[go: up one dir, main page]

CN100585852C - Semiconductor device tested using minimum pins, and method of testing same - Google Patents

Semiconductor device tested using minimum pins, and method of testing same Download PDF

Info

Publication number
CN100585852C
CN100585852C CN200610007145A CN200610007145A CN100585852C CN 100585852 C CN100585852 C CN 100585852C CN 200610007145 A CN200610007145 A CN 200610007145A CN 200610007145 A CN200610007145 A CN 200610007145A CN 100585852 C CN100585852 C CN 100585852C
Authority
CN
China
Prior art keywords
test
operation mode
signal
shift register
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610007145A
Other languages
Chinese (zh)
Other versions
CN1819197A (en
Inventor
宋海镇
朱镇太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1819197A publication Critical patent/CN1819197A/en
Application granted granted Critical
Publication of CN100585852C publication Critical patent/CN100585852C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/06Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for extinguishing sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/1855Mechanical joints the connection being realised by using bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/24Methods or apparatus for fitting, inserting or repairing different elements by bolts, screws, rivets or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了能够使用一个测试引脚、以及使用输入/输出引脚而不需要任何测试引脚而被测试的半导体器件、以及测试其的方法。一种半导体器件包括:测试引脚,用于输入/输出测试数据;操作模式控制器,用于响应于外部复位信号和时钟信号而激活使能信号;操作模式存储装置,用于响应于使能信号,通过测试引脚而与时钟信号相同步地接收串行数据;以及操作模式解码器,用于响应于存储在操作模式存储装置中的串行数据而生成操作模式选择信号。

Figure 200610007145

The present invention provides a semiconductor device capable of being tested using one test pin, and using input/output pins without any test pins, and a method of testing the same. A semiconductor device includes: a test pin for inputting/outputting test data; an operation mode controller for activating an enable signal in response to an external reset signal and a clock signal; an operation mode storage means for responding to the enable signal to receive serial data in synchronization with the clock signal through the test pin; and an operation mode decoder for generating an operation mode selection signal in response to the serial data stored in the operation mode storage means.

Figure 200610007145

Description

使用最少引脚而被测试的半导体器件、以及测试其的方法 Semiconductor device tested using minimum pins, and method of testing same

相关申请的交叉引用Cross References to Related Applications

本申请要求于2005年2月3日提交的韩国专利申请第2005-10048号以及于2005年2月4日提交的韩国专利申请第2005-10748号的优先权,通过引用将其内容合并于此。This application claims the benefit of Korean Patent Application No. 2005-10048 filed on February 3, 2005 and Korean Patent Application No. 2005-10748 filed on February 4, 2005, the contents of which are hereby incorporated by reference .

技术领域 technical field

本发明涉及一种片上系统(system-on-chip)和测试其的方法,并且,更具体地,涉及一种能够通过使用一个测试引脚或不需要任何测试引脚而被测试的片上系统、以及测试其的方法。The present invention relates to a system-on-chip and a method of testing the same, and, more particularly, to a system-on-chip that can be tested by using one test pin or without any test pin, and how to test it.

背景技术 Background technique

通常,片上系统尺寸和功耗可由于引脚被添加到芯片上而增加。因此,最好减少或移除仅用于测试器件的一个或多个测试引脚。Typically, system-on-chip size and power consumption can increase as pins are added to the chip. Therefore, it is best to reduce or remove one or more test pins that are only used to test the device.

在引脚仅被提供用来接收时钟信号和复位信号的图像芯片的情况中,不存在用于在测试期间根据测试向量而接收测试信号的备用引脚。由此,需要一个或多个引脚来测试图像芯片。In the case of an image chip whose pins are provided only to receive a clock signal and a reset signal, there is no spare pin for receiving a test signal according to a test vector during a test. Thus, one or more pins are required to test the graphics chip.

此外,需要开发新技术以在不需要附加测试引脚的情况下设置各种测试模式,这是因为在具有少量引脚的芯片(如仅使用功能引脚作为测试引脚的图像芯片)中设置各种测试模式是很复杂的。In addition, new technology needs to be developed to set various test modes without additional test pins, because setting The various test patterns are complex.

由于例如移动设备的电子设备要求最小化的尺寸,所以,期望在电子设备中使用的芯片的尺寸减小。在减小芯片尺寸的情况中,适当地将诸如数据输入/输出引脚和电源引脚的输入/输出引脚排列在一侧或两侧上是很复杂的。由此,消除测试引脚是有益的。另外,用于便携式电子设备中的芯片的测试项已增加,从而导致包括更多的测试引脚。Since electronic devices such as mobile devices require a minimized size, it is desirable to reduce the size of chips used in the electronic devices. In the case of reducing the chip size, it is complicated to properly arrange input/output pins such as data input/output pins and power supply pins on one side or both sides. Thus, eliminating test pins is beneficial. Additionally, test items for chips in portable electronic devices have increased, resulting in more test pins being included.

图1示出了具有在其三个侧面上布置的测试引脚的传统片上系统的引脚排列,而图2示出了具有在其两个侧面上布置的测试引脚的传统片上系统的引脚排列。Figure 1 shows the pinout of a conventional system-on-chip with test pins arranged on its three sides, while Figure 2 shows the pinout of a conventional system-on-chip with test pins arranged on its two sides. The feet are arranged.

图1中的芯片具有:例如四个的多个测试引脚TEST_1至TEST_4、RESET引脚;CLK引脚、以及多个输入/输出引脚IO_1至IO_7。输入/输出引脚IO_1至IO_7专用于操作的正常模式。图2中的芯片具有测试引脚TEST、复位引脚RESET、时钟引脚CLK、以及多个输入/输出引脚IO_1至IO_7。输入/输出引脚IO_1至IO_7的一部分可用于操作的测试模式。如果芯片具有更少的输入/输出引脚,则基于图2的测试系统而执行操作的测试模式是很复杂的。The chip in FIG. 1 has: a plurality of test pins TEST_1 to TEST_4, eg four, a RESET pin; a CLK pin, and a plurality of input/output pins IO_1 to IO_7. The input/output pins IO_1 to IO_7 are dedicated to the normal mode of operation. The chip in FIG. 2 has a test pin TEST, a reset pin RESET, a clock pin CLK, and a plurality of input/output pins IO_1 to IO_7. Part of the input/output pins IO_1 to IO_7 can be used for a test mode of operation. If the chip has fewer input/output pins, the test pattern to perform operations based on the test system of FIG. 2 is complicated.

发明内容 Contents of the invention

本发明的一个方面提供了一种能够使用一个测试引脚而被测试的片上系统、以及测试其的方法。An aspect of the present invention provides a system on chip capable of being tested using one test pin, and a method of testing the same.

根据本发明的此方面的半导体器件包括:测试引脚,用于输入/输出测试数据;操作模式控制器,用于响应于外部复位信号和时钟信号而激活使能信号;操作模式存储装置,用于响应于使能信号,通过测试引脚而与时钟信号相同步地接收串行数据;以及操作模式解码器,用于响应于存储在操作模式存储装置中的串行数据而生成操作模式选择信号。The semiconductor device according to this aspect of the present invention includes: a test pin for inputting/outputting test data; an operation mode controller for activating an enable signal in response to an external reset signal and a clock signal; an operation mode storage means for receiving serial data in synchronization with the clock signal through the test pin in response to the enable signal; and an operation mode decoder for generating an operation mode selection signal in response to the serial data stored in the operation mode storage means .

在一个示范实施例中,操作模式控制器包括:位计数器,用于响应于复位信号的低至高逻辑电平转换,而在时钟信号的上升沿计数;以及比较器,用于将位计数器的输出值与操作模式数相比较,以在该输出值小于操作模式数时激活使能信号。在此实施例中,通过串行数据来确定操作模式数。In one exemplary embodiment, the operation mode controller includes: a bit counter for counting on rising edges of a clock signal in response to a low-to-high logic level transition of a reset signal; and a comparator for converting the output of the bit counter to The value is compared with the operating mode number to activate the enable signal when the output value is less than the operating mode number. In this embodiment, the operation mode number is determined by serial data.

在一个示范实施例中,从复位信号的低至高逻辑电平转换直到计数值达到操作模式数为止,使能信号处于高逻辑电平。In one exemplary embodiment, the enable signal is at a high logic level from a low to high logic level transition of the reset signal until the count value reaches the operating mode number.

在一个示范实施例中,操作模式存储装置响应于来自操作模式控制器的使能信号,与时钟信号相同步地对串行数据移位。In one exemplary embodiment, the operation mode storage device shifts the serial data in synchronization with a clock signal in response to an enable signal from the operation mode controller.

在一个示范实施例中,将操作模式存储装置设为指示操作模式。In an exemplary embodiment, the operating mode storage means is set to indicate the operating mode.

在一个示范实施例中,将操作模式存储装置设为指示属于操作模式的低级操作模式和测试目标。在此实施例中,测试目标是要测试的半导体器件中的组件。In an exemplary embodiment, the operating mode storage means is set to indicate low-level operating modes and test targets belonging to the operating modes. In this embodiment, the test target is a component in the semiconductor device to be tested.

在一个示范实施例中,测试目标包括输入/输出接口、存储器和内部逻辑。In one exemplary embodiment, test targets include input/output interfaces, memory, and internal logic.

在一个示范实施例中,复位信号与时钟信号CLK的下降沿相同步地从低转换至高逻辑电平。In one exemplary embodiment, the reset signal transitions from low to high logic level synchronously with the falling edge of the clock signal CLK.

在一个示范实施例中,操作模式包括正常操作模式,其中,半导体器件执行正常功能,并且,在移位寄存器中指示正常操作模式。In an exemplary embodiment, the operation mode includes a normal operation mode in which the semiconductor device performs a normal function and the normal operation mode is indicated in the shift register.

在一个示范实施例中,半导体器件还包括多路复用器,用于响应于来自操作模式控制器的使能信号的高至低逻辑电平转换,而输出操作模式选择信号。In one exemplary embodiment, the semiconductor device further includes a multiplexer for outputting the operation mode selection signal in response to a high-to-low logic level transition of the enable signal from the operation mode controller.

本发明的另一个方面提供了一种测试半导体器件的方法,其包括:响应于复位信号而激活使能信号;响应于使能信号,通过测试引脚而与时钟信号相同步地接收串行数据;通过确定是否完全地输入了串行数据而去激活使能信号;以及在使能信号被去激活时,响应于串行数据而生成操作模式选择信号。Another aspect of the present invention provides a method of testing a semiconductor device, including: activating an enable signal in response to a reset signal; receiving serial data through a test pin in synchronization with a clock signal in response to the enable signal ; deactivating the enable signal by determining whether the serial data is completely input; and generating an operation mode selection signal in response to the serial data when the enable signal is deactivated.

在一个示范实施例中,使能信号通过低至高逻辑电平转换而被激活,并通过高至低逻辑电平转换而被去激活。In one exemplary embodiment, the enable signal is activated by a low-to-high logic level transition and deactivated by a high-to-low logic level transition.

在一个示范实施例中,生成操作模式选择信号的步骤还包括生成测试信号。In an exemplary embodiment, the step of generating the operation mode selection signal further includes generating a test signal.

在一个示范实施例中,测试信号用于指示通过操作模式选择信号而设置的操作模式的低级操作模式和测试目标。在此实施例中,测试目标是要测试的半导体器件中的组件。In one exemplary embodiment, the test signal is used to indicate a low-level operation mode and a test target of the operation mode set by the operation mode selection signal. In this embodiment, the test target is a component in the semiconductor device to be tested.

本发明的另一个方面提供了一种能够使用输入/输出引脚而不需要任何测试引脚来被测试的片上系统、以及测试其的方法。根据本发明的此方面的测试电路包括:输入/输出引脚,用于在测试模式中接收测试数据;延迟复位信号生成器,用于将复位信号延迟;计数器,用于响应于复位信号而对时钟信号计数以生成计数值;模式寄存器,用于存储测试数据;以及解码器,用于生成到模式寄存器的选择信号,以指定在模式寄存器中写入测试数据的位置。Another aspect of the present invention provides a system-on-chip capable of being tested using input/output pins without any test pins, and a method of testing the same. The test circuit according to this aspect of the present invention includes: an input/output pin for receiving test data in a test mode; a delay reset signal generator for delaying a reset signal; a counter for A clock signal counts to generate a count value; a mode register stores test data; and a decoder generates a selection signal to the mode register to designate a location in the mode register to write test data.

在一个示范实施例中,该测试电路还包括输入/输出控制器,该输入/输出控制器包括:第一三态缓冲器,其输入端连接到内部逻辑,而输出端连接到输入/输出引脚,从而将测试数据从内部逻辑发送到输入/输出引脚;第二三态缓冲器,其输入端连接到该引脚,而输出端连接到模式寄存器,从而将测试数据从该引脚发送到测试模式寄存器;以及或门,其输出端连接到第一和第二三态缓冲器的使能端,第一输入端连接到延迟复位信号生成器,而第二输入端连接到计数器。在此实施例中,通过或门的输出信号而使能第一和第二三态缓冲器。In an exemplary embodiment, the test circuit further includes an input/output controller, the input/output controller includes: a first tri-state buffer, the input end of which is connected to the internal logic, and the output end is connected to the input/output pin pin, which sends test data from the internal logic to the input/output pin; a second tri-state buffer, whose input is connected to this pin and whose output is connected to the mode register, so that test data is sent from this pin to the test mode register; and an OR gate, the output of which is connected to the enabling terminals of the first and second tri-state buffers, the first input is connected to the delay reset signal generator, and the second input is connected to the counter. In this embodiment, the first and second tri-state buffers are enabled by the output signal of the OR gate.

在一个示范实施例中,在计数器的计数值达到预定值时,计数器生成到或门的一个输出端的计数结束信号。在此实施例中,计数结束信号处于高逻辑电平。In an exemplary embodiment, when the count value of the counter reaches a predetermined value, the counter generates a count end signal to one output terminal of the OR gate. In this embodiment, the end-of-count signal is at a high logic level.

在一个示范实施例中,延迟复位信号生成器将延迟的复位信号输出到或门的第二输出端,并且,延迟复位信号生成器取决于测试模式的数目而将复位信号延迟。In one exemplary embodiment, the delayed reset signal generator outputs the delayed reset signal to the second output terminal of the OR gate, and the delayed reset signal generator delays the reset signal depending on the number of test patterns.

在一个示范实施例中,在复位信号处于低逻辑电平时,计数器具有值“0”。In one exemplary embodiment, the counter has a value of "0" when the reset signal is at a low logic level.

在一个示范实施例中,将复位信号至少延迟时钟信号的|log2N|个周期,并且,N为测试模式的数目。In one exemplary embodiment, the reset signal is delayed by at least |log 2 N| cycles of the clock signal, where N is the number of test patterns.

本发明的另一个方面提供了一种片上系统,其包括:输入/输出引脚,用于输入和输出测试数据;时钟输入,用于接收时钟信号;复位输入,用于接收复位信号;延迟复位信号生成器,用于将复位信号延迟,以生成延迟复位信号;输入/输出控制器,用于在从复位信号的低至高逻辑电平转换到延迟复位信号的低至高逻辑电平转换的时间周期期间使输入/输出引脚用作输入引脚;计数器,用于与复位信号的低至高逻辑电平转换相同步地对时钟信号计数;模式寄存器,用于响应于来自解码器的选择信号而存储测试数据;以及解码器,用于生成选择信号,以取决于计数器的输出值而指定在模式寄存器中来自输入/输出控制器的测试数据的位置。Another aspect of the present invention provides a system-on-chip comprising: input/output pins for input and output of test data; clock input for receiving a clock signal; reset input for receiving a reset signal; delayed reset a signal generator for delaying a reset signal to generate a delayed reset signal; an input/output controller for a time period from a low-to-high logic level transition of the reset signal to a low-to-high logic level transition of the delayed reset signal period to make the I/O pins function as input pins; a counter to count the clock signal in synchronization with the low-to-high logic level transition of the reset signal; a mode register to store in response to a select signal from the decoder the test data; and a decoder for generating a select signal to specify a location of the test data from the I/O controller in the mode register depending on the output value of the counter.

在一个示范实施例中,该片上系统还包括:第一三态缓冲器,其输入端连接到输入/输出控制器,而输出端连接到输入/输出引脚,从而将测试数据从内部逻辑发送到输入/输出引脚;第二三态缓冲器,其输入端连接到输入/输出引脚,而输出端连接到测试模式寄存器,从而将测试数据从输入/输出引脚发送到模式寄存器;以及或门,其输出端连接到第一和第二三态缓冲器的使能端,第一输入端连接到延迟复位信号生成器,而第二输入端连接到计数器。在此实施例中,通过或门的输出信号而使能第一和第二三态缓冲器。In an exemplary embodiment, the system-on-chip further includes: a first tri-state buffer whose input is connected to the I/O controller and whose output is connected to the I/O pin, thereby sending test data from the internal logic to the input/output pin; a second tri-state buffer whose input is connected to the input/output pin and whose output is connected to the test mode register, thereby sending test data from the input/output pin to the mode register; and An OR gate, the output terminal of which is connected to the enabling terminals of the first and second tri-state buffers, the first input terminal is connected to the delayed reset signal generator, and the second input terminal is connected to the counter. In this embodiment, the first and second tri-state buffers are enabled by the output signal of the OR gate.

在一个示范实施例中,在计数值达到预定值时,计数器生成到或门的第一输出端的高逻辑电平的计数结束信号。In an exemplary embodiment, the counter generates a count end signal of a high logic level to the first output terminal of the OR gate when the count value reaches a predetermined value.

在一个示范实施例中,延迟复位信号生成器取决于测试模式的数目而将复位信号延迟,并且,在复位信号处于低逻辑电平时,计数器具有值“0”。In one exemplary embodiment, the delayed reset signal generator delays the reset signal depending on the number of test patterns, and the counter has a value '0' when the reset signal is at a low logic level.

在一个示范实施例中,延迟复位信号生成器将复位信号至少延迟时钟信号的|log2N|个周期,并且,N为测试模式的数目。In one exemplary embodiment, the delayed reset signal generator delays the reset signal by at least |log 2 N| cycles of the clock signal, and N is the number of test patterns.

在一个示范实施例中,片上系统还包括多路分解器,其输入端连接到输入引脚,第一输出端连接到内部逻辑,而第二输出端连接到测试模式寄存器。在此实施例中,通过计数结束信号和延迟复位信号的逻辑组合而使能多路分解器,并且,输入/输出引脚用作输入引脚。In an exemplary embodiment, the system-on-chip further includes a demultiplexer, the input of which is connected to the input pin, the first output of which is connected to the internal logic, and the second output of which is connected to the test mode register. In this embodiment, the demultiplexer is enabled by a logical combination of a count end signal and a delayed reset signal, and an input/output pin is used as an input pin.

附图说明 Description of drawings

包括了附图以提供本发明的进一步理解、图解本发明的示范实施例、并与描述一起来说明本发明的原理。附图中:The accompanying drawings are included to provide a further understanding of the invention, illustrate exemplary embodiments of the invention and together with the description explain the principles of the invention. In the attached picture:

图1示出了具有在其三个侧面上布置的测试引脚的传统片上系统的引脚排列;Figure 1 shows the pinout of a conventional system-on-chip with test pins arranged on three sides thereof;

图2示出了具有在其两个侧面上布置的测试引脚的传统片上系统的引脚排列;Figure 2 shows the pinout of a conventional system-on-chip with test pins arranged on its two sides;

图3示出了根据本发明的片上系统的引脚排列;Fig. 3 shows the pin arrangement of the system on chip according to the present invention;

图4是图解根据本发明的图3的片上系统的内部结构的框图;4 is a block diagram illustrating an internal structure of the system-on-chip of FIG. 3 according to the present invention;

图5和6是根据本发明的时序图;5 and 6 are timing diagrams according to the present invention;

图7是根据本发明的另一个实施例的片上系统的框图;7 is a block diagram of a system on a chip according to another embodiment of the present invention;

图8是根据本发明的另一个实施例的图7的输入/输出控制器的电路图;8 is a circuit diagram of the input/output controller of FIG. 7 according to another embodiment of the present invention;

图9是根据本发明的另一个实施例的图7的片上系统的时序图;FIG. 9 is a timing diagram of the system-on-chip of FIG. 7 according to another embodiment of the present invention;

图10是根据本发明的另一个实施例的片上系统的框图;以及10 is a block diagram of a system on a chip according to another embodiment of the present invention; and

图11是根据本发明的另一个实施例的图10的片上系统的时序图。FIG. 11 is a timing diagram of the system-on-chip of FIG. 10 according to another embodiment of the present invention.

具体实施方式 Detailed ways

下面将通过参照附图而详细地描述本发明的优选实施例。然而,本发明可以不同形式实现,并不应被解释为限于在这里阐述的实施例。相反,提供了这些实施例,使得此公开将透彻且完整,并将向本领域的技术人员完全地传达本发明的范围。在说明书中,相同的附图标记表示相同的元素。Preferred embodiments of the present invention will be described in detail below by referring to the accompanying drawings. However, this invention may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the specification, the same reference numerals denote the same elements.

下文中,将描述能够通过使用一个测试引脚而被测试、以减小芯片尺寸的片上系统、以及测试其的方法。Hereinafter, a system on chip capable of being tested by using one test pin to reduce a chip size, and a method of testing the same will be described.

图3示出了根据本发明的片上系统的引脚排列。参照图3,片上系统100包括测试引脚IO_TEST、复位引脚IO_RESET、时钟输入引脚IO_CLK、以及例如七个的多个输入/输出引脚IO_1至IO_7。为了设置片上系统100的操作的测试模式,通过测试引脚IO_TEST而输入串行数据SD。在操作的测试模式期间,不使用所述多个输入/输出引脚IO_1至IO_7。Fig. 3 shows the pinout of a system on chip according to the invention. Referring to FIG. 3 , the system on chip 100 includes a test pin IO_TEST, a reset pin IO_RESET, a clock input pin IO_CLK, and a plurality of input/output pins IO_1 to IO_7, for example seven. In order to set a test mode of operation of the system on chip 100 , serial data SD is input through the test pin IO_TEST. During the test mode of operation, the plurality of input/output pins IO_1 to IO_7 are not used.

图4是图解根据本发明的图3的片上系统的内部结构的框图。参照图4,片上系统100包括操作模式控制器110、操作模式存储装置120、操作模式解码器130、多路复用器160、以及例如k个的多个内部测试模块140至150。FIG. 4 is a block diagram illustrating an internal structure of the system on chip of FIG. 3 according to the present invention. Referring to FIG. 4 , the SoC 100 includes an operation mode controller 110 , an operation mode storage device 120 , an operation mode decoder 130 , a multiplexer 160 , and a plurality of internal test modules 140 to 150 , for example k.

在此示范实施例中,假定设置操作模式所需的信号具有log2N位(N=N1+N2+...+Nk,即操作模式数)。操作模式控制器110包括位计数器(bitcounter)111和比较器112。位计数器111与通过图3中的复位引脚IO_RESET而输入的复位信号RESET的低至高逻辑电平转换相同步地启动。位计数器111在通过复位引脚IO_RESET接收的时钟信号CLK的上升沿计数,以生成到比较器112的计数值Y1。位计数器111的位数M为整数“log2N”。In this exemplary embodiment, it is assumed that the signal required to set the operating mode has log 2 N bits (N=N 1 +N 2 +...+N k , the number of operating modes). The operation mode controller 110 includes a bit counter (bitcounter) 111 and a comparator 112 . The bit counter 111 is started in synchronization with the low-to-high logic level transition of the reset signal RESET input through the reset pin IO_RESET in FIG. 3 . The bit counter 111 counts at the rising edge of the clock signal CLK received through the reset pin IO_RESET to generate the count value Y1 to the comparator 112 . The number of bits M of the bit counter 111 is an integer "log 2 N".

比较器112将位计数器111的输出值Y1与操作模式数N相比较。如果输出值Y1小于操作模式数N,则比较器112生成使能信号Y2。在此情况下,使能信号Y2具有高逻辑电平(“1”)。操作模式存储装置120包括响应于使能信号Y2而操作的k+1个移位寄存器121至123。在复位信号RESET被禁用时(即,在复位信号RESET具有低到高逻辑电平转换时),k+1个移位寄存器121至123与时钟信号CLK相同步地依次对外部输入的串行数据SD移位。k+1个移位寄存器121至123在操作模式存储装置120中的位计数器111的输出值Y1达到操作模式数N时停止。也就是说,k+1个移位寄存器121至123在使能信号Y2处于高逻辑电平时操作。将k+1个移位寄存器121至123中的一个设为指示至少一个操作模式。图4图解了一个例子,其中,将移位寄存器121设为指示操作模式。换句话说,在使能信号Y2处于高逻辑电平时,移位寄存器121与时钟信号CLK相同步地依次对串行数据SD移位,并将N1数目的串行数据SD输出到操作模式解码器130。移位寄存器122与时钟信号CLK相同步地依次对串行数据SD移位,并将N2数目的串行数据SD输出到内部测试模块140。同样,移位寄存器123将Nk个串行数据SD输出到内部测试模块150。The comparator 112 compares the output value Y1 of the bit counter 111 with the number N of operation modes. If the output value Y1 is less than the operating mode number N, the comparator 112 generates an enable signal Y2. In this case, the enable signal Y2 has a high logic level (“1”). The operation mode storage 120 includes k+1 shift registers 121 to 123 that operate in response to the enable signal Y2. When the reset signal RESET is disabled (that is, when the reset signal RESET has a low-to-high logic level transition), the k+1 shift registers 121 to 123 sequentially perform serial data input from the outside in synchronization with the clock signal CLK SD shift. The k+1 shift registers 121 to 123 stop when the output value Y1 of the bit counter 111 in the operation mode storage device 120 reaches the number N of operation modes. That is, the k+1 shift registers 121 to 123 operate when the enable signal Y2 is at a high logic level. One of the k+1 shift registers 121 to 123 is set to indicate at least one operation mode. FIG. 4 illustrates an example in which the shift register 121 is set to indicate an operation mode. In other words, when the enable signal Y2 is at a high logic level, the shift register 121 sequentially shifts the serial data SD in synchronization with the clock signal CLK, and outputs N1 number of serial data SD to the operation mode decoder 130. The shift register 122 sequentially shifts the serial data SD in synchronization with the clock signal CLK, and outputs N2 number of serial data SD to the internal test module 140 . Likewise, the shift register 123 outputs Nk pieces of serial data SD to the internal test module 150 .

操作模式解码器130从移位寄存器121接收N1个串行数据SD,以将2N1个操作模式选择信号输出到多路复用器160。内部测试模块140从移位寄存器122接收N2个串行数据SD,以生成2N2个测试信号,并且,内部测试模块150生成2Nk个测试信号。k个内部测试模块140至150中的每个是用于以每个预定测试模式来测试片上系统100中的所选目标的器件。The operation mode decoder 130 receives N1 serial data SD from the shift register 121 to output 2N1 operation mode selection signals to the multiplexer 160 . The internal test module 140 receives N2 serial data SD from the shift register 122 to generate 2N2 test signals, and the internal test module 150 generates 2N k test signals. Each of the k internal test modules 140 to 150 is a device for testing a selected target in the system on chip 100 in each predetermined test mode.

多路复用器160通过操作模式控制器110的使能信号R2而被激活,并将输出OP_MODE固定为恒定值(例如,“0000...0000”),直到完成了操作模式存储装置120的移位操作为止。如果不这样,则会改变操作模式解码器130的输出。因为可根据操作模式解码器130的输出而设置非期望的操作模式,所以,这可能在测试操作期间引起一些问题。The multiplexer 160 is activated by the enable signal R2 of the operation mode controller 110, and fixes the output OP_MODE to a constant value (for example, "0000...0000") until the completion of the operation mode storage device 120. up to the shift operation. If not, the output of the operation mode decoder 130 is changed. This may cause some problems during the test operation because an undesired operation mode may be set according to the output of the operation mode decoder 130 .

图5和6是根据本发明的时序图。为了简练起见,假定图4中的操作模式存储装置120包括四个移位寄存器,并且操作模式数N为9。参照图5,图4中的操作模式控制器110中的位计数器111与时钟信号的每个上升沿相同步地计数。在时钟信号CLK的下降沿禁止复位信号RESET,以确保移除/恢复余量(margin)。位计数器111与时钟信号CLK的上升沿相同步地操作,并且,在时钟信号CLK的下降沿,通过测试引脚IO_TEST而输入串行数据SD,以确保建立/保持(setup/hold)余量。5 and 6 are timing diagrams according to the present invention. For simplicity, it is assumed that the operation mode storage device 120 in FIG. 4 includes four shift registers, and the number N of operation modes is nine. Referring to FIG. 5, the bit counter 111 in the operation mode controller 110 in FIG. 4 counts in synchronization with each rising edge of the clock signal. The reset signal RESET is disabled at the falling edge of the clock signal CLK to ensure a removal/recovery margin. The bit counter 111 operates in synchronization with the rising edge of the clock signal CLK, and, at the falling edge of the clock signal CLK, the serial data SD is input through the test pin IO_TEST to ensure a setup/hold margin.

与时钟信号CLK相同步地依次对串行数据SD移位。在移位寄存器123中设置一些串行数据C0、C1和C2,在移位寄存器122中设置另一些串行数据B0和B1,并且,在移位寄存器121中设置其余的串行数据A0、A1、A2和A3。移位寄存器122和123的输出SEL2和SEL3指示特定操作模式中的低级(lower)操作模式,或选择低级测试目标。多路复用器160的输出信号OP_MODE被固定为恒定值,直到根据串行数据SD而设置了寄存器121、122和123为止。这是因为操作模式解码器130的输出未改变。The serial data SD is sequentially shifted in synchronization with the clock signal CLK. Some serial data C0, C1 and C2 are set in the shift register 123, other serial data B0 and B1 are set in the shift register 122, and the remaining serial data A0, A1 are set in the shift register 121 , A2 and A3. Outputs SEL2 and SEL3 of the shift registers 122 and 123 indicate a lower operation mode among specific operation modes, or select a lower test target. The output signal OP_MODE of the multiplexer 160 is fixed to a constant value until the registers 121, 122, and 123 are set according to the serial data SD. This is because the output of the operation mode decoder 130 has not changed.

如在上面完整描述的,在根据测试向量、通过测试引脚IO_TEST而输入了串行数据SD的测试模式中,可容易地调整复位信号RESET、时钟信号CLK、以及串行数据SD之间的定时。然而,在正常操作模式中根据时钟信号CLK而改变定时是很复杂的,其中,芯片进行操作,且将串行数据SD固定为恒定值逻辑“0”或“1”。因此,指示特定操作模式的寄存器121的值A0、A1、A2以及A3被定义为逻辑“0”或逻辑“1”。As fully described above, in the test mode in which the serial data SD is input through the test pin IO_TEST according to the test vector, the timing among the reset signal RESET, the clock signal CLK, and the serial data SD can be easily adjusted . However, it is complicated to change the timing according to the clock signal CLK in the normal operation mode in which the chip operates and fixes the serial data SD to a constant value logic "0" or "1". Therefore, the values A0, A1, A2, and A3 of the register 121 indicating a specific operation mode are defined as logic "0" or logic "1".

假定图4中的移位寄存器的数目为1,且操作模式数N为4。参照图6,操作模式控制器110中的位计数器111在时钟信号CLK的上升沿执行计数操作。在时钟信号CLK的下降沿禁止复位信号RESET。位计数器111在时钟信号CLK的上升沿操作,在时钟信号的下降沿,通过测试引脚IO_TEST而输入串行数据SD。因此,充分地确保了与串行数据SD相关的建立/保持余量。Assume that the number of shift registers in FIG. 4 is one, and the number N of operation modes is four. Referring to FIG. 6, the bit counter 111 in the operation mode controller 110 performs a counting operation at a rising edge of a clock signal CLK. The reset signal RESET is disabled on the falling edge of the clock signal CLK. The bit counter 111 operates at the rising edge of the clock signal CLK, and inputs the serial data SD through the test pin IO_TEST at the falling edge of the clock signal. Therefore, the setup/hold margin related to the serial data SD is sufficiently ensured.

在移位寄存器121中,与时钟信号CLK相同步地依次对串行数据SD移位,以便被设置。值A0、A1、A2和A3各自指示低级操作模式和正常操作。在每个低级操作模式中,分别测试输入/输出接口、存储器和内部逻辑操作。将多路复用器160的输出信号OP MODE固定为恒定值,直到完全地设置了移位寄存器121为止。In the shift register 121, the serial data SD is sequentially shifted in synchronization with the clock signal CLK so as to be set. Values A0, A1, A2, and A3 each indicate a low-level mode of operation and normal operation. In each low-level operating mode, the input/output interfaces, memory and internal logic operations are tested separately. The output signal OP MODE of the multiplexer 160 is fixed at a constant value until the shift register 121 is fully set.

下文中,将描述能够通过使用芯片的输入/输出引脚而不需要测试引脚来测试的片上系统、及其方法。Hereinafter, a system on chip capable of testing by using input/output pins of a chip without requiring test pins, and a method thereof will be described.

图7是根据本发明的另一个实施例的片上系统的框图。参照图7,本发明的片上系统200包括延迟复位信号生成器203、计数器204、解码器205、测试模式寄存器206、输入/输出控制器240、时钟信号输入引脚210、复位信号输入引脚220、以及输入/输出引脚230。FIG. 7 is a block diagram of a system-on-chip according to another embodiment of the present invention. Referring to Fig. 7, SoC 200 of the present invention comprises delay reset signal generator 203, counter 204, decoder 205, test mode register 206, input/output controller 240, clock signal input pin 210, reset signal input pin 220 , and input/output pins 230 .

时钟信号输入引脚210接收从振荡器(未示出)生成的时钟信号CLK。时钟信号CLK用于使到计数器204和测试模式寄存器206的输入同步。复位信号输入引脚220接收外部复位信号RESET,其被施加到延迟复位信号生成器203和计数器204。复位信号RESET用于确定在测试模式寄存器206中设置指示测试模式的数据的时刻。输入/输出引脚230连接到输入/输出控制器240。在设置测试模式时,输入/输出控制器240将输入/输出引脚230固定为用于接收外部测试数据D_IN的输入引脚。在完全地设置了测试模式之后,输入/输出控制器240将输入/输出引脚230固定为用于将输出数据D_OUT从内部逻辑发送到外部存储器的输出引脚。The clock signal input pin 210 receives a clock signal CLK generated from an oscillator (not shown). Clock signal CLK is used to synchronize the inputs to counter 204 and test mode register 206 . The reset signal input pin 220 receives an external reset signal RESET, which is applied to the delayed reset signal generator 203 and the counter 204 . The reset signal RESET is used to determine the timing at which data indicating the test mode is set in the test mode register 206 . The input/output pin 230 is connected to an input/output controller 240 . When the test mode is set, the input/output controller 240 fixes the input/output pin 230 as an input pin for receiving external test data D_IN. After the test mode is completely set, the input/output controller 240 fixes the input/output pin 230 as an output pin for transmitting the output data D_OUT from the internal logic to the external memory.

延迟复位信号生成器203将从复位输入引脚220输入的复位信号RESET延迟,并将延迟的复位信号DE_RESET输出到输入/输出控制器230。将复位信号RESET延迟与log2N个时钟周期的绝对值(即芯片中的测试模式的数目)相对应的周期以上。也就是说,延迟复位信号生成器203将复位信号RESET延迟一段时间,以设置芯片中的测试模式。例如,当测试模式的数目为6时,设置测试模式寄存器所需的位数为3。由此,将复位信号RESET延迟三个周期以上。另外,延迟复位信号生成器203确定输入/输出引脚230的设置从输入改变为输出的时刻。将计数器204设为在复位信号RESET处于低逻辑电平的时间间隔期间维持值“0”。计数器204在复位信号RESET从低转换为高逻辑电平时计数。计数器204将计数值输出到解码器205,并且,如果计数值达到log2N的绝对值(即芯片中的测试模式的数目),则生成计数结束信号CNT_DONE。当将计数结束信号CNT_DONE输入到输入/输出控制器240时,输入/输出控制器240将输入/输出引脚230的设置从输入改变为输出。The delayed reset signal generator 203 delays the reset signal RESET input from the reset input pin 220 and outputs the delayed reset signal DE_RESET to the input/output controller 230 . The reset signal RESET is delayed by more than a period corresponding to the absolute value of log 2 N clock periods (ie, the number of test patterns in the chip). That is, the delayed reset signal generator 203 delays the reset signal RESET for a period of time to set the test mode in the chip. For example, when the number of test patterns is 6, the number of bits required to set the test pattern register is 3. Thus, the reset signal RESET is delayed by three cycles or more. In addition, the delayed reset signal generator 203 determines the timing at which the setting of the input/output pin 230 is changed from input to output. The counter 204 is set to maintain a value of "0" during the time interval that the reset signal RESET is at a low logic level. The counter 204 counts when the reset signal RESET transitions from a low to a high logic level. The counter 204 outputs the count value to the decoder 205, and generates a count end signal CNT_DONE if the count value reaches the absolute value of log 2 N (ie, the number of test patterns in the chip). When the count end signal CNT_DONE is input to the input/output controller 240, the input/output controller 240 changes the setting of the input/output pin 230 from input to output.

解码器205生成选择信号,用于选择存储来自输入/输出控制器240的测试数据D_IN的测试模式寄存器206的特定位置。测试模式寄存器206响应于来自解码器205的选择信号,而与时钟信号CLK相同步地存储测试数据D_IN。如上所述,测试模式寄存器206的位数在log2N的绝对值(即芯片中的测试模式的数目)以上。The decoder 205 generates a selection signal for selecting a specific location of the test mode register 206 storing the test data D_IN from the input/output controller 240 . The test mode register 206 stores test data D_IN in synchronization with the clock signal CLK in response to a selection signal from the decoder 205 . As mentioned above, the number of bits of the test pattern register 206 is above the absolute value of log 2 N (ie, the number of test patterns in the chip).

图8是根据本发明的另一个实施例的图7的输入/输出控制器的电路图。参照图8,输入/输出控制器240包括第一和第二三态缓冲器242和243、以及或门241。第一三态缓冲器242的输入端连接到输入/输出引脚230,而其输出端连接到测试模式寄存器206。或门241的输出端连接到第一和第二三态缓冲器242和243的使能端,并且,或门241的一个输入端连接到延迟复位信号生成器203。第一和第二三态缓冲器242和243通过或门241的输出信号而被使能或禁止。或门241的输出信号为来自延迟复位信号生成器203的延迟复位信号DE_RESET和来自计数器204的计数结束信号CNT_DONE的逻辑组合信号。当延迟复位信号DE_RESET和计数结束信号CNT_DONE中的一个处于高逻辑电平时,第一三态缓冲器242被使能,以通过输入/输出引脚230而将输出数据D_OUT从内部逻辑输出到例如外部存储器的外部器件。当延迟复位信号DE_RESET和计数结束信号CNT_DONE两者皆处于低逻辑电平时,第二三态缓冲器243被使能,以通过输入/输出引脚230而将测试数据D_IN输入到测试模式寄存器206。FIG. 8 is a circuit diagram of the input/output controller of FIG. 7 according to another embodiment of the present invention. Referring to FIG. 8 , the input/output controller 240 includes first and second tri-state buffers 242 and 243 , and an OR gate 241 . The input of the first tri-state buffer 242 is connected to the input/output pin 230 and the output thereof is connected to the test mode register 206 . An output terminal of the OR gate 241 is connected to enable terminals of the first and second tri-state buffers 242 and 243 , and one input terminal of the OR gate 241 is connected to the delayed reset signal generator 203 . The first and second tri-state buffers 242 and 243 are enabled or disabled by the output signal of the OR gate 241 . The output signal of the OR gate 241 is a logical combination signal of the delayed reset signal DE_RESET from the delayed reset signal generator 203 and the count end signal CNT_DONE from the counter 204 . When one of the delay reset signal DE_RESET and the count end signal CNT_DONE is at a high logic level, the first tri-state buffer 242 is enabled to output the output data D_OUT from the internal logic to, for example, the outside through the input/output pin 230 memory external devices. When both the delayed reset signal DE_RESET and the count end signal CNT_DONE are at low logic levels, the second tri-state buffer 243 is enabled to input the test data D_IN to the test mode register 206 through the input/output pin 230 .

图9是根据本发明的另一个实施例的图7的片上系统的时序图。在图9中,假定测试模式的数目为5-8,并且,将一个为二进制数据“101”的测试模式存储在模式寄存器206的预定位置(例如,寄存器位[2:0])中。FIG. 9 is a timing diagram of the system-on-chip of FIG. 7 according to another embodiment of the present invention. In FIG. 9, it is assumed that the number of test patterns is 5-8, and a test pattern that is binary data "101" is stored in a predetermined location of the pattern register 206 (for example, register bits [2:0]).

参照图7和9,将低逻辑电平的复位信号RESET通过复位输入引脚220而施加到芯片,并经过了一段时间。复位信号RESET从低转换为高逻辑电平(在T1处)。通常,芯片在复位信号RESET的低至高逻辑电平转换时正常地操作。然而,根据本发明,通过延迟复位信号生成器203而将复位信号RESET延迟为预定时间(在T6处)。因此,在复位信号RESET从低转换为高逻辑电平的时刻T1和延迟的复位信号DE_RESET从低转换为高逻辑电平的时刻T6之间,在测试模式寄存器206中设置指示测试模式的值。输入/输出引脚230在时刻T1和时刻T6之间用作输入引脚。在T1处,计数器204开始计数操作。计数器204与时钟信号CLK相同步地对T1之后的上升沿计数。解码器205生成选择信号,用于选择根据计数值而记录通过输入/输出引脚230而输入的测试数据D_IN的测试模式寄存器206的预定位置。在测试模式寄存器206的最低有效位(LSB)中记录值{1,0,1}。由于计数器204的输出在T2处为“0”,所以,在测试模式寄存器206的[0]中写入测试数据D_IN的值“1”。由于计数器的值在T3处为“1”,所以,在测试模式寄存器206的[1]中写入测试数据D_IN的值“0”。由于计数器的值在T4处为“2”,所以,在测试模式寄存器206的[2]中写入测试数据D_IN的值“1”。当计数值达到log2N的绝对值(即芯片中的测试模式的数目)时,计数器204将处于高逻辑电平的计数结束信号CNT_DONE发送到输入/输出控制器240。输入/输出控制器240响应于计数结束信号CNT_DONE,而使输入/输出引脚230用作输出引脚。Referring to FIGS. 7 and 9, a reset signal RESET of a low logic level is applied to the chip through the reset input pin 220, and a period of time elapses. Reset signal RESET transitions from low to high logic level (at T1 ). Normally, the chip operates normally at the low-to-high logic level transition of the reset signal RESET. However, according to the present invention, the reset signal RESET is delayed for a predetermined time (at T6 ) by delaying the reset signal generator 203 . Thus, a value indicative of a test mode is set in the test mode register 206 between time T1 when reset signal RESET transitions from low to high logic level and time T6 when delayed reset signal DE_RESET transitions from low to high logic level. The input/output pin 230 is used as an input pin between time T1 and time T6. At T1, the counter 204 starts counting operation. The counter 204 counts rising edges after T1 in synchronization with the clock signal CLK. The decoder 205 generates a selection signal for selecting a predetermined location of the test mode register 206 that records the test data D_IN input through the input/output pin 230 according to the count value. The value {1, 0, 1} is recorded in the least significant bit (LSB) of the test mode register 206 . Since the output of the counter 204 is "0" at T2, the value "1" of the test data D_IN is written in [0] of the test mode register 206 . Since the value of the counter is "1" at T3, the value "0" of the test data D_IN is written in [1] of the test mode register 206 . Since the value of the counter is "2" at T4, the value "1" of the test data D_IN is written in [2] of the test mode register 206 . When the count value reaches an absolute value of log2N (ie, the number of test patterns in the chip), the counter 204 sends a count end signal CNT_DONE at a high logic level to the input/output controller 240 . The input/output controller 240 makes the input/output pin 230 function as an output pin in response to the count end signal CNT_DONE.

图10是根据本发明的另一个实施例的片上系统的框图。参照图10,本发明的片上系统200′具有类似于图1中的片上系统200的结构。然而,片上系统200′具有取代输入/输出引脚230的输入引脚230′、以及取代输入/输出控制器240的多路分解器250。将不会进一步描述参照图7而描述的组件,并且,通过图7中的相同的附图标记来标记与图7中的组件相同的组件。FIG. 10 is a block diagram of a system-on-chip according to another embodiment of the present invention. Referring to FIG. 10, a system-on-chip 200' of the present invention has a structure similar to the system-on-chip 200 in FIG. 1. Referring to FIG. However, the system on chip 200 ′ has an input pin 230 ′ instead of the input/output pin 230 , and a demultiplexer 250 instead of the input/output controller 240 . The components described with reference to FIG. 7 will not be further described, and the same components as those in FIG. 7 are denoted by the same reference numerals in FIG. 7 .

连接到多路分解器250的输入引脚230′在设置测试模式时用作用于接收外部测试数据Test_IN的测试引脚,而在完全地设置了测试模式之后用作用于接收发送到内部逻辑电路的输入数据Func_IN的输入引脚。延迟复位信号生成器203使从复位输入引脚220输入的复位信号RESET延迟,以将延迟的复位信号DE_RESET发送到或门241。延迟复位信号生成器203生成确定输入引脚230′将其角色从测试引脚改变为正常操作引脚的时刻的延迟的复位信号DE_RESET。将从计数器204生成的计数结束信号CNT_DONE施加到或门,以将输入引脚230′的角色从测试引脚改变为输入引脚。多路分解器250的输入端连接到输入引脚230′,而其第一输出端连接到内部逻辑电路。多路分解器250的第二输出端连接到测试模式寄存器206。多路分解器250根据作为来自计数器204的计数结束信号CNT_DONE和来自延迟复位信号生成器203的延迟的复位信号DE_RESET的逻辑组合信号的使能信号EN,而控制通过输入引脚230′接收的数据。也就是说,当使能信号EN处于低逻辑电平时,多路分解器250的第一输出端被激活,以将测试数据TEST_IN发送到测试模式寄存器206。同时,当使能信号EN处于高逻辑电平时,多路分解器250的第二输出端被激活,以将在正常操作模式下通过输入引脚230′接收的输入数据Func_IN发送到内部逻辑。The input pin 230' connected to the demultiplexer 250 is used as a test pin for receiving external test data Test_IN when the test mode is set, and as a test pin for receiving data sent to the internal logic circuit after the test mode is completely set. Input pin for input data Func_IN. The delayed reset signal generator 203 delays the reset signal RESET input from the reset input pin 220 to transmit the delayed reset signal DE_RESET to the OR gate 241 . The delayed reset signal generator 203 generates a delayed reset signal DE_RESET that determines the moment when the input pin 230' changes its role from a test pin to a normal operation pin. The count end signal CNT_DONE generated from the counter 204 is applied to the OR gate to change the role of the input pin 230' from a test pin to an input pin. The input of the demultiplexer 250 is connected to the input pin 230', while its first output is connected to the internal logic circuit. A second output of the demultiplexer 250 is connected to the test mode register 206 . The demultiplexer 250 controls the data received through the input pin 230' according to the enable signal EN which is a logical combination signal of the count end signal CNT_DONE from the counter 204 and the delayed reset signal DE_RESET from the delayed reset signal generator 203. . That is, when the enable signal EN is at a low logic level, the first output terminal of the demultiplexer 250 is activated to transmit the test data TEST_IN to the test mode register 206 . Meanwhile, when the enable signal EN is at a high logic level, the second output terminal of the demultiplexer 250 is activated to transmit the input data Func_IN received through the input pin 230' in the normal operation mode to the internal logic.

图11是根据本发明的另一个实施例的图10的片上系统的时序图。假定测试模式的数目为5-8,并且,将指示一个测试模式的二进制数据“101”记录在测试模式寄存器206的预定位置(例如,[2:0])中。FIG. 11 is a timing diagram of the system-on-chip of FIG. 10 according to another embodiment of the present invention. Assume that the number of test patterns is 5-8, and binary data "101" indicating one test pattern is recorded in a predetermined position (eg, [2:0]) of the test pattern register 206 .

参照图10和11,将处于低逻辑电平的复位信号RESET通过复位输入引脚220而施加到芯片,并经过了一段时间。复位信号RESET在T1处从低转换为高逻辑电平。通常,芯片在复位信号从低转换为高逻辑电平时开始正常操作。然而,通过延迟复位信号生成器203而将复位信号RESET延迟至预定时刻T6。因此,在时刻T1和时刻T6之间,在测试模式寄存器206中设置指示测试模式的值。复位信号RESET在时刻T1从低转换为高逻辑电平,而延迟的复位信号在时刻T6从低转换为高逻辑电平。输入引脚230′在时刻T1和时刻T6之间用作测试引脚。在T1处,计数器204开始计数。计数器204与时钟信号CLK相同步地对T1之后的时钟信号CLK的上升沿计数。解码器205根据计数器204的计数值而确定通过输入引脚230′而输入测试数据Test_IN的测试模式寄存器206的特定位置。换句话说,在测试模式寄存器206中从LSB起依次写入值{1,0,1}。由于计数器的值在T2处为“0”,所以,在测试模式寄存器的[0]中写入测试数据Test_IN的值“1”。由于计数器的值在T3处为“1”,所以,在测试模式寄存器的[1]中写入测试数据Test_IN的值“1”。由于计数器的值在T4处为“2”,所以,在测试模式寄存器的[2]中写入测试数据Test_IN的值“1”。Referring to FIGS. 10 and 11, a reset signal RESET at a low logic level is applied to the chip through the reset input pin 220, and a period of time elapses. The reset signal RESET transitions from low to high logic level at T1. Normally, the chip begins normal operation when the reset signal transitions from a low to a high logic level. However, the reset signal RESET is delayed until a predetermined time T6 by delaying the reset signal generator 203 . Therefore, between time T1 and time T6, a value indicative of the test mode is set in the test mode register 206 . The reset signal RESET transitions from low to high logic level at time T1, and the delayed reset signal transitions from low to high logic level at time T6. The input pin 230' is used as a test pin between time T1 and time T6. At T1, the counter 204 starts counting. The counter 204 counts rising edges of the clock signal CLK after T1 in synchronization with the clock signal CLK. The decoder 205 determines a specific position of the test mode register 206 to which the test data Test_IN is input through the input pin 230 ′ according to the count value of the counter 204 . In other words, the values {1, 0, 1} are written sequentially from the LSB in the test mode register 206 . Since the value of the counter is "0" at T2, the value "1" of the test data Test_IN is written in [0] of the test mode register. Since the value of the counter is "1" at T3, the value "1" of the test data Test_IN is written in [1] of the test mode register. Since the value of the counter is "2" at T4, the value "1" of the test data Test_IN is written in [2] of the test mode register.

当计数值达到log2N的绝对值(即芯片中的测试模式的数目)时,计数器204将处于高逻辑电平的计数结束信号CNT_DONE发送到或门241。当将计数结束信号CNT_DONE施加到多路分解器时,输入引脚230′将其功能恢复为用于接收发送到内部逻辑的数据Func_IN的正常输入引脚。因而,本发明可在无附加测试引脚的情况下设置各种测试模式。When the count value reaches the absolute value of log 2 N (ie, the number of test patterns in the chip), the counter 204 sends a count end signal CNT_DONE at a high logic level to the OR gate 241 . When the count end signal CNT_DONE is applied to the demultiplexer, the input pin 230' resumes its function as a normal input pin for receiving data Func_IN transmitted to the internal logic. Thus, the present invention can set various test modes without additional test pins.

根据本发明的示范实施例,减少在测试信号的输入/输出中使用的引脚的数目,以使片上系统的尺寸最小化,并减小功耗。According to exemplary embodiments of the present invention, the number of pins used in input/output of test signals is reduced to minimize the size of a system on chip and reduce power consumption.

根据本发明的一个示范实施例,可使用一个特定测试引脚而设置具有各种低级操作模式的测试模式。在此实施例中,可利用时钟信号和复位信号,调整通过一个测试引脚而针对于测试向量输入的信号的定时。另外,可通过多个移位寄存器而在芯片中设置特定模式的低级操作模式。According to an exemplary embodiment of the present invention, a test mode with various low-level operation modes can be set using one specific test pin. In this embodiment, the timing of the signal input for the test vector through one test pin can be adjusted using the clock signal and the reset signal. In addition, a specific mode of low-level operation mode can be set in the chip through a plurality of shift registers.

尽管已结合在附图中图解的本发明的示范实施例而描述了本发明,但本发明不限于此。对于本领域的技术人员来说显而易见的是,在不背离本发明的范围和精神的情况下可对其作出各种替换、修改和改变。Although the invention has been described in connection with the exemplary embodiments of the invention illustrated in the drawings, the invention is not limited thereto. It will be apparent to those skilled in the art that various substitutions, modifications and changes can be made therein without departing from the scope and spirit of the invention.

Claims (11)

1、一种半导体器件,其包括:1. A semiconductor device comprising: 测试引脚,用于输入/输出测试数据;Test pins for input/output of test data; 操作模式控制器,用于响应于外部复位信号和时钟信号而激活使能信号;an operation mode controller for activating an enable signal in response to an external reset signal and a clock signal; 第一移位寄存器,用于响应于使能信号,通过测试引脚而与时钟信号相同步地接收串行数据;The first shift register is used to receive serial data synchronously with the clock signal through the test pin in response to the enable signal; 第二移位寄存器,用于响应于所述使能信号而同步于所述时钟信号从所述第一移位寄存器接收串行数据;a second shift register for receiving serial data from the first shift register in synchronization with the clock signal in response to the enable signal; 操作模式解码器,用于通过对存储于所述第一移位寄存器和所述第二移位寄存器中的一个中的串行数据解码而生成操作模式选择信号;以及an operation mode decoder for generating an operation mode selection signal by decoding serial data stored in one of the first shift register and the second shift register; and 内部测试模块,用于接收存储于所述第一移位寄存器和所述第二移位寄存器中的另一个中的串行数据作为测试信号。An internal test module for receiving serial data stored in the other of the first shift register and the second shift register as a test signal. 2、如权利要求1所述的器件,其中,操作模式控制器包括:2. The device of claim 1, wherein the operating mode controller comprises: 位计数器,用于响应于复位信号的低至高逻辑电平转换,而对时钟信号的上升沿计数;以及a bit counter for counting rising edges of the clock signal in response to a low-to-high logic level transition of the reset signal; and 比较器,用于将位计数器的输出值与操作模式数相比较,以在该输出值小于操作模式数时激活使能信号,a comparator for comparing the output value of the bit counter with the operating mode number to activate the enable signal when the output value is less than the operating mode number, 其中,通过串行数据来确定操作模式数。Among them, the number of operation modes is determined through serial data. 3、如权利要求2所述的器件,其中,从复位信号的低至高逻辑电平转换到计数值达到操作模式数时,使能信号处于高逻辑电平。3. The device of claim 2, wherein the enable signal is at a high logic level when the count value reaches the operating mode number from a low to high logic level transition of the reset signal. 4、如权利要求1所述的器件,其中,所述第一移位寄存器和所述第二移位寄存器响应于来自操作模式控制器的使能信号而对串行数据移位。4. The device of claim 1, wherein the first shift register and the second shift register shift the serial data in response to an enable signal from an operation mode controller. 5、如权利要求4所述的器件,其中,将所述第一移位寄存器和所述第二移位寄存器设为指示操作模式。5. The device of claim 4, wherein the first shift register and the second shift register are set to indicate an operation mode. 6、如权利要求4所述的器件,其中,将所述第一移位寄存器和所述第二移位寄存器设为指示属于操作模式的低级操作模式和测试目标,6. The device of claim 4, wherein the first shift register and the second shift register are set to indicate a low-level operation mode and a test target belonging to an operation mode, 其中,测试目标是要测试的半导体器件中的组件。Among them, the test target is a component in the semiconductor device to be tested. 7、如权利要求6所述的器件,其中,测试目标包括输入/输出接口、存储器和内部逻辑电路。7. The device of claim 6, wherein the test target includes an input/output interface, a memory, and an internal logic circuit. 8、如权利要求1所述的器件,其中,复位信号与时钟信号的下降沿相同步地从低转换至高逻辑电平。8. The device of claim 1, wherein the reset signal transitions from low to high logic level in synchronization with a falling edge of the clock signal. 9、如权利要求5所述的器件,其中,操作模式包括正常操作模式,其中,半导体器件执行正常功能。9. The device of claim 5, wherein the operation mode comprises a normal operation mode, wherein the semiconductor device performs a normal function. 10、如权利要求9所述的器件,其中,在所述第一移位寄存器和所述第二移位寄存器中设置正常操作模式。10. The device of claim 9, wherein a normal operation mode is set in the first shift register and the second shift register. 11、如权利要求3所述的器件,还包括多路复用器,用于响应于来自操作模式控制器的使能信号的高至低逻辑电平转换,而输出操作模式选择信号。11. The device of claim 3, further comprising a multiplexer to output the operation mode selection signal in response to a high-to-low logic level transition of the enable signal from the operation mode controller.
CN200610007145A 2005-02-03 2006-02-05 Semiconductor device tested using minimum pins, and method of testing same Expired - Fee Related CN100585852C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020050010048A KR100706240B1 (en) 2005-02-03 2005-02-03 System-on-Chip and Test Method for Testing with One Test Pin
KR10048/05 2005-02-03
KR10748/05 2005-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2009101786538A Division CN101694512B (en) 2005-02-03 2006-02-05 Test Circuit and System-on-Chip

Publications (2)

Publication Number Publication Date
CN1819197A CN1819197A (en) 2006-08-16
CN100585852C true CN100585852C (en) 2010-01-27

Family

ID=36919068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610007145A Expired - Fee Related CN100585852C (en) 2005-02-03 2006-02-05 Semiconductor device tested using minimum pins, and method of testing same

Country Status (2)

Country Link
KR (1) KR100706240B1 (en)
CN (1) CN100585852C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345944B (en) * 2013-06-26 2017-02-08 上海华虹宏力半导体制造有限公司 Storage device and method for testing storage device through test machine
CN104134466B (en) * 2014-07-23 2017-05-10 大唐微电子技术有限公司 Chip and test state entering method thereof
KR20160091508A (en) * 2015-01-23 2016-08-03 에스케이하이닉스 주식회사 Test mode circuit and Semiconductor device including the same
CN105575442B (en) * 2015-12-16 2019-03-08 鸿秦(北京)科技有限公司 A kind of test method and test device of NOR flash memory
CN106531654B (en) * 2016-11-14 2019-04-16 福州瑞芯微电子股份有限公司 A kind of chip input pin test method and device
CN106918775A (en) * 2017-04-21 2017-07-04 成都锐成芯微科技股份有限公司 The access method of chip test mode
CN108508352B (en) * 2018-04-19 2020-11-24 中国电子科技集团公司第五十八研究所 Test code generating circuit
US10571518B1 (en) * 2018-09-26 2020-02-25 Nxp B.V. Limited pin test interface with analog test bus
CN111157872A (en) * 2019-12-25 2020-05-15 上海亮牛半导体科技有限公司 Method for multiplexing existing logic pin to enter test mode
CN112130053B (en) * 2020-08-11 2024-05-14 上海华虹集成电路有限责任公司 Method for synchronously testing chip functions on ATE
CN112666444B (en) * 2020-12-03 2024-06-04 思瑞浦微电子科技(苏州)股份有限公司 Chip FT test method and system
CN114089434B (en) * 2021-10-21 2023-08-15 中国电子科技集团公司第十一研究所 Single-pin input readout circuit assembly and readout circuit
CN114089157B (en) * 2021-11-02 2024-04-12 广州昂宝电子有限公司 Chip testing method and system
US20230204662A1 (en) * 2021-12-28 2023-06-29 Advanced Micro Devices Products (China) Co. Ltd., On-chip distribution of test data for multiple dies
CN118629453A (en) * 2023-03-03 2024-09-10 长鑫存储技术有限公司 Memory
CN116520138B (en) * 2023-06-27 2023-09-22 苏州联芸科技有限公司 Chip testing method, system and device
CN119511033B (en) * 2024-11-19 2025-07-22 无锡英迪芯微电子科技股份有限公司 Chip burn-in test method and device, electronic equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815392A (en) * 1994-06-27 1996-01-19 Matsushita Electric Ind Co Ltd Test mode setting circuit
JP3493132B2 (en) 1998-04-15 2004-02-03 東芝マイクロエレクトロニクス株式会社 Mode setting circuit
JPH11326468A (en) 1998-05-12 1999-11-26 Oki Business Co Ltd Test mode setting circuit
JP2002168925A (en) 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd Structure of IC tester and pattern memory
KR100448706B1 (en) 2002-07-23 2004-09-13 삼성전자주식회사 System on a chip and test/debug method thereof

Also Published As

Publication number Publication date
CN1819197A (en) 2006-08-16
KR100706240B1 (en) 2007-04-11
KR20060089930A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CN100585852C (en) Semiconductor device tested using minimum pins, and method of testing same
CN101694512B (en) Test Circuit and System-on-Chip
US7788558B2 (en) Semiconductor integrated circuit and control method thereof
CN100518051C (en) Device and method for synchronous data transmission using a reference signal
KR100837802B1 (en) Semiconductor memory device with data input / output error detection
US8427892B2 (en) Write strobe generation for a memory interface controller
JP4308461B2 (en) Semiconductor memory device
US20200081520A1 (en) Systems and methods for frequency mode detection and implementation
JP2009211797A (en) Semiconductor element
JP2006505866A (en) Data acquisition method and apparatus
CN115910145B (en) Command clock gate implementation with chip select signal training indication
US8483005B2 (en) Internal signal generator for use in semiconductor memory device
KR100963385B1 (en) Dual-path, multimode sequential storage element
JP2006166445A (en) Output reporting technique for hard intellectual property block
CN110349606B (en) Semiconductor memory device and method of operating the same
CN117769805A (en) Aging reduction
US9804224B2 (en) Integrated circuit and method of operating an integrated circuit
US6900665B2 (en) Transfer of digital data across asynchronous clock domains
KR100850204B1 (en) Method and apparatus for generating high-frequency command and address signals for high-speed semiconductor memory device testing
CN111949069B (en) Circuit for asynchronous data transfer
US6810498B2 (en) RAM functional test facilitation circuit with reduced scale
JP2002279797A (en) Semiconductor memory
JP2001319494A (en) Built-in self-test device for memory circuit
KR100706241B1 (en) System-on-Chip and Test Methods for Testing Without Using Test Pins
KR101004686B1 (en) Semiconductor memory device and driving method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100127

Termination date: 20130205