CN100585629C - Analog processors including quantum devices - Google Patents
Analog processors including quantum devices Download PDFInfo
- Publication number
- CN100585629C CN100585629C CN200580044348A CN200580044348A CN100585629C CN 100585629 C CN100585629 C CN 100585629C CN 200580044348 A CN200580044348 A CN 200580044348A CN 200580044348 A CN200580044348 A CN 200580044348A CN 100585629 C CN100585629 C CN 100585629C
- Authority
- CN
- China
- Prior art keywords
- quantum
- devices
- coupling
- processor
- lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Complex Calculations (AREA)
Abstract
提供了用于求解各种计算问题的模拟处理器。此类模拟处理器包括与多个耦连装置一起安排在一个点阵中的多个量子装置。该模拟处理器进一步包括偏置控制系统,它们每一个被配置为向一个对应的量子装置施加本地有效的偏置。该多个耦连装置中的一组耦连装置被配置为对该点阵中的最近相邻的量子装置进行耦连。另一组耦连装置被配置为对次最近相邻的量子装置进行耦连。该模拟处理器进一步包括多个耦连控制系统,它们每一个被配置为对该多个耦连装置中的一个对应的耦连装置的耦连值进行调整。此类量子处理器进一步包括一组读出装置,它们每一个被配置为测量来自该多个量子装置中的一个对应的量子装置的信息。
An analog processor for solving a variety of computational problems is provided. Such analog processors include multiple quantum devices arranged in a lattice with multiple coupled devices. The analog processor further includes bias control systems each configured to apply a locally effective bias to a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next nearest neighbor quantum devices. The analog processor further includes a plurality of coupling control systems, each configured to adjust a coupling value of a corresponding one of the plurality of coupling devices. Such a quantum processor further includes a set of readout devices each configured to measure information from a corresponding quantum device of the plurality of quantum devices.
Description
相关申请related application
根据35U.S.C119(e)节,本申请要求2004年12月23日提交的美国临时专利申请60/638,600号的优先权,该专利申请通过引用全文结合在此。根据35U.S.C 119(e)节,本申请还要求2005年8月23日提交的美国临时专利申请60/705,503号的优先权,该专利申请也通过引用全文结合在此。This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 60/638,600, filed December 23, 2004, which is hereby incorporated by reference in its entirety. This application also claims priority under 35 U.S.C. Section 119(e) to U.S. Provisional Patent Application No. 60/705,503, filed August 23, 2005, which is also incorporated herein by reference in its entirety.
技术领域 technical field
本方法、物品和系统涉及模拟处理和量子计算装置。The present methods, articles and systems relate to analog processing and quantum computing devices.
背景技术 Background technique
2.1模拟计算2.1 Simulation calculation
模拟计算利用物理现象(机械的、电气的、等等)通过使用物理量(压力、电压、位置、等等)代表该问题中的变量来模拟所关注的问题,这里该问题是某些抽象的数学问题或者是涉及其他物理量的某些物理问题。以其最简单的方式来说,一个模拟系统(例如模拟计算机)通过取入一个问题的一个或者多个输入变量来求解该问题,把它们代表为物理量,并且然后根据物理定律推演出其状态。对该问题的答案产生为一个物理变量,该变量然后可以读出。Simulation computing uses physical phenomena (mechanical, electrical, etc.) to simulate the problem of interest by using physical quantities (pressure, voltage, position, etc.) to represent variables in the problem, here the problem is some abstract mathematical problem or some physical problem involving other physical quantities. In its simplest form, a simulation system (such as an analog computer) solves a problem by taking one or more input variables of the problem, representing them as physical quantities, and then deducing its state according to the laws of physics. The answer to the question is generated as a physical variable which can then be read out.
模拟系统有两个优点。第一个优点是以真正并行的方式进行运算。因为运算一般地受物理定律的制约,绝大多数模拟系统的物理规则中不存在任何东西会在该模拟系统的一个部分中禁止一个运算,而同时在该模拟系统的另一个部分却进行另一个运算。第二个优点是模拟系统不涉及时域运算,并且从而不要求使用时钟。多个模拟系统进行实时演算,对于多数物理应用,这比在一个数字计算机上进行同样的计算要更快。Analog systems have two advantages. The first advantage is that operations are performed in a truly parallel fashion. Because operations are generally governed by the laws of physics, there is nothing in the physical laws of most simulated systems that would prohibit one operation in one part of the simulated system while at the same time prohibiting another in another part of the simulated system. operation. A second advantage is that the analog system does not involve time domain operations and thus does not require the use of clocks. Multiple analog systems perform calculations in real time, which is faster for most physics applications than performing the same calculation on a digital computer.
传统上,模拟系统使用一些物理量(例如电压、压力、温度等等)来代表一个连续的变量。这导致精确度的问题,因为问题答案的精确性受到能够量化的连续变量的精确性的限制。这是因为模拟系统一般地使用物理量代表一个问题中的变量,而自然界中所发现的物理量内在性地是连续的。另一方面,数字计算机涉及可能的字位值“0”和“1”之间的区分,对于该区分存在着易于识别的准确状态。模拟系统也往往在它们所能够解决的问题类型上受限制。例如,一个日晷和一个罗盘都是原始的模拟计算机。然而,这两者都只能够进行一个运算,分别是根据太阳的位置计算时间和计算地球磁场的方向。一个数字计算机可以通过重新编程用同类属的计算机解决这两个问题。模拟系统往往比数字计算机复杂。而且一个模拟系统可以进行的运算数量往往受电路/装置可以被复制的程度的限制。Traditionally, analog systems use some physical quantity (such as voltage, pressure, temperature, etc.) to represent a continuous variable. This leads to a problem of precision, since the precision of the answer to the question is limited by the precision of the continuous variable that can be quantified. This is because simulation systems typically use physical quantities to represent variables in a problem, whereas physical quantities found in nature are inherently continuous. A digital computer, on the other hand, involves a distinction between possible word bit values "0" and "1" for which there is an easily identifiable exact state. Simulation systems also tend to be limited in the types of problems they can solve. For example, a sundial and a compass were primitive analog computers. However, both are capable of only one calculation, calculating time from the position of the sun and calculating the direction of Earth's magnetic field, respectively. A digital computer can solve both problems by reprogramming a computer of its kind. Analog systems tend to be more complex than digital computers. Also, the number of operations an analog system can perform is often limited by the degree to which the circuit/device can be replicated.
尽管数字计算机对于解决多个一般问题是有用的,然而还是有一些问题的答案不能够在一个常规的数字计算机上有效地计算。换言之,找出问题的答案的时间不在多项式次数上与问题的大小成比例。在某些情况下可以使问题并行化。然而从成本的角度上这种并行化往往不实际。数字计算机使用一种有限状态机的途径。尽管对于众多种类的计算问题有限状态机途径工作良好,但是它对于可以求解的问题的复杂性存在一个底线。这是因为有限状态机途径使用一种时钟或者说计时器来进行运算。用现有技术水平中的CMOS技术实施的时钟具有一个约为5GHz的最高时钟速率(频率)。相反,多种模拟系统不要求时钟。从而在模拟系统中可以用一种自然的方式得出问题的答案,往往比数字计算的对应系统以远快得多的速度、可能甚至按指数级快得多的速度得出答案。Although digital computers are useful for solving many general problems, there are still some problems whose answers cannot be computed efficiently on a conventional digital computer. In other words, the time to find the answer to the problem is not polynomially proportional to the size of the problem. In some cases it is possible to parallelize the problem. However, such parallelization is often impractical from a cost perspective. Digital computers use a finite state machine approach. Although the finite state machine approach works well for a wide variety of computational problems, it has a bottom line on the complexity of the problems it can solve. This is because the finite state machine approach uses a clock or timer to perform operations. Clocks implemented in state-of-the-art CMOS technology have a maximum clock rate (frequency) of about 5 GHz. In contrast, many analog systems do not require a clock. Answers to questions can thus be arrived at in an analog system in a natural way, often much faster, perhaps even exponentially faster, than their digital computing counterparts.
数字计算机所显示出的实用性在于它们的低功耗、易于区分状态的离散的二进制性质、以及它们能够解决广泛的通用性计算问题的能力。然而,在量子模拟、优化、NP难题(NP-hard)和其他NP完全(NP-complete)问题中的多个特定问题在数字计算机上还是棘手的。如果能够克服模拟系统的诸如其有限精确性的限制之类的缺点,在求解重要的计算问题上一个模拟系统就可以容易地超过经典的数字计算机。The demonstrated utility of digital computers lies in their low power consumption, the discrete, binary nature of easily distinguishable states, and their ability to solve a wide range of general-purpose computing problems. However, several specific problems in quantum simulation, optimization, NP-hard and other NP-complete problems are intractable on digital computers. An analog system can easily outperform a classical digital computer in solving important computational problems if the disadvantages of analog systems such as their finite accuracy limitations can be overcome.
2.2复杂性类别2.2 Complexity categories
关注复杂性的计算机科学家们例行地使用不同的复杂性类别定义。复杂性类别的数目总是在改变,因为在计算机科学进展中新的复杂性类别被定义而现有的复杂性类别在合并。公知为多项式时间(polynomial-time)(P)、非定义性多项式时间(non-deterministicpolynomial-time)(NP)、NP-完全(NPC)和NP-难题(NPH)的复杂性类别都是判定问题的类别。判定问题具有二元的结果。Computer scientists concerned with complexity routinely use different complexity class definitions. The number of complexity classes is always changing, as new complexity classes are defined and existing ones are merged in advances in computer science. Complexity classes known as polynomial-time (P), non-deterministic polynomial-time (NP), NP-complete (NPC), and NP-hard (NPH) are decision problems category. Decision problems have binary outcomes.
NP中的问题是对之存在着多项式时间的验证的计算问题。就是说为了验证一个潜在的解不会超过该问题大小的多项式时间(类别P)。产生一个潜在的解可能会超过多项式时间。对于NP-难题可能要花费更长的时间来验证一个潜在的解。Problems in NP are computational problems for which there is a polynomial-time verification. That is, to verify a potential solution does not exceed polynomial time (category P) for the problem size. Generating a potential solution may take more than polynomial time. For NP-hard problems it may take longer to verify a potential solution.
NPC中的问题可以定义为是NP中的问题,这些问题已经表明比起NPC中的一个已知的问题是同等的或者更难以答案。等效地说,NPC中的问题在NP之中也是NPH的问题。这可以表达为NPC=NP∩NPH。A problem in NPC can be defined as a problem in NP that has been shown to be equally or harder to answer than a known problem in NPC. Equivalently, a problem in NPC is also a problem in NPH in NP. This can be expressed as NPC=NP∩NPH.
如果对一个问题存在着从NPC中的已知问题的一种多项式时间的还原,则该问题就是与NPC中的一个已知问题等价或者较之更难以答案。还原可以看作映射的一种泛化。该映射可以是一对一的函数、多对一的函数、或者利用预言等等。复杂性类别的概念和复杂性类别如何定义某些计算问题的棘手性请参阅,例如,1979年Garey和Johnson所著的:Computer and Intractability:A Guideto the Theory of NP-Completeness,Freeman,SanFrancisco,ISBN:0716710455(下文中简称为“Garey和Johnson”)。还可以参阅Cormen,Leiserson,和Rivest,1990年的:Introduction to Alrorithms,MIT Press,Cambridge、ISBN:0262530910。A problem is equivalent to or harder to answer than a known problem in NPC if there is a polynomial-time reduction of it from a known problem in NPC. Reduction can be seen as a generalization of mapping. The mapping can be a one-to-one function, a many-to-one function, or utilize oracles, among others. The concept of complexity categories and how complexity categories define the intractability of certain computational problems See, e.g., Garey and Johnson, 1979: Computer and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, ISBN : 0716710455 (hereinafter referred to as "Garey and Johnson"). See also Cormen, Leiserson, and Rivest, 1990: Introduction to Alrorithms, MIT Press, Cambridge, ISBN: 0262530910.
判定问题往往具有一种相关的优化问题,求解该相关的优化问题以定义正确的判断。求解一个基于判定的NP-完全问题的效率会导致求解对应的基于优化的问题的效率。这对NP中的任何问题一般地是成立的。往往为之求解的问题是基于优化的问题。Decision problems often have an associated optimization problem that is solved to define the correct decision. The efficiency of solving a decision-based NP-complete problem leads to the efficiency of solving the corresponding optimization-based problem. This is generally true for any problem in NP. Often the problems it is solving for are optimization-based problems.
2.3量子装置2.3 Quantum devices
量子计算是一种相对新的计算方法,该计算方法使用量子装置以便利用量子效应,譬如基态的叠加和量子装置的牵连,以此进行某些快于经典的数字计算机的计算。在数字计算机中,信息是存储在字位中,该字位既可以是“0”也可以是“1”。例如,一个字位可以用一个低电压代表逻辑“0”和用一个高电压代表逻辑“1”。与数字计算机的字位相反,一个量子计算机把信息存储为量子位(qubit)中,这是一种量子装置,其中的数据既可以是“0”状态或者“1”状态,或者是这些状态的任何叠加,Quantum computing is a relatively new method of computing that uses quantum devices to exploit quantum effects, such as superposition of ground states and entrainment of quantum devices, to perform certain calculations faster than classical digital computers. In digital computers, information is stored in bits, which can be either "0" or "1". For example, a word bit can have a low voltage representing a logic "0" and a high voltage representing a logic "1". As opposed to the bits of a digital computer, a quantum computer stores information in quantum bits (qubits), quantum devices in which data can either be in a "0" state or a "1" state, or a combination of those states. any overlay,
α|0>+β|1>.(1)α|0>+β|1>.(1)
根据式(1)的术语,一个数字计算机的“0”状态类似于一个量子位的|0>基态。相似地,一个数字计算机的“1”状态类似于一个量子位的|1>基态。根据式(1),一个量子位允多个量子位基态的叠加,其中该量子位具有一定的概率要么是处于|0>或处于|1>状态。项|α|2是处于|0>状态的概率而项|β|2是处于|1>状态的概率,其中|α|2+|β|2=1。显然连续变量α和β比在一个数字计算机中的一个字位包括大得多的信息,而在一个数字计算机中的字位是简单的0或者1。一个量子位的状态可以表示为向量,In terms of Eq. (1), the "0" state of a digital computer is analogous to the |0> ground state of a qubit. Similarly, the "1" state of a digital computer is analogous to the |1> ground state of a qubit. According to equation (1), a qubit allows the superposition of ground states of multiple qubits, where the qubit has a certain probability to be either in the |0> or |1> state. The term |α| 2 is the probability of being in the |0> state and the term |β| 2 is the probability of being in the |1> state, where |α| 2 + |β| 2 =1. Clearly the continuous variables α and β contain much larger information than a bit in a digital computer, which is simply a 0 or 1. The state of a qubit can be represented as a vector,
尽管该量子位可以是在多个状态的一种线性组合(或者叠加)之中,它仅可以作为处于|0>或|1>状态被读出或者测量。量子装置展现了量子性能,譬如量子基态之间的量子隧道效应、基态的叠加、量子位的牵涉、相干性、以及同时表现出波动特性和颗粒特性。在量子计算的一个标准模型(也称为量子计算的电路模型)中,一个量子计算装置中量子门的运作是在量子位上于时域中进行。换言之,在一个量子计算装置中各个单独的门在一个或者多个量子位上的状态上运行一个预定的时间周期以进行一种量子计算。多个门表示为矩阵乘以在量子位上运行的状态向量。最基本的单个量子位门是保利矩阵(Pauli matrices):Although the qubit can be in a linear combination (or superposition) of states, it can only be read or measured as being in the |0> or |1> state. Quantum devices exhibit quantum properties such as quantum tunneling between quantum ground states, superposition of ground states, involvement of qubits, coherence, and simultaneous fluctuating and granular properties. In a standard model of quantum computing (also known as the circuit model of quantum computing), the operation of quantum gates in a quantum computing device is performed in the time domain on qubits. In other words, individual gates in a quantum computing device operate on states on one or more qubits for a predetermined period of time to perform a quantum computation. Multiple gates are represented as a matrix multiplied by a state vector operating on the qubit. The most basic single-qubit gates are Pauli matrices:
其他单个量子位门包括Hadamard门、相位门,和π/8门。例如,参见Nielson and Chuang,2000,Quantum Computation andQuantum Information,Cambridge University Press,Cambridge,pp.174-177。Other single-qubit gates include Hadamard gates, phase gates, and π/8 gates. See, for example, Nielson and Chuang, 2000, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, pp. 174-177.
两个耦连在一起的量子位还遵循叠加:Two qubits coupled together also obey superposition:
α00|00>+α01|01>+α10|10>+α11|11>.(4)α 00 |00>+α 01 |01>+α 10 |10>+α 11 |11>.(4)
一个双量子位系统的状态由一个四元向量代表,而双量子位门的运算由4×4矩阵代表。因此一个n量子位系统由连续变量的一个2n向量来代表。基本单门运算的一个子集,譬如在(3)中表示的那些子集,和一个或者多个双量子位门运算形成了据说是对量子运算通用的一个门集合。量子运算的一个通用集合是允许所有可能的量子运算的任何量子运算的集合。The state of a two-qubit system is represented by a quaternion vector, and the operation of the two-qubit gate is represented by a 4×4 matrix. Thus an n qubit system is represented by a 2 n vector of continuous variables. A subset of elementary single-gate operations, such as those denoted in (3), and one or more two-qubit gate operations form a set of gates said to be common to quantum operations. A universal set of quantum operations is the set of any quantum operation that allows all possible quantum operations.
2.4量子运算的要水2.4 Requirements for Quantum Computing
一般地说,一个量子位是一种充分定义的物理结构,该物理结构(i)具有多个量子状态,(ii)可以相干地从其环境隔离出并且(iii)允许在与该量子位相关联的两个或者多个量子状态之间的量子隧道作用。例如参见Mooji et al.,1999,Science 285,p.1036(下文中称为“Mooji”),该文通过引用全文结合在此。对于从中可以形成量子位的当前的物理系统的一个综述参阅Braunstein and Lo(eds.),2001,Scalable Quantum Computers,Wiley-VCH,Berlin(下文称为“Braunstein and Lo”)。In general, a qubit is a well-defined physical structure that (i) has multiple quantum states, (ii) can be coherently isolated from its environment and (iii) allows Quantum tunneling between two or more quantum states connected together. See, eg, Mooji et al., 1999, Science 285, p.1036 (hereinafter "Mooji"), which is hereby incorporated by reference in its entirety. For a review of current physical systems from which qubits can be formed see Braunstein and Lo (eds.), 2001, Scalable Quantum Computers, Wiley-VCH, Berlin (hereinafter "Braunstein and Lo").
为了使一个物理的系统表现为一种量子位必须要满足数个要求。参见DiVincenzo in Braunstein and Lo,Chapter 1,第一章。这些要求包括该物理系统(量子位)需要是可拓展的。换言之,它必须能够以一种相干的方式结合一个合理数量的量子位。与可拓展性相关联的是需要消除量子位的脱散性。一个量子位可以用在量子计算中还要求能够使量子位进行初始化、控制和耦连的运算。一个量子位的控制包括进行单量子位运算以及在两个或者多个量子位上的运算。为了支持量子计算,该运算的集合需要是一个通用集合。多个门的集合是通用的,例如参阅Barenco et al.,1995,PhysicalReview A 52,p.3457,该文通过引用全文结合在此。对量子计算的另一个要求是需要能够测量该量子位的状态以便进行计算运作并且提取信息。对于量子计算的电路模型发展了这些要求,并且可以对其他模型放宽要求。In order for a physical system to behave as a qubit, several requirements must be met. See DiVincenzo in Braunstein and Lo,
2.5超导量子位2.5 Superconducting qubits
已经提出了几种量子计算硬件建议。在这些硬件建议中,最可拓展的物理系统看来是那些超导结构。超导材料是在临界电流、磁场和温度之下没有电阻的材料。Josephson结是这种结构的实例。Several quantum computing hardware proposals have been proposed. Among these hardware proposals, the most scalable physical systems appear to be those of superconducting structures. Superconducting materials are materials that have no electrical resistance under critical current, magnetic field and temperature. A Josephson junction is an example of such a structure.
有两种实现超导量子位的主要手段。一个手段对应于针对充分定义的电荷(电荷量子位)的限制。另一个手段对应于针对充分定义的相位(相位/能量量子位)的限制。相位和电荷是相关的变量,根据基本的量子原理,它们是彼此的规范共轭。这两类装置的划分概述于Makhlin et al.,2001,Reviews of Modern Physics 73,pp.357-400(以下称为“Makhlin”)中,该文通过引用全文结合在此。超导量子位包括所属领域内充分公知的装置,譬如Josephson结量子位。例如参阅Barone and Paternò,1982,Physics and Applications ofthe Josephson Effect,John Wiley and Sons,New York;Martinis et al.,2002,Physical Review Letters 89,117901,该文通过引用全文结合在此;和Han et al.,2001,Science 293,p.1457,该文通过引用全文结合在此。There are two main means of realizing superconducting qubits. One approach corresponds to confinement to a well-defined charge (charge qubit). Another approach corresponds to constraints on well-defined phases (phase/energy qubits). Phase and charge are related variables that, according to fundamental quantum principles, are gauge conjugates of each other. The division of these two types of devices is outlined in Makhlin et al., 2001, Reviews of Modern Physics 73, pp. 357-400 (hereinafter "Makhlin"), which is hereby incorporated by reference in its entirety. Superconducting qubits include devices well known in the art, such as Josephson junction qubits. See, for example, Barone and Paternò, 1982, Physics and Applications of the Josephson Effect, John Wiley and Sons, New York; Martinis et al., 2002, Physical Review Letters 89, 117901, which is hereby incorporated by reference in its entirety; and Han et al. ., 2001, Science 293, p.1457, which is hereby incorporated by reference in its entirety.
2.5.1通量量子位2.5.1 Flux qubits
一种类型的通量量子位是稳恒电流量子位。参阅Mooji andOrlando et al.,1999,Physical Review B 60,15398-15413(下文中称为“Orlando”),该文通过引用全文结合在此。超导相位量子位是充分公知的并且已经展示了长的相干时间。例如,参见Orlando andIl’ichev et al.,2003,Physical Review Letters 91,097906(下文称为“Il’ichev”),该文通过引用全文结合在此。某些其他类型的相位量子位包括具有多于或者少于三个Josephson结的超导回路。例如参阅G.Blatter et al.,2001,Physical Review B,63,174511,和Friedmanetal.,2000,Nature 406,43(下文称为“Friedman 2000”),每篇文章都通过引用全文结合在此。对于通量量子位的更多细节,请参阅以下美国专利:题为“Resonant controlled qubit system”的6,960,780号、题为“Resonant controlled qubit system”的6,897,468号、题为“Multi-junction phase qubit”的6,784,451号、题为“Sub-fluxquantum generator”的6,885,325号、题为“Quantum phase-chargecoupled device”的6,670,630号、题为“Finger squid qubit device”的6,822,255号、题为“Superconducting low inductance qubit”的6,979,836号;以下公开的美国专利申请:题为“Extra-substratecontrol system”的2004-0140537号、题为“Methods for single qubitgate teleportation”的2004-0119061号、题为“System and method forcontrolling superconducting qubits的2004-0016918号、题为“Encoding and error suppression for superconducting quantumcomputers”2004-0000666号、题为“Quantum phase-charge coupleddevice”的2003-0173498号、题为“Quantum computing integrateddevelopment environment”的2003-0169041号、题为“Quantumcomputing integrated development environment”的2003-0121028号、题为“Trilayer heterostructure junctions”的2003-0107033号、和题为“Quantum bit with a multi-terminal junction and loop with a phaseshift”的2002-0121636号,它们每一个都通过引用全文结合在此。One type of flux qubit is the constant current qubit. See Mooji and Orlando et al., 1999, Physical Review B 60, 15398-15413 (hereinafter "Orlando"), which is hereby incorporated by reference in its entirety. Superconducting phase qubits are well known and have demonstrated long coherence times. See, for example, Orlando and Il'ichev et al., 2003, Physical Review Letters 91, 097906 (hereinafter "Il'ichev"), which is hereby incorporated by reference in its entirety. Certain other types of phase qubits include superconducting loops with more or fewer than three Josephson junctions. See, eg, G. Blatter et al., 2001, Physical Review B, 63, 174511, and Friedman et al., 2000, Nature 406, 43 (hereinafter "Friedman 2000"), each of which is hereby incorporated by reference in its entirety. For more details on flux qubits, see the following U.S. Patents: 6,960,780 entitled "Resonant controlled qubit system", 6,897,468 entitled "Resonant controlled qubit system", 6,897,468 entitled "Multi-junction phase qubit" 6,784,451, 6,885,325 entitled "Sub-fluxquantum generator", 6,670,630 entitled "Quantum phase-charge coupled device", 6,822,255 entitled "Finger squid qubit device", 6,979,8 entitled "Superconducting low induction qubit" the following published U.S. patent applications: No. 2004-0140537 entitled "Extra-substrate control system", No. 2004-0119061 entitled "Methods for single qubitgate teleportation", No. 2004-019061 entitled "System and method for controlling superconducting qubits" No. 0016918, No. 2004-0000666 entitled "Encoding and error suppression for superconducting quantum computers", No. 2003-0173498 entitled "Quantum phase-charge coupled device", No. 6903-01 entitled "Quantum computing integrated development environment" No. 2003-0121028 of "Quantumcomputing integrated development environment", No. 2003-0107033 entitled "Trilayer heterostructure junctions", and No. 2002-0121636 entitled "Quantum bit with a multi-terminal junction and loop with a phaseshift", they Each is hereby incorporated by reference in its entirety.
图1A示出一个超导相位量子位100。相位量子位100包括一个由Josephson结101-1、102-2和103-3间断的超导材料的回路103。Josephson结典型地使用标准制造工艺形成,一般地涉及材料沉积和光刻阶段。例如,参阅Madou,2002,Fundamentals ofMicrofabrication,Second Edition,CRC Press、Van Zant,2000,Microchip Fabrication,Fourth Edition,McGraw-Hill,New York、Levinson,2001,Principles of Lithography,The International Societyfor Optical Engineering,Bellingham Washington,and Choudhury,1997,Handbook of Microlithography,Micromachining and MicrofabricationVolume 1:Microlithography,The International Society for OpticalEngineering,Bellingham Washington.。制造Josephson结的方法,例如说明于Ramos et al.,2001,IEEE Transactions on AppliedSuperconductivity 11,p.998。普通的基质例如包括硅、氧化硅,或者蓝宝石。Josephson结101还可以包括绝缘材料,譬如氧化铝。可用于形成超导回路103的超导材料的范例是铝和铌。Josephson结101具有范围从10纳米(nm)至约10微米(μm)的尺寸。一个或者多个Josephson结101具有与相位量子位100中的其他Josephson结101不同的参数,譬如结的尺寸、结表面积、Josephson能量或者充电通量。在相位量子位100中任何两个Josephson结101之间的差由一个用α表示的系数表征,该系数典型地范围在约0.5至约1.3之间,在此α=1代表具有等效参数的结。在某些范例中,该相位量子位中一对Josephson结的条件α是相应Josephson结的临界电流之比。一个Josephson结的临界电流是使该结不再是超导的流经该结的电流。这就是说,在该临界电流以下该结是的超导的,而在该临界电流以上,该结不是超导的。从而,例如,结101-10和101-2的条件α定义为结101-1的临界电流与结101-2的临界电流之比。FIG. 1A shows a
参见图1A,一个偏置源110感应性地耦连到相位量子位100。偏置源110用于经过相位量子位100穿过一个磁通量Φx以提供对该相位量子位的状态的控制。相位量子位100典型地由一个范围在约0.2·Φ0至约0.8·Φ0之间的磁通量偏置Φx进行运算,这里Φ0是通量量子。Referring to FIG. 1A , a
相位量子位100具有一种简化的相对于跨Josephson结101的相位的二维势能。典型地用一个磁通量Φx使相位量子位Φ100偏置,从而该二维势能的特性曲线包括本地能量最小值的区域,在此,该本地能量最小值是由小的能量壁垒相互分开并且由大的能量壁垒与其他的区域分开。该势能是一种双阱势150(图1B),该双阱势包括一个左阱160-0和一个右阱160-1,分别代表图1A的相位量子位中的顺时针102-1和逆时针102-1循环的超导电流。当施加一个约0.5Φ0的通量偏置时可以形成一个双阱势150。
当双阱160-0和160-1蜕化或者接近锐化时,意味着它们处于相同的能势或者接近相同的能势,如在图1B中所示,这时相位量子位100的量子状态变成相位或者基本状态的一个相干叠加,并且该装置可以作为一种相位量子位进行运算。处于或者接近锐化的点在此称为相位量子位100的计算运行点。在相位量子位100的计算运行的过程中,可以使用可控制的量子效应根据量子计算的规则处理用该相位状态存储的信息。因为在该相位量子位所存储和处理的量子信息是以相位位基础,它对以电荷为基础的噪音不敏感。Il`ichev等(Illichev)使用了一种耦连到高质量储能电路(tankcircuit)的三Josephson结通量量子位来进行Rabi振荡的连续观察。When the double wells 160-0 and 160-1 are degraded or nearly sharpened, meaning they are at or near the same energy potential, as shown in FIG. 1B , the quantum state of the
标准的量子计算模型有多个问题,这使之成为一种科学技术的挑战性壮举。量子计算涉及相干地处理量子信息。这要求在量子位中有充分长的脱散时间,同时要免于噪音和误差。脱散性使得时域门水平的标准模型量子计算很困难。因此希望驾御量子效应,譬如不相干隧道效应,以此求解有用的问题,从而克服标准模型量子计算的挑战。Standard quantum computing models have multiple problems that make this a challenging feat of science and technology. Quantum computing involves coherently processing quantum information. This requires sufficiently long decoupling times in the qubit while being free from noise and errors. Decoherence makes standard-model quantum computation at the time-domain gate level difficult. Therefore, it is hoped that quantum effects, such as incoherent tunneling, can be harnessed to solve useful problems and overcome the challenges of standard model quantum computing.
发明内容 Contents of the invention
(i)本方法、物品和系统的一个方面提供了一种包括一种模拟(量子)处理器的计算系统。该量子处理器包括形成一个点阵的多个节点的多个量子装置,这些量子装置具有第一和第二基础状态并且包括由Josephson结间断的超导材料的回路。该量子处理器进一步包括多个耦连装置,该耦连装置以一个最近邻居和/或次最近邻居的方式把这些量子装置耦连在一起。(i) An aspect of the methods, articles and systems provides a computing system comprising an analog (quantum) processor. The quantum processor includes a plurality of quantum devices forming nodes of a lattice, the quantum devices having first and second fundamental states and comprising loops of superconducting material interrupted by Josephson junctions. The quantum processor further includes a plurality of coupling devices that couple the quantum devices together in a nearest neighbor and/or next nearest neighbor manner.
(ii)本方法、物品和系统的另一个方面提供了使用一个量子处理器定义一个计算问题的结果的一种方法,该量子处理器包括多个量子装置和多个把该量子装置耦连在一起的耦连装置。该方法包括通过设定该多个量子装置中的每个量子装置的一个状态和设定该多个耦连装置中的每个耦连装置的耦连强度使该量子处理器初始化到一种初始状态,使得该量子处理器能够演算出逼近该计算问题的一个自然的基态的一个最终状态;并且从该多个量子装置中的一个或者多个量子装置中读出一个最终状态从而定义该计算问题的结果。(ii) Another aspect of the methods, articles and systems provides a method for defining the result of a computational problem using a quantum processor comprising a plurality of quantum devices and a plurality of quantum devices coupled to Coupling device together. The method includes initializing the quantum processor to an initial state by setting a state of each of the plurality of quantum devices and setting a coupling strength of each of the plurality of coupling devices state, enabling the quantum processor to calculate a final state that approximates a natural ground state of the computational problem; and reading a final state from one or more of the plurality of quantum devices to define the computational problem the result of.
(iii)本方法、物品和系统的又一个方面提供了包括一个中央处理器单元和耦连到该中央处理器单元的一个存储器的一种计算机系统,用于定义一个计算问题的结果。该存储器包括一个用户接口模件,其中包括用于定义该计算问题的指令、一个映射器模件,其中包括用于产生该计算问题的一种映射的指令、和一个模拟处理器接口模件。该模拟处理器接口模件包括将该映射传输到一个模拟处理器的指令和用于响应该映射从该模拟处理器接收一个结果的指令。该模拟处理器包括多个量子装置和多个耦连装置并且该映射包括该多个量子装置中的每个量子装置的初始化值以及该多个耦连装置中的每个耦连装置的初始化值。该耦连装置把该量子装置耦连到它们最近邻居的和/或其次最近邻居的装置。(iii) Yet another aspect of the methods, articles and systems provides a computer system comprising a central processing unit and a memory coupled to the central processing unit for defining a result of a computational problem. The memory includes a user interface module including instructions for defining the computational problem, a mapper module including instructions for generating a mapping of the computational problem, and an analog processor interface module. The analog processor interface module includes instructions for transmitting the mapping to an analog processor and instructions for receiving a result from the analog processor in response to the mapping. The analog processor includes a plurality of quantum devices and a plurality of coupling devices and the map includes an initialization value for each of the plurality of quantum devices and an initialization value for each of the plurality of coupling devices . The coupling means couple the quantum devices to their nearest neighbor and/or next nearest neighbor devices.
(iv)本方法、物品和系统的又一个方面提供了一种用于同一个数字计算机结合使用的计算机程序产品。该计算机程序产品包括一种计算机可读存储媒介和一个在其中植入的计算机程序机理,且该计算机程序机理包括一个用户接口模件,其中包括用于限定一个计算问题的指令、一个映射器模件,其中包括用于产生该计算问题的一个映射的指令,和一个模拟处理器接口模件,其中包括将该映射传输到一个模拟处理器的指令以及响应于该映射用于从该模拟处理器接收一个结果的指令。该模拟处理器包括多个量子装置和多个耦连装置,并且该映射包括该多个量子装置中的每个量子装置的初始化值以及该多个耦连装置中的每个耦连装置的初始化值,并且该耦连装置把该量子装置耦连到它们最近邻居和/或其次最近邻居。(iv) Yet another aspect of the methods, articles and systems provides a computer program product for use in conjunction with a digital computer. The computer program product includes a computer-readable storage medium and a computer program mechanism embedded therein, and the computer program mechanism includes a user interface module including instructions for defining a calculation problem, a mapper module components, including instructions for generating a map of the computational problem, and a simulated processor interface module, including instructions for transferring the map to a simulated processor and for receiving from the simulated processor in response to the map An instruction to receive a result. The analog processor includes a plurality of quantum devices and a plurality of coupled devices, and the map includes an initialization value for each of the plurality of quantum devices and an initialization for each of the plurality of coupled devices value, and the coupling device couples the quantum devices to their nearest neighbors and/or next nearest neighbors.
(v)本方法、物品和系统的又一个方面提供了一种量子处理器。该量子处理器包括多个安排成一个点阵的量子装置、第一多个耦连装置和第二多个耦连装置。在该第一耦连装置中的一个耦连装置将在该点阵中最邻近的一个第一量子装置与一个第二量子装置耦连,而在该第二多个耦连装置中的一个耦连装置将在该点阵中次最邻近的一个第三量子装置与一个第四量子装置耦连。(v) Yet another aspect of the methods, articles and systems provides a quantum processor. The quantum processor includes a plurality of quantum devices arranged in a lattice, a first plurality of coupling devices, and a second plurality of coupling devices. A coupling device in the first coupling device couples a first quantum device closest to a second quantum device in the lattice, and a coupling device in the second plurality of coupling devices The coupling means couples a next nearest neighbor third quantum device to a fourth quantum device in the lattice.
(vi)本方法、物品和系统的又一个方面提供了一种包括多个量子装置的量子处理器,还有第一多个耦连装置、第二多个耦连装置、耦连到至少一个量子装置的一个读出装置,和耦连到至少一个量子装置的一个本地偏置装置。该多个量子装置和该第一多个耦连装置形成一个平面矩形阵列,该平面矩阵具有一个对角线,而该第一多个耦连装置中的至少一个耦连装置以一个耦连强度把一个第一量子装置与第二量子装置耦连,该耦连强度具有具有一个最小的负耦连强度与一个最大的正耦连强度之间范围内的值。在该第二多个耦连装置中的至少一个耦连装置以具有在一个最小的负耦连强度和一个零耦连强度之间范围内的一种值的耦连强度把沿该阵列的对角线安排的一个第三量子装置与一个第四量子装置耦连。(vi) Yet another aspect of the methods, articles and systems provides a quantum processor comprising a plurality of quantum devices, a first plurality of coupling devices, a second plurality of coupling devices, coupled to at least one A readout means for the quantum devices, and a local bias means coupled to at least one of the quantum devices. The plurality of quantum devices and the first plurality of coupling devices form a planar rectangular array, the planar matrix has a diagonal, and at least one coupling device in the first plurality of coupling devices has a coupling strength A first quantum device is coupled to the second quantum device, the coupling strength having a value in a range between a minimum negative coupling strength and a maximum positive coupling strength. At least one coupling device in the second plurality of coupling devices couples pairs along the array with a coupling strength having a value in the range between a minimum negative coupling strength and a zero coupling strength. A third quantum device arranged diagonally is coupled to a fourth quantum device.
(vii)本方法、物品和系统的又一个方面提供了包括一种量子处理器的一种计算系统。该量子处理器包括形成一个点阵的多个节点的多个量子位装置,和多个耦连装置。在该多个耦连装置中的一个第一耦连装置把一个第一量子位装置耦连到一个第二量子位装置,该第一量子位装置和该第二量子位装置是处于一种最近邻居或是在一种次最近邻居的配置中。(vii) Yet another aspect of the methods, articles and systems provides a computing system comprising a quantum processor. The quantum processor includes a plurality of qubit devices forming a plurality of nodes of a lattice, and a plurality of coupling devices. A first coupling device in the plurality of coupling devices couples a first qubit device to a second qubit device, the first qubit device and the second qubit device being in a close proximity neighbors or in a next-nearest neighbor configuration.
(viii)本方法、物品和系统的又一个方面提供了一种量子处理器,其中包括安排成一种点阵的多个量子位装置、一种第一多个耦连装置和一种第二多个耦连装置。在该第一多个耦连装置中的一个第一耦连装置把一个第一量子位装置与一个第二量子位装置耦连,该第一量子位装置和第二量子位装置被配置为该点阵中的最近邻居,并且在该第二多个耦连装置中的一个第一耦连装置把一个第三量子位装置与一个第四量子位装置耦连,该第三量子位装置和第四量子位装置被配置为该点阵中的次最近邻居。(viii) Yet another aspect of the methods, articles, and systems provides a quantum processor comprising a plurality of qubit devices arranged in a lattice, a first plurality of coupling devices, and a second plurality of a coupling device. A first coupling device in the first plurality of coupling devices couples a first qubit device to a second qubit device, the first qubit device and the second qubit device being configured as the nearest neighbors in the lattice, and a first coupling device in the second plurality of coupling devices couples a third qubit device to a fourth qubit device, the third qubit device and the first qubit device The four-qubit devices are configured as the next-nearest neighbors in the lattice.
(ix)本方法、物品和系统的又一个方面提供了使用一个量子处理器定义一个计算问题的结果的一种方法。该量子处理器包括多个量子装置和多个耦连装置,每个耦连装置耦连一对量子装置。该方法包括通过设定每个量子装置的一个状态和设定每个耦连装置的一个耦连强度使该量子处理器被初始化到一种初始状态,允许该量子处理器能够演算到逼近该计算问题的一个自然的基态的一种最终状态,读出至少一个量子装置的一个最终状态从而定义该计算问题的结果,产生一种载波,其中体现了包括该计算问题的结果的一个数据信号。(ix) Yet another aspect of the methods, articles and systems provides a method for defining the result of a computational problem using a quantum processor. The quantum processor includes a plurality of quantum devices and a plurality of coupling devices, each coupling device is coupled to a pair of quantum devices. The method includes initializing the quantum processor to an initial state by setting a state of each quantum device and setting a coupling strength of each coupling device, allowing the quantum processor to perform calculations approximating the A final state of a natural ground state of the problem, reading out a final state of at least one quantum device thereby defining the result of the computational problem, generating a carrier wave embodying a data signal including the result of the computational problem.
(x)本方法、物品和系统的又一个方面提供了一种计算机系统,其中包括用于输入一个要求解的P、NP、NP-难题和NP-完全问题的计算问题的装置、用于将该计算问题映射到一个量子处理器上,其中包括量子位装置和用于耦连最近相邻和次最近相邻的量子位装置的耦连装置、使用该量子处理器得到该计算问题的解的装置、用于输出该计算问题的解的装置,以及用于将该解作为体现在一个载波中的一个数据信号进行传输的装置。(x) Yet another aspect of the methods, articles, and systems provides a computer system comprising means for inputting a computational problem to be solved for P, NP, NP-hard problems, and NP-complete problems, for The computational problem is mapped onto a quantum processor comprising qubit devices and coupling devices for coupling nearest neighbor and next nearest neighbor qubit devices, using the quantum processor to obtain a solution to the computational problem means, means for outputting a solution of the computational problem, and means for transmitting the solution as a data signal embodied in a carrier wave.
(xi)本方法、物品和系统的又一个方面提供了一种体现在一个载波上的数字信号,其中包括在多个节点中的每个节点的对应值。该多个节点是在一个量子处理器中的一个节点点阵中的至少两个节点。该节点点阵中的每个节点是一个量子装置。在多个节点中的至少一个节点的值个别地或者集体地代表对一个已经通过借助代表该计算问题的一个图形已经映射在在该点阵的至少一个部分上以后的一个时间通过演算该量子处理器已经解出的一个计算问题的解。。(xi) In yet another aspect of the methods, articles and systems there is provided a digital signal embodied on a carrier including corresponding values at each of the plurality of nodes. The plurality of nodes is at least two nodes in a node lattice in a quantum processor. Each node in the node lattice is a quantum device. The value of at least one of the plurality of nodes individually or collectively represents the quantum process for a time pass after having been mapped on at least one portion of the lattice by means of a graph representing the computational problem The solution to a computational problem that has been solved by a computer. .
(xii)本方法、物品和系统的又一个方面提供了一种体现在一个载波上的数字信号,其中包括对多个节点中每个节点的值进行评估而定义的一个计算问题的答案。该多个节点是一个量子处理器中的节点的一个点阵中的至少两个节点,并且在该节点的点阵中每个节点都是一个量子装置。在该多个节点中的至少一个节点的值是在代表该计算问题的一个图形已经映射在在该点阵的至少一个部分上以后的一个时间运算该量子处理器后所定义的。(xii) In yet another aspect of the methods, articles and systems there is provided a digital signal embodied on a carrier wave including an answer to a computational problem defined by evaluating values at each of a plurality of nodes. The plurality of nodes is at least two nodes in a lattice of nodes in a quantum processor, and each node in the lattice of nodes is a quantum device. The value of at least one node in the plurality of nodes is defined after operating the quantum processor a time after a graph representing the computational problem has been mapped on at least a portion of the lattice.
(xiii)本方法、物品和系统的又一个方面提供了一种体现在一个载波上的数字信号,其中包括要通过该量子处理器求解的一个计算问题的图形,其中该量子处理器包括一个量子装置的点阵。要求解的计算问题的图形包括多个节点,并且对于该多个节点的每个相应的节点,包括相应节点的一个初始值和在该多个节点中的对应节点与另一个节点之间的一个对应的耦连常数。该要求解的计算问题的图形被配置为可以把它映射到该量子处理器的该点阵上。(xiii) Yet another aspect of the methods, articles, and systems provides a digital signal embodied on a carrier wave comprising a graph of a computational problem to be solved by the quantum processor, wherein the quantum processor includes a quantum The dot matrix of the device. The graph of the computational problem to be solved includes a plurality of nodes, and for each corresponding node of the plurality of nodes, an initial value of the corresponding node and a value between the corresponding node and another node in the plurality of nodes Corresponding coupling constants. The graph of the computational problem to be solved is configured such that it can be mapped onto the lattice of the quantum processor.
(xiv)本方法、物品和系统的又一个方面提供了一种体现在一个载波上的数字信号,其中包括要通过一个量子处理器求解的一个计算问题。该量子处理器包括一个量子装置的点阵。要求解的该计算问题被转换成一种图形,该图形包括多个节点,并且,对于该多个节点中的每个相应的节点,包括相应节点的一个初始值和在该多个节点中的相应的节点和另一个节点之间的一个对应的耦连常数。该要求解的计算问题的图形被配置为可以把它映射到该量子处理器的该点阵上。(xiv) Yet another aspect of the methods, articles and systems provides a digital signal embodied on a carrier wave comprising a computational problem to be solved by a quantum processor. The quantum processor includes a lattice of quantum devices. The computational problem to be solved is converted into a graph comprising a plurality of nodes and, for each corresponding node in the plurality of nodes, an initial value of the corresponding node and a corresponding A corresponding coupling constant between a node and another node. The graph of the computational problem to be solved is configured such that it can be mapped onto the lattice of the quantum processor.
(xv)本方法、物品和系统的又一个方面提供了一种图形用户接口,该图形用户接口是用于对一个计算问题得到一个解并且包括一个第一显示区和一个第二显示区。该第一显示区指示何时已经接收到包括多个节点中的每个节点的一个相应的值的一个体现在一个载波上的数字信号。该多个节点是在一个量子处理器中的一个节点的点阵中的至少两个节点,并且在该节点点阵中的每个节点是一个量子装置。在该多个节点中的至少一个节点的一个值个别地或者集体地代表通过在代表该计算问题的一个图形已经被映射到该点阵的至少一个部分上以后的一个时间通过演算该量子处理器已经解出的该计算问题的解。(xv) A further aspect of the methods, articles and systems provides a graphical user interface for obtaining a solution to a computational problem and comprising a first display area and a second display area. The first display area indicates when a digital signal embodied on a carrier including a respective value for each of the plurality of nodes has been received. The plurality of nodes is at least two nodes in a lattice of nodes in a quantum processor, and each node in the lattice of nodes is a quantum device. A value at at least one of the plurality of nodes individually or collectively represents a time pass through the quantum processor after a graph representing the computational problem has been mapped onto at least a portion of the lattice The solution to the computational problem that has been solved.
(xvi)本方法、物品和系统的又一个方面提供了一种图形用户接口,该图形用户接口用于对一个计算问题得到一个解并且包括一个第一显示区和一个第二显示区。该第一显示区指示何时已经接收到体现在对该计算问题的答案的一个载波上的数字信号。对该计算问题的答案是通过评估多个节点中的至少一个节点的值来定义。该多个节点是在一个量子处理器中的一个节点的点阵中的至少两个节点,并且在该节点的点阵中的每个节点是一个量子装置。在代表该计算问题的一个图形已经映射在在该点阵的至少一个部分上以后的一个时间通过演算该量子处理器以后确定该多个节点中的至少一个节点的值。该第二显示区域显示对该计算问题的解。(xvi) A further aspect of the methods, articles and systems provides a graphical user interface for obtaining a solution to a computational problem and comprising a first display area and a second display area. The first display area indicates when the digital signal embodied on a carrier of the answer to the calculation question has been received. The answer to the computational problem is defined by evaluating the value of at least one of the plurality of nodes. The plurality of nodes is at least two nodes in a lattice of nodes in a quantum processor, and each node in the lattice of nodes is a quantum device. The value of at least one node of the plurality of nodes is determined after computing the quantum processor at a time after a graph representing the computational problem has been mapped onto at least a portion of the lattice. The second display area displays the solution to the computational problem.
(xvii)本方法、物品和系统的又一个方面提供了一种图形用户接口,该图形用户接口是用于对一个计算问题得到一个解并且包括一个第一显示区和一个第二显示区。该第一显示区指示何时已经产生了体现在包括要通过一个量子处理器求解的计算问题的一个载波上的数字信号。该量子处理器包括一个量子装置的点阵。要求解的该计算问题包括多个节点并且,对于该多个节点中的每个相应的节点,包括用于相应节点的一个初始值和该多个节点中的相应节点与另一个节点之间的对应的一个耦连常数。该要求解的计算问题被配置为可以把它映射到该量子处理器的该点阵上。该第二显示区域在已经接收到该计算问题后显示对它的解。(xvii) A further aspect of the methods, articles and systems provides a graphical user interface for obtaining a solution to a computational problem and comprising a first display area and a second display area. The first display area indicates when a digital signal embodied on a carrier comprising a computational problem to be solved by a quantum processor has been generated. The quantum processor includes a lattice of quantum devices. The computational problem to be solved includes a plurality of nodes and, for each corresponding node in the plurality of nodes, includes an initial value for the corresponding node and a relationship between the corresponding node in the plurality of nodes and another node corresponding to a coupling constant. The computational problem to be solved is configured such that it can be mapped onto the lattice of the quantum processor. The second display area displays the solution to the computational problem after it has been received.
(xviii)本方法、物品和系统的又一个方面提供了一种计算系统。该计算系统包括一个本地计算机、一个远程计算机、和一个与该远程计算机通信的远程量子处理器。该量子处理器包括多个量子装置,其中该多个量子装置中的每个量子装置都是一个点阵的节点,并且其中该多个量子装置中的一个第一量子装置具有一个第一基础状态和一个第二基础状态。该量子处理器进一步包括多个耦连装置,在该多个耦连装置中的一个第一耦连装置把该多个量子装置中的第一量子装置耦连到该多个量子装置中的一个第二量子装置,其中在该点阵中的该第一量子装置和第二量子装置的配置是选自由一个最近相邻配置和一个次最近相邻配置所构成的组。该本地计算机被配置为向该远程计算机发送一个计算问题。该远程计算机被配置为向该本地计算机发送对该计算问题的一个答案。(xviii) Yet another aspect of the methods, articles and systems provides a computing system. The computing system includes a local computer, a remote computer, and a remote quantum processor in communication with the remote computer. The quantum processor includes a plurality of quantum devices, wherein each quantum device of the plurality of quantum devices is a node of a lattice, and wherein a first quantum device of the plurality of quantum devices has a first fundamental state and a second base state. The quantum processor further includes a plurality of coupling devices, a first coupling device of the plurality of coupling devices couples a first quantum device of the plurality of quantum devices to one of the plurality of quantum devices The second quantum device, wherein the configuration of the first quantum device and the second quantum device in the lattice is selected from the group consisting of a nearest neighbor configuration and a next nearest neighbor configuration. The local computer is configured to send a calculation problem to the remote computer. The remote computer is configured to send an answer to the computing problem to the local computer.
(xix)本方法、物品和系统的又一个方面提供了一种计算机系统,该计算机系统用于定义一个计算问题的一个结果。该计算机系统包括一个本地计算机、一个远程计算机和一个模拟处理器。该本地计算机包括一个中央处理单元和一个耦连到该中央处理单元的存储器。该本地计算机的存储器存储一个用户接口模件,其中包括用于定义该计算问题的指令、一个映射器模件,其中包括用于产生该计算问题的一个映射的指令,和一个传输模件,其中包括向该远程计算机发送该映射的指令。该远程计算机包括一个中央处理单元和一个耦连到该中央处理单元的存储器。该远程计算机的存储器存储了一个接收模件,其中包括用于从该本地计算机接收该映射的指令,和一个模拟处理器接口模件,其中包括向该模拟处理器发送该映射的指令。该模拟处理器包括多个量子装置和多个耦连装置。该映射包括用于该多个量子装置中的至少一个量子装置的初始化值和用于该多个耦连装置中的至少一个耦连装置的初始化值。该多个耦连装置中的一个耦连装置把该多个量子装置中的一个对应的相关量子装置耦连到该相关量子装置的一个最近邻居和次最近邻居中的至少一个上。(xix) Yet another aspect of the methods, articles and systems provides a computer system for defining a result of a computational problem. The computer system includes a local computer, a remote computer and an analog processor. The local computer includes a central processing unit and a memory coupled to the central processing unit. The memory of the local computer stores a user interface module including instructions for defining the computational problem, a mapper module including instructions for generating a mapping of the computational problem, and a transport module wherein Instructions are included for sending the mapping to the remote computer. The remote computer includes a central processing unit and a memory coupled to the central processing unit. The memory of the remote computer stores a receive module including instructions for receiving the map from the local computer, and an analog processor interface module including instructions for sending the map to the analog processor. The analog processor includes a plurality of quantum devices and a plurality of coupled devices. The map includes an initialization value for at least one quantum device of the plurality of quantum devices and an initialization value for at least one coupling device of the plurality of coupling devices. A coupling device of the plurality of coupling devices couples a corresponding associated quantum device of the plurality of quantum devices to at least one of a nearest neighbor and a next-nearest neighbor of the associated quantum device.
(xx)本方法、物品和系统的又一个方面提供了一种计算机系统,该计算机系统用于定义一个计算问题的一个结果。该计算机系统包括一个本地计算机、一个远程计算机和一个模拟处理器。该本地计算机包括一个中央处理单元和一个耦连到该中央处理单元的存储器。该本地计算机的存储器包括用于限定该计算问题的指令、和一个传输模件,其中包括用于向该远程计算机发送该计算问题的指令。该远程计算机包括一个中央处理单元和一个耦连到该中央处理单元的存储器。该远程计算机的存储器存储了一个接收模件,其中包括从该本地计算机接收该计算问题的指令。一个映射器模件,其中包括用于产生该计算问题的一个映射的指令,和一个模拟处理器接口模件,其中包括用于向该模拟处理器发送该映射的指令。该模拟处理器包括多个量子装置和多个耦连装置。该映射包括用于该多个量子装置中的至少一个量子装置的初始化值和用于该多个耦连装置中的至少一个耦连装置的初始化值,其中该多个耦连装置中的一个耦连装置把该多个量子装置中的一个对应的相关量子装置耦连到该相关量子装置的一个最近邻居和次最近邻居中的至少一个上。(xx) Yet another aspect of the methods, articles and systems provides a computer system for defining a result of a computational problem. The computer system includes a local computer, a remote computer and an analog processor. The local computer includes a central processing unit and a memory coupled to the central processing unit. The memory of the local computer includes instructions for defining the computational problem, and a transmission module including instructions for sending the computational problem to the remote computer. The remote computer includes a central processing unit and a memory coupled to the central processing unit. The memory of the remote computer stores a receiving module including instructions for receiving the calculation problem from the local computer. A mapper module including instructions for generating a map of the computational problem, and an analog processor interface module including instructions for sending the map to the analog processor. The analog processor includes a plurality of quantum devices and a plurality of coupled devices. The map includes an initialization value for at least one quantum device of the plurality of quantum devices and an initialization value for at least one coupling device of the plurality of coupling devices, wherein one of the plurality of coupling devices is coupled to Coupling means couples a corresponding correlated quantum device of the plurality of quantum devices to at least one of a nearest neighbor and a next-nearest neighbor of the correlated quantum device.
附图说明 Description of drawings
图1A和1B示出根据现有技术的一个通量量子位和一个对应的双阱势能曲线。Figures 1A and 1B show a flux qubit and a corresponding double well potential energy curve according to the prior art.
图2A示出根据本方法、物品和系统的一个实施方式的点阵,具有节点之间的正交耦连。Figure 2A illustrates a lattice with orthogonal coupling between nodes according to one embodiment of the present method, article and system.
图2B示出根据本方法、物品和系统的一个实施方式的一个点阵,具有节点之间的正交和对角耦连。Figure 2B shows a lattice with orthogonal and diagonal couplings between nodes according to one embodiment of the present method, article and system.
图2C示出根据本方法、物品和系统的另一个实施方式的点阵。Figure 2C illustrates a lattice according to another embodiment of the present methods, articles and systems.
图2D示出根据本方法、物品和系统的一个实施方式把图2B的点阵旋转了45°。Figure 2D shows the lattice of Figure 2B rotated by 45° according to one embodiment of the present method, article, and system.
图3A和3B示出本方法、物品和系统的一个实施方式,用于将五个节点的一个平面图映射到对应的基于点阵的模拟体。Figures 3A and 3B illustrate one embodiment of the present method, article and system for mapping a planar view of five nodes to corresponding lattice-based phantom volumes.
图4A和4B示出本方法、物品和系统的一个实施方式,用于将六个节点的一个平面图映射到具有次最近相邻耦连的对应的基于点阵的模拟体。Figures 4A and 4B illustrate one embodiment of the present method, article and system for mapping a planar graph of six nodes to corresponding lattice-based simulation volumes with next-nearest neighbor couplings.
图5示出本方法、物品和系统的一个实施方式,用于使多重耦连装置和节点等效于一个单个耦连装置。Figure 5 illustrates one embodiment of the present method, article and system for making multiple coupling devices and nodes equivalent to a single coupling device.
图6A和6B示出本方法、物品和系统的一个实施方式,用以向对应的基于点阵的模拟体映射一个平面图形。Figures 6A and 6B illustrate an embodiment of the present method, article and system for mapping a planar figure to a corresponding lattice-based phantom.
图7示出根据现有技术的第一组五个完全的图形K1至K5。FIG. 7 shows a first set of five complete graphs K 1 to K 5 according to the prior art.
图8示出根据现有技术的一个K3,3两部分的图形。Figure 8 shows a K 3,3 two-part graph according to the prior art.
图9A和9B示出本方法、物品和系统的一个实施方式,用以向具有次最近相邻耦连的对应的基于点阵的模拟体映射一个非平面的图形。Figures 9A and 9B illustrate an embodiment of the present method, article and system for mapping a non-planar figure to a corresponding lattice-based phantom with next nearest neighbor coupling.
图10A和10B示出本方法、物品和系统的一个实施方式,用于向具有次最近相邻耦连的对应的基于点阵的模拟体映射一个非平面图形。Figures 10A and 10B illustrate an embodiment of the present method, article and system for mapping a non-planar figure to a corresponding lattice-based phantom with next-nearest neighbor coupling.
图11示出一个根据本方法、物品和系统的一个实施方式进行运算的一个系统。Figure 11 illustrates a system operating in accordance with an embodiment of the method, article, and system.
图12A和12B示出本方法、物品和系统的一个实施方式,用以向一个集成电路映射一个基于点阵的图形。Figures 12A and 12B illustrate one embodiment of the method, article and system for mapping a dot-based pattern to an integrated circuit.
图13A和13B示出本方法、物品和系统的另一个实施方式,用以向一个集成电路映射一个基于点阵的图形。13A and 13B illustrate another embodiment of the method, article and system for mapping a dot-based pattern to an integrated circuit.
图14A和14B示出本方法、物品和系统的另一个实施方式,用以向一个集成电路映射一个基于点阵的图形。14A and 14B illustrate another embodiment of the method, article and system for mapping a dot-based pattern to an integrated circuit.
图15示出根据本方法、物品和系统的一个实施方式的一个相互耦连的四个量子装置的集合的照片。Figure 15 shows a photograph of an ensemble of four quantum devices coupled to each other according to one embodiment of the method, article, and system.
图16示出根据本方法、物品和系统的一个实施方式的一个模拟处理器的一种布局。Figure 16 shows a layout of an analog processor according to an embodiment of the method, article and system.
图17A和17B示出本方法、物品和系统的几个实施方式,用于控制一种双阱势能。Figures 17A and 17B illustrate several embodiments of the present methods, articles and systems for controlling a double well potential.
图18示出根据现有技术的一个稳恒电流量子位。Figure 18 shows a constant current qubit according to the prior art.
在这些附图中,相同的标号表示相似的元件或者动作。附图中的各个元件的尺寸和相对位置没有必要按比例画出。例如,各种元件的形状和角度没有按比例画出,并且这些元件中的某一些被任意放大和排位以提高易读性。另外,所画出的这些元件的特定形状并非旨在传达任何有关特定元件的实际形状的信息,而只是为了方便在图中识别而选取。而且,尽管附图可示出特定的布局,所属领域技术人员的会理解在设计、布局和制造中可以有改变,从而所示布局绝不构成对本方法、物品和系统的布局的限制。In these drawings, the same reference numerals indicate similar elements or actions. The size and relative positions of the various elements in the drawings are not necessarily drawn to scale. For example, the shapes and angles of various elements are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned for improved legibility. In addition, the specific shapes of these elements are drawn not intended to convey any information about the actual shape of the particular elements, but are chosen for ease of identification in the drawings. Moreover, while the drawings may show specific layouts, those skilled in the art will understand that changes may be made in design, layout, and manufacture, so that the layouts shown in no way constitute limitations on the layouts of the present methods, articles, and systems.
具体实施方式 Detailed ways
在以下说明中,叙述了某些特定的细节以对本发明的各种实施方式提供全面的理解。然而所属领域技术人员会理解实施本发明可以没有这些细节。在其他的情况下,与模拟处理器相关联的充分公知的结构,譬如量子装置、耦连装置和包括微处理器和驱动电路的控制系统没有详细示出或者说明以避免不必要地含混本发明的实施方式的说明。除非上下文另有要求,在整个说明书和所附权利要求书中,“包括”一词及其各种变位应解释为一种开放的、蕴含性的含义,就是说是“包括,然而不限于”的意思。在本说明书通篇中提及的“一种实施方式”、“一个施方式”或者“一种替代方案”、“一个替代方案”指得是所叙述的一个特定的特征、结构或者特性包括在本发明的至少一个实施方式中。从而在本说明书通篇各处出现这样的表述不是必须指同一个实施方式。进而,该特定特征、结构或者特性可以以任何适当的方式结合在一个或者多个实施方式中。本文中的小标题只是为了方便而不是解释要求保护的发明的范畴和意义。In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details. In other instances, well-known structures associated with analog processors, such as quantum devices, coupling devices, and control systems including microprocessors and drive circuits, have not been shown or described in detail to avoid unnecessarily obscuring the invention A description of the implementation. Unless the context requires otherwise, throughout the specification and appended claims, the word "comprises" and its conjugations should be interpreted in an open, implicit sense, meaning "including, but not limited to "the meaning of. References throughout this specification to "an embodiment", "an embodiment" or "an alternative", "an alternative" mean that a specific feature, structure or characteristic described is included in the In at least one embodiment of the invention. Thus appearances of such expressions in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. The subheadings herein are for convenience only and do not explain the scope and significance of the claimed invention.
根据本方法、物品和系统说明了模拟处理器。在某些实施方式中,该模拟处理器包括多个以点阵安排的量子装置和多个把该量子装置耦连在一起的多个耦连装置。在某些实施方式中,该耦连装置把该多个量子装置中的个别量子装置耦连到其最近相邻和/或其次最近相邻的装置。在某些实施方式中,该模拟处理器能够逼近落入NP(非定义性多项式时间)问题类别的一些问题的解。Analog processors are described according to the present methods, articles and systems. In some embodiments, the analog processor includes a plurality of quantum devices arranged in a lattice and a plurality of coupling devices coupling the quantum devices together. In certain embodiments, the coupling device couples an individual quantum device of the plurality of quantum devices to its nearest neighbor and/or next nearest neighbor. In some embodiments, the analog processor is capable of approximating solutions to some problems that fall into the class of NP (non-defined polynomial time) problems.
该NP类问题是那些可以用一个非定义性图灵机按多项式时间进行验证的问题。NP类别问题的范例包括,然而不限于伊辛自旋玻璃(Ising Spin Glass)(ISG)问题、最大独立集合(MaximumIndependent Set)、最大团(Max Clique)、最大切割(Max Cut)、顶点覆盖(Vertex Cover)、流动销售人员(Traveling Salesperson)(TSP)问题、k-SAT、整数线性编程,和寻找一个不偏置的、非隧道效应自旋玻璃的基态。这些问题都可以表面在一个图形上,再其中把它们投射为以顶点和与该顶点相关联的边缘构成。总体上说,这些顶点和边缘中的每个都可以有不同的值或者权重,并且这使得该图形在不同的顶点之间的关系方面有不同的特性。The NP class of problems are those that can be verified in polynomial time with a non-defined Turing machine. Examples of NP-class problems include, but are not limited to, the Ising Spin Glass (ISG) problem, Maximum Independent Set, Max Clique, Max Cut, Vertex Cover ), the Traveling Salesperson (TSP) problem, k-SAT, integer linear programming, and finding an unbiased, non-tunneling spin glass ground state. These problems can all be surfaced on a graph where they are projected to consist of a vertex and an edge associated with that vertex. In general, each of these vertices and edges can have a different value or weight, and this makes the graph have different properties in terms of the relationship between the different vertices.
可以用一个模拟处理器求解的一个计算问题是最大独立集合问题。Garey和Johnston把相关的独立集合问题定义如下:One computational problem that can be solved with an analog processor is the maximum independent set problem. Garey and Johnston defined the related independent set problem as follows:
范例:图形G=(V,E),正整数K≤|V|。Example: graph G=(V, E), positive integer K≤|V|.
问题:G是否包括一个或多个大小为K的独立集合,即是否存在一个V的子集,
其中应加以强调的是要表明该最大独立集合与称为团(Clique)的另一个问题的区别,这在以下说明。扩展该定义时,考虑具有一个顶点的集合和一个边缘的集合以及小于或者等于该图形的顶点的数目的一个正整数K的无方向性的边缘加权的图形。在下文中表达为一个计算问题的该独立集合问题问到是否有一个大小为K的顶点的子集使得在该子集中没有两个顶点由该图形的一个边缘连接。该问题存在多个其他的变形并且包括基于该计算问题的优化问题。一种优化问题的实例是标别出产生的K的最大值的图形的独立集合。这被称为最大独立集合。What should be emphasized here is to show the difference between this maximum independent set and another problem called clique, which is explained below. Extending this definition, consider a non-directional edge-weighted graph with a set of vertices and a set of edges and a positive integer K less than or equal to the number of vertices of the graph. The independent set problem, hereinafter expressed as a computational problem, asks whether there is a subset of vertices of size K such that no two vertices in the subset are connected by an edge of the graph. There are several other variants of this problem and include optimization problems based on this computational problem. An example of an optimization problem is to identify the independent set of graphs that generate the maximum value of K. This is known as the largest independent set.
在数学上,解出了独立集合就能够解出被称为团的又一个问题。该问题在一个图形中查找该团。一个团是所有相互连接的顶点的集合。给定一个图形和一个正整数K,在该团中所提出的问题为是否存在全部都相互连接的K个顶点(这些顶点还说成是相互是“邻居”)。与独立集合问题相似,该团问题可以转换成一个优化问题。团的计算在经济和密码学中起作用。在图形G1=(V,E)上求解一个独立集合等效于在G1’的补G2=(V,(V×V)-E)上求解团,例如,对于由E中的边缘所连接的所有顶点,去除该边缘,在G2中插入使在G1中不连接的顶点连接起来的边缘。Garey和Johnston把团定义成:Mathematically, solving independent sets allows solving another problem called clique. The problem finds the clique in a graph. A clique is the collection of all interconnected vertices. Given a graph and a positive integer K, the question posed in the clique is whether there are K vertices all connected to each other (the vertices are also said to be "neighbors" to each other). Similar to the independent ensemble problem, the clique problem can be transformed into an optimization problem. The computation of cliques plays a role in economics and cryptography. Solving an independent set on a graph G 1 = (V, E) is equivalent to solving a clique on the complement G 2 = (V, (V×V)-E) of G 1 ', for example, for the edge in E For all connected vertices, this edge is removed, and an edge connecting vertices not connected in G 1 is inserted into G 2 . Garey and Johnston define cliques as:
范例:图形G=(V,E),正整数K≤|V|。Example: graph G=(V, E), positive integer K≤|V|.
问题:G是否包括一个或多个大小为K的团,即是否有一个V的子集,
在此,应加以强调的是要表明该团与上面阐述的独立集合的区别。还可以表明团是如何与顶点覆盖问题相关的。同样,在NP-完全问题中的所有问题都可以在多项式时间内相互简约,使得可以有效地求解一个NP完全问题的装置同样有可能用于求解其他的NP完全问题。Here, it should be emphasized to show the difference between this regiment and the independent assembly explained above. It can also be shown how cliques are related to the vertex cover problem. Likewise, all problems in NP-complete problems can be mutually reduced in polynomial time, so that a device that can efficiently solve one NP-complete problem is also likely to be used to solve other NP-complete problems.
对于由一个顶点V的集合和连接各对顶点的边缘E的一个集合所组成的一个图形G=(V,E),G=(V,E)的最大独立集合M是V的最大子集,其中的任何一个均不会有由E中的一个边缘连接。一个最大独立集合
在上式中,N是V中的顶点的数量,i标记各个顶点,(i,j)标记在E中的i与j定点之间一个边缘,而x或是0或是1。如果节点i是在M中,该指示变量xi等于1,否则它等于0。公式(5)中的第一项支持大的集合M,而第二项可以看成是一种补偿,它强化了在M中没有由一个边缘相互连接的顶点的限制。因数λ起一种拉格郎日乘项的作用并且加权该补偿项。对于足够大的λ,我们可以确信满足该限制。在一些范例中,拉格郎日乘项λ等于2.In the above formula, N is the number of vertices in V, i marks each vertex, (i, j) marks an edge between vertices i and j in E, and x is either 0 or 1. The indicator variable xi is equal to 1 if node i is in M, otherwise it is equal to 0. The first term in formula (5) supports large sets M, while the second term can be seen as a compensation, which enforces the restriction that there are no vertices in M connected to each other by an edge. The factor λ acts as a kind of Lagrangian multiplier and weights the compensation term. For sufficiently large λ, we can be confident that this constraint is satisfied. In some examples, the Lagrangian term λ is equal to 2.
图形G中的各个顶点可以由值为-1和+1的物理自旋si代表。然而,为了做到这一点,需要一种xi到自旋si的映射。在该图形G中存在的顶点被定义为具有自旋+1而于最大独立集合解M中所不存在的G中的节点被定义为具有自旋-1。该映射被定义如下:Each vertex in graph G can be represented by physical spins si with values -1 and +1. However, in order to do this, a mapping of xi to spin si is required. Vertices existing in this graph G are defined to have spin +1 and nodes in G not existing in the maximum independent set solution M are defined to have spin -1. The mapping is defined as follows:
si=2xi-1 (6)s i =2x i -1 (6)
把公式(6)代入公式(5)得出以下的能量函数Substituting formula (6) into formula (5) yields the following energy function
其中N是在G中顶点的总数,E是在G中边缘的总数,而di是连接到顶点i的边缘的总数。该最大独立集合问题的解可以通过最小化公式(7)得出。where N is the total number of vertices in G, E is the total number of edges in G, and d i is the total number of edges connected to vertex i. The solution to this maximum independent set problem can be obtained by minimizing formula (7).
NP类问题的另一个实例是伊辛自旋玻璃(ISG)模型,该模型定义为:Another instance of NP-like problems is the Ising spin glass (ISG) model, which is defined as:
其中s1至sN是相应节点s的值,Jij代表在si和sj节点之间的耦连的值,而hi代表在对应节点ni上的偏置。为了得出最大独立集合问题的解,公式(8)被限制为:如果在节点i与j之间存在一个边缘则该耦连(Jij)就具有+λ/4的值,并且如果节点i与j之间不存在边缘则该耦连(Jij)就具有0值,并且节点偏置hi具有+a的值,其中从公式(8)定义a应当是 where s 1 to s N are the values of the corresponding node s, J ij represents the value of the coupling between the s i and s j nodes, and h i represents the bias on the corresponding node ni . To arrive at a solution to the maximum independent set problem, formula (8) is restricted such that the coupling (J ij ) has a value of +λ/4 if there is an edge between nodes i and j, and if node i There is no edge between j and j then the coupling (J ij ) has a value of 0, and the node bias h i has a value of +a, where defined from equation (8) a should be
由一个图形所代表的一个NP类问题的一个实例是流动销售人员(TSP)问题。在该TSP问题中,不同城市由顶点代表,而在这些城市之间的道路由边缘代表。TSP的任何特例的解都是刚好路过所有的这些城市一次的最短路径。An example of an NP-like problem represented by a graph is the Traveling Sales Person (TSP) problem. In this TSP problem, different cities are represented by vertices, and roads between these cities are represented by edges. The solution to any special case of TSP is the shortest path that passes through all these cities exactly once.
该TSP问题提供了现有技术水平的数字计算机的局限的一个很好的说明。在该TSP问题中,一名流动销售人员必须访问N个城市一次并且是仅一次,在旅行结束时返回起点。必须做出的确定是要采取的最佳路线。在此,“最佳”取决于给定的优先条件,但是简单地说最佳可以是指旅行的总距离的最小化。更加现实地说,“最佳”可以指飞行时间和成本的某种组合的最小化。用物理术语说,所追寻的是一个复杂的系统的基态解或者“最小值”。就是说,该TSP问题寻求最低能量配置(或者说在该情况中,最低能量的行程)。可能的行程的数目取决于存在的城市的数目。对于N个城市,包括该销售人员的大本营,有(N-1)!个造访每个城市仅一次的可能的路径:对第一个城市N-1种选择,下一个城市N-2种选择,依此类推。对于N=10个城市,这还不算太糟糕:只有362,880种选择。让一台数字计算机计算这些行程中每一个的成本并且确定哪个行程的成本最低也许不算过于费力。这种技术称为“强制力”或者说是“穷尽搜寻法”。然而随着自变量N的增长,该阶乘函数增长得非常迅速。事实上阶乘性增长要快于指数性增长。对于N=20,N!≈2×1018。对于以100太拉拍的速率运算的大型并行数字计算机,计算这种大小的问题也要数小时。对于N=40,N!≈8×1047,使用采取穷尽搜寻法法的现有数字计算机会则不可能解出这个问题。包括多个量子装置和多个耦连装置的一台模拟处理器可以用于使上述问题最小化。The TSP problem provides an excellent illustration of the limitations of state-of-the-art digital computers. In this TSP problem, a mobile salesperson has to visit N cities once and only once, returning to the starting point at the end of the trip. The determination that must be made is the best route to take. Here, "optimum" depends on the given priority, but simply optimal can refer to the minimization of the total distance traveled. More realistically, "optimum" may refer to the minimization of some combination of flight time and cost. In physics terms, what is sought is the ground state solution or "minimum" of a complex system. That is, the TSP problem seeks the lowest energy configuration (or in this case, the lowest energy run). The number of possible trips depends on the number of cities present. For N cities, including the salesperson's home base, there are (N-1)! possible paths that visit each city only once: N-1 choices for the first city, N-2 choices for the next city, and so on. For N=10 cities, this isn't too bad: only 362,880 choices. It might not be too much work for a digital computer to calculate the cost of each of these trips and determine which is the least expensive. This technique is called "force" or "exhaustive search". However, as the independent variable N grows, the factorial function grows very rapidly. In fact factorial growth is faster than exponential growth. For N=20, N! ≈2×1018. Problems of this size would also take hours to compute for a massively parallel digital computer operating at a rate of 100 terabeats. For N=40, N! ≈8×1047, which is impossible to solve using existing digital computers using the exhaustive search method. An analog processor including multiple quantum devices and multiple coupled devices can be used to minimize the above problems.
5.1映射5.1 Mapping
本方法、物品和系统的某些实施方式中,一名用户利用一个图形说明(例如顶点的一个集合和边缘的一个集合)来定义一个问题,例如一个NP类问题,并且然后一个接口计算机处理该输入以定义对一个点阵的映射。在此,一个点阵是由一个量子装置和耦连的集合组成并且可以是一种栅格。在本文中使用的情况下,一个点阵是量子装置规则的周期性排列。在该映射的基础上,模拟处理器被初始化、进行计算,并且读出结果且返回该接口计算机。该接口计算机可以是一台数字计算机。数字计算机的实例包括,但是不限于一台超级计算机、通过一个计算机网络连接的一个计算机群,和一台桌面计算机。In some embodiments of the methods, articles, and systems, a user defines a problem, such as an NP-like problem, using a graph specification (e.g., a set of vertices and a set of edges), and an interface computer then processes the Input to define a mapping to a lattice. Here, a lattice is composed of a collection of quantum devices and couplings and can be a kind of grid. As used herein, a lattice is a regular, periodic arrangement of quantum devices. On the basis of this map, the analog processor is initialized, performs calculations, and reads the results back to the interface computer. The interface computer may be a digital computer. Examples of digital computers include, but are not limited to, a supercomputer, a cluster of computers connected by a computer network, and a desktop computer.
定义为上述公式(8)的最小化的该ISG问题是可以在一个图形上定义并且落入的NP问题类别的范例。例如,参见200年Lidar的论文,New Journal of Physics 6,p.167,该文通过引用全文结合在此。已经证明其他NP类问题可以在多项式步骤中被映射到该ISG问题。例如,参见2003年Wocjan等的“Treating the IndependentSet Problens by 2D Ising Interactions with Adiabatic;量子Computing,”arXiv.org:quant-ph/0302027(下文中称为“Wocjan”),该文通过引用全文结合在此。根据本方法、物品和系统,说明了一种具有量子特性的模拟处理器,该模拟处理器被设计为用于逼近ISG问题的解,并且通过延伸逼近其他NP类别问题的可映射的解。The ISG problem defined as the minimization of equation (8) above is an example of the class of NP problems that can be defined on a graph and fall into. See, for example, Lidar's paper in 2000, New Journal of Physics 6, p. 167, which is hereby incorporated by reference in its entirety. It has been shown that other NP-like problems can be mapped to this ISG problem in polynomial steps. See, for example, "Treating the Independent Set Problems by 2D Ising Interactions with Adiabatic; Quantum Computing," Wocjan et al., 2003, arXiv.org:quant-ph/0302027 (hereinafter "Wocjan"), which is incorporated by reference in its entirety at this. According to the present methods, articles and systems, an analog processor with quantum properties designed to approximate solutions to ISG problems and, by extension, mappable solutions to other NP-class problems is described.
该ISG问题被投射在一个含有顶点(也被称为节点)的二维点阵上。多条线(也被称为边缘)连接这些节点。对于该问题的任何给定的情况都可以规定点阵中每个节点的初始状态、每个节点的权重、和每个边缘的权重。这些节点中的每个都具有一种信息状态。对于大小为N×M的一个点阵上的任何给定的边缘权重和节点权重的配置,其中N和M代表沿该点阵的侧边上节点的数量,该ISG问题涉及确定该节点系统的基态。在某些情况中,该问题中的任何边缘都可能具有一个约为0的权重,意味着在相应节点之间没有连接。边缘权重可以设定到范围从JC F至JC AF的值,其中幅度JC F是节点之间可能的铁磁耦连的最大耦连值,而幅度JC AF是节点之间可能的反铁磁耦连的最大耦连值。在替代方案中,JC F可以小于零,而JC AF大于零。在另一个替代方案中|JC F|大于|JC AF|。在又一个替代方案中|JC F|等于或者几乎等于|JC AF|。例如,参阅题为“Coupling Schemes for InformationProcessing”的美国专利申请60/640,420号,和题为“CouplingMethods and Architectures for Information Processing”的美国专利申请11/247,857,它们每一个都通过引用全文结合在此。The ISG problem is projected onto a two-dimensional lattice containing vertices (also called nodes). Lines (also known as edges) connect these nodes. For any given instance of the problem, an initial state for each node in the lattice, a weight for each node, and a weight for each edge can be specified. Each of these nodes has an information state. For any given configuration of edge weights and node weights on a lattice of size N×M, where N and M represent the number of nodes along the sides of the lattice, the ISG problem involves determining the Ground state. In some cases, any edge in the problem may have a weight around 0, meaning there is no connection between the corresponding nodes. Edge weights can be set to values ranging from J C F to J C AF , where magnitude J C F is the maximum coupling value for possible ferromagnetic coupling between nodes, and magnitude J C AF is the possible ferromagnetic coupling between nodes Maximum coupling value for antiferromagnetic coupling. In the alternative, J C F may be less than zero while J C AF is greater than zero. In another alternative |J C F | is greater than |J C AF |. In yet another alternative |J C F | is equal to or nearly equal to |J C AF |. See, for example, U.S. Patent Application No. 60/640,420, entitled "Coupling Schemes for Information Processing," and U.S. Patent Application No. 11/247,857, entitled "Coupling Methods and Architectures for Information Processing," each of which is incorporated herein by reference in its entirety.
图2A示出本方法、物品和系统的一个实施方式,用于一个四乘四矩形点阵200,具有节点N1至N16以及耦连J1-2至J15-16,总共24个耦连。耦连Ji-j把节点Ni连接到节点Nj。例如,耦连J3-4把节点N3与N4连接。这些节点可代表一个图形问题的顶点,并且这些耦连可代表该图形问题的边缘。为了清楚并且为了强调编号惯例,在图2A中只标出了点阵200中全部节点和耦连的一个子集。子集280是点阵200的包括五个节点和四个耦连的一个子集。在子集280中的中心节点具有四个最近相邻耦连,这是在点阵200中的任何节点的最近相邻耦连的最高数目。Figure 2A illustrates one embodiment of the present methods, articles and systems for a four by four
在点阵200的周边上的节点只有两个或者三个最近的邻居。点阵200具有的连接性为四,因为每个非周边的节点具有四个最近相邻耦连。在本方法、物品和系统中使用的某些点阵中,该点阵具有的连接性为三,意味着每一个非周边的量子装置具有三个最近相邻耦连。Nodes on the perimeter of
图2B示出根据本方法、物品和系统的一个四乘四矩形点阵202的一种实施方式,具有量子装置N1至N16,和总共42个耦连的耦连装置J1-2至J15-16。点阵202中的每个量子装置对应于点阵202中的一个节点N。为了清楚并且为了强调编号惯例,在图2B中只标出了点阵202中的全部量子装置和耦连装置的一个子集。子集282是点阵202的一个子集,包括九个量子装置和二十个耦连装置。在子集282中的中心量子装置具有四个最近相邻耦连,譬如J14-15,和四个次最近相邻耦连,譬如J1-6和J8-11,这是在点阵202中的任何量子装置的最近相邻耦连的最高数目。在点阵202的周边上的量子装置只有两个或者三个最近邻居,和一个或者两个次最近邻居,用于总共三个或者五个耦连。点阵202具有的连接性为八,因为非周边的量子装置被耦连到八个邻居。Figure 2B illustrates one embodiment of a four by four
图2C示出根据本方法、物品和系统的一个点阵的另一种实施方式。在图2C中示出带有连接性为四的两个矩形点阵,一个黑色点阵204和另一个在白色的205。它们由对角边缘譬如J2-17连接在一起,该边缘把点阵205的节点N2连接到点阵204的节点N17。因此,在这样一种结构中,在每个点阵204、205中的每个节点对角地连接到另一个点阵中的另一个节点上。换言之,该结构类似于具有两个矩形点阵,一个在另一个之上,并且每个点阵中的每个节点连接到另一个点阵的对应的节点上,然后再对角地推移一个点阵。图2D示出一个具有子集286的连接性为八的点阵206的另一种实施方式。除了被旋转45°以外,它在结构上与图2B所示的相同。在某些情况下,该点阵的取向可以转动一个任意角而不丧失功能性。图2C的点阵204、205可以无任何困难地映射到图2D的点阵206上。Figure 2C shows another embodiment of a lattice according to the present methods, articles and systems. Two rectangular lattices with a connectivity of four are shown in FIG. 2C , one black 204 and the other 205 white. They are connected together by a diagonal edge, such as J2-17, which connects node N2 of
可以使用连接性不是4和8的点阵,譬如使用具有连接性2、3、5、6,或者7的点阵。连接性小于4的点阵可以通过不使用某些耦连而在一个连接性为四的点阵上进行模拟。例如通过不使用图2A中的任何一个竖直耦连,点阵200变成一个连接性为二的点阵。类似地,连接性小于8的点阵可以通过不使用某些耦连在一个连接性为八的点阵上进行模拟。例如通过不使用图2B中的有条纹的对角耦连,子点阵282变成一个连接性为六的点阵。在某些情况下,可以通过把相应的耦连装置调整得使该耦连装置的耦连强度为零或者接近零来实现不使用某些耦连。Matrixes with connectivity other than 4 and 8 may be used, for example, matrixes with
在点阵200和202中的每个量子装置具有一个二进制值和一个本地有效的偏置,该偏置落在约100×JC F与约+100×JC AF之间。此外,在点阵202中的每个耦连装置具有一个从JCF至JC AF的范围的值。JC F和JC AF的绝对值可以在约30毫凱尔文(mK)与约10凱尔文(K)之间,或者,可替代地,JC F和JC AF的绝对值可以在约100mK与约1.5K之间。尽管J的真正的单位是能量,这种单位可以根据公式E=kBT转换成例如以凱尔文为单位的温度的一种等效的测度,其中kB是波尔兹曼常数。可以对点阵200和202中的每个量子装置同时施加该本地有效的偏置,使得同时偏置一个以上的量子装置。Each quantum device in
图3A和3B示出本方法、物品和系统的一个实施方式,用于在具有五个节点N1-N5和四个耦连(J1-3、J2-3、J3-4、J3-5)的一个任意的平面图形300(图3A)与一个基于点阵的连接性为四的布局301(图3B)之间的转换。图3A的节点对应于具有相同标号的图3B的量子装置。图3B示出一个九量子装置的实施方式,其中五个量子装置,即N1至N5,是激活的,而四个量子装置是不激活的。图3B中由虚线定义的量子装置是不激活的量子装置,其中的一个用N′表示,它们与系统的其余量子装置隔离。一个不激活的量子装置是通过把不激活的量子装置耦连到相邻量子装置的耦连的耦连值设为零,从而与激活的量子装置隔离开。应当指出,为了清楚并且为了保留几何状态,从图3B的左上方起向图3B的右下方移动,图3A的标号保留在图3B中。总体上,从一个任意的平面图形向一个连接性为四的点阵的映射是公知和有效的。例如参见Wocjan。3A and 3B illustrate one embodiment of the present method, article and system for use in a network with five nodes N1-N5 and four couplings (J1-3, J2-3, J3-4, J3-5). Conversion between an arbitrary planar graph 300 (FIG. 3A) and a dot-matrix-based
图4A和4B示出本方法、物品和系统的一个方面,用于在一个具有六个节点N1-N6和五个耦连(J1-4、J2-4、J3-4、J4-5、J4-6)的平面图形400(图4A)向具有最近相邻耦连(J2-4、J4-5、J3-4)以及次最近相邻耦连(J1-4、J4-6)的一个点阵402(图4B)的转换。图4A的节点对应于图4B的具有相同的标号的量子装置。一个利用最近相邻耦连以及次最近相邻耦连的点阵是一个基于点阵的连接性为八的布局。图4B示出一个六量子装置实施方式,其中所有六个量子装置,即N1至N6,都是激活的。为了把图4A(连接性为五)中所示的同一图形嵌入一个只具有最近相邻耦连的连接性为四的点阵之中将需要在一个九量子装置的点阵中有七个激活的量子装置。显然,具有次最近相邻耦连以及最近相邻耦连导致更加有效和简单的映射。4A and 4B illustrate one aspect of the present methods, articles and systems for use in a network having six nodes N1-N6 and five couplings (J1-4, J2-4, J3-4, J4-5, J4 -6) planar graph 400 (FIG. 4A) to a point with nearest neighbor couplings (J2-4, J4-5, J3-4) and second nearest neighbor couplings (J1-4, J4-6) Transformation of matrix 402 (FIG. 4B). The nodes of FIG. 4A correspond to the quantum devices of FIG. 4B with the same reference numerals. A lattice utilizing nearest-neighbor coupling and next-nearest-neighbor coupling is a connectivity-eight topology based on the lattice. Figure 4B shows a six quantum device embodiment in which all six quantum devices, N1 through N6, are active. To embed the same pattern shown in Figure 4A (connectivity five) in a connectivity four lattice with only nearest neighbor coupling would require seven activations in a lattice of nine quantum devices quantum devices. Clearly, having the next nearest neighbor coupling as well as the nearest neighbor coupling leads to a more efficient and simpler mapping.
与一个给定的量子装置在同一图形中的每个量子装置都可以被认为是该给定量子装置的一个相邻量子装置。可替代地,最近的相邻量子装置可以被定义为与该所说量子装置在同一图形中并与该所说的量子装置共享一个边缘的任何量子装置。在另一个替代方案中,次最近相邻量子装置可以被定义为与该所说的量子装置在同一图形中并且通过两个正交的边缘和另一个量子装置连接到该所说量子装置的任何量子装置。在又一个替代方案中,次最近相邻量子装置可以被定义为作为按照曼哈顿距离离开两个步阶的任何量子装置。一个曼哈顿距离1是一个正交二维图形的两个节点之间由一个单个边缘分离开的距离。例如图形402的N5和N6在按照曼哈顿距离测量时相互离开一个步阶。在另一个实例中,N4和N5相互离开两个步阶,第一步阶是从N5至N6而第二步阶是从N6至N4。在图形402中,该最近相邻耦连被画成竖直和水平线,例如,耦连J3-4,而次最近相邻耦连以四十五角画出,例如,耦连J1-4。这种将最近相邻耦连赋予为竖直和水平而将次最近相邻耦连赋予为对角的是任意的。该次最近相邻耦连可以画成竖直和水平的边缘而最近相邻耦连画成对角边缘。例如,在这种情况下图形402的N1和N4按照曼哈顿距离会是离开一个步阶,而节点N1和N3按照曼哈顿距离会是离开两个步阶。相应的一对次最近相邻耦连可以是交叉,例如,图形402的耦连J1-4,和J2-3,而最近相邻耦连不交叉。刻替换地,每个次最近相邻耦连可以与另一个次最近相邻耦连交叉。在另一个替换方案中,相应的一对最近相邻耦连可以是交叉的而次最近相邻耦连却不交叉。Every quantum device in the same graph as a given quantum device can be considered as a neighboring quantum device of the given quantum device. Alternatively, a nearest neighbor quantum device may be defined as any quantum device that is in the same graph as said quantum device and shares an edge with said quantum device. In another alternative, a next-nearest neighbor quantum device can be defined as any quantum device. In yet another alternative, a next-nearest neighbor quantum device can be defined as any quantum device that is two steps away in Manhattan distance. A
两个量子装置之间的单个耦连可以被映射到三个或者更多个量子装置之间的一个或者多个耦连。在不可能把这些量子装置彼此相邻地布置的情况下,这样一种映射在一个基于点阵的布局中是有用的。图5示出包括在节点Ni与Nj之间的一种简单的耦连Ji-j的一个第一图形500。图形502示出通过耦连中间节点N1至Nn耦连末端节点Ni和Nj的一系列耦连Ji-1至Jn-j。节点N1至Nn称为便捷器节点,并且是在这些末端节点不能够在一个点阵中布置在相邻的位置中时用于方便末端节点Ni和Nj之间的耦连。耦连Ji-1至Jn-j之一可能看来是符号耦连。在任意的平面图形500中,该符号取与耦连Ji-j相同的符号,而其余的耦连被固定于一个铁磁的耦连状态。例如,考虑其中在图形500中耦连Ji-j的符号是正的或者反铁磁的,并且图形502中的耦连Ji-1已经被认为是该符号耦连的情况。于是,如果图形502要代表图形500中的耦连Ji-j,就把耦连Ji-1设为正的或者反铁磁的,而图形502中在节点Ni与Nj之间的其余耦连设定为负的或者是铁磁性的。同样,考虑在图形500中耦连Ji-j的符号是负的或者铁磁的并且图形502中的耦连Ji-1仍被认为是该符号耦连的情况。在此情况下,把图形502中的Ji-1的符号被设为负的或者铁磁的,而其余耦连也设定为负的或者是铁磁性的。因此,Ji-1是符号耦连,而J1-1至Jn-j被设为负的或者铁磁的。为了便于相互作用,节点N1至Nn被设定为具有零作用的本地场偏置,从而使它们变成被动节点并且无干扰地在节点Ni与Nj之间传输信息。在所考虑的这两个范例中,使图形502中的耦连之一与500中的耦连Ji-j相同,而图形502中所有其余的耦连被设定为负的或者铁磁的。A single coupling between two quantum devices can be mapped to one or more couplings between three or more quantum devices. Such a mapping is useful in a lattice-based layout where it is not possible to arrange the quantum devices next to each other. Figure 5 shows a first graph 500 comprising a simple coupling Ji-j between nodes Ni and Nj. Graph 502 shows a series of couplings Ji-1 to Jn-j that couple end nodes Ni and Nj by coupling intermediate nodes N1 to Nn. Nodes N1 to Nn are called convenience nodes, and are used to facilitate coupling between end nodes Ni and Nj when these end nodes cannot be arranged in adjacent positions in one lattice. One of coupling Ji-1 to Jn-j may appear to be a symbol coupling. In any planar graph 500, this sign takes the same sign as the coupling Ji-j, while the remaining couplings are fixed in a ferromagnetic coupling state. For example, consider the case where the sign of the coupling Ji-j in graph 500 is positive or antiferromagnetic, and the coupling Ji-1 in graph 502 has been considered to be coupled to this sign. Then, if the graph 502 is to represent the coupling Ji-j in the graph 500, set the coupling Ji-1 to be positive or antiferromagnetic, and set the remaining couplings in the graph 502 between the nodes Ni and Nj to be Negative or ferromagnetic. Also, consider the case where the sign of coupling Ji-j in graph 500 is negative or ferromagnetic and coupling Ji-1 in graph 502 is still considered to be a coupling of that sign. In this case, the sign of Ji-1 in graph 502 is set to be negative or ferromagnetic, while the remaining couplings are also set to be negative or ferromagnetic. Therefore, Ji-1 is sign coupled, and J1-1 to Jn-j are set to be negative or ferromagnetic. To facilitate the interaction, the nodes N1 to Nn are set to have zero active local field bias, so that they become passive nodes and transmit information between nodes Ni and Nj without interference. In both examples considered, one of the couplings in graph 502 is made the same as coupling Ji-j in 500, while all remaining couplings in graph 502 are set to be negative or ferromagnetic.
当使图形502中的耦连之一与500中的耦连Ji-j相同,而图形502中所有其余的耦连设定为负的或者铁磁的时,可以通过使用rf-SQUIDs或者dc-SQUIDs(这两者都在下文说明)达到耦连。可替代地,图形502中的耦连可以全部是直接的电流连接使得节点Ni电气连接到节点Nj,在此情况下所有个别的耦连都是铁磁的,并且因此总耦连Ji-j是铁磁的,并且节点Ni和Nj具有相同的量子状态。在另一个替代方案中,图形502中的耦连可以包括一个电流耦连、rf-SQUID耦连、和dc-SQUID耦连的混合体,在此情况下使rf-SQUID或者dc-SQUID耦连之一等同于500中的耦连Ji-j,而在图形502中的所有其余耦连是负的或者铁磁的。When making one of the couplings in graph 502 the same as the coupling Ji-j in 500, and all the remaining couplings in graph 502 are set to be negative or ferromagnetic, it can be done by using rf-SQUIDs or dc- SQUIDs (both explained below) achieve coupling. Alternatively, the couplings in graph 502 may all be direct galvanic connections such that node Ni is electrically connected to node Nj, in which case all individual couplings are ferromagnetic, and thus the total coupling Ji-j is ferromagnetic, and nodes Ni and Nj have the same quantum state. In another alternative, the couplings in graph 502 may include a hybrid of galvanic couplings, rf-SQUID couplings, and dc-SQUID couplings, in which case the rf-SQUID or dc-SQUID couplings One is equivalent to coupling Ji-j in 500, while all remaining couplings in graph 502 are negative or ferromagnetic.
图6A和6B示出了另一个方面,用以在包括五个节点N1-N5和五个耦连(J1-3、J2-3、J3-4、J4-5)的一个平面图形600(图6A)与一个基于点阵的连接性为四的布局602(图6B)之间转换的一个实例。图6A的节点对应于图6B的具有相同标号的量子装置。图6A示出节点N4与N5之间的耦连J4-5。图6B示出对于一个基于点阵的连接性为四的布局的一种映射的实施方式,并且还示出把一个第六量子装置N6,作为一个便捷器节点(量子装置)以实现量子装置N4与N5之间的之间的耦连J4-5。在图6B中,N4通过有效耦连J4-5连接到N5。有效耦连J4-5包括量子装置N6和耦连J4-6以及J5-6。Figures 6A and 6B illustrate another aspect for a planar graph 600 (Fig. 6A) An example of conversion to and from a lattice-based connectivity-four layout 602 (FIG. 6B). The nodes of Figure 6A correspond to the quantum devices of Figure 6B with the same reference numerals. FIG. 6A shows coupling J4-5 between nodes N4 and N5. Figure 6B shows a mapping implementation for a layout based on a lattice-based connectivity of four, and also shows that a sixth quantum device N6 is used as a convenience node (quantum device) to realize the quantum device N4 The coupling between J4-5 and N5. In FIG. 6B, N4 is connected to N5 through operative coupling J4-5. Active coupling J4-5 includes quantum device N6 and couplings J4-6 and J5-6.
当图形600中的耦连J4-5是反铁磁的时,对点阵602中的耦连J4-6可以赋予一个有正号的幅值,在此该正符号表示反铁磁的耦连。然后,将向耦连J5-6赋予一个有负值的适当的幅值,在此该负值指示铁磁的耦连。这将使在N6处的自旋跟随在N5处的自旋。换言之,把在N5处的自旋复制到N6。可替代地,点阵602的耦连J5-6可以被选择为符号耦连,从而获取与图形600中的耦连J4-5相同的符号(在此例中正号指示反铁磁的耦连),并且于是可以把J4-6固定成一种铁磁的耦连。这将使在N6处的自旋跟随在N4处的自旋。换言之,把在N4处的自旋被复制到N6。在这两个实例中,量子装置N6都是一种便捷器量子装置并且都施加一个零效的本地偏置场,从而使在N6处的自旋状态可以跟踪它与之铁磁耦连的量子装置的自旋状态。When coupling J4-5 in
本方法、物品和系统通过在基于栅格的布局中利用最近相邻和次最近相邻耦连顶点提供把非平面的图形嵌入进一个二维基于栅格的的布局中。如所属技术领域内所公知,一个具有用Kn表示的n个顶点的完全图形,是一种具有n个顶点的图形,其中通过每对顶点之间的一个边缘使每个顶点均与其他定点中的每一个相连接。前五个完全的图形,即K1至K5,示于图7中。如在本文中所定义,一个非平面图形是一种包括该作为子图形的完全图形K5或者两部分图形K3,3的图形。如果其顶点可以分成两个脱节的子集U和V使得每个边缘把U中的一个顶点连接到V中的一个顶点,一个图形就是二部分的。如果在U中的每个顶点均连接到V中的每个顶点,一个两部分顶点就是一个完全的两部分图形。如果U有n个元而V有m个元,就把得出的完全两部分图形用Kn,m表示。图8示出一个K3,3两部分图形。任何非平面图形都是K5或者K3,3之一的扩展。通过添加边缘和节点扩展图形。平面阵列可以是矩形的。举例应用包括求解在嵌入一个具有最近相邻和次最近相邻耦连的一个平面阵列中的非平面图形上定义的一个问题的范例。The methods, articles, and systems provide for embedding non-planar graphics into a two-dimensional grid-based layout by utilizing nearest-neighbor and next-nearest-neighbor coupled vertices in the grid-based layout. As is well known in the art, a complete graph with n vertices denoted by Kn is a graph with n vertices in which each vertex is connected to every other vertex by an edge between each pair of vertices Each of them is connected. The first five complete patterns, K 1 to K 5 , are shown in FIG. 7 . As defined herein, a non-planar graph is a graph that includes the complete graph K 5 or the two-part graph K 3,3 as a subgraph. A graph is bipartite if its vertices can be divided into two disjoint subsets U and V such that each edge connects a vertex in U to a vertex in V. A two-part vertex is a complete two-part graph if every vertex in U is connected to every vertex in V. If U has n elements and V has m elements, the resulting complete two-part graph is denoted by K n,m . Figure 8 shows a K 3,3 two-part graph. Any non-planar graph is an extension of either K 5 or K 3,3 . Extend the graph by adding edges and nodes. Planar arrays can be rectangular. Example applications include the paradigm of solving a problem defined on a non-planar graph embedded in a planar array with nearest-neighbor and next-nearest-neighbor couplings.
图9A和9B示出根据本发明的系统、装置和方法在具有五个节点N1-N5和十个耦连的一个非平面图形901与具有最近相邻以及次最近相邻接连的偶(在图9A和9B中只示出下面专门述及的耦连)的一个基于点阵的布局951(图9B)之间的转换。图9B中的次最近相邻耦连是在图9B中呈45度角的那些耦连,例如耦连970。点阵951包括十六个量子装置,其中的十二个(N1-N12)是激活,即连接到至少一个其他的量子装置。在图9A所示的特定图形称为K5图形。它是在五个节点上完全连接的图形,意味着图形中的每个节点都连接到该图形中的每个其他的节点。K5是最小的非平面图形。任何包括K5作为一个子图形的图形也将是非平面的。图9A中示出的K5图形901可以嵌入进一个点阵中,譬如嵌入进图9B中所示的矩形点阵951中。类似地,任何具有K5作为子图形的图形都可以嵌入进一个点阵中,像点阵951。图9B中的不激活的节点,即N′,用虚线示出,并且从该系统的其余部分隔离开。实践中,通过把相邻的耦连,例如,耦连971,的耦连值设为零或者更一般地设为一个可忽略的值,一个不激活的量子装置即与激活的量子装置隔离开。FIGS. 9A and 9B illustrate a
便捷器量子装置被用于进行从一个平面图形向一个二维点阵布局的转换。从非平面图形901向二维点阵951的转换是量子装置、反铁磁的耦连加上使用便捷器量子装置,和铁磁的耦连的一种同构。图形901中的节点N1-N5对应于点阵951中的量子装置N1-N5。节点之间的符号耦连部分地对应于图形901中的边缘。图形901中的边缘由点阵951中的有符号的耦连和铁磁的耦连来代表。符号耦连由点阵951中的一对量子装置之间的粗体实线表示,例如耦连973。铁磁的耦连,例如耦连972,由点阵951中的粗体虚线代表。在点阵951中的每个铁磁耦连穿过一个便捷器量子装置。点阵951中的便捷器量子装置包括量子装置N6至N12,并且因为它们被阐述成有格的,所以可以在点阵951辨别出。每个便捷器量子装置的本地场偏置可以设为零。便捷器量子装置与该铁磁耦连配合以传播一种符号耦连。例如,便捷器量子装置N12与铁磁的耦连980一起传播符号耦连973。The convenient quantum device is used to perform the transformation from a flat figure to a two-dimensional lattice layout. The conversion from
在一个二维点阵布局(例如,布局951)中的每个符号耦连既可以是一个铁磁的也可以是一个反铁磁的耦连。可替代地,一个二维点阵布局中的每个符号耦连都可以是一种反铁磁的耦连。Each symbol coupling in a two-dimensional lattice layout (eg, layout 951) can be either a ferromagnetic or an antiferromagnetic coupling. Alternatively, each symbol coupling in a two-dimensional lattice layout can be an antiferromagnetic coupling.
图10A,10B示出根据本方法、物品和系统的一个实例,其中一个具有六个节点N1-N6的非平面的K3,3图形1001(图10A)嵌入在一个基于点阵的布局1051(图10B)中,该基于点阵的布局具有最近相邻耦连以及次最近相邻耦连。点阵1051是一种嵌入在一个三乘四阵列中的K3,3图形。图形1001中的节点N1至N6对应于点阵1051的量子装置N1至N6。点阵1051中的耦连(N1、N2)、(N1、N4)、(N3、N2)、(N3、N4)、(N3、N6)、(N5、N4),和(N5,N6)是对应于图形1001的边缘的反铁磁的耦连,并且由粗黑体线标记。例如,点阵1051中的反铁磁耦连1070将点阵1051中的N1和N2与对应于图形1001中的边缘1020耦连在一起。Figures 10A, 10B illustrate an example in which a non-planar K3,3 graph 1001 (Figure 10A) with six nodes N1-N6 is embedded in a lattice-based layout 1051 ( In FIG. 10B ), the lattice-based layout has nearest-neighbor couplings and next-nearest-neighbor couplings.
通过由一种方格图案(分别为N7、和N8、N10、N9和N11)表示的便捷器节点,耦连(N1、N6)和(N5、N2)各自通过由一个用粗黑体线(分别是(N1、N8)和(N5、N7))表示的反铁磁的耦连和一组由粗虚线(分别是(N7、N2)和(N8、N10)、(N10、N9)、(N9、N11)和(N11、N6))表示铁磁耦连进行传播。便捷器量子装置,例如,N7、N8、N9、N10和N11,是具有零本地场偏置的量子装置,它们与铁磁的耦连配合传播一种反铁磁的耦连。对于点阵1051,使用十一个量子装置以嵌入图形1001,然而,如果用对角的耦连(N8、N9)和(N9、N6)绕过量子装置N9和N11,就可以使用少至九个量子装置嵌入图形1001。不激活的量子装置N′用虚线轮廓表示。Couplings (N1, N6) and (N5, N2) are each via a convenient node represented by a checkered pattern (N7, and N8, N10, N9, and N11, respectively) by a bold bold line (respectively is the antiferromagnetic coupling represented by (N1, N8) and (N5, N7)) and a set of thick dashed lines (respectively (N7, N2) and (N8, N10), (N10, N9), (N9 , N11) and (N11, N6)) represent ferromagnetic coupling for propagation. Convenience quantum devices, such as N7, N8, N9, N10, and N11, are quantum devices with zero local field bias that cooperate with ferromagnetic couplings to propagate an antiferromagnetic coupling. For the
至于图7中所示的K5图形,任何具K3,3作为一个子图形的非平面图形都可以被嵌入如1051的一个点阵之中,As for the K 5 graph shown in Fig. 7, any non-planar graph with K 3, 3 as a sub-graph can be embedded in a lattice such as 1051,
图11示出一个系统1100,该系统根据本方法、物品和系统的一个实施方式运行。系统1100包括一个数字计算机1102,该数字计算机包括Figure 11 illustrates a
●至少一个CPU 1110;●At least one CPU 1110;
●一个由控制器1125控制的主非易失存储单元1120;a main
●一个系统存储器1126,优选的是高速随机存取存储器(RAM),用于存储系统控制程序,譬如操作系统1130,从非易失存储单元1120载入的数据和应用程序;系统存储器1126还可以包括只读存储器(ROM);A
●一个用户接口1114,包括一个或者多个输入装置(例如,键盘1118、鼠标1116)和显示器1112,以及其他供选用的外围装置;- a
●一个网络接口卡(NIC)1124或者其他的通信电路;和- a network interface card (NIC) 1124 or other communications circuitry; and
●一个内部总线1106用于互连系统1100的上述元件。• An
系统1100进一步包括一个模拟处理器1150。模拟处理器1150包括多个量子装置节点1172和多个耦连装置1174。尽管在图11中没有示出,量子装置节点1172和耦连装置1174可以安排在一个基于点阵的连接性为四布局中,例如,相在图2A、3B、6B、12A、12B、13A和13B中所示。可替代地,量子装置节点1172和耦连装置1174可以安排在一个基于点阵的连接性为八布局中,例如,如在图2B、4B、9B、10B和14B中所示。如此,节点1172和耦连装置1174在所有方面等效于图示和相对于这些附图说明的任何节点或者耦连装置。
模拟处理器1150进一步包括一个读出装置1160。读出装置1160可以包括多个dc-SQUID磁强计,其中每个dc-SQUID磁强计都感应性地连接到一个不同的量子装置节点1172,并且按照由每个dc-SQUID磁强计在读出装置1160中的测量,NIC 1124从读出装置1160接收一个电压或者电流。The
模拟处理器1150进一步包括一个耦连装置控制系统1164,该耦连装置控制系统包括用于每个耦连装置1174的一个耦连控制器。耦连装置控制系统1164中的每个相应的耦连控制器能够在JC F至JC AF的范围内调整一个对应的耦连装置1174的耦连强度,其中幅值JC F是节点之间的铁磁耦连的可能的最大耦连值,而量JC AF是节点之间反铁磁耦连的可能的最大耦连值。模拟处理器1150进一步包括一种量子装置控制系统1162,该量子装置控制系统包括用于每个量子装置节点1172的一个控制器。The
数个模件和数据结构可以由系统1100储存和处理。典型地,这样的数据结构的全部或者部分存储在存储器1126中并且为了方便表现本方法、物品和系统的各种特征和优点,此类数据结构和程序模件画成存储器1126的部件。然而应当理解在任何给定的时间,在系统存储器1126中所示的该程序和数据结构可以存储在非易失的存储单元1120中。此外,这样的数据结果和程序模件的全部或部分可以存储在图11中没有示出的一台远程计算机上,只要该远程计算机可以通过数字计算机1102寻址。可寻址指得是在该远程计算机和数字计算机1102之间有某种通信手段,从而可以通过一种数据网络(例如,互连网、一个串行连接、一个并行连接。以太网等等)使用一种通信协议(例如,FTP,telnet,SSH,IP,等等)在这两个计算机之间交换数据。把这点考虑在内,下面说明这样的数据结构和程序模件。Several modules and data structures can be stored and processed by
计算机1102可以是一种用于处理各种系统,譬如文件服务,和用于进行基于硬件的任务的操作系统1130。所属技术领域中已知多个可以作用操作系统1130的操作系统,包括,但是不限于,UNIX、Windows NT、Windows XP、DOS、LINUX和VMX。可替代地,可以没有操作系统,而指令可以按一种顺序链的方式来执行。
用户接口模件1132用于帮助一个用户定义和执行要在模拟处理器1150上求解的问题。特别地,用户接口模件1132允许一个用户通过设定节点之间的耦连Jij的值和这样的节点的本地偏置hi,并调节运行时间控制参数譬如退火方案来定义一个要解决的问题。用户接口1132还提供用于调度一个计算以及获得该问题的解的指令。特别地,把该计算的解作为来自模拟处理器1150的输出来收集。用户模件1132可以包括也可以不包括一个图形的用户接口(GUI)。在不包括一个GUI时,用户接口模件1132接收定义了要求解的问题的一个指令系列。该指令系列可以是由用户接口接口模件1132进行分解的一种宏语言的形式。这些指令可以是XML指令并且该用户接口模件1132可以是一种XML解释程序。The user interface module 1132 is used to assist a user in defining and executing problems to be solved on the
映射器模件1136把用户接口模件1132定义的要求解的计算问题映射成可以通过模拟处理器1150求解的对应问题的说明。映射器模件1136可以把问题从一个输入图形的表述映成模拟处理器1150的特定配置所要求的所希望的图形表述。映射器模件1136可以包括把在非连接性为八的图形表述所定义的一个问题映射成在一个连接性为八的图形表述中定义的一个等效的问题。映射器模件1136可以把某些NP问题(例如,最大独立集合、最大团、最大切割、TSP问题、k-SAT整数线性编程,等等)映射成ISG模型中的等效代表。The
一旦求解一个所希望的问题所需要的一个希望的图形表述已经由一个映射器模件1136进行映射之后,模拟处理器接口模件1138即被用于建立模拟处理器1150的相应耦连装置1174和量子装置节点1172的耦连值和本地偏置值。模拟处理器接口模件1138的功能可以划分成三个离散的程序模件:一个初始化模件1140、一个演算模件1142、和一个输出模件1144。Once a desired graphical representation required to solve a desired problem has been mapped by a
初始化模件1140决定耦连装置1174的适当的耦连值Jij和模拟处理器1150的量子装置节点1172的本地偏置的值hi。初始化模件1140可以包括把问题定义的各方面转换成物理值的指令,譬如耦连强度值和节点偏置值,该指令可以编程进模拟处理器1150中。然后初始化模件1140沿内部总线1106把该适当的信号发送进NIC1124中。NIC 1124再向量子装置控制系统1162和耦连装置控制系统1164发送这样的指令。The
对于任何给定的问题,在演算过程中的每个时间点,演算模件1142确定用于模拟处理器1150的耦连装置1174的耦连Jij和量子装置节点1172的本地偏置hi的适当值,以完成某些预定的演算方案。一旦演算模件1142对一个演算方案已经确定了的适当的耦连装置值和本地偏置值,这样的信号就沿总线1106发送并且进入NIC1124。NIC 1124再向量子装置控制系统1162和耦连装置控制系统1164发送这样的命令。For any given problem, at each point in time during the calculation, the
模拟处理器1150的演算可以是一种绝热的演算或者是一种退火的演算。绝热演算是在绝热量子计算中使用的演算,并且演算模件1142可以包括根据在绝热量子计算中使用的演算来推算处理器1150的状态的指令。例如,参见美国专利公开号2005-0256007、2005-0250651和2005-0224784,每个都是题为“Adiabatic QuantumComputation with Superconducting Qubits,”它们的每一个都通过引用全文结合在此。退火是另一种可以用于某些模拟处理器1150的演算形式,并且演算模件1142可以包括根据退火演算来推算模拟处理器1150的状态的指令。The calculation of the
模拟处理器1150是基于由初始化模件1140和演算模件1142所提供的信号来求解一个量子问题。一旦该问题已经求解,就可以通过读出装置1160从状态量子装置节点1172测量对该问题的解。输出模件1144与量子处理器1150的读出装置1160结合工作以读取该解。The
系统存储器1126还可以包括用于向模拟处理器1150输出信号的一个驱动器模件1146。NIC 1124可以包括与模拟处理器1150的量子装置节点1172和耦连装置1174进行接口所要求的适当的硬件,不论这是直接地还是通过读出装置1160、量子装置控制系统1162,和/或耦连装置控制系统1164。可替代地,NIC 1124可以包括从驱动器模件1146把命令转变成直接施加于量子装置节点1172和耦连装置1174的信号(例如,电压、电流)的软件和/或硬件。在另一个替代方案中,NIC 1124可以包括队来自量子装置节点1172和耦连装置1174转换信号(代表一个问题的解或者某些其他形式的反馈)进行转换以使之可以由输出模件1144解读的软件和/或硬件。因此,在某些情况下,初始化模件1140、演算模件1142和/或输出模件1144与驱动模件1146通信而不是直接与NIC 1124通信,以便发送信号和从模拟处理器1150接收信号。
NIC 1124的功能可以划分成两个功能类别:数据采集和控制。可以使用不同类型的芯片处理每个这些离散的功能类别。数据采集用于在模拟处理器1150完成了一个计算以后测量该量子装置节点1172的物理特性。可以使用任何数量的用户定制的或者市售数据采集微控制器,包括,但是不限于由Elan Digital Systems(Fareham,UK)公司制造的数据采集卡,包括AD 132、AD 136、MF 232、MF 236、AD 142、AD 218和CF 241卡。可替代地,数据采集和控制可以由单个类型的微处理器来处理,譬如由Elan D403C或者D480C处理。可以有多个NIC 1124以提供对量子装置节点1172和耦连装置1174的充分的控制,并且为了测量在模拟处理器1150上的量子计算的结果。The functionality of the
数字计算机1102还可以包括用于向其他系统传输由模拟处理器1150处理的一个计算问题的解的装置。实现这些装置的器件包括,但是不限于一个电话调制解调器、一个无线电调制解调器、一个局域网连接或者一个广域网连接。数字计算机1102可以产生体现一个数字信号的载波,其中该数字信号对由模拟处理器1150所处理的该计算问题的答案进行编码。
模拟处理器1150可以是一台超导量子计算机,其实例包括量子位寄存器、读出装置,和辅助装置。超导量子计算机一般地在毫凱尔文的温度下工作,并且通常在一种稀释冰箱中工作。稀释冰箱的一个实例是Leiden Cryogenics公司的MNK 126系列的一个型号(荷兰,Galgewater No.21,2311VZ Leiden)。模拟处理器1150的部分部件或者全部部件可以装入该稀释冰箱之内。例如,量子装置控制系统1162和耦连装置控制系统1164可以装在该稀释冰箱之外,而模拟处理器1150的其余部件安装在该稀释冰箱之内。
用户接口模件1132、模拟处理器接口模件1138,和驱动器模件1146,或者其任何组合,可以用现有的软件包来实施。适用的软件包包括但是不限于MATLAB(麻省MathWorks,Natick,Massachusetts)和LabVIEW(德州National Instruments,Austin).User interface module 1132, analog
本方法、物品和系统可以实施成一种计算机程序产品,该计算机程序产品包括嵌入在一个计算机可读的存储媒体中的计算机程序机理。例如该计算机程序产品可以含有图11中所示的程序模件。这些模件可以存储在一个CD-ROM、DVD、磁盘存储产品,或者任何其他的计算机可读的数据和程序存储产品上。该计算机程序产品中的这些软件模件还经互连网或者其他方式,通过传输体现在一种载波中的计算机数据信号(该软件模件嵌入该信号中)进行电子分发。The methods, articles and systems can be implemented as a computer program product comprising computer program mechanisms embodied in a computer readable storage medium. For example, the computer program product may contain program modules as shown in FIG. 11 . These modules can be stored on a CD-ROM, DVD, disk storage product, or any other computer readable data and program storage product. The software modules in the computer program product are also distributed electronically via the Internet or otherwise by transmission of a computer data signal embodied in a carrier wave in which the software modules are embedded.
5.2处理器和量子装置5.2 Processors and Quantum Devices
根据本方法、物品和系统的一个实施方式,一种能够逼近一个基态解的ISG问题的机器模拟可以由一种模拟处理器(例如,图11的模拟处理器1150)的形式来提供。这种模拟处理器包括一个硬件结构,该硬件结构包括一组量子装置(例如,图11的量子装置节点1172)。每个此类量子装置定义为至少两个基础状态并且能够以这些基态存储二进制的信息。该模拟处理器进一步包括用于该量子装置一种读出装置(例如,图11的读出装置1160),能够检测存储在对应的量子装置中的二进制信息。该模拟处理器进一步包括一组耦连装置(例如,图11的耦连装置1174),该耦连装置把每个节点连接到其最近相邻节点和/或其次最近相邻节点(s),如以上参照图2A、2B、3A、3B、4A、4B、6A、6B、9A、9B、10A和10B所作的说明。该模拟处理器进一步包括用于每个耦连装置的一个耦连控制器(例如,安装在图11的耦连装置控制系统1164之内)。每个相应的耦连控制器能够把一个对应的耦连装置的耦连强度J调整到值JC F至JC AF的范围,其中JC F是该最大铁磁耦连强度并且是负值而JC AF是最大反铁磁耦连强度并且是正值。在两个节点之间的一个给定耦连的一个零的J值意味着这两个节点相互不耦连。According to one embodiment of the method, article and system, a machine simulation of the ISG problem capable of approximating a ground state solution may be provided in the form of a simulation processor (eg,
该模拟处理器进一步包括用于每个量子装置(例如,安装在图11所示的量子装置控制系统1162内)的节点控制器。每个此类节点控制器能够控制施加于一个对应的量子装置上的有效偏置。这样的有效偏置从约-100×|J|变化到约+100×|J|,在此J是该对应节点的平均最大耦连值。The analog processor further includes a node controller for each quantum device (eg, installed within quantum
该量子处理器中的量子装置可以具有不同的信息基态以方便读出和初始化。该量子装置可以利用量子特性,譬如基态之间的不相干的量子隧道效应、基态之间的相干的量子隧道效应,或者不同量子装置的状态之间的牵连,并且该量子装置的量子特性可以加强该模拟处理器的计算能力。The quantum devices in the quantum processor can have different information ground states to facilitate readout and initialization. The quantum device can utilize quantum properties, such as incoherent quantum tunneling between ground states, coherent quantum tunneling between ground states, or involvement between states of different quantum devices, and the quantum properties of the quantum device can be enhanced The computing power of the simulated processor.
该模拟处理器进行一种计算以逼近被映射系统的基态。该信息状态横跨一个能量形态(energy landscape),它取决于该问题的范例所规定的条件。在该能量形态中,基态能量是最低的能量点,称为全局最小值。该能量形态含有本地最小值,该本地最小值可以捕捉该系统的状态(包括在该点阵内部的所有量子装置和耦连)并且防止它移向较低的能量最小值。引入量子特性使得该模拟处理器的状态能够通过隧道效应脱离这种本地最小值,从而该状态可以较容易地移动到较低的能量最小值,或者说可以比没有量子隧道效应以较大的概率移动到较低的通量最小。这样一种模拟处理器能够以比一个数字处理器实质性地降低了的限制去处理信息。The analog processor performs a calculation to approximate the ground state of the mapped system. The information state spans an energy landscape, which depends on the conditions specified by the paradigm of the problem. In this energy form, the ground state energy is the lowest energy point, called the global minimum. The energy form contains a local minimum that can capture the state of the system (including all quantum devices and couplings inside the lattice) and prevent it from moving towards lower energy minima. Introducing quantum properties allows the state of the analog processor to tunnel away from this local minimum, so that the state can move to a lower energy minimum more easily, or with greater probability than without quantum tunneling. Move to lower flux minimum. Such an analog processor is capable of processing information with substantially lower constraints than a digital processor.
5.2.1超导装置5.2.1 Superconducting devices
在本方法、物品和系统的某些实施方式中,该模拟处理器(例如,图11的量子装置节点1172)的量子装置是多个超导量子位。在这样的实施方式中,该模拟处理器可以包括任何数目的超导量子位,譬如四个或者更多、十个或更多、二十个或更多、100个或者更多,或者在1,000个与1,000,000之间的超导量子位。In certain embodiments of the methods, articles, and systems, the quantum device of the analog processor (eg,
超导量子位具有两种相对于在其中存储信息的具备化状态的运算模式。当该量子位进行初始化或者被测量时,该信息是经典的,即0或者1,并且代表该经典信息的这些状态也是经典的以便于可靠的状态准备。这样,一个量子位的一个第一运算模式是允许状态准备和经典信息的测量。该第一运算模式对于本方法、物品和系统的各个实施方式是有用的。Superconducting qubits have two modes of operation relative to the armed state in which information is stored. When the qubit is initialized or measured, the information is classical,
一个量子位的第二运算模式发生在量子计算期间。在这样的量子计算过程中,该装置的信息状态由量子效应主导,从而该量子位作为这些状态的相干迭加可控制进行演算,并且,在某些情况中,变得与该量子计算机中的其他量子位相牵连。然而该第二个运算模式难于以足够高的质量实现以进行通用的量子计算。A second mode of operation of a qubit occurs during quantum computing. During such quantum computations, the information states of the device are dominated by quantum effects, so that the qubits can be manipulated as a coherent superposition of these states and, in some cases, become identical to the Other qubits are implicated. However, this second mode of operation is difficult to implement at a high enough quality for general-purpose quantum computing.
超导量子位可以用作节点。第一模式中的运算使它们对于读出是理想的,并且显著降低了第二运算模式中存在限制,譬如读出该量子位时的困难、相干的时间要求等等。一个超导量子位可以做为该模拟处理器中的一个节点并且停留在该第一运算模式中,从而当不进行读出时该量子位保留在该第一运算模式中并且还进行计算。以此方式,最小的量子特性是明显的并且对该量子位的状态的干扰是最小的。Superconducting qubits can be used as nodes. Operation in the first mode makes them ideal for readout and significantly reduces the limitations that exist in the second mode of operation, such as difficulties in reading out the qubit, time requirements for coherence, etc. A superconducting qubit can act as a node in the analog processor and stay in the first mode of operation so that the qubit remains in the first mode of operation and also performs calculations when not being read out. In this way, minimal quantum properties are evident and disturbances to the state of the qubit are minimal.
超导量子位通常具有落入两个类型的特性:相位量子位和电荷量子位。相位量子位是以该装置的相位状态存储和处理信息的量子位。换言之,相位量子位是用相位作为信息承载自由度。电荷量子位是以该装置的电荷状态存储和处理信息。换言之,电荷量子位用电荷作为信息承载自由度。在超导材料中,在超导材料的不同点之间存在相位差,并且基本电荷由一个在该超导材料中流动的称为库伯对的电子对来代表。把这种装置划分成两个类别在Makhlin的文中作了概述。相位和电荷是超导体中的相关的值并且,在量子效应占优势的能量级别上,相位量子位具有用于存储量子信息的充分定义的相位状态,并且电荷量子位具有用于存储量子信息的充分定义的电荷状态。在本方法、物品和系统中,相位量子位、电荷量子位、或者相位和电荷量子位的混合体的超导量子位可以用在模拟处理器中。Superconducting qubits generally have properties that fall into two types: phase qubits and charge qubits. Phase qubits are qubits that store and process information in the phase state of the device. In other words, phase qubits use phase as an information-carrying degree of freedom. Charge qubits store and process information in the state of charge of the device. In other words, charge qubits use charge as an information-carrying degree of freedom. In a superconducting material, there is a phase difference between different points in the superconducting material, and the elementary charge is represented by a pair of electrons called a Cooper pair that flows in the superconducting material. The division of such devices into two categories is outlined in Makhlin's text. Phase and charge are related values in superconductors and, at energy levels where quantum effects dominate, a phase qubit has a well-defined phase state for storing quantum information, and a charge qubit has a well-defined phase state for storing quantum information. defined state of charge. In the present methods, articles, and systems, phase qubits, charge qubits, or superconducting qubits that are a hybrid of phase and charge qubits can be used in analog processors.
超导装置作为量子位的实验性的实现由Nakamura等于1999年Nature 398,p.786中做出,该文通过引用全文结合在此,他们开发了展示出一个量子位的基本运算要求的一种电荷量子位,但是该量子位有差的(短的)脱散时间和严格的控制参数。The experimental realization of a superconducting device as a qubit was made by Nakamura et al. 1999 in Nature 398, p.786, which is hereby incorporated by reference in its entirety, where they developed a Charge qubits, but the qubits have poor (short) descattering times and tightly controlled parameters.
5.3向超导集成电路映射5.3 Mapping to superconducting integrated circuits
根据本方法、物品和系统的实施方式,基于ISG点阵的布局直接地映射到一个集成电路,该电路满足了进行逼近或者准确地定义该系统的基态的计算的所有要求。该模拟处理器可包括:According to embodiments of the method, article and system, the layout based on the ISG lattice maps directly to an integrated circuit that fulfills all the requirements for performing calculations that approximate or exactly define the ground state of the system. The analog processor can include:
(i)一组节点,每个节点包括由一个或者多个Josephson结间断的一个超导材料环路;(i) a set of nodes, each node comprising a loop of superconducting material interrupted by one or more Josephson junctions;
(ii)一组耦连装置,该耦连装置组中的每个耦连装置都耦连在该组节点中的两个节点;(ii) a set of coupling devices, each coupling device in the set of coupling devices is coupled to two nodes in the set of nodes;
(iii)一组读出装置,在该组读出装置中的每个读出装置被配置为可读出在该节点组中的一个或者多个对应节点的状态;和(iii) a set of readout devices, each readout device in the set is configured to read the state of one or more corresponding nodes in the set of nodes; and
(iv)一组本地的偏置装置,其中在该组本地的偏置装置中的每个本地的装置被配置为在该组节点的一个或者多个对应的节点上施加一个本地的偏置场。(iv) a set of local bias devices, wherein each local device in the set of local bias devices is configured to apply a local bias field on one or more corresponding nodes of the set of nodes .
该组耦连装置中的一个或者多个耦连装置可以各自包括由一个或者多个Josephson结间断的一个超导材料环路。这种耦连装置的参数是在环路尺寸和Josephson结特性的基础上设定。这种耦连装置典型地是由通过或施加磁的或施加电的偏置的一个对应的控制系统来调整。One or more coupling means of the set of coupling means may each comprise a loop of superconducting material interrupted by one or more Josephson junctions. The parameters of this coupling device are set on the basis of the size of the loop and the characteristics of the Josephson junction. Such coupling means are typically adjusted by a corresponding control system by applying either a magnetic or electrical bias.
图12A示出一个图形1200,具有两个节点N1和N2和一个单个的耦连装置J1-2,该耦连装置耦连标记了的节点N1和N2。图12B示出图形1200节点N1的N2以及耦连装置J1-2向一个集成电路1202的转换。集成电路1202包括超导节点N1和N2,这些超导节点对应于图形1200的节点N1和N2。集成电路1202还分别地包括偏置装置110-1和110-2以及读出装置120-1和120-2,以及一个单个的耦连装置J1-2。在图12B中,节点N1和N2,各为一个rf-SQUIDs,可以包括一个单个的Josephson结130,一个复合的Josephson结131。该复合的Josephson结131还可以表述成间断一个超导环路的一种dc-SQUID。然后可以向该复合的Josephson结131施加磁通以提供一种额外程度的对该节点参数的调制。特别地,可以通过改变由装置11施加的电流来调节该量子装置(超导节点N1)的隧道效应率。等效地,可以调节该系统(在图17中示出并且在下文说明)的能量壁垒1700的高度。FIG. 12A shows a graph 1200 with two nodes N1 and N2 and a single coupling device J1-2 coupling the labeled nodes N1 and N2. FIG. 12B shows the transformation of graph 1200 node N1 of node N1 and coupling device J1 - 2 into an
节点N1和N2可以是三个Josephson结量子位。这样的结构包括由三个Josephson结间断的一个超导环路。集成电路1202中的节点N1和N2各有对应于其相应的超导环路中流动的电流或、超电流的两个可能的方向的两个状态。例如,节点N1和N2的一个第一状态由在其对应的超导环路中顺时针环流的电流代表而一个第二状态由在其对应的超导环路中反时针环流的电流代表。对应于每个该状态的该环流电流带表了由这样的环流电流产生的不同的磁场。Nodes N1 and N2 may be three Josephson junction qubits. Such a structure consists of a superconducting loop interrupted by three Josephson junctions. Nodes N1 and N2 in
读出装置120-1和120-2以及耦连装置J1-2在图12B用相同的加阴影的方框示出,因为在某些实施方式中它们是相同类型的装置,具有相似的结构和部件,然而配置为在集成电路1202中完成不同的功能。例如,耦连装置J1-2可以是一种dc-SQUID,它配置为可调地耦连节点N1和N2。耦连装置J1-2可以是单稳态的,这意味着它只有一个势能最小值。读出装置120-1和120-2可以是dc-SQUIDs,它们感应性地耦连到对应的节点并且配置为可控制地检测这些节点中的电流。可替代地,读出装置120-1和120-2可以是任何能够检测对应的节点N1和N2的状态的装置。Readout devices 120-1 and 120-2 and coupling device J1-2 are shown with the same shaded boxes in FIG. 12B because in some embodiments they are the same type of device, having similar structures and The components, however, are configured to perform different functions within
偏置装置110-1和110-2在图12B中示出为金属的环路。可以通过驱动一个流过该偏置装置的电流从一个偏置装置110向对应的节点施加一个本地的磁场。偏置装置110可以用低温超导的金属譬如铝和铌制造。该偏置装置可以不是环路,而可以简单地是在对应节点N附近穿过的电线从而向该环路中耦连磁通。每个偏置装置110都可以包括一个导线,该电线在对应的节点附近穿过然后在芯片上使用一个通路连接到另一个金属层上,譬如连接到一个底板上。诸如图12B的电路1202之类的集成电路可以直接地从该ISG点阵映射并且包括所有所需要的程度的控制以处理信息。Biasing devices 110-1 and 110-2 are shown in Figure 12B as metallic loops. A local magnetic field can be applied from a
图13A示出基于点阵的节点1300组的一种实施方式,包括一个图形,该图形具有五个节点N1至N5,和四个耦连装置J1-3、J2-3、J3-4和J3-5。图13B示出点阵1300向集成电路1302的一种转换。集成电路1302包括五个量子装置N1至N5,对应于点阵1000的五个节点,和连接该五个量子装置的四个耦连装置J1-3、J2-3、J3-4和J3-5,对应于点阵1000的耦连装置。集成电路1302进一步包括本地的偏置装置110-1、110-2、110-4和110-5以及读出装置120-1、120-2、120-4和120-5。为了清楚起见,图13B没有明显示出用于节点N3的一个本地的偏置装置或者读出装置。集成电路1302的各个方面可以置于分开的各层上以优化空间限制。在此情况下,用以节点N3的一个本地偏置装置或者读出装置可以安置在制造该N3的层的上方或者下方。集成电路1302的各个部件可以与集成电路1002(错误!未找到引用源。10B)的对应部件相同,例外是在中心的节点N3与相邻的节点N1、N2、N4和N5共享四个耦连装置。Figure 13A shows one embodiment of a lattice-based set of
集成电路1302中在N1、N2、N4和N5旁可以有不使用的量子装置。然而为了清楚起见,这样的不使用的量子装置在图13B中没有示出。在集成电路1302中编码的各个图形可以利用存在于该集成电路中的任何数量的量子位。There may be unused quantum devices in
集成电路1302的一个或者多个量子装置N1至N5可以配置成一种磁梯度计环路,从而只有当磁场不均匀地跨越该环路时该磁场才影响该梯度计环路。梯度计对于协助耦连以及用于降低该系统对外部磁场噪音的敏感性是有用的。可以成垂直的角度或者以接近垂直的角度安排最近相邻节点以降低邻近节点之间的寄生耦连(例如串扰)。当该第一节点的一个第一主轴线和该第二节点的一个第二主轴线相互垂直地对齐时,一个第一和第二节点可被认为是以相互垂直的角度安排。One or more quantum devices N1 through N5 of
图14A示出具有九个激活的节点N1至N9以及对应的耦连装置的一个基于点阵的节点1400组的一种实施方式,而图14B示出一个点阵1400向一个具有九个节点N1至N9和二十个耦连装置的集成电路1402的转换。为了清楚起见,在图14A和14B中只标出节点N1、N2、N4和N5,以及耦连J1-4、JN1-5、JN2-4和J4-5。本地偏置装置110-1、110-7、110-8和110-9,以及读出装置120-3、120-6和120-9也在集成电路1402中标出。图14B没有详尽地包括所有节点的本地偏置装置。集成电路1402的各方面可以置于分开的层上以优化空间限制。在此情况下没有在图14B中示出一个本地的偏置装置的节点的一个本地的偏置装置或者读出装置可以安置在其中制造该这些节点的层的上方或者下方。这些偏置装置可以不是环路,而是在节点N附近穿过的简单的电线并且把磁通耦连进该环路中。该偏置装置可以由一根在相同的或者不同的层在该量子位附近穿过的电线,然后连接到一个通路,该通路在该芯片上连接到另一个金属层,譬如连接到一个底板上。FIG. 14A shows an embodiment of a lattice-based
集成电路1402的每一部件可以与集成电路1202和1302的部件相同。这样的部件已经在上文参照图12B和13B说明了。集成电路1402和其他电路的一个区别是在集成电路1402中加入了次最近相邻耦连装置JN,例如JN2-4和JN1-5。如图中所示,次最近相邻耦连装置JN2-4跨越次最近相邻耦连装置JN1-5。在耦连装置JN1-5和JN2-4的一个或者两者全部中的电线可以在多个层上。Each component of
次最近相邻耦连装置,譬如耦连装置JN2-4和JN1-5,可以是dc-SQUID,或者可替代地可以是rf-SQUIDs。它们可以等效于图12B的耦连装置J,而只在其结构上不同。在图14B中只示出三个读出装置120-3、120-6、120-9,用于分别地读出对应的节点N3、N6、和N9。所有其他的节点可具有对应的读出装置120。可替代地,可以只使用少数读出装置,并且可以使用一个经典的状态复制技术向周边节点N3、N6、N9复制内部节点的状态,例如,如在题为“Methods of Ferromagnetic and Adiabatic Classical Qubit StateCopying,”的美国专利申请系列号60/675,139所说明的,该申请通过引用全文结合在此。The next nearest neighbor coupling devices, such as coupling devices JN2-4 and JN1-5, may be dc-SQUIDs, or alternatively may be rf-SQUIDs. They may be equivalent to the coupling device J of Fig. 12B, differing only in their structure. Only three readout devices 120-3, 120-6, 120-9 are shown in FIG. 14B for reading out corresponding nodes N3, N6, and N9, respectively. All other nodes may have corresponding readout devices 120 . Alternatively, only a few readouts can be used, and a classical state replication technique can be used to replicate the state of the internal nodes to the peripheral nodes N3, N6, N9, e.g. ,” U.S. Patent Application Serial No. 60/675,139, which is hereby incorporated by reference in its entirety.
尽管在图14B中没有示出,集成电路1402中在周边的量子装置N1、N2、N3、N4、N6、N7、N8和N9旁可以有没使用的量子装置。在集成电路1402中的一个或者多个量子装置N1至N9可以配置成一种磁梯度计环路,从而只有当磁场不均匀地跨越该环路时该磁场才影响该梯度计环路。梯度计环路对于帮助耦连以及用于降低该系统对外部磁场噪音的敏感性是有用的。可以成垂直的角度或者以接近垂直的角度安排最近节点以降低邻节点之间的寄生耦连(例如串扰)。Although not shown in FIG. 14B , there may be unused quantum devices in
图15示出如本方法、物品和系统的一个物理布局的一个实例的照片。四个基于通量的量子装置,1501-1至1501-4已经制造在一个超导集成电路上。每个量子装置使用最近相邻和次最近相邻耦连而连接到照片中的每个其他的量子装置上。例如,耦连装置J1-3是一个用于把量子装置1501-1和1501-3耦连在一起的最近相邻耦连装置。最近相邻耦连还存在于量子装置1501-1与1501-2之间,1501-2与1501-4之间,以及1501-3与1501-4之间,尽管这些耦连装置没有详尽地标示出。耦连装置J2-3是次最近相邻耦连的一个实例,并且把量子装置1501-2和1501-3耦连在一起。另一个次最近相邻耦连存在于量子装置1501-1与1501-4之间,尽管没有详尽地标示它。该电路上也存在读出装置和本地的偏置装置,但是它们在图15中没有示出。Figure 15 shows a photograph of an example of a physical layout of the method, article and system as present. Four flux-based quantum devices, 1501-1 through 1501-4, have been fabricated on a superconducting integrated circuit. Each quantum device is connected to every other quantum device in the photo using nearest neighbor and next nearest neighbor couplings. For example, coupling device J1-3 is a nearest neighbor coupling device for coupling quantum devices 1501-1 and 1501-3 together. Nearest neighbor coupling also exists between quantum devices 1501-1 and 1501-2, between 1501-2 and 1501-4, and between 1501-3 and 1501-4, although these coupling devices are not exhaustively labeled out. Coupling device J2-3 is an example of a next nearest neighbor coupling and couples quantum devices 1501-2 and 1501-3 together. Another next-nearest neighbor coupling exists between quantum devices 1501-1 and 1501-4, although it is not exhaustively labeled. There are also readout means and local bias means on this circuit, but they are not shown in FIG. 15 .
图16示出如本方法、物品和系统的另一个替代布局。在图中有六个量子装置,它们中的三个标记为1601-1、1601-2,和1601-3。然而,图中所示的布局可以容易地扩展到任何数量的量子装置。量子装置1601-1和1601-2是通过耦连装置J1-2连接在一起。耦连装置J1-2可以是一个rf-SQUID,或者可替代地是一个dc-SQUID。量子装置1601-1和1601-3是通过耦连装置J1-3耦连在一起,这在图16中一种直接的电流耦连。从而,量子装置1601-1和1601-3是铁磁地耦连的并且具有相同的量子状态。实施的耦连装置J1-3可以包括利用多个通路创建使用多个金属层的耦连装置的一个路径。一个实例是图16中的交叉J1-3-A,在此耦连装置J1-3的一个部分制造在另一个金属层上并且使用两个通路连接到原始层上。这样的技术是所属技术领域内所公知的。Figure 16 shows another alternative layout as the present method, article and system. There are six quantum devices in the figure, three of them are labeled 1601-1, 1601-2, and 1601-3. However, the layout shown in the figure can be easily extended to any number of quantum devices. The quantum devices 1601-1 and 1601-2 are connected together through the coupling device J1-2. The coupling device J1-2 may be an rf-SQUID, or alternatively a dc-SQUID. The quantum devices 1601-1 and 1601-3 are coupled together through the coupling device J1-3, which is a direct current coupling in FIG. 16 . Thus, quantum devices 1601-1 and 1601-3 are ferromagnetically coupled and have the same quantum state. Implementations of the coupling device J1-3 may include utilizing multiple vias to create a path of the coupling device using multiple metal layers. An example is the junction J1-3-A in Figure 16, where a part of the coupling device J1-3 is fabricated on another metal layer and connected to the original layer using two vias. Such techniques are well known in the art.
5.4模拟处理5.4 Simulation processing
5.4.1系统层面5.4.1 System level
本方法、物品和系统的一个方面提供了在给定一组初始条件下找出最低能量配置或者逼近最低能量配置的方法。这些方法通常包括把一个要求解的问题映射到一个点阵布局拓扑上。该点阵布局的拓扑被映射到包括一个量子装置的点阵的一个电路上,在该量子装置的点阵之间安排耦连。该量子装置和耦连个别地初始化并且通过在该量子装置和耦连上使用本地的偏置控制或者通过使用一种全局偏置场诱发运行时间控制。以此方式,代表要求解的问题的点阵布局拓扑被映射到量子装置的一个物理的点阵上。然后把该量子装置的点阵的最终状态作为对该问题的解读出。该解可以有二进制数的形式。One aspect of the methods, articles and systems provides a method of finding the lowest energy configuration or approaching the lowest energy configuration given a set of initial conditions. These methods usually involve mapping a problem to be solved onto a lattice layout topology. The topology of the lattice layout is mapped onto a circuit comprising a lattice of quantum devices between which couplings are arranged. The quantum device and coupling are individually initialized and run-time control is induced by using local bias control on the quantum device and coupling or by using a global bias field. In this way, the topology of the lattice layout representing the problem to be solved is mapped onto a physical lattice of quantum devices. The final state of the lattice of the quantum device is then taken as the solution to the problem. The solution may be in the form of a binary number.
5.4.2初始化5.4.2 Initialization
一个具有量子特征的模拟处理器的初始化包括将每个量子装置处的状态初始化并且将每个将用于表现求解的问题的各个耦连装置的状态初始化。在一个要求解的图形中代表一个节点的量子装置的势能曲线可以是一种双阱势能,类似于2000年Friedman等阐述的“Detection of aCat State in an rf-SQUID,”arXiv.org:cond-mat/0004293v2,该文通过引用全文结合在此。图17A和17B各示出一个双阱势能的图形。能量表示在y-轴上,而一些其他的与该装置相关联的从属变量,譬如该量子装置的内部通量表示在x-轴上。该系统由一个在该势曲线内移动的一种粒子说明。如果该粒子在左阱中,它就处于|L>状态,并且如果该粒子处于右阱中,它就处于|R>状态。这两个状态可以分别地标示为|0>和|1>,或者分别地标示为|1>和|0>。在一个超导通量量子位或者稳恒电流量子位中,这两个状态对应于环流电流的两个不同的方向,左环流和右环流。每个节点处的状态的初始化可以通过本地调整每个节点处的偏置,或通过使用一种全局偏置场进行。可选择的是,这样的调整还可以通过降低状态之间的壁垒高度来进行。如果该势能曲线向一侧倾斜,如在图17A中所示,该粒子将有较大的概率移动进入较低的通量阱中。在图17A的情况下,这会是|R>状态160-1。如果该势能阱曲线在另一侧倾斜,该粒子将有较大的概率移动进入对置的阱中。在图17A的情况下,这会是|L>状态160-0。Initialization of an analog processor with quantum features includes initializing the state at each quantum device and initializing the state of each coupled device that will be used to represent the problem being solved. The potential energy curve of a quantum device representing a node in a graph to be solved can be a double well potential energy, similar to the "Detection of a Cat State in an rf-SQUID," arXiv.org:cond-mat/0004293v2, which is hereby incorporated by reference in its entirety. Figures 17A and 17B each show a graph of the potential energy of a double well. Energy is represented on the y-axis, While some other dependent variables associated with the device, such as the internal flux of the quantum device are represented on the x-axis. The system is described by a particle moving within the potential curve. If the particle is in the left trap , it is in the |L> state, and if the particle is in the right well, it is in the |R> state. These two states can be denoted as |0> and |1>, respectively, or as | 1> and |0>. In a superconducting flux qubit or a constant current qubit, these two states correspond to two different directions of the circulating current, left and right. The state at each node The initialization of can be done by locally adjusting the bias at each node, or by using a global bias field. Optionally, such adjustment can also be made by reducing the barrier height between states. If the potential energy curve Tilting to one side, as shown in Figure 17A, the particle will have a greater probability of moving into the lower flux well. In the case of Figure 17A, this would be |R>state 160-1. If The potential well curve is sloped on the other side, and the particle will have a higher probability of moving into the opposite well. In the case of Figure 17A, this would be |L>state 160-0.
初始化其状态由粒子在一个双阱势中的位置说明的一个量子装置包括通过调整节点处的本地偏置在一侧倾斜该势能,并且等待足够长的时间使得该粒子以某种高概率移动到较低的势能。本地的场偏置可以是一种磁场,并且在节点处调整该本地的场偏置可以包括在紧密接近该量子装置处向一个超导环路或者线圈施加一个电流,从而在该量子装置中产生一个本地的磁场偏置。经过足够长的时间以后,该装置的状态将会弛豫进入该双阱势的较低通量阱中,这就是所希望的初始状态。该装置的状态可以通过热逸失而落入较低的能量阱中,或者,该装置的状态可以通过在该壁垒1700穿过的隧道效应过程达到较低的能量。在某些情况下,热逸失和隧道效应过程都对初始化起作用。Initializing a quantum device whose state is described by a particle's position in a double-well potential involves tilting the potential on one side by adjusting the local bias at the node, and waiting long enough for the particle to move with some high probability to lower potential energy. The local field bias may be a magnetic field, and adjusting the local field bias at the node may include applying a current to a superconducting loop or coil in close proximity to the quantum device, thereby generating A local magnetic field bias. After a sufficient time, the state of the device will relax into the lower flux well of the double well potential, which is the desired initial state. The state of the device may fall into a lower energy well through thermal runaway, or the state of the device may reach a lower energy through a tunneling process across the barrier 1700 . In some cases, both thermal runaway and tunneling processes contribute to initialization.
在每个量子装置处初始化该本地的场偏置包括设立一个跨该量子装置的整个点阵的一个全局的场偏置并且等待一定长度的时间。施加一个全局的场偏置引起所有的量子装置被初始化到同一状态。该全局偏置可以是一种磁场。代表一个节点的每个量子装置可以包括由一个或者多个Josephson间断的超导材料的环路,其中初始化可以跨所有的量子装置通过施加一个全局的磁场来进行,这将引起每个量子装置都初始化成相同的稳恒电流状态。Initializing the local field bias at each quantum device includes setting up a global field bias across the entire lattice of the quantum device and waiting for a certain length of time. Applying a global field bias causes all quantum devices to be initialized to the same state. The global bias can be a magnetic field. Each quantum device representing a node can consist of one or more loops of Josephson-interrupted superconducting material, where initialization can be performed across all quantum devices by applying a global magnetic field, which causes each quantum device to Initialize to the same constant current state.
在可以用于求解一个计算问题的一个集成电路中的量子装置是由一个或者多个Josephson结间断的一个超导材料的环路。可以适当地构成这样一种环路,使之具有类似于图17A或者17B中所描述的一种双阱势所说明的势能特性曲线。该双阱势中的这两个阱对应于该超导材料环路的稳恒电流(例如,图1A的电流102-0和102-1)的两个不同的方向。可以通过倾斜该双阱势把该环路初始化成所希望的状态,如在图17A中所示。例如,可以通过经该超导环路施加一个外部的通量偏置引起这种倾斜。在某些情况下,一旦确定该量子装置的状态已经初始化到了最低的能量状态,就可以撤掉该外部的通量偏置。通过把一个电线的环路或线圈放置得紧密接近该超导环路并且经该电线的环路或者说线圈施加一个偏置电流,可以把一个外部的通量施加到一个超导环路上。这种偏置电流经过该超导环路引起磁场中的改变,该改变影响量子装置的势能。A quantum device in an integrated circuit that can be used to solve a computational problem is a loop of superconducting material interrupted by one or more Josephson junctions. Such a loop may be suitably constructed to have a potential energy characteristic similar to that illustrated by a double well potential depicted in FIG. 17A or 17B. The two wells in the double well potential correspond to two different directions of the steady state current (eg, currents 102-0 and 102-1 of FIG. 1A ) of the superconducting material loop. The loop can be initialized to the desired state by ramping the double well potential, as shown in Figure 17A. Such tilting can be induced, for example, by applying an external flux bias through the superconducting loop. In some cases, the external flux bias can be removed once it is determined that the state of the quantum device has been initialized to the lowest energy state. An external flux can be applied to a superconducting loop by placing a loop or coil of wire in close proximity to the superconducting loop and applying a bias current through the loop or coil of wire. Passing this bias current through the superconducting loop causes a change in the magnetic field that affects the potential energy of the quantum device.
可以通过改变间断该超导环路的Josephson结的临界电流改变壁垒1700的高度。在一个标准的rf-SQUID中,可以在制造过程中进行这种改变,但是一旦构成该装置,一个结的临界电流一般是固定的。然而,如果用一个复合的Josephson结取代rf-SQUID中的单个的Josephson结,就有可能即使在制造后也可以调整有效的临界电流。这是通过对小裂隙结环路施加一个磁场完成的,并且通过调整该磁场改变该rf-SQUID的有效临界电流。The height of barrier 1700 can be varied by changing the critical current of the Josephson junction that interrupts the superconducting loop. In a standard rf-SQUID, this change can be made during fabrication, but once the device is constructed, the critical current of a junction is generally fixed. However, if a single Josephson junction in the rf-SQUID is replaced by a composite Josephson junction, it is possible to tune the effective critical current even after fabrication. This is accomplished by applying a magnetic field to the small-slit junction loop, and adjusting the magnetic field changes the effective critical current of the rf-SQUID.
在一个集成电路中起节点作用的一个或者多个量子装置可以是rf-SQUIDs。一个rf-SQUID是一个超导材料的环路,用一个或者多个Josephson结间断该环路。该环路中具有三个Josephson结的装置被称为一个3JJ量子位。可以配置这样的一个rf-SQUID型装置以使其势能特性曲线由一种双阱势说明。该双阱势能中的两个阱对应于超导材料的环路中的稳恒电流的两个不同的方向。具有的展现量子性能的rf-SQUIDs的装置阐述在2000年Friedman的文中。通过向放置得紧密接近该rf-SQUID的超导环路的一个电线的环路或线圈施加一个偏置电流,可以把一个外部的通量施加该rf-SQUID的超导环路上。One or more quantum devices acting as nodes in an integrated circuit can be rf-SQUIDs. An rf-SQUID is a loop of superconducting material interrupted by one or more Josephson junctions. A device with three Josephson junctions in this loop is called a 3JJ qubit. Such an rf-SQUID type device can be configured so that its potential energy characteristic curve is described by a double well potential. The two wells in this double well potential correspond to two different directions of the galvanostatic current in the loop of superconducting material. Devices with rf-SQUIDs exhibiting quantum properties are described in the 2000 paper by Friedman. An external flux can be applied to the superconducting loop of the rf-SQUID by applying a bias current to a loop or coil of wire placed in close proximity to the superconducting loop of the rf-SQUID.
用于求解一个量子问题的一个集成电路中的每个量子装置(例如,量子处理器)可以是以三个Josephson结间断的一种超导材料环路。这些类型的量子位的初始化的方法可以与以上在rf-SQUID量子装置的情况说明的那些相同。这些类型的装置不要求大的环路电感,并且因此不要求大的环路面积以具有双阱势能特性曲线。有三个Josephson结的装置阐述于Orlando中。一个或者多个量子装置可以是一种稳恒电流量子位,譬如在图18所示的那种,该图是从Orlando文中复制的。这样一种装置可以用作如本方法、物品和系统中的量子装置。在图18中的每个Josephson结由一个X标记,并且由一个理想的Josephson结和一个电容器Ci的并联组合进行模拟。并联的阻性通道假定是可以忽略的。理想的Josephson结具有一种电流相位关系式中是结i的规范不变性相位。图18中的各个结X的Josephson能量的一个特性在于它是两个相位的函数。对于一个磁抑制f的范围这两个相位和允许有两个稳定配置,该两个两个稳定配置对应于相反方向流动的DC电流。如在Orlando中所讨论,通过考虑该结中的充电能量(电容性能量)和机械上考虑该电路量子,可以把该电路参数调节为使f=1/2附近的该系统的两个最低状态将对于相反的环流电流的两个经典状态。Each quantum device (eg, quantum processor) in an integrated circuit used to solve a quantum problem can be a loop of superconducting material interrupted by three Josephson junctions. The methods of initialization of these types of qubits can be the same as those explained above in the case of rf-SQUID quantum devices. These types of devices do not require large loop inductances, and thus large loop areas, to have a double well potential characteristic. A device with three Josephson knots is described in Orlando. One or more of the quantum devices may be a constant current qubit, such as the one shown in Figure 18, reproduced from Orlando's paper. Such a device can be used as a quantum device as in the present methods, articles and systems. Each Josephson junction in Fig. 18 is marked by an X and is modeled by the parallel combination of an ideal Josephson junction and a capacitor Ci . Parallel resistive channels are assumed to be negligible. An ideal Josephson junction has a current phase relationship In the formula is the gauge invariant phase of junction i. One property of the Josephson energy of each junction X in Figure 18 is that it is a function of two phases. For a range of magnetic suppression f these two phase and Two stable configurations are allowed, corresponding to DC currents flowing in opposite directions. As discussed in Orlando, by considering the charging energy in the junction (capacitive energy) and mechanistically considering the circuit quantum, the circuit parameters can be tuned to make the two lowest states of the system around f = 1/2 will be for the two classical states of opposite circulating currents.
用于求解一个计算问题的一个集成电路中全部或者部分的量子装置可以是复合的Josephson结rf-SQUID。除了由一个连接到该rf-SQUID环路的dc-SQUID替代单个的Josephson结以外,一个复合Josephson结rf-SQUID类似于一个rf-SQUID,该dc-SQUID也称为复合Josephson结。一个dc-SQUID由两个或者多个与两个形成在该结之间的电接点并联连接的Josephson结构成。该装置表现类似于一个rf-SQUID,例外的是在环路中可以通过调整流经该dc-SQUID环路的通量来改变临界电流的意义上它具有一种额外的控制程度。调整该临界电流改变了分开该双阱势的左阱和右阱状态|L>和|R>的壁垒高度。穿过大rf-SQUID环路的通量仍然调整该双阱势的倾斜,如同在一个标准的rf-SQUID之中。将该量子装置初始化既可以包括通过向该rf-SQUID施加一个通量偏置使该双阱势倾斜,也可以通过向该dc-SQUID环路施加一个偏置降低该壁垒高度,或两者兼用,并且然后等待该装置初始化至基态。调整穿过该dc-SQUID环路的通量代表对该量子装置的状态的σX控制。All or part of the quantum devices in an integrated circuit for solving a computational problem can be composite Josephson junction rf-SQUIDs. A composite Josephson junction rf-SQUID is similar to an rf-SQUID, except that a single Josephson junction is replaced by a dc-SQUID connected to the rf-SQUID loop, which is also called a composite Josephson junction. A dc-SQUID consists of two or more Josephson structures connected in parallel with two electrical contacts formed between the junctions. The device behaves similarly to an rf-SQUID, except that it has an additional degree of control in the sense that the critical current can be changed in the loop by adjusting the flux through the dc-SQUID loop. Adjusting the critical current changes the barrier height separating the left and right well states |L> and |R> of the double well potential. The flux through the large rf-SQUID loop still adjusts the tilt of the double well potential, as in a standard rf-SQUID. Initializing the quantum device can include either tilting the double well potential by applying a flux bias to the rf-SQUID, lowering the barrier height by applying a bias to the dc-SQUID loop, or both , and then wait for the device to initialize to the ground state. Adjusting the flux through the dc-SQUID loop represents σX control over the state of the quantum device.
用于求解一个计算问题的集成电路中的各个量子装置可以是一种磁梯度计量子位。梯度计量子位的初始化是用类似于初始化rf-SQUIDs的方法。将梯度计量子位初始化的方法包括施加一个通量偏置并且等待某段时间长度。通过向紧密靠近该环路放置的电线的线圈或环路施加一个偏置电流向一个环路施加一个外部的通量。梯度量子位由相互电联通并且有相反的电流方向的两个超导叶构成。初始化可以涉及向该两个叶之一或者向二者共同施加一个通量偏置。Each quantum device in an integrated circuit used to solve a computational problem may be a magnetic gradient quantum qubit. Gradient counter bits are initialized in a manner similar to rf-SQUIDs. The method of initializing the gradient meter subbit involves applying a flux bias and waiting for a certain length of time. An external flux is applied to a loop by applying a bias current to a coil or loop of wire placed in close proximity to the loop. Gradient qubits consist of two superconducting lobes that are in electrical communication with each other and have opposite current directions. Initialization may involve applying a flux bias to either or both of the two lobes.
将量子装置初始化的方法已经在上文中讨论了。耦连装置也被初始化。在某些情况下,通过把该耦连装置设定到一个所希望的初始状态并且然后等待作为该耦连装置的特征的某段时间以确保该耦连装置事实上设定在所希望的初始状态。作为这样的初始化的一个结果,把该耦连装置初始化到一种J=-1或者J=1的状态,其中该耦连强度J被标准化为使对于一个给定的问题,所希望的耦连强度对应于J=|1|。Methods for initializing quantum devices have been discussed above. The coupling device is also initialized. In some cases, by setting the coupling device to a desired initial state and then waiting for a certain period of time that is characteristic of the coupling device to ensure that the coupling device is in fact set to the desired initial state state. As a result of such initialization, the coupling device is initialized to a state of J=-1 or J=1, where the coupling strength J is normalized such that for a given problem, the desired coupling The intensity corresponds to J=|1|.
一个集成电路中的至少一个耦连装置可以是一种量子超导装置。例如,耦连装置可以是该集成电路中的rf-SQUID。在这样的情况下,一个用作耦连装置的rf-SQUID的初始化可以包括向该耦连装置施加一个本地的通量偏置。这可以通过经一个紧密接近该耦连装置的一个超导环路或者线圈布置一个偏置电流来完成。用作耦连装置的Rf-SQUID可以是单稳态的,这指得是其势能函数只有一个最小值。该集成电路(例如,量子处理器)中的全部或者部分耦连装置可以是dc-SQUID,并且这样的耦连装置的初始化包括向这样的耦连装置直接施加一个偏置电流。At least one coupling device in an integrated circuit may be a quantum superconducting device. For example, the coupling means may be an rf-SQUID in the integrated circuit. In such cases, initialization of an rf-SQUID used as a coupling device may include applying a local flux bias to the coupling device. This can be done by placing a bias current through a superconducting loop or coil in close proximity to the coupling device. An Rf-SQUID used as a coupling device can be monostable, meaning that its potential energy function has only one minimum. All or some of the coupling devices in the integrated circuit (eg, quantum processor) may be dc-SQUIDs, and initialization of such coupling devices includes applying a bias current directly to such coupling devices.
该集成电路(例如,量子处理器)中的全部或者部分耦连装置可以是梯度计耦连。将用作一个集成电路中的耦连装置的梯度计耦连初始化的方法包括向该梯度计的一个叶或者该梯度计的全部两个叶施加一个通量偏置。All or part of the coupling means in the integrated circuit (eg quantum processor) may be gradiometer couplings. A method of initializing the coupling of a gradiometer for use as a coupling device in an integrated circuit includes applying a flux bias to one lobe of the gradiometer or to both lobes of the gradiometer.
5.4.3运行时间控制5.4.3 Runtime control
根据本方法、物品和系统的实施方式,进行一个模拟处理器的运行时间控制的方法包括改变该量子装置有效偏置。这可以通过在该模拟处理器的每个量子装置处调整各自的本地场偏置、调整该模拟处理器中的量子装置对之间的耦连的耦连强度进行,或通过调整各个量子装置的壁垒高度来进行,该壁垒高度的调整等效于改变该系统的有效温度,其中该系统由一个量子装置和耦连元件的点阵组成。According to embodiments of the methods, articles, and systems, a method of performing run-time control of an analog processor includes varying the quantum device effective bias. This can be done by adjusting the respective local field bias at each quantum device in the analog processor, adjusting the coupling strength of the coupling between pairs of quantum devices in the analog processor, or by adjusting the The adjustment of the barrier height is equivalent to changing the effective temperature of the system consisting of a quantum device and a lattice of coupled elements.
相应地降低或者提高该量子装置的壁垒高度就足以提高或者降低该系统的有效温度。一个量子装置的壁垒高度是该能量形态的两个势阱之间的势能壁垒,在图17A和17B示出为壁垒1700。如果该量子装置包括一个复合的结,该量子装置的壁垒高度可通过调整穿过该复合结的环路的外部磁场来改变。A corresponding decrease or increase in the barrier height of the quantum device is sufficient to increase or decrease the effective temperature of the system. The barrier height of a quantum device is the potential energy barrier between the two potential wells of that energy form, shown as barrier 1700 in Figures 17A and 17B. If the quantum device includes a composite junction, the barrier height of the quantum device can be changed by adjusting the external magnetic field through the loop of the composite junction.
如果用该有效温度达到一个模拟处理器终末状态,首先降低所有量子装置的势能壁垒,这就通过使该模拟处理器的量子状态易于从本地最小值进行热逸失而增加该有效温度。然后缓慢地提高该量子装置的势能壁垒,从而降低有效温度,使得该模拟处理器的量子状态能够找到较低的最小值。If the effective temperature is used to reach an analog processor end state, the potential energy barrier of all quantum devices is lowered first, which increases the effective temperature by making the quantum state of the analog processor susceptible to thermal escape from a local minimum. The potential energy barrier of the quantum device is then slowly raised, thereby lowering the effective temperature, allowing the analog processor's quantum state to find a lower minimum.
纯粹通过热逸失的退火被称为经典退火,因为它不利用该系统的量子效应。找到该模拟处理器的终末状态的方法可以是完全经典的。可替代地,可以附加于经典退火进行量子退火。量子退火的一种形式是量子隧道效应,其中通过穿过该势垒的隧道效应而不是通过热逸失,该模拟处理器的量子状态找到一个比其当前所处的状态更低的最小值。从而,在统计学上由其现有的最小值热逸失的概率小的时候,量子退火可以帮助该量子状态找到更低的最小值。Annealing purely by thermal runaway is called classical annealing because it does not exploit the quantum effects of the system. The method of finding the terminal state of this simulated processor can be completely classical. Alternatively, quantum annealing can be performed in addition to classical annealing. One form of quantum annealing is quantum tunneling, in which the quantum state of the analog processor finds a lower minimum than the state it is currently in by tunneling through the barrier rather than by thermal runaway. Thus, quantum annealing can help the quantum state find a lower minimum when the probability of thermal escape from its existing minimum is statistically small.
找到一个模拟处理器的终末状态可以通过绝热的量子演算来进行。在绝热的量子演变中,把该模拟处理器初始化到一种已知的哈密尔敦函数(Hamiltonian)的量子状态的基态。然后允许该量子状态能够绝热地演变到一种终末的哈密尔敦函数。该绝热演变通常慢得足以防止该量子状态从基态移动到一种激励态。绝热演变可以通过调整该处理器中的量子装置之间的耦连强度或者通过调整该量子装置的各别的偏置,或通过调整影响所有量子装置的全局偏置来进行。该终末基态代表由该终末哈密尔敦函数编码的一个计算问题的解。该过程的更多信息例如可以参见前文提及的美国专利申请公开号2005-0256007、2005-0250651,和2005-0224784。Finding the final state of an analog processor can be performed by adiabatic quantum calculus. In adiabatic quantum evolution, the analog processor is initialized to a ground state of a known quantum state of the Hamiltonian. The quantum state is then allowed to evolve adiabatically to a terminal Hamilton function. The adiabatic evolution is usually slow enough to prevent the quantum state from moving from the ground state to an excited state. Adiabatic evolution can be performed by adjusting the coupling strength between the quantum devices in the processor or by adjusting the individual biases of the quantum devices, or by adjusting a global bias affecting all quantum devices. The terminal ground state represents the solution to a computational problem encoded by the terminal Hamilton function. More information on this process can be found, for example, in the aforementioned US Patent Application Publication Nos. 2005-0256007, 2005-0250651, and 2005-0224784.
进行一个模拟处理器的运行时间控制的方法包括通过一种热退火处理提高该模拟处理器的实际温度的方法。该热退火过程可以包括把该系统的温度从基础温度提高到一个在30mK至3K之间的温度,并且然后把该系统的温度降低到该基础温度。A method of performing runtime control of an analog processor includes a method of increasing the actual temperature of the analog processor by a thermal annealing process. The thermal annealing process may include increasing the temperature of the system from a base temperature to a temperature between 30 mK and 3K, and then decreasing the temperature of the system to the base temperature.
5.4.4读出5.4.4 Readout
读出一个集成电路中的量子装置(例如,量子处理器)的状态的方法可以包括将一个读出装置初始化并且测量该读出装置的一个物理特性。一个量子装置有两个可能的读出状态,即|0>状态和|1>状态。读出一个量子装置把该装置的量子状态瓦解到两个经典状态之一。其中该量子装置上的壁垒高度是可调整的,可以在读出该量子装置的状态之前提高该壁垒高度。提高该壁垒,例如图17的壁垒1700,把该量子装置冻结在或是|0>状态或是|1>状态。A method of reading out the state of a quantum device (eg, quantum processor) in an integrated circuit may include initializing a readout device and measuring a physical characteristic of the readout device. A quantum device has two possible readout states, the |0> state and the |1> state. Reading out a quantum device collapses the quantum state of the device into one of two classical states. Wherein the barrier height on the quantum device is adjustable, and the barrier height can be increased before reading out the state of the quantum device. Raising the barrier, such as barrier 1700 of Figure 17, freezes the quantum device in either the |0> state or the |1> state.
该读出装置可以包括一个感应性地连接到该量子装置的dc-SQUID磁力计,在此情况下确定该量子装置的状态可以包括从该dc-SQUID磁力计测量一个电压或者电流。然后可以把该电压或者电流转换成代表在该量子装置处的磁场的值。The readout device may include a dc-SQUID magnetometer inductively connected to the quantum device, in which case determining the state of the quantum device may include measuring a voltage or current from the dc-SQUID magnetometer. The voltage or current can then be converted to a value representative of the magnetic field at the quantum device.
经典的状态复制可以用于减少所要求的读出装置的数目。例如参阅前文参引的美国专利申请60/675,139。Classical state replication can be used to reduce the number of readout devices required. See, eg, previously referenced US Patent Application 60/675,139.
读出该量子装置的状态以后,该测量的结果可以使用体现在一个载波上的数据信号进行传输。该数据信号可以是数字信号,并且在某些情况下,可以使用数字计算机1102(示于图11中)来产生该载波。After reading out the state of the quantum device, the result of the measurement can be transmitted using a data signal embodied on a carrier wave. The data signal can be a digital signal, and in some cases, digital computer 1102 (shown in FIG. 11 ) can be used to generate the carrier wave.
5.5引用的参考文献5.5 Cited references
本说明书中提及的所有美国专利、美国专利申请公开、美国专利申请、外国专利、外国专利申请和非专利的文献包括但是不限于US 6,670,630、US 6,784,451、US 6,822,255、US 6,885,325、US6,897,468、US 6,960,780、US 6,979,836、US 2002-0121636、US2003-0107033、US 2003-0121028、US 2003-0169041、US2003-0173498、US 2004-0000666、US 2004-0016918、US2004-0119061、US 2004-0140537、US 2005-0224784、US2005-0250651、US 2005-0256007、美国专利申请系列号60/640,420、60/675,139和11/247,857,均通过引用全文结合在此,并且是对于所有目的。All U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent literature mentioned in this specification include but are not limited to US 6,670,630, US 6,784,451, US 6,822,255, US 6,885,325, US 6,897,468, US 6,960,780、US 6,979,836、US 2002-0121636、US2003-0107033、US 2003-0121028、US 2003-0169041、US2003-0173498、US 2004-0000666、US 2004-0016918、US2004-0119061、US 2004-0140537、US 2005 - 0224784, US2005-0250651, US 2005-0256007, US Patent Application Serial Nos. 60/640,420, 60/675,139, and 11/247,857, are hereby incorporated by reference in their entirety and for all purposes.
5.6替代实施方式5.6 Alternative Implementations
对于所属领域技术人员很明显,可以组合以上阐述的各种实施方式以提供其他的实施方式。如果需要,可以修改本发明的各个方面,以利用各种专利、申请和文献的系统、电路和概念提供本发明的进一步的实施方式。可以根据前文的阐述对本发明做出这样的或者那样的改变。总之,在所附权利要求书中,所使用的术语不应当被解释为将本发明限制到本说明书和权利要求书中揭示的具体实施方式,而应当解释为包括所有可能的实施方式,连同该权利要求书有权要求的所有等效物。因此,本发明不限于所披露的内容,相反其范畴应当完全由所附权利要求来确定。It will be apparent to those skilled in the art that the various embodiments set forth above can be combined to provide further embodiments. Aspects of the invention can be modified, if desired, to utilize the systems, circuits and concepts of the various patents, applications and documents to provide further embodiments of the invention. This or that change can be made to the present invention based on the foregoing description. In conclusion, in the appended claims, the terms used should not be construed as limiting the invention to the specific embodiments disclosed in the specification and claims, but should be construed as including all possible embodiments, together with the All equivalents to which the claims are entitled. Accordingly, the invention is not limited by what has been disclosed, but rather its scope should be determined solely by the appended claims.
Claims (47)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63860004P | 2004-12-23 | 2004-12-23 | |
US60/638,600 | 2004-12-23 | ||
US60/705,503 | 2005-08-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101088102A CN101088102A (en) | 2007-12-12 |
CN100585629C true CN100585629C (en) | 2010-01-27 |
Family
ID=38938260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200580044348A Active CN100585629C (en) | 2004-12-23 | 2005-12-23 | Analog processors including quantum devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100585629C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220261680A1 (en) * | 2019-07-19 | 2022-08-18 | Nec Corporation | Superconducting circuit and quantum computer |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101978368A (en) * | 2008-03-24 | 2011-02-16 | D-波系统公司 | Systems, devices, and methods for analog processing |
JP5400872B2 (en) * | 2008-05-20 | 2014-01-29 | ディー−ウェイブ システムズ,インコーポレイテッド | System, method and apparatus for calibrating, controlling and operating a quantum processor |
EP3098865B1 (en) | 2009-02-27 | 2018-10-03 | D-Wave Systems Inc. | Method for fabricating a superconducting integrated circuit |
WO2013180780A2 (en) | 2012-03-08 | 2013-12-05 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
US10769545B2 (en) | 2014-06-17 | 2020-09-08 | D-Wave Systems Inc. | Systems and methods employing new evolution schedules in an analog computer with applications to determining isomorphic graphs and post-processing solutions |
CN107077642B (en) * | 2014-08-22 | 2021-04-06 | D-波系统公司 | Systems and methods for solving problems that can be used in quantum computing |
CN108140146B (en) * | 2015-08-19 | 2022-04-08 | D-波系统公司 | Discrete variational automatic encoder system and method using adiabatic quantum computer |
US10817796B2 (en) | 2016-03-07 | 2020-10-27 | D-Wave Systems Inc. | Systems and methods for machine learning |
US10229355B2 (en) * | 2016-04-13 | 2019-03-12 | Iqb Information Technologies Inc. | Quantum processor and its use for implementing a neural network |
CA3022039C (en) * | 2016-04-25 | 2021-11-16 | Google Llc | Coupling architectures for superconducting flux qubits |
JP6945553B2 (en) | 2016-05-03 | 2021-10-06 | ディー−ウェイブ システムズ インコーポレイテッド | Systems and methods for superconducting circuits and superconducting devices used in scalable computation |
US10528886B2 (en) * | 2016-10-06 | 2020-01-07 | D-Wave Systems Inc. | Quantum flux parametron based structures (e.g., muxes, demuxes, shift registers), addressing lines and related methods |
EP3577700B1 (en) | 2017-02-01 | 2022-03-30 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
FR3066297B1 (en) * | 2017-05-11 | 2019-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | QUANTUM DEVICE WITH QUANTITIES OF SPIN |
WO2019014345A1 (en) | 2017-07-11 | 2019-01-17 | Massachusetts Institute Of Technology | Optical ising machines and optical convolutional neural networks |
US11281987B2 (en) * | 2017-11-28 | 2022-03-22 | Duke University | Software-defined quantum computer |
WO2019118644A1 (en) | 2017-12-14 | 2019-06-20 | D-Wave Systems Inc. | Systems and methods for collaborative filtering with variational autoencoders |
US11334693B1 (en) * | 2018-03-07 | 2022-05-17 | Keysight Technologies Canada Inc. | Systems and methods for optimizing quantum computers |
JP7381495B2 (en) * | 2018-05-16 | 2023-11-15 | ディー-ウェイブ システムズ インコーポレイテッド | A system and method for addressing devices within a superconducting circuit. |
US11105866B2 (en) | 2018-06-05 | 2021-08-31 | D-Wave Systems Inc. | Dynamical isolation of a cryogenic processor |
US10510943B1 (en) * | 2018-08-28 | 2019-12-17 | International Business Machines Corporation | Structure for an antenna chip for qubit annealing |
US20200152851A1 (en) | 2018-11-13 | 2020-05-14 | D-Wave Systems Inc. | Systems and methods for fabricating superconducting integrated circuits |
WO2020150156A1 (en) * | 2019-01-17 | 2020-07-23 | D-Wave Systems, Inc. | Systems and methods for hybrid algorithms using cluster contraction |
US12102017B2 (en) | 2019-02-15 | 2024-09-24 | D-Wave Systems Inc. | Kinetic inductance for couplers and compact qubits |
US11839164B2 (en) | 2019-08-19 | 2023-12-05 | D-Wave Systems Inc. | Systems and methods for addressing devices in a superconducting circuit |
CN111478700B (en) * | 2020-03-19 | 2020-12-04 | 中国计量科学研究院 | Josephson Array Cell Simulator |
CN114638369B (en) * | 2020-12-15 | 2025-05-09 | 华为技术有限公司 | Quantum computing methods and systems |
CN114954887B (en) * | 2022-01-24 | 2024-01-23 | 重庆大学 | Lightweight electric steering gear anti-impact protective shell based on three-dimensional rotating lattice structure |
CN114943199B (en) * | 2022-05-24 | 2023-04-18 | 北京百度网讯科技有限公司 | Method, device and equipment for determining connectivity characteristics and storage medium |
CN116502023B (en) * | 2023-06-28 | 2023-09-19 | 微观纪元(合肥)量子科技有限公司 | Maximum cutting problem solving method and device for ground state energy calculation of spin glass system |
-
2005
- 2005-12-23 CN CN200580044348A patent/CN100585629C/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220261680A1 (en) * | 2019-07-19 | 2022-08-18 | Nec Corporation | Superconducting circuit and quantum computer |
Also Published As
Publication number | Publication date |
---|---|
CN101088102A (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100585629C (en) | Analog processors including quantum devices | |
US11093440B2 (en) | Analog processor comprising quantum devices | |
US7624088B2 (en) | Analog processor comprising quantum devices | |
CN101176110B (en) | Qubit state copying | |
US20190228331A1 (en) | Quantum processor with instance programmable qubit connectivity | |
US20100148853A1 (en) | Systems, devices, and methods for controllably coupling qubits | |
US20090121215A1 (en) | Systems, devices, and methods for analog processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |