CN100588913C - A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device - Google Patents
A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device Download PDFInfo
- Publication number
- CN100588913C CN100588913C CN200810136826A CN200810136826A CN100588913C CN 100588913 C CN100588913 C CN 100588913C CN 200810136826 A CN200810136826 A CN 200810136826A CN 200810136826 A CN200810136826 A CN 200810136826A CN 100588913 C CN100588913 C CN 100588913C
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- fiber
- optical
- sensing
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 143
- 239000000835 fiber Substances 0.000 claims abstract description 96
- 230000003287 optical effect Effects 0.000 claims abstract description 87
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 230000005540 biological transmission Effects 0.000 claims abstract description 12
- 230000002457 bidirectional effect Effects 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 27
- 238000000034 method Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
(一)技术领域 (1) Technical field
本发明涉及的是一种测量装置,具体地说是一种简化式多路复用白光光纤干涉仪的传感解调的光纤阵列传感器。The invention relates to a measuring device, in particular to a simplified multiplexing optical fiber array sensor for sensing and demodulation of a white light optical fiber interferometer.
(二)背景技术 (2) Background technology
采用低相干、宽谱带的光源的光纤干涉仪通常被称为白光光纤干涉仪。典型的光纤白光干涉仪如图1所示,其结构组成为利用光纤搭建Micheslon式干涉仪,并采用宽谱光源LED或者ASE对干涉仪进行驱动,为其提供光能,通过探测器探测白光干涉条纹实现对待测物理量的测量。其工作原理如下,由宽谱光源11发出的宽谱光进入单模光纤后,被3dB单模光纤2×2耦合器13分成两束,一束光进入被作为测量臂的单模光纤14,被其后端的光学反射面15反射后沿原路返回,经过单模光纤14、耦合器13到达光电探测器12,这束光称为测量信号光;由光源11发出光被耦合器13分路的另外一束光,进入作为参考臂的单模连接光纤16、自聚焦透镜17,经过移动反射镜18的反射后同样沿原路返回到达光电探测器12,这束光被称为参考信号光。测量信号光和参考信号光在探测器表面发生相干叠加,由于宽谱光源的相干长度很短,大约为几个微米到几十个微米,只有当参考信号光和测量信号光程差小于光源的相干长度时,才会产生相干叠加,输出白光干涉图样(参见附图2)。Fiber-optic interferometers using low-coherence, broadband light sources are often referred to as white-light fiber interferometers. A typical optical fiber white light interferometer is shown in Figure 1. Its structure is to use optical fiber to build a Micheslon interferometer, and use a wide-spectrum light source LED or ASE to drive the interferometer to provide light energy for it, and detect white light interference through a detector. The stripes realize the measurement of the physical quantity to be measured. Its working principle is as follows. After the broadband light emitted by the
如图2所示,白光干涉条纹的特征是有一个主极大值,称为中心条纹,它与零光程差为之相对应,即对应于参考光束和测量光束光程相等时,称为参考光束与测量光束具有光程匹配关系。通过改变光纤延迟线的延迟量,使参考信号的光程发生变化,可以获得中心干涉条纹。中心条纹的位置为测量提供了一个可靠的绝对位置参考,当测量光束由于外界待测物理量的影响光程发生变化时,只需通过参考臂光程扫描得到的白光干涉条纹的位置变化,即可获得被测量物理量的绝对值。与其他光纤干涉仪相比,除了具有高灵敏度、本质安全、抗电磁场干扰等优点外,最大特点是可对压力、应变、温度等待测量进行绝对测量。因此白光干涉性光纤干涉仪被广泛用于物理量、机械量、环境量、化学量、生物医学量的测量。As shown in Figure 2, the characteristic of white light interference fringes is that there is a main maximum value, called the central fringe, which corresponds to zero optical path difference, that is, when the optical path of the reference beam and the measurement beam are equal, it is called The reference beam and the measuring beam have an optical path matching relationship. By changing the delay amount of the fiber delay line and changing the optical path of the reference signal, the central interference fringe can be obtained. The position of the central fringe provides a reliable absolute position reference for the measurement. When the optical path of the measuring beam changes due to the influence of the external physical quantity to be measured, only the position of the white light interference fringe obtained by scanning the reference arm optical path changes. Gets the absolute value of the measured physical quantity. Compared with other fiber optic interferometers, in addition to the advantages of high sensitivity, intrinsic safety, and anti-electromagnetic field interference, the biggest feature is that it can perform absolute measurements on pressure, strain, and temperature. Therefore, the white light interferometric fiber optic interferometer is widely used in the measurement of physical quantities, mechanical quantities, environmental quantities, chemical quantities, and biomedical quantities.
为了解决光纤干涉仪的多路复用问题,人们开展了多方面的研究,已经发展的多路复用技术有:时分复用技术(TDM)、频分复用技术(FDM或FMCW)、波分复用技术(WDM)和空复用技术(SDM)。In order to solve the multiplexing problem of optical fiber interferometer, people have carried out various researches. The multiplexing technologies that have been developed include: time division multiplexing technology (TDM), frequency division multiplexing technology (FDM or FMCW), wave Division Multiplexing (WDM) and Space Multiplexing (SDM).
Jackson等人[Santos,J.L.,Jackson,D.A.,Coherence sensing of time-addressedoptical-fiber sensors illuminated by a multimode laser diode Appl.Opti,30,5068-5076,1991]发展的时分复用技术(TDM),是利用在同一光纤总线上的传感单元的光程差,即光纤对光波的延迟效应来寻址的复用技术。技术方案为:多模激光二极管发出的小于光纤总线上相邻传感器间传输时间的光脉冲,并注入光纤总线的输入端时,由于在总线上各传感单元距光脉冲发射端的距离不同,在光纤总线的终端将会接受到一系列的脉冲,其中每一个光脉冲所包含的信息对应光纤总线上的一个传感单元,光脉冲的时延大小反映该传感单元的地址分布。如果能够在光脉冲宽度的时间内完成对白光传感单元的连续光程扫描,即可对得到传感器的传感信息。这种方法结构复杂,复用数量有限,测量范围小,测量精度低。The time division multiplexing technology (TDM) developed by Jackson et al [Santos, J.L., Jackson, D.A., Coherence sensing of time-addressed optical-fiber sensors illuminated by a multimode laser diode Appl. Opti, 30, 5068-5076, 1991] is A multiplexing technology for addressing by utilizing the optical path difference of sensing units on the same optical fiber bus, that is, the delay effect of optical fibers on light waves. The technical solution is: when the optical pulse emitted by the multimode laser diode is shorter than the transmission time between adjacent sensors on the optical fiber bus and injected into the input end of the optical fiber bus, since the distances between the sensing units on the bus and the optical pulse transmitting end are different, the The terminal of the optical fiber bus will receive a series of pulses, and the information contained in each optical pulse corresponds to a sensing unit on the optical fiber bus, and the time delay of the optical pulse reflects the address distribution of the sensing unit. If the continuous optical path scanning of the white light sensing unit can be completed within the time of the light pulse width, the sensing information of the sensor can be obtained. This method has complex structure, limited number of multiplexing, small measurement range and low measurement accuracy.
Wayne V.Sorin,Mountain View等[Multiplexed sensing using optical coherencereflectrometry,United States Patent,Patent Number 5,557,400,1996],采用白光光纤多路复用干涉技术测量张力、应变、位移等参量,但是其方法所用的白光光源和光电检测装置相互独立,且其光电检测装置所用器件较多构造复杂。其它类似技术还有W.Don Morison,等[Fiber optic sensor usable over wide range of gage lengths,United States Patent,Patent Number6870975,2005];Ralph Posey,等[Integratedfiber optic strain sensing using low-coherence wavelength-encoded addressing,United States Patent,Patent Number6289740,2001]也采用白光光纤多路复用干涉技术测量应变、位移等参量,该方法主要采用了调解光源波长的方法实现测量。国内文献如,中国专利公报公开的基于光放大的光纤Fizeau应变传感器频分复用系统及方法(公开号CN1553273A)等。上述光纤干涉仪的多路复用方法,主要基于时分复用技术,已有大量的技术专利和技术论文公开发表。Wayne V. Sorin, Mountain View et al. [Multiplexed sensing using optical coherence reflectrometry, United States Patent, Patent Number 5,557,400, 1996] used white light fiber multiplexing interferometry to measure tension, strain, displacement and other parameters, but the white light used in the method The light source and the photoelectric detection device are independent of each other, and the devices used in the photoelectric detection device are many and complex in structure. Other similar technologies include W.Don Morison, etc. [Fiber optic sensor usable over wide range of gage lengths, United States Patent, Patent Number6870975, 2005]; Ralph Posey, etc. [Integrated fiber optic strain sensing using low-coherence wavelength-encoded addressing , United States Patent, Patent Number6289740, 2001] also uses white light optical fiber multiplexing interference technology to measure parameters such as strain and displacement. This method mainly uses the method of adjusting the wavelength of the light source to achieve measurement. Domestic documents such as the optical amplification-based Fizeau strain sensor frequency division multiplexing system and method disclosed in the Chinese Patent Gazette (publication number CN1553273A) and the like. The above-mentioned multiplexing method of the optical fiber interferometer is mainly based on the time division multiplexing technology, and a large number of technical patents and technical papers have been published.
申请人于2006年公开了多路复用光纤干涉仪及其嵌套构建方法(中国专利公开号:CA1963399A),发明了可以构造传感器阵列和网络的全光纤干涉仪光纤及其实现方法,解决光纤干涉仪的多路复用问题;申请人于2007年公开的低相干绞扭式类Sagnac光纤形变传感装置(中国专利公开号:101074867A),主要用来解决光纤传感器阵列布设过程中的抗毁坏的问题。在上述应用中,特别是白光干涉仪连接有光纤传感器阵列时,本地的解调干涉仪与远端的传感干涉仪的光程通过光程匹配来实现光纤传感器阵列的问讯与解调。这样传感干涉仪阵列可以是完全无源的,其好处是阵列中输出的多个干涉信号对本地解调干涉仪和传感器阵列之间的连接光纤长度的变化不灵敏,增强了测量的稳定性和可靠性。The applicant disclosed the multiplexing optical fiber interferometer and its nesting construction method in 2006 (Chinese patent publication number: CA1963399A), invented the all-fiber interferometer optical fiber and its implementation method that can construct sensor arrays and networks, and solved the problem of optical fiber The multiplexing problem of the interferometer; the low-coherence twisted Sagnac-like optical fiber deformation sensing device disclosed by the applicant in 2007 (Chinese Patent Publication No.: 101074867A), which is mainly used to solve the problem of anti-destruction in the process of laying out the optical fiber sensor array The problem. In the above applications, especially when the white light interferometer is connected with a fiber optic sensor array, the optical paths of the local demodulation interferometer and the remote sensing interferometer are matched to realize interrogation and demodulation of the fiber optic sensor array. In this way, the sensing interferometer array can be completely passive, and the advantage is that the multiple interference signals output in the array are insensitive to the change of the length of the connecting fiber between the local demodulation interferometer and the sensor array, which enhances the stability of the measurement and reliability.
但在上述基于空分复用的干涉仪结构中,本地的解调干涉仪大多采用Michelson干涉仪、Mach-Zehnder干涉仪等分立式干涉仪结构。它们通常具有两个相互独立的光传输通道,用于实现光程调谐与匹配。但由于它不存在共光路结构,极易受到环境因素(诸如温度和振动)的影响,导致两光路的光程产生不一致的变化,使传感器信号的解调产生影响,降低了干涉仪的信号解调灵敏度,使测量的精度下降,长期的稳定性和可靠性无法保证;同时干涉仪的结构也较为复杂,不利用于干涉仪的实用化。However, in the above interferometer structures based on space division multiplexing, most of the local demodulation interferometers use discrete interferometer structures such as Michelson interferometers and Mach-Zehnder interferometers. They usually have two independent optical transmission channels for optical path tuning and matching. However, because it does not have a common optical path structure, it is easily affected by environmental factors (such as temperature and vibration), resulting in inconsistent changes in the optical path of the two optical paths, which affects the demodulation of the sensor signal and reduces the signal resolution of the interferometer. Adjusting the sensitivity will reduce the measurement accuracy, and the long-term stability and reliability cannot be guaranteed; at the same time, the structure of the interferometer is also relatively complicated, which is not suitable for the practical application of the interferometer.
(三)发明内容 (3) Contents of the invention
本发明的目的在于解决此类光纤干涉仪的结构复杂,连接用光纤光缆与测量相关,测量可靠性差,稳定性低等问题,提供一种结构简单、复用数量高、测量范围大、测量精度高的一种简化式多路复用白光干涉光纤传感解调装置。The purpose of the present invention is to solve the complex structure of this type of optical fiber interferometer, the optical fiber cable used for connection is related to the measurement, the measurement reliability is poor, and the stability is low. A simplified multiplexing white light interference optical fiber sensing and demodulation device.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明的简化式多路复用白光干涉光纤传感解调装置的组成包括单纤双向光收发模块1、光纤环形腔2、单模传输光纤3、光纤传感器阵列4;所述的单纤双向光收发模块1主要是由一个作为发射的半导体光源102、一个作为接收的半导体光电探测器103封装在一起组成,半导体光电探测器103通过与半导体光源102复用的三根电气引脚109,同时实现光源信号的输出与光干涉信号的检测;单纤双向光收发模块1发出的宽谱光进入单模传输光纤后,经光纤环形腔2分成两束,其中一束光,经过光纤环形腔2中单模光纤耦合器201后,直接进入由单模传输光纤503和光学反射面504串连组成的光纤传感器阵列4,作为测量光束;另外一束光,经过光纤环形腔2的两个自聚焦透镜202和扫描全反射棱镜203重新进入单模光纤耦合器201又被分为两路光束,一路光束在光纤环形腔内继续绕环路传输,另一路光束作为参考光束进入光纤传感器阵列4传输并由光学反射器504反射后回到单纤双向光收发模块;单纤双向光收发模块1根据返回的测量光束与参考光束的干涉信号实现多路复用白光干涉光纤传感解调。The composition of the simplified multiplexing white light interference optical fiber sensing and demodulation device of the present invention includes a single-fiber bidirectional
所述的单纤双向光收发模块1的组成包括封装在模块封装壳体101中的半导体光源102、半导体光电探测器103、热沉104、光纤105、粘接环氧树脂106和模块电气引脚109构成。半导体光源102固化在半导体光电探测器103之上,二者由三根电气引脚109引出,其中一根电气引脚由半导体光源102和半导体光电探测器103复用。半导体光电探测器103之下连接热沉104,半导体光源102之上用粘接环氧树脂106连接光纤105,半导体光源102出射光束107、半导体光电探测器103接收光束108。The composition of the single-fiber bidirectional
所述的单纤双向光收发模块1发出的宽谱光进入单模光纤后,经光纤环形腔2分成两束,其中一束光,经过光纤环形腔2中光纤耦合器201后,直接进入被作为传感器5的由N段单模光纤503和N个光学部分反射面504组成的传感器阵列4,作为测量光束;另外一束光,经过光纤环形腔2的两个自聚焦率透镜202和扫描全反射棱镜203重新进入单模光纤耦合器201又被分为两路光束,一路光束在光纤谐振腔内继续绕环路传输,另一路光束进入光纤传感器阵列4传输并由光学部分反射器504反射后回到单纤双向光收发模块1。After the wide-spectrum light emitted by the single-fiber bidirectional
所述的光纤环形腔2由一个2×2单模光纤耦合器201、两个单模自聚焦透镜202和一个扫描全反射棱镜203组成;单模光纤耦合器201的分光比可以在1%~99%范围内选择。Described optical fiber
所述的光纤传感阵列4由若干个首尾依次串接的光纤传感器5组成。The optical
所述的光纤传感器5由一段长度任意两端带有光纤插芯501的单模光纤503组成。The
所述的光纤传感器阵列4的连接方法是光纤传感器5通过光纤套管502与其他带有光纤插芯501的光纤传感器5或者连接光纤3连接。The connection method of the optical
所述的光纤器件都工作在单模状态。The optical fiber devices all work in a single-mode state.
本发明方法的基本原理是白光光纤Michelson干涉仪原理。The basic principle of the method of the present invention is the principle of white light optical fiber Michelson interferometer.
单纤双向光收发模块1发出的宽谱光进入单模光纤后,经光纤环形腔2中的单模光纤2×2耦合器201分成两束,如图4所示。其中一束作为测量光束,经过光纤耦合器201后,直接进入被作为传感器5的由N段单模光纤503和N个光学反射面504组成的传感器阵列4;另外一束光,经过光纤环形腔2的两个自聚焦率透镜202和扫描全反射棱镜203重新进入单模光纤耦合器201又被分为两路光束,一路光束在光纤谐振腔内继续绕环路传输,另一路光束作为参考光束进入光纤传感器阵列4传输并由光学部分反射器504反射后回到单纤双向光收发模块1。After entering the single-mode optical fiber, the wide-spectrum light emitted by the single-fiber bidirectional
光纤谐振腔的初始长度可以设定为L0,在N个部分反射器中间的光纤传感器的长度为Lj(j=1,2,3,......N),此长度与L0接近但稍微长一点,且每一段光纤传感器的长度均有微小的变化。此时,可调的光纤谐振腔内的光程长度为nL0+2X,其中X为扫描棱镜与双梯度折射率透镜之间的光程,其值可以通过控制扫描棱镜调节。当第j个光纤传感器受到光源信号问讯时,由经过光纤谐振腔与第j个光纤传感器左侧部分反射器得到的参考信号为以下三种形式:The initial length of the fiber resonator can be set as L 0 , the length of the fiber sensor in the middle of the N partial reflectors is L j (j=1, 2, 3, ... N), and this length is the same as L 0 is close to but slightly longer, and the length of each fiber optic sensor has a slight change. At this time, the optical path length in the adjustable fiber resonator is nL 0 +2X, where X is the optical path between the scanning prism and the double gradient index lens, and its value can be adjusted by controlling the scanning prism. When the jth optical fiber sensor is interrogated by the light source signal, the reference signal obtained by passing through the fiber resonator and the left partial reflector of the jth optical fiber sensor has the following three forms:
式中:n为光纤纤芯的折射率,L为连接光缆的长度。In the formula: n is the refractive index of the fiber core, and L is the length of the connecting cable.
经过光纤谐振腔与第j个光纤传感器右侧部分反射器得到的测量信号为以下形式:The measurement signal obtained through the fiber resonator and the right partial reflector of the jth fiber sensor is in the following form:
比较参考信号与测量信号可以得到:Comparing the reference signal with the measured signal gives:
nL0+2Xj=nlj,j=1,2,3...... (5)nL 0 +2X j =nl j , j=1, 2, 3... (5)
还存在着第二种参考信号类型,即在L0≈2lsensor情况下:There is also a second reference signal type, namely in the case of L 0 ≈2l sensor :
测量信号不变化:The measurement signal does not change:
在这种情况下比较参考信号与测量信号可以得到:Comparing the reference signal with the measured signal in this case gives:
nL0+2Xj=2nlj,j=1,2,3...... (9)nL 0 +2X j =2nl j , j=1, 2, 3... (9)
由公式(5)和公式(9)可以看出,当测量信号光和参考信号光光程匹配时,将在单纤双向光收发模块1发生相干叠加,由于宽谱光源的相干长度很短,大约为几个微米到几十个微米,只有当参考信号光和测量信号光程差小于光源的相干长度时,才会产生相干叠加,输出白光干涉图样。It can be seen from formula (5) and formula (9) that when the optical paths of the measurement signal light and the reference signal light match, coherent superposition will occur in the single-fiber bidirectional
同时也可以从公式(5)和公式(9)看出,对于第j个光纤传感器的光程匹配关系,与连接光缆的长度L和其他光纤传感器的长度l均无关系,即连接光缆的长度不受限制,同时环境对连接光缆的影响被消除。另外,传感器相互之间由于光程关系相互独立,也不产生串扰。At the same time, it can also be seen from formulas (5) and (9) that the optical path matching relationship of the jth optical fiber sensor has nothing to do with the length L of the connecting fiber optic cable and the length l of other fiber optic sensors, that is, the length of the connecting fiber optic cable Unrestricted, while the influence of the environment on the connecting fiber optic cable is eliminated. In addition, the sensors are independent from each other due to the optical path relationship, and there is no crosstalk.
当光纤传感器lj受到应力、应变等外界因素作用发生形变时,调节光纤谐振腔中的可调参量Xj,使光程匹配使得:When the optical fiber sensor l j is deformed by external factors such as stress and strain, adjust the adjustable parameter X j in the optical fiber resonant cavity to match the optical path so that:
或者ΔXj=Δ(nlj),j=1,2,3...... (11)Or ΔX j =Δ(nl j ), j=1, 2, 3... (11)
假设光纤传感器l1变化到l1+Δl1,l2变化到l2+Δl2,......lN变化到lN+ΔlN,则可以得到整个传感器的应变系数Suppose the optical fiber sensor l 1 changes to l 1 +Δl 1 , l 2 changes to l 2 +Δl 2 ,...l N changes to l N +Δl N , then the gauge factor of the entire sensor can be obtained
由于采用宽谱光源的光纤干涉仪的干涉现象只发生在相干长度内,对应于光程匹配条件附近的几个微米到几十个微米之间,因此可以将多个光纤干涉仪进行串联,并使不同光纤传感器所对应的干涉信号相互分立,单独区分,即可实现光纤干涉仪调制解调的多路复用。测量光束经过不同光学分路不同反射面所经历的光程,可以和参考光束的光程发生一一对应的匹配关系,使产生的白光干涉条纹在光程扫描空间上相互独立,互不干扰,基于上述思想可以实现多路复用自光光纤干涉仪的调制解调。Since the interference phenomenon of the fiber optic interferometer using a broadband light source only occurs within the coherence length, corresponding to a few microns to tens of microns near the optical path matching condition, multiple fiber interferometers can be connected in series, and By making the interference signals corresponding to different optical fiber sensors separate from each other and distinguishing them separately, the multiplexing of modulation and demodulation of the optical fiber interferometer can be realized. The optical path experienced by the measuring beam passing through different optical branches and different reflecting surfaces can have a one-to-one matching relationship with the optical path of the reference beam, so that the generated white light interference fringes are independent of each other in the optical path scanning space and do not interfere with each other. Based on the above ideas, the modulation and demodulation of the multiplexed self-optical fiber interferometer can be realized.
本发明的优点和特点是:Advantages and characteristics of the present invention are:
(1)本发明基于光纤干涉仪调制解调的多路复用技术,通过嵌入一个单纤双向光收发模块和一个光纤谐振腔,在一根光纤中即可实现对多个光纤干涉传感器的问询和测量,极大地简化了测量系统的光路结构,容易实现。(1) The present invention is based on the multiplexing technology of fiber optic interferometer modulation and demodulation, by embedding a single-fiber bidirectional optical transceiver module and a fiber resonator, the interrogation of multiple fiber optic interference sensors can be realized in one fiber Inquiry and measurement greatly simplifies the optical path structure of the measurement system and is easy to implement.
(2)本发明采用了双向共光路结构,使连接单纤双向光收发模块、光纤谐振腔,光纤传感阵列、以及阵列中光纤传感器之间的连接光缆的长度不受限制,同时也消除了环境对连接光缆的影响,提高了对系统抗干扰能力,增强了测量的可靠性和稳定性。(2) The present invention adopts the bidirectional common optical path structure, makes the length of connecting optical cable between the single-fiber bidirectional optical transceiver module, the optical fiber resonator, the optical fiber sensing array and the optical fiber sensor in the array unrestricted, also eliminates simultaneously The impact of the environment on the connecting optical cable improves the anti-interference ability of the system and enhances the reliability and stability of the measurement.
(3)本发明构造的简化式多路复用白光光纤干涉仪,通过选择功率合适的宽谱光源和适当的光纤部分反射器,可以使复用的传感器的个数达到近百个,实现光纤传感器布设的阵列化,极大地简化了系统复杂程度,降低了测试费用,保证了测试系统的实时性,提高了测量的可靠性。(3) The simplified multiplexing white light fiber interferometer constructed in the present invention can make the number of multiplexed sensors reach nearly a hundred by selecting a wide-spectrum light source with suitable power and a suitable optical fiber partial reflector, and realize the optical fiber interferometer. The array arrangement of sensors greatly simplifies the complexity of the system, reduces the test cost, ensures the real-time performance of the test system, and improves the reliability of the measurement.
(4)本发明采用的光纤材料和器件均为标准光纤通信元件,成本价格低廉,容易获得,有利于推广。(4) The optical fiber materials and devices used in the present invention are all standard optical fiber communication components, which are cheap, easy to obtain, and conducive to popularization.
本发明提出了一种简化式多路复用白光光纤干涉仪的调制解调构建方法,并由此构造光纤干涉仪传感器阵列。本发明的核心内容是利用集成化的思想,基于白光干涉技术,通过嵌入双向光收发组件和光纤环形腔,实现在单根光纤中构造光纤白光干涉仪,以及光纤传感器多路复用与解调。具体而言,采用了光源背向检测的封装方法将白光光源与白光干涉信号检测电路封装在一个单纤双向光收发模块器件之中,实现了白光光源与白光干涉信号检测的多路复用;利用光纤环形腔的光程调谐功能,同时输出多个光程不同的参考光信号,完成对多个光纤传感器的解调。The invention proposes a simplified multiplexing white light fiber optic interferometer modulation and demodulation construction method, and thus constructs a fiber optic interferometer sensor array. The core content of the present invention is to use the idea of integration, based on white light interference technology, by embedding two-way optical transceiver components and optical fiber ring cavity, to realize the construction of optical fiber white light interferometer in a single optical fiber, and the multiplexing and demodulation of optical fiber sensors . Specifically, the white light source and white light interference signal detection circuit are packaged in a single-fiber bidirectional optical transceiver module device by using the packaging method of light source back detection, realizing the multiplexing of white light source and white light interference signal detection; Using the optical path tuning function of the optical fiber ring cavity, multiple reference optical signals with different optical paths are simultaneously output to complete the demodulation of multiple optical fiber sensors.
(四)附图说明(4) Description of drawings
图1是典型的白光光纤Michelson干涉仪结构示意图。Figure 1 is a schematic diagram of a typical white light fiber Michelson interferometer.
图2是典型的白光干涉信号示意图。Fig. 2 is a schematic diagram of a typical white light interference signal.
图3是本发明的结构示意图。Fig. 3 is a structural schematic diagram of the present invention.
图4是光纤环形腔结构示意图。Fig. 4 is a schematic diagram of the structure of an optical fiber ring cavity.
图5是光纤传感器结构及其连接方法示意图。Fig. 5 is a schematic diagram of the structure of the optical fiber sensor and its connection method.
图6是单纤双向光收发模块的结构示意图。Fig. 6 is a schematic structural diagram of a single-fiber bidirectional optical transceiver module.
(五)具体实施方式 (5) Specific implementation methods
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
实施例一:如图3所示。简化式多路复用白光光纤干涉仪,由单纤双向光收发模块1、光纤谐振腔2、连接用光纤光缆3、光纤阵列传感器4组成。Embodiment 1: as shown in FIG. 3 . The simplified multiplexing white light optical fiber interferometer is composed of a single-fiber bidirectional
单纤双向光收发模块1发出的宽谱光进入单模光纤后,经光纤环形腔2中的单模光纤2×2耦合器201分成两束,如图4所示。其中一束作为测量光束,经过光纤耦合器201后,直接进入被作为传感器5的由N段单模光纤503和N个光学反射面504组成的传感器阵列4;另外一束光,经过光纤环形腔2的两个自聚焦率透镜202和扫描全反射棱镜203重新进入单模光纤耦合器201又被分为两路光束,一路光束在光纤谐振腔内继续绕环路传输,另一路光束作为参考光束进入光纤传感器阵列4传输并由光学部分反射器504反射后回到单纤双向光收发模块1。当扫描全反射棱镜203进行光程扫描时,使传感器前后端面504反射的光信号实现光程匹配,即产生产生的白光干涉峰值时扫描全反射棱镜203的位置与传感阵列或者网路中特定长度的传感器的相对应。当某一个传感器由于温度、应力等参量的作用,产生应变或者位移时,其对应的出现白光干涉峰值的光程扫描位置也随之变化,记录变化前后的位置值,根据转换关系,即可进行参量的传感测量。After entering the single-mode optical fiber, the wide-spectrum light emitted by the single-fiber bidirectional
单纤双向光收发模块1是一种高性能的光电器件,半导体光源102、半导体光电探测器103的功能集成在一个标准封装中。如图6所示,单纤双向光收发模块的功能集成在一个标准1×3管脚封装中,半导体光电探测器103工作方式为背光检测,即通过与半导体光源102复用的三根电气引脚109,同时实现光源信号的输出与光干涉信号的检测。半导体光源102将驱动电流转化为信号光,作为光能量源供给干涉仪;半导体光电探测器103可以将光信号转换成电流,经过放大、滤波,提取出白光干涉信号。该器件利用一根光纤实现双向地光发射与光探测功能,可以提高光纤的利用效率。The single-fiber bidirectional
如图4所示,光纤谐振腔2中的两个自聚焦透镜202,其插入损失范围为0.5dB,自聚焦透镜与扫描全反射镜之间的跨度3mm-70mm(对应参考光程范围6mm-140mm),他们之间的损耗为4~8dB,谐振腔的光程长度选择在1990mm,近似等于两倍的光纤传感器长度。As shown in Figure 4, the two self-focusing
光纤传感阵列4由6个光纤传感器5首尾依次串接组成。每个光纤传感器5由长度大致在1000mm的单模光纤503构成,并且两端带有单模光纤插芯501。光纤传感阵列4的连接方法采用光纤套管502,将光纤传感器5与其他带有光纤插芯501的光纤传感器5或者连接光纤3串接,则两个利用光纤套管连接的光纤插芯之间形成一个光学反射率1%~3%的光学反射面504,如图5所示。光纤耦合器201选择为3dB光纤2×2耦合器。其多路复用白光光纤干涉仪的调制解调原理可参考发明内容。该装置可用于张力、位移、温度的测量。The optical
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810136826A CN100588913C (en) | 2008-07-30 | 2008-07-30 | A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810136826A CN100588913C (en) | 2008-07-30 | 2008-07-30 | A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101324444A CN101324444A (en) | 2008-12-17 |
CN100588913C true CN100588913C (en) | 2010-02-10 |
Family
ID=40188075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810136826A Expired - Fee Related CN100588913C (en) | 2008-07-30 | 2008-07-30 | A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100588913C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963515A (en) * | 2010-09-29 | 2011-02-02 | 哈尔滨工程大学 | Distributed Michelson optical fibre white light interference sensing device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2477740B (en) * | 2010-02-10 | 2014-06-25 | Oclaro Technology Ltd | Reduced length optoelectronic devices |
CN101995227B (en) * | 2010-09-29 | 2012-06-06 | 哈尔滨工程大学 | Optical path autocorrelator for distributed optical fiber strain sensing measurement |
WO2012045193A1 (en) * | 2010-10-08 | 2012-04-12 | 哈尔滨工程大学 | Multiple optical channel autocorrelator based on optical circulator |
CN102932070B (en) * | 2012-11-09 | 2015-05-06 | 北京交通大学 | Quick tunable phase shift keying signal demodulator |
CN103414519B (en) * | 2013-07-01 | 2016-09-07 | 中国科学院上海光学精密机械研究所 | Light control microwave beam shaper |
CN103808341A (en) * | 2014-01-26 | 2014-05-21 | 沈阳师范大学 | Distributed microstructure optical fiber sensor |
CN108426834A (en) * | 2018-05-11 | 2018-08-21 | 佛山科学技术学院 | A kind of quick light path scanning means |
CN109827643B (en) * | 2019-04-11 | 2024-10-11 | 中国计量大学 | Contact temperature insensitive balance based on white light interference |
CN113739708B (en) * | 2021-08-20 | 2022-07-15 | 哈尔滨工程大学 | Double-path white light interference differential measurement device and method |
-
2008
- 2008-07-30 CN CN200810136826A patent/CN100588913C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963515A (en) * | 2010-09-29 | 2011-02-02 | 哈尔滨工程大学 | Distributed Michelson optical fibre white light interference sensing device |
Also Published As
Publication number | Publication date |
---|---|
CN101324444A (en) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100588913C (en) | A Simplified Multiplexing White Light Interference Optical Fiber Sensing and Demodulation Device | |
CN101963515B (en) | Distributed Michelson optical fibre white light interference sensing device | |
CN102162742B (en) | Quasi-distribution optical fiber white-light strain sensing and demodulation device based on nonequilibrium Michelson interferometer | |
CN101324443B (en) | Space-division multiplexing Mach-Zehnder cascaded fiber optic interferometer and measurement method | |
CN105865753B (en) | A kind of measuring device and measuring method of fibre optic interferometer arm length difference | |
CN102003944B (en) | Multi-scale quasi-distributed white light interference strain measurement device and method with common path compensation | |
CN102183866B (en) | Imbalanced-Mach-Zehnder-based demodulation device for multiplexing optical fiber interferometer | |
CN100588912C (en) | Combination Measuring Instrument of Optical Fiber Mach-Zehnder and Michelson Interferometer Array | |
CN101995227B (en) | Optical path autocorrelator for distributed optical fiber strain sensing measurement | |
CN103119393B (en) | Multiple optical channel autocorrelator based on optical circulator | |
CN104535007A (en) | Distributed type optical fiber strain measurement system based on cavity-length-adjustable F-P white light interference demodulating device | |
CN101995265B (en) | Low coherence multiplex optical fiber interferometer based on non-balanced Mach-Zehnder optical autocorrelator | |
CN104501731A (en) | Low-coherence multiplexing quasi-distribution optical fiber strain measurement system | |
AU2020103491A4 (en) | A twin array Michelson fiber optic white light interferometry strain gauge | |
Sorin et al. | Multiplexed sensing using optical low-coherence reflectometry | |
CN204405012U (en) | The multiplexed accurate profile fiber strain measurement system of a kind of Low coherence | |
CN102135437B (en) | Method and device for inquiring signals by unbalanced Mach-Zehnder interferometer | |
CN101329168A (en) | Twin Array Michelson Fiber White Light Interference Strain Gauge | |
CN101324445B (en) | Distributed fiber optic white light interferometric sensor array based on tunable Fabry-Perot resonator | |
AU2020103584A4 (en) | A distributed fiber white light interferometric sensor array based on a tunable Fabry-Perot resonant cavity | |
AU2020103626A4 (en) | An optical path autocorrelator used for distributed fiber strain sensing measurement | |
AU2020103490A4 (en) | A multiplexing optical fiber interferometer and its nesting construction method | |
CN204555927U (en) | A kind of Low coherence optical fiber changing sensor network demodulation system based on Smith resonance interference type light path coupling scanner | |
CN201247073Y (en) | Distributed optical fiber sensor based on optical fiber cavity wane sway technology | |
CN104535008A (en) | Low-coherence optical fiber distortion sensor network demodulating system based on Smith resonance interference type optical path matching scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20081217 Assignee: Beijing Topsun Research Technology Development Co. Ltd. Assignor: Harbin Engineering Univ. Contract record no.: 2017230000003 Denomination of invention: Simplifying type multiplexing white light interference optical fiber sensing demodulating equipment Granted publication date: 20100210 License type: Common License Record date: 20170109 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100210 Termination date: 20180730 |