: Digital Micromirror Device

122:影像光束122: image beam

130:成像系统130: Imaging system

200:热管200: heat pipe

210:蒸发端210: Evaporation end

220:冷凝端220: condensation end

230:毛细结构230: capillary structure

240:工作流体240: working fluid

240’:水蒸气240': water vapor

300、300’:数字光源处理投影装置300, 300': digital light source processing projection device

310:照明系统310: Lighting system

312:照明光束312: Lighting Beam

320:反射式光阀320: reflective light valve

322:影像322: Image

330:成像系统330: Imaging system

340:回路式热管340: loop heat pipe

342、342’:导管342, 342': Conduit

342a:液体回流端342a: Liquid return port

342b:气体排出端342b: gas discharge port

342c:冷凝部342c: Condenser

344:工作流体344: Working fluid

344’:蒸气344': steam

346、346’:毛细结构346, 346': capillary structure

348、348’:蒸发部348, 348': evaporation department

348a:外表面348a: Outer surface

350:散热器350: Radiator

350’:散热板350': cooling plate

350”:散热鳍片350": cooling fins

360:热电致冷芯片360: Thermoelectric Cooling Chip

362:冷端362: cold end

364:热端364: hot end

370、380:子导管370, 380: sub-ducts

390:散热风扇390: cooling fan

395:散热鳍片395: cooling fins

Q:热量Q: heat

S:内部空间S: inner space

具体实施方式 Detailed ways

图3是依照本发明的一种投影装置的示意图。请参考图3,本实施例的投影装置300包括一照明系统310、一反射式光阀320、一成像系统330、一回路式热管340与一散热器350。照明系统310适于提供一照明光束312,反射式光阀320配置在照明光束312的传递路径上,且反射式光阀320适于将照明光束312转变成影像322。成像系统330配置在影像322的传递路径上,以将影像322投射至屏幕(未示出)上。有关于回路式热管340的详细结构将详述于后。FIG. 3 is a schematic diagram of a projection device according to the present invention. Please refer to FIG. 3 , the projection device 300 of this embodiment includes an illumination system 310 , a reflective light valve 320 , an imaging system 330 , a loop heat pipe 340 and a radiator 350 . The illumination system 310 is adapted to provide an illumination beam 312 , the reflective light valve 320 is disposed on the transmission path of the illumination beam 312 , and the reflective light valve 320 is adapted to transform the illumination beam 312 into an image 322 . The imaging system 330 is disposed on the transmission path of the image 322 to project the image 322 onto a screen (not shown). The detailed structure of the loop heat pipe 340 will be described later.

图4是图3中的回路式热管与反射式光阀放大的示意图,而图5是图4中沿着I-I’的回路式热管的剖面示意图。请同时参考图4与图5,本实施例的回路式热管340包括一蒸发部348、一毛细结构346、至少一导管342(图4仅示出出一个导管)与一工作流体344。其中,蒸发部348具有一液体回流端342a及一气体排出端342b,且蒸发部348的外表面348a适于与反射式光阀320接触。毛细结构346位于蒸发部348内且与液体回流端342a连通。导管342连结液体回流端342a及气体排出端342b,且具有一冷凝部342c,由图4可知,散热器350与导管342的冷凝部342c连接,以使回路式热管340的导管342降温。工作流体344位于导管342与毛细结构346中。FIG. 4 is an enlarged schematic view of the loop heat pipe and the reflective light valve in FIG. 3 , and FIG. 5 is a schematic cross-sectional view of the loop heat pipe along I-I' in FIG. 4 . Please refer to FIG. 4 and FIG. 5 at the same time. The loop heat pipe 340 of this embodiment includes an evaporator 348 , a capillary structure 346 , at least one conduit 342 (only one conduit is shown in FIG. 4 ) and a working fluid 344 . Wherein, the evaporation portion 348 has a liquid return end 342 a and a gas discharge end 342 b, and the outer surface 348 a of the evaporation portion 348 is suitable for contacting the reflective light valve 320 . The capillary structure 346 is located in the evaporation part 348 and communicates with the liquid return port 342a. The conduit 342 connects the liquid return end 342a and the gas discharge end 342b, and has a condenser 342c. As can be seen from FIG. Working fluid 344 is located in conduit 342 and capillary structure 346 .

请继续参考图4,由于蒸发部348的外表面348a与反射式光阀320接触,所以累积在反射式光阀320的热量Q会通过所接触的外表面348a将热量Q经蒸发部348传递至毛细结构346,此时,渗透至毛细结构346中的工作流体344便会吸收热量Q,并且在蒸发部348的内部空间S中汽化为蒸气344’。在内部空间S中所生成的蒸气344’会使内部空间S以及导管342内的蒸气压上升,有助于工作流体344在导管342内的流动。在回路式热管340中,工作流体344流动的驱动力主要来自于蒸气344’所带来的蒸气压上升以及毛细结构346对于工作流体344的牵引(毛细现象),在此两大驱动力的作用下,本实施例的回路式热管340的散热效率将不会受到重力的影响,故可视需求而采用任何摆放方向。Please continue to refer to FIG. 4, since the outer surface 348a of the evaporator 348 is in contact with the reflective light valve 320, the heat Q accumulated in the reflective light valve 320 will be transferred to the evaporator 348 through the contacted outer surface 348a. The capillary structure 346 , at this time, the working fluid 344 penetrating into the capillary structure 346 absorbs the heat Q, and is vaporized into the vapor 344 ′ in the inner space S of the evaporation part 348 . The vapor 344' generated in the internal space S increases the vapor pressure in the internal space S and the conduit 342, and facilitates the flow of the working fluid 344 in the conduit 342. In the loop heat pipe 340, the driving force for the flow of the working fluid 344 mainly comes from the rise of the vapor pressure brought by the steam 344' and the traction of the working fluid 344 by the capillary structure 346 (capillary phenomenon). Under the circumstances, the heat dissipation efficiency of the loop heat pipe 340 in this embodiment will not be affected by gravity, so any orientation can be adopted according to the requirement.

在导管342内流动的工作流体344会由液体回流端342a流进蒸发部348内。而工作流体344被汽化之后,蒸气344’便会从气体排出端342b再流至导管342内,当蒸气344’在导管342中流动一段距离后,蒸气344’会将热量Q传递至导管342的冷凝部342c以及散热器350上,并且会冷凝成工作流体344,因此,经过冷凝后的工作流体344可对反射式光阀320进行持续的散热动作。The working fluid 344 flowing in the conduit 342 will flow into the evaporation part 348 from the liquid return end 342 a. After the working fluid 344 is vaporized, the steam 344' will flow from the gas discharge end 342b to the conduit 342, and when the steam 344' flows in the conduit 342 for a certain distance, the steam 344' will transfer heat Q to the conduit 342. The condensing part 342c and the heat sink 350 will condense into the working fluid 344 . Therefore, the condensed working fluid 344 can continuously dissipate heat from the reflective light valve 320 .

反射式光阀320的尺寸可以是任意尺寸的数字微镜装置或单晶硅液晶光阀。一般而言,若反射式光阀320的尺寸很小(例如0.7英寸、0.55英寸或更小)时,其所搭配的散热模块的热阻必须非常低,方可有效地将小尺寸的反射式光阀320中的累积热量Q排出。在本实施例的回路式热管340中,从反射式光阀320到蒸发部348的热阻仅为0.1℃/W左右,而从反射式光阀320到外界环境的热阻仅为0.2℃/W左右。因此,本实施例的回路式热管340有足够能力来对反射式光阀320进行散热。此外,蒸发部348的尺寸与外型可配合反射式光阀320的尺寸与外型来设计,以使得蒸发部348能够完全与反射式光阀320的背面接触,而进一步降低从反射式光阀320到蒸发部348的热阻。The size of the reflective light valve 320 can be any size digital micromirror device or single crystal silicon liquid crystal light valve. Generally speaking, if the size of the reflective light valve 320 is small (for example, 0.7 inches, 0.55 inches or smaller), the thermal resistance of the cooling module must be very low, so that the small-sized reflective light valve 320 can be effectively used. The accumulated heat Q in the light valve 320 is discharged. In the loop heat pipe 340 of this embodiment, the thermal resistance from the reflective light valve 320 to the evaporator 348 is only about 0.1°C/W, and the thermal resistance from the reflective light valve 320 to the external environment is only 0.2°C/W. W or so. Therefore, the loop heat pipe 340 of this embodiment has sufficient capacity to dissipate heat from the reflective light valve 320 . In addition, the size and shape of the evaporation part 348 can be designed in accordance with the size and shape of the reflective light valve 320, so that the evaporation part 348 can completely contact with the back of the reflective light valve 320, and further reduce the reflection from the reflective light valve. 320 to the thermal resistance of the evaporation section 348.

承上述,本工作流体344的汽化温度例如是介于20℃至60℃之间,而在本发明一优选实施例中,工作流体344例如是水或其它容易被汽化的液体。Based on the above, the vaporization temperature of the working fluid 344 is, for example, between 20° C. and 60° C., and in a preferred embodiment of the present invention, the working fluid 344 is, for example, water or other easily vaporized liquid.

图6是依照本发明的另一种投影装置的示意图。请参考图6,投影装置300’还包括一配置在反射式光阀320与回路式热管340之间的热电致冷芯片360,热电致冷芯片360具有冷端362以及热端364。其中,热电致冷芯片360之冷端362与反射式光阀320的背面接触,而回路式热管340则贴附在热电致冷芯片360的热端364。FIG. 6 is a schematic diagram of another projection device according to the present invention. Referring to FIG. 6 , the projection device 300' further includes a thermoelectric cooling chip 360 disposed between the reflective light valve 320 and the loop heat pipe 340. The thermoelectric cooling chip 360 has a cold end 362 and a hot end 364. Wherein, the cold end 362 of the thermoelectric cooling chip 360 is in contact with the back of the reflective light valve 320 , and the loop heat pipe 340 is attached to the hot end 364 of the thermoelectric cooling chip 360 .

若欲搭配大散热面积的冷凝器设计,可将导管342的长度变更,使其均匀散布在散热器350上,则蒸气344’在冷凝部342c内与外界环境作热交换的机率便增加,所以蒸气344’流动在的导管342中就可完全转变成工作流体344。以下将会针对不同型态的导管342作说明。If it is desired to match the design of the condenser with a large heat dissipation area, the length of the conduit 342 can be changed so that it can be evenly distributed on the radiator 350, and the probability of heat exchange between the steam 344' and the external environment in the condensation part 342c will increase, so The vapor 344 ′ flowing in the conduit 342 can be completely converted into the working fluid 344 . Different types of conduits 342 will be described below.

图7至图9是本实施例的不同型态的导管的示意图。请先参考图7,为了使导管342’与散热器350的接触面积增加,可将导管342’任意折弯,以使其具有多个转折处B。此时,导管342’内的蒸气344’所具有的热量Q便可有效率地经由导管342’传递至散热器350上,进而散逸至外界环境中。此外,本实施例亦可使用一散热风扇390对散热器350进行散热的动作,而在此情况下,回路式热管340将具有更加的散热效能。7 to 9 are schematic diagrams of different types of catheters in this embodiment. Please refer to FIG. 7 first, in order to increase the contact area between the conduit 342' and the radiator 350, the conduit 342' can be bent arbitrarily so that it has multiple turning points B. At this time, the heat Q of the vapor 344' in the conduit 342' can be efficiently transferred to the radiator 350 through the conduit 342', and then dissipated to the external environment. In addition, in this embodiment, a heat dissipation fan 390 can also be used to dissipate heat from the radiator 350 , and in this case, the loop heat pipe 340 will have better heat dissipation performance.

接着请参考图8,除了采用具有转折处B的导管342’(示出于图7)之外,本发明亦可将导管342设计成其它型态。举例而言,本发明的导管342可包括多个彼此相连通的子导管370(如图8所示出),在各个子导管370内流动的工作流体344会在进入液体回流端342a之前先汇流,之后才流进蒸发部348内的液体回流端342a。而在工作流体344被汽化之后,蒸气344’便会由蒸发部348的单一个气体排出端342b分流至不同的子导管370内,以使得各的子导管370内的蒸气344’能够同时将其所携带的热量Q传递给散热器350。Next, please refer to FIG. 8 . In addition to adopting a conduit 342' (shown in FIG. 7 ) with a turning point B, the present invention can also design the conduit 342 into other types. For example, the conduit 342 of the present invention may include a plurality of sub-conduits 370 (as shown in FIG. 8 ) communicating with each other, and the working fluid 344 flowing in each sub-conduit 370 will converge before entering the liquid return port 342a. , and then flow into the liquid return end 342a in the evaporation part 348 . After the working fluid 344 is vaporized, the steam 344' will be divided into different sub-pipes 370 by the single gas discharge end 342b of the evaporation part 348, so that the steam 344' in each sub-pipe 370 can simultaneously dissipate its The carried heat Q is transferred to the heat sink 350 .

请参考图9,本发明的导管342亦可包括多个彼此不相连通的子导管380(如图9所示出),在各个子导管380内流动的工作流体344会分别由液体回流端342a流进蒸发部348内。而工作流体344被汽化之后,蒸气344’便会从不同的气体排出端342b分别流至不同的子导管380内,以使得各子导管380内的蒸气344’能够同时将其所携带的热量Q传递给散热器350。Please refer to FIG. 9 , the conduit 342 of the present invention may also include a plurality of sub-conduits 380 (as shown in FIG. 9 ) that are not communicated with each other, and the working fluid 344 flowing in each sub-conduit 380 will flow from the liquid return port 342a respectively. Flow into the evaporator 348. After the working fluid 344 is vaporized, the steam 344' will flow from different gas discharge ends 342b into different sub-conduits 380, so that the steam 344' in each sub-conduit 380 can simultaneously transfer the heat Q Passed to the radiator 350.

承上述,图4、图7、图8以及图9中所述的导管342、342’可以是完全由铜导管、铝导管或是高导热系数的材质所制成的导管,而为增加组装弹性,也可仅在导管与散热器350接触之处采用铜导管、铝导管或是高导热系数的导管,其它部分的导管可以采用软管(如塑料软管或其它可饶性材质所制成的软管)。Based on the above, the conduits 342, 342' described in Fig. 4, Fig. 7, Fig. 8 and Fig. 9 may be conduits made entirely of copper conduits, aluminum conduits or materials with high thermal conductivity, and in order to increase the assembly flexibility , also can only adopt copper conduit, aluminum conduit or the conduit of high thermal conductivity at the place that conduit contacts with radiator 350, the conduit of other part can adopt flexible pipe (as plastic flexible pipe or other flexible material is made) hose).

图10与图11分别是不同型态的散热器与回路式热管搭配的立体图。上述的回路式热管340可搭配散热板350’(如图10所示),或者是散热鳍片350”(如图11所示)。不论是散热板350’还是散热鳍片350”均是借由大面积来将热量Q快速地传递之外界环境中。10 and 11 are perspective views of collocation of different types of radiators and loop heat pipes. The above-mentioned loop heat pipe 340 can be matched with a cooling plate 350' (as shown in FIG. 10 ), or a cooling fin 350 "(as shown in FIG. 11 ). Both the cooling plate 350' and the cooling fin 350 "are borrowed The heat Q is quickly transferred to the external environment through a large area.

图12是蒸发部与散热鳍片组立的剖面示意图,请参考图12,蒸发部348的外表面348a上亦可配置有散热鳍片395,以进一步降低蒸发部348的温度。换句话说,可直接通过其外表面348a上的散热鳍片395而将热量Q直接散逸至环境中。12 is a schematic cross-sectional view of the assembly of the evaporator and the cooling fins. Please refer to FIG. In other words, the heat Q can be directly dissipated to the environment through the heat dissipation fins 395 on the outer surface 348a.

综上所述,本发明的投影装置至少具有下列优点:In summary, the projection device of the present invention has at least the following advantages:

1.本发明所使用的回路式热管具有相当低的热阻(低于0.2℃/W),可以有效地降低反射式光阀的操作温度。1. The loop heat pipe used in the present invention has relatively low thermal resistance (less than 0.2°C/W), which can effectively reduce the operating temperature of the reflective light valve.

2.在本发明所使用的回路式热管中,导管可任意弯曲而不致破坏到毛细结构,以充分配合投影装置的空间设计。2. In the loop heat pipe used in the present invention, the pipe can be bent arbitrarily without damaging the capillary structure, so as to fully match the spatial design of the projection device.

3.在本发明所使用的回路式热管中,其热阻并不会因为导管的长度增加而大幅度地增加。3. In the loop heat pipe used in the present invention, its thermal resistance will not be greatly increased due to the increase in the length of the conduit.

4.本发明所使用的回路式热管可以任意方式摆放,其散热效能不受到重力的影响。4. The loop heat pipe used in the present invention can be placed in any way, and its heat dissipation performance is not affected by gravity.

5.本发明所使用的回路式热管适用于高热密度的情况,具有良好的散热效能。5. The loop heat pipe used in the present invention is suitable for high heat density and has good heat dissipation performance.

虽然本发明已以优选实施例公开如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined in the claims.

Claims (15)

1.一种投影装置,包括一照明系统、一反射式光阀、一成像系统、一回路式热管以及一散热器,其中:1. A projection device comprising an illumination system, a reflective light valve, an imaging system, a loop heat pipe and a radiator, wherein: 该照明系统适于提供一照明光束;the lighting system is adapted to provide an illumination beam; 该反射式光阀配置在该照明光束的传递路径上,适于将该照明光束转换成一影像;The reflective light valve is disposed on the transmission path of the illumination beam and is suitable for converting the illumination beam into an image; 该成像系统配置在该影像的传递路径上;The imaging system is configured on the transmission path of the image; 该回路式热管包括一蒸发部、一毛细结构、至少一导管以及一工作流体,其中:The loop heat pipe includes an evaporation part, a capillary structure, at least one conduit and a working fluid, wherein: 该蒸发部具有一液体回流端及一气体排出端,该蒸发部的外表面适于与该反射式光阀接触;The evaporation part has a liquid return end and a gas discharge end, and the outer surface of the evaporation part is adapted to be in contact with the reflective light valve; 该毛细结构位于该蒸发部内且与该液体回流端连通;The capillary structure is located in the evaporation part and communicated with the liquid return end; 该导管连结该液体回流端以及该气体排出端,且具有一冷凝部;The conduit connects the liquid return end and the gas discharge end, and has a condensation part; 该工作流体位于该导管以及该毛细结构中,the working fluid is located in the conduit and the capillary structure, 该散热器与该导管的该冷凝部连接。The radiator is connected with the condensation part of the conduit. 2.根据权利要求1所述的投影装置,其中该反射式光阀包括数字微镜装置或单晶硅液晶光阀。2. The projection device according to claim 1, wherein the reflective light valve comprises a digital micromirror device or a single crystal silicon liquid crystal light valve. 3.根据权利要求1所述的投影装置,其中该导管具有多个转折处。3. The projection device according to claim 1, wherein the conduit has a plurality of turning points. 4.根据权利要求1所述的投影装置,其中该导管包括多个彼此相连通的子导管。4. The projection device according to claim 1, wherein the duct comprises a plurality of sub-ducts communicating with each other. 5.根据权利要求1所述的投影装置,其中该导管包括多个彼此不相连通的子导管。5. The projection device according to claim 1, wherein the conduit comprises a plurality of sub-conduits not communicating with each other. 6.根据权利要求1所述的投影装置,其中该导管包括铜导管或铝导管。6. The projection apparatus according to claim 1, wherein the conduit comprises a copper conduit or an aluminum conduit. 7.根据权利要求1所述的投影装置,其中该导管包括多个硬管以及至少一连接于该些硬管之间的软管。7. The projection device according to claim 1, wherein the conduit comprises a plurality of hard tubes and at least one flexible tube connected between the hard tubes. 8.根据权利要求1所述的投影装置,其中该工作流体的汽化温度介于20℃至60℃之间。8. The projection device according to claim 1, wherein the vaporization temperature of the working fluid is between 20°C and 60°C. 9.根据权利要求1所述的投影装置,其中该工作流体包括水。9. The projection device according to claim 1, wherein the working fluid comprises water. 10.根据权利要求1所述的投影装置,其中该蒸发部的材质包括铜或铝。10. The projection device according to claim 1, wherein a material of the evaporation portion comprises copper or aluminum. 11.根据权利要求1所述的投影装置,其中该蒸发部具有一内部空间,而渗透在该毛细结构中的该工作流体在汽化之后会从该内部空间内流往该气体排出端。11. The projection device according to claim 1, wherein the evaporation part has an inner space, and the working fluid permeated in the capillary structure flows from the inner space to the gas discharge end after being vaporized. 12.根据权利要求1所述的投影装置,其中该蒸发部具有一散热鳍片,位于其外表面上。12. The projection device according to claim 1, wherein the evaporating portion has a cooling fin on its outer surface. 13.根据权利要求1所述的投影装置,其中该散热器包括散热鳍片或散热板。13. The projection device according to claim 1, wherein the heat sink comprises heat dissipation fins or heat dissipation plates. 14.根据权利要求1所述的投影装置,还包括一热电致冷芯片,配置在该反射式光阀与该回路式热管之间。14. The projection device according to claim 1, further comprising a thermoelectric cooling chip disposed between the reflective light valve and the loop heat pipe. 15.根据权利要求1所述的投影装置,还包括一散热风扇,配置在该散热器上。15. The projection device according to claim 1, further comprising a cooling fan disposed on the radiator.
CN200610137429A 2006-10-25 2006-10-25 projection device Expired - Fee Related CN100590516C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200610137429A CN100590516C (en) 2006-10-25 2006-10-25 projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610137429A CN100590516C (en) 2006-10-25 2006-10-25 projection device

Publications (2)

Publication Number Publication Date
CN101169583A CN101169583A (en) 2008-04-30
CN100590516C true CN100590516C (en) 2010-02-17

Family

ID=39390250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610137429A Expired - Fee Related CN100590516C (en) 2006-10-25 2006-10-25 projection device

Country Status (1)

Country Link
CN (1) CN100590516C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427255B (en) * 2009-01-16 2014-02-21 Foxconn Tech Co Ltd Evaporator and loop type heat pipe employing it
CN103486474B (en) * 2013-09-27 2016-05-18 中国科学院半导体研究所 The indoor projection type illuminator that a kind of hot spot is adjustable
CN111271997B (en) * 2018-12-05 2023-02-17 多美达(深圳)电器有限公司 Condensate liquid return pipe for heat pipe radiator
CN112764301B (en) * 2019-11-05 2024-08-02 青岛海信激光显示股份有限公司 Light processing projector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652017A (en) * 2004-01-13 2005-08-10 精工爱普生株式会社 Light source device and projection display device
JP2005321525A (en) * 2004-05-07 2005-11-17 Seiko Epson Corp projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652017A (en) * 2004-01-13 2005-08-10 精工爱普生株式会社 Light source device and projection display device
JP2005321525A (en) * 2004-05-07 2005-11-17 Seiko Epson Corp projector

Also Published As

Publication number Publication date
CN101169583A (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US20080030688A1 (en) Projection apparatus
US7775262B2 (en) Loop-type heat exchange device
US6894900B2 (en) Heat sink with heat pipe and base fins
RU2239226C2 (en) Heat-dissipating device for interface boards
JP3651790B2 (en) High density chip mounting equipment
US8371700B2 (en) Heat dissipation module and projection apparatus using the same
US20120063092A1 (en) Heat-dissipating device and electric apparatus having the same
CN101242729A (en) Capillary microgroove group and thermoelectric combination heat control method and system
US20030019610A1 (en) Rapidly self - heat-conductive heat - dissipating module
US7525801B2 (en) Computer module
JPWO2011122332A1 (en) Phase change cooler and electronic device equipped with the same
TWM357650U (en) Heat-dissipation module and electronic device using the same
JP2009532871A (en) Cooling system
JP2001110967A (en) Heat dissipating structure of electronic element
US20060021737A1 (en) Liquid cooling device
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
CN100590516C (en) projection device
TWM493087U (en) Closed circulation heat dissipation module
CN108106473B (en) Vapor-liquid phase flow heat transfer module
US11953272B2 (en) Cycling heat dissipation module
WO2013089162A1 (en) Cooling structure for thin-profile electronics, and electronic device employing same
CN116744635A (en) Radiating assembly and elevator control cabinet
CN114727559A (en) Circulation cooling system based on Tesla valve
TWI876895B (en) Liquid cooling system and electronic device
TWI857383B (en) Heat dissipation module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100217

Termination date: 20121025