CN100583543C - Lithium ion conductive solid electrolyte, method for producing same, solid electrolyte for lithium secondary battery using same, and all-solid-state lithium battery using same - Google Patents
Lithium ion conductive solid electrolyte, method for producing same, solid electrolyte for lithium secondary battery using same, and all-solid-state lithium battery using same Download PDFInfo
- Publication number
- CN100583543C CN100583543C CN200680001957A CN200680001957A CN100583543C CN 100583543 C CN100583543 C CN 100583543C CN 200680001957 A CN200680001957 A CN 200680001957A CN 200680001957 A CN200680001957 A CN 200680001957A CN 100583543 C CN100583543 C CN 100583543C
- Authority
- CN
- China
- Prior art keywords
- lithium
- sulfide
- solid electrolyte
- boron
- ion conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 64
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 41
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 27
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052796 boron Inorganic materials 0.000 claims abstract description 23
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 claims description 33
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 30
- 239000011521 glass Substances 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 229910052738 indium Inorganic materials 0.000 claims description 13
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 13
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims description 9
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 7
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 7
- 239000005864 Sulphur Substances 0.000 claims 4
- ZVTQDOIPKNCMAR-UHFFFAOYSA-N sulfanylidene(sulfanylideneboranylsulfanyl)borane Chemical compound S=BSB=S ZVTQDOIPKNCMAR-UHFFFAOYSA-N 0.000 claims 4
- 239000004411 aluminium Substances 0.000 claims 3
- 239000002241 glass-ceramic Substances 0.000 claims 2
- 150000004763 sulfides Chemical class 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 abstract description 22
- 239000011593 sulfur Substances 0.000 abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- 231100000419 toxicity Toxicity 0.000 abstract description 3
- 230000001988 toxicity Effects 0.000 abstract description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 25
- 239000000843 powder Substances 0.000 description 22
- 239000000376 reactant Substances 0.000 description 21
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 15
- 239000003960 organic solvent Substances 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000005406 washing Methods 0.000 description 8
- 239000000470 constituent Substances 0.000 description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 229910018091 Li 2 S Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- -1 amide compounds Chemical class 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000005486 organic electrolyte Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910003480 inorganic solid Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000003495 polar organic solvent Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000002203 sulfidic glass Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910013184 LiBO Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- BSJWDQYZFBYNIM-UHFFFAOYSA-N 1,3,4,5-tetramethylpyrrolidin-2-one Chemical compound CC1C(C)N(C)C(=O)C1C BSJWDQYZFBYNIM-UHFFFAOYSA-N 0.000 description 1
- BCNBMSZKALBQEF-UHFFFAOYSA-N 1,3-dimethylpyrrolidin-2-one Chemical compound CC1CCN(C)C1=O BCNBMSZKALBQEF-UHFFFAOYSA-N 0.000 description 1
- NCNWTBAWLAFYDR-UHFFFAOYSA-N 1,6-dimethylpiperidin-2-one Chemical compound CC1CCCC(=O)N1C NCNWTBAWLAFYDR-UHFFFAOYSA-N 0.000 description 1
- SZMLDVKZMIXAJF-UHFFFAOYSA-N 1-(2-methylpropyl)azepan-2-one Chemical compound CC(C)CN1CCCCCC1=O SZMLDVKZMIXAJF-UHFFFAOYSA-N 0.000 description 1
- IVUYGANTXQVDDG-UHFFFAOYSA-N 1-(2-methylpropyl)pyrrolidin-2-one Chemical compound CC(C)CN1CCCC1=O IVUYGANTXQVDDG-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- VGZOTUWVGXUNRC-UHFFFAOYSA-N 1-butylazepan-2-one Chemical compound CCCCN1CCCCCC1=O VGZOTUWVGXUNRC-UHFFFAOYSA-N 0.000 description 1
- BNXZHVUCNYMNOS-UHFFFAOYSA-N 1-butylpyrrolidin-2-one Chemical compound CCCCN1CCCC1=O BNXZHVUCNYMNOS-UHFFFAOYSA-N 0.000 description 1
- MXEOFTCIEDUHCX-UHFFFAOYSA-N 1-cyclohexylazepan-2-one Chemical compound O=C1CCCCCN1C1CCCCC1 MXEOFTCIEDUHCX-UHFFFAOYSA-N 0.000 description 1
- IVVVGBHWWAJRAY-UHFFFAOYSA-N 1-ethyl-3-methylpyrrolidin-2-one Chemical compound CCN1CCC(C)C1=O IVVVGBHWWAJRAY-UHFFFAOYSA-N 0.000 description 1
- GWCFTYITFDWLAY-UHFFFAOYSA-N 1-ethylazepan-2-one Chemical compound CCN1CCCCCC1=O GWCFTYITFDWLAY-UHFFFAOYSA-N 0.000 description 1
- VUQMOERHEHTWPE-UHFFFAOYSA-N 1-ethylpiperidin-2-one Chemical compound CCN1CCCCC1=O VUQMOERHEHTWPE-UHFFFAOYSA-N 0.000 description 1
- GGYVTHJIUNGKFZ-UHFFFAOYSA-N 1-methylpiperidin-2-one Chemical compound CN1CCCCC1=O GGYVTHJIUNGKFZ-UHFFFAOYSA-N 0.000 description 1
- BWIRRVWVFWVVSG-UHFFFAOYSA-N 1-propan-2-ylazepan-2-one Chemical compound CC(C)N1CCCCCC1=O BWIRRVWVFWVVSG-UHFFFAOYSA-N 0.000 description 1
- GVDQKJQFVPXADH-UHFFFAOYSA-N 1-propan-2-ylpiperidin-2-one Chemical compound CC(C)N1CCCCC1=O GVDQKJQFVPXADH-UHFFFAOYSA-N 0.000 description 1
- GHELJWBGTIKZQW-UHFFFAOYSA-N 1-propan-2-ylpyrrolidin-2-one Chemical compound CC(C)N1CCCC1=O GHELJWBGTIKZQW-UHFFFAOYSA-N 0.000 description 1
- BWISIXSYQURMMY-UHFFFAOYSA-N 1-propylazepan-2-one Chemical compound CCCN1CCCCCC1=O BWISIXSYQURMMY-UHFFFAOYSA-N 0.000 description 1
- DCALJVULAGICIX-UHFFFAOYSA-N 1-propylpyrrolidin-2-one Chemical compound CCCN1CCCC1=O DCALJVULAGICIX-UHFFFAOYSA-N 0.000 description 1
- CQJAWZCYNRBZDL-UHFFFAOYSA-N 2-(methylazaniumyl)butanoate Chemical compound CCC(NC)C(O)=O CQJAWZCYNRBZDL-UHFFFAOYSA-N 0.000 description 1
- DRYYJQYUHPRVBN-UHFFFAOYSA-N 3-ethyl-1-methylpiperidin-2-one Chemical compound CCC1CCCN(C)C1=O DRYYJQYUHPRVBN-UHFFFAOYSA-N 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910010833 LiI-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910010855 LiI—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- IKJFYINYNJYDTA-UHFFFAOYSA-N dibenzothiophene sulfone Chemical compound C1=CC=C2S(=O)(=O)C3=CC=CC=C3C2=C1 IKJFYINYNJYDTA-UHFFFAOYSA-N 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- IMNDHOCGZLYMRO-UHFFFAOYSA-N n,n-dimethylbenzamide Chemical compound CN(C)C(=O)C1=CC=CC=C1 IMNDHOCGZLYMRO-UHFFFAOYSA-N 0.000 description 1
- IFTIBNDWGNYRLS-UHFFFAOYSA-N n,n-dipropylacetamide Chemical compound CCCN(C(C)=O)CCC IFTIBNDWGNYRLS-UHFFFAOYSA-N 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
本发明提供一种锂离子传导性固体电解质,其在室温下也会显示出高的锂离子传导率,难以被氧化,毒性的问题也很少,作为构成成分,含有锂(Li)、硼(B)、硫(S)及氧(O)元素,硫与氧元素的比率(O/S)为0.01~1.43。
The present invention provides a lithium ion conductive solid electrolyte, which also shows high lithium ion conductivity at room temperature, is difficult to be oxidized, and has few toxicity problems, and contains lithium (Li), boron ( B), sulfur (S) and oxygen (O) elements, the ratio of sulfur and oxygen elements (O/S) is 0.01 to 1.43.
Description
技术领域 technical field
本发明涉及:作为构成成分含有锂、硼、硫及氧,具有特定的硫与氧的比率的锂离子传导性固体电解质;作为构成成分含有锂、硼、硫及氧元素,具有特定的X射线衍射峰的锂离子传导性固体电解质;硫化锂(Li2S)∶三硫化二硼(B2S3)∶以LiaMOb表示的化合物的摩尔%比具有以X(100-Y)∶(1-X)(100-Y)∶Y表示的组成的锂离子传导性固体电解质;将该组成的硫化物玻璃[其中,M表示选自磷、硅、铝、硼、硫、锗、镓、铟中的元素,a及b独立地表示1~10的数,X表示0.5~0.9的数,Y表示0.5~30摩尔%。]在100~350℃下热处理的固体电解质的制造方法;利用该制造方法得到的锂离子传导性固体电解质;使用了这些固体电解质的锂二次电池用固体电解质以及使用该二次电池用固体电解质而成的全固体锂电池。The present invention relates to: a lithium-ion conductive solid electrolyte containing lithium, boron, sulfur and oxygen as constituents and having a specific ratio of sulfur to oxygen; containing lithium, boron, sulfur and oxygen as constituents and having a specific X-ray The lithium ion conductive solid electrolyte of the diffraction peak; lithium sulfide (Li 2 S): diboron trisulfide (B 2 S 3 ): the molar % ratio of the compound represented by Li a MO b has the following formula X(100-Y): (1-X)(100-Y): Lithium-ion conductive solid electrolyte of the composition represented by Y; sulfide glass of the composition [wherein, M represents a composition selected from phosphorus, silicon, aluminum, boron, sulfur, germanium, gallium , elements in indium, a and b independently represent a number from 1 to 10, X represents a number from 0.5 to 0.9, and Y represents 0.5 to 30 mol%. ]Method for producing solid electrolyte heat-treated at 100 to 350°C; lithium ion conductive solid electrolyte obtained by the production method; solid electrolyte for lithium secondary battery using the solid electrolyte and solid electrolyte for secondary battery using the solid electrolyte An all-solid lithium battery.
背景技术 Background technique
近年来,对携带信息终端、携带电子机器、家用小型蓄电装置、以电动机为动力源的二轮摩托车、电动汽车、复合型电动汽车等中所用的高性能锂二次电池等的需求正在增加。In recent years, the demand for high-performance lithium secondary batteries used in portable information terminals, portable electronic devices, household small power storage devices, two-wheeled motorcycles powered by electric motors, electric vehicles, and hybrid electric vehicles is increasing. Increase.
这里,所谓二次电池是指可以充电·放电的电池。Here, the term "secondary battery" refers to a battery that can be charged and discharged.
另外,随着所能使用的用途的拓展,要求二次电池的进一步的安全性的提高及高性能化。In addition, with the expansion of usable applications, further improvements in safety and performance of secondary batteries are required.
无机固体电解质在其性质上为不可燃性,是与通常所用的有机类电解质相比安全性更高的材料。Inorganic solid electrolytes are nonflammable in nature and are safer materials than commonly used organic electrolytes.
但是,由于与有机类电解质相比,电化学的性能较差,因此需要进一步提高无机固体电解质的性能。However, due to poor electrochemical performance compared with organic-based electrolytes, further improvement in the performance of inorganic solid electrolytes is required.
以往,在室温下显示出高的锂离子传导性的电解质基本上限于有机类电解质。Conventionally, electrolytes exhibiting high lithium ion conductivity at room temperature were basically limited to organic electrolytes.
但是,以往的有机类电解质由于含有有机溶剂,因此为可燃性。However, conventional organic electrolytes are flammable because they contain organic solvents.
所以,在将含有有机溶剂的离子传导性材料作为电池的电解质使用之时,有漏液的可能或着火的危险性。Therefore, when an ion conductive material containing an organic solvent is used as an electrolyte of a battery, there is a possibility of liquid leakage or a risk of ignition.
另外,该有机类电解质由于为液体,因此不仅传导锂离子,而且还传导平衡离子,因此锂离子迁移率在1以下。In addition, since this organic electrolyte is a liquid, it not only conducts lithium ions but also conducts counter ions, so the mobility of lithium ions is 1 or less.
针对此种问题,以往进行了各种硫化物类固体电解质的研究。In response to such problems, various sulfide-based solid electrolytes have been studied in the past.
例如,在20世纪80年代,作为具有高离子传导性的锂离子传导性固体电解质,发现了具有10-3S/cm的离子传导性的硫化物玻璃,例如LiI-Li2S-P2S5、LiI-Li2S-B2S3、LiI-Li2S-SiS2等。For example, in the 1980s, sulfide glasses with an ion conductivity of 10 -3 S/cm, such as LiI-Li 2 SP 2 S 5 , LiI-Li 2 SB 2 S 3 , LiI-Li 2 S-SiS 2 , etc.
但是,为了提高离子传导率,这些固体电解质掺杂有碘化锂,因此容易受到电化学的氧化,很难构成在3V以上动作的全固体锂电池。However, in order to improve ionic conductivity, these solid electrolytes are doped with lithium iodide, so they are susceptible to electrochemical oxidation, and it is difficult to form an all-solid lithium battery that operates above 3V.
另外,在作为所述固体电解质的原料使用的五硫化二磷(P2S5)中有毒性的问题,在工业上会带来困难。In addition, phosphorus pentasulfide (P 2 S 5 ) used as a raw material of the solid electrolyte has a problem of toxicity, which causes industrial difficulties.
发明内容 Contents of the invention
本发明在此种状况下,目的在于,提供一种锂离子传导性固体电解质,其在室温下也会显示出高的锂离子传导率,难以被氧化,毒性的问题也很少;该固体电解质的制造方法;利用该制造方法得到的固体电解质;及使用了该固体电解质的锂二次电池用固体电解质;以及使用该二次电池用固体电解质而成的全固体锂电池。Under such circumstances, the present invention aims to provide a lithium ion conductive solid electrolyte, which also exhibits high lithium ion conductivity at room temperature, is difficult to be oxidized, and has few toxicity problems; the solid electrolyte A manufacturing method; a solid electrolyte obtained by the manufacturing method; a solid electrolyte for a lithium secondary battery using the solid electrolyte; and an all-solid lithium battery using the solid electrolyte for the secondary battery.
本发明人等为了达成所属目的,反复进行了深入研究,结果发现,在将由硫化锂、三硫化二硼及以通式LiaMOb表示的化合物构成的原料混合物熔融反应后,通过进行急冷,就可以获得高离子传导性的锂离子传导性固体电解质,从而完成了本发明。The inventors of the present invention have repeatedly conducted intensive studies in order to achieve the object, and as a result, have found that, after melting and reacting a raw material mixture composed of lithium sulfide, diboron trisulfide, and a compound represented by the general formula Li a MO b , by rapidly cooling, A lithium ion conductive solid electrolyte with high ion conductivity can be obtained, thereby completing the present invention.
即,本发明提供:That is, the present invention provides:
1.一种锂离子传导性固体电解质,其特征是,作为构成成分,含有锂(Li)、硼(B)、硫(S)及氧(O)元素,硫与氧元素的比率(O/S)为0.01~1.43。1. A lithium ion conductive solid electrolyte is characterized in that, as constituents, containing lithium (Li), boron (B), sulfur (S) and oxygen (O) elements, the ratio of sulfur to oxygen elements (O/ S) is 0.01 to 1.43.
2.一种锂离子传导性固体电解质,其特征是,硫化锂(Li2S)∶三硫化二硼(B2S3)∶以LiaMOb表示的化合物的摩尔%比具有以X(100-Y)∶(1-X)(100-Y)∶Y表示的组成。2. A lithium ion conductive solid electrolyte, characterized in that lithium sulfide (Li 2 S): diboron trisulfide (B 2 S 3 ): the mole percent ratio of the compound represented by Li a MO b has a ratio of X( 100-Y):(1-X)(100-Y):Y represents the composition.
[其中,M表示选自磷(P)、硅(Si)、铝(Al)、硼(B)、硫(S)、锗(Ge)、镓(Ga)、铟(In)中的元素,a及b独立地表示1~10的数,X表示0.5~0.9的数,Y表示0.5~30摩尔%。][Wherein, M represents an element selected from phosphorus (P), silicon (Si), aluminum (Al), boron (B), sulfur (S), germanium (Ge), gallium (Ga), indium (In), a and b independently represent a number of 1 to 10, X represents a number of 0.5 to 0.9, and Y represents 0.5 to 30 mol%. ]
3.一种锂离子传导性固体电解质,其特征是,作为构成成分,含有锂(Li)、硼(B)、硫(S)及氧(O)元素,在X射线衍射(CuKα:λ=0.15418nm)中,在2θ=19.540±0.3deg、28.640±0.3deg及29.940±0.3deg处具有衍射峰。3. A lithium ion conductive solid electrolyte, characterized in that, as constituents, containing lithium (Li), boron (B), sulfur (S) and oxygen (O) elements, in X-ray diffraction (CuKα:λ= 0.15418nm), there are diffraction peaks at 2θ=19.540±0.3deg, 28.640±0.3deg and 29.940±0.3deg.
4.一种锂离子传导性固体电解质的制造方法,其特征是,将硫化锂(Li2S)∶三硫化二硼(B2S3)∶以LiaMOb表示的化合物的摩尔%比为以X(100-Y)∶(1-X)(100-Y)∶Y表示的组成的硫化物类玻璃在100~350℃下进行热处理。4. A method for producing a lithium ion conductive solid electrolyte, characterized in that the molar % ratio of lithium sulfide (Li 2 S): diboron trisulfide (B 2 S 3 ): the compound represented by Li a MO b The sulfide-based glass having a composition represented by X(100-Y):(1-X)(100-Y):Y is heat-treated at 100 to 350°C.
[其中,M表示选自磷(P)、硅(Si)、铝(Al)、硼(B)、硫(S)、锗(Ge)、镓(Ga)、铟(In)中的元素,a及b独立地表示1~10的数,X表示0.5~0.9的数,Y表示0.5~30摩尔%。][Wherein, M represents an element selected from phosphorus (P), silicon (Si), aluminum (Al), boron (B), sulfur (S), germanium (Ge), gallium (Ga), indium (In), a and b independently represent a number of 1 to 10, X represents a number of 0.5 to 0.9, and Y represents 0.5 to 30 mol%. ]
5.根据所述4中记载的锂离子传导性固体电解质的制造方法,其中,以通式LiaMOb表示的化合物选自硅酸锂、硼酸锂、磷酸锂。5. The method for producing a lithium ion conductive solid electrolyte according to 4 above, wherein the compound represented by the general formula Li a MO b is selected from lithium silicate, lithium borate, and lithium phosphate.
6.根据所述4或5中记载的锂离子传导性固体电解质的制造方法,其中,取代三硫化二硼,而使用相当的摩尔比的硼与硫元素的混合物。6. The method for producing a lithium ion conductive solid electrolyte according to 4 or 5 above, wherein instead of diboron trisulfide, a mixture of boron and elemental sulfur is used in an equivalent molar ratio.
7.一种利用所述4~6中任意一项所记载的制造方法得到的锂离子传导性固体电解质。7. A lithium ion conductive solid electrolyte obtained by the production method described in any one of 4 to 6 above.
8.一种使用所述1~3或7中任意一项所记载的锂离子传导性固体电解质而成的锂二次电池用固体电解质。8. A solid electrolyte for a lithium secondary battery using the lithium ion conductive solid electrolyte described in any one of 1 to 3 or 7 above.
9.一种使用所述8中记载的锂二次电池用固体电解质而成的全固体锂电池。9. An all-solid lithium battery using the solid electrolyte for lithium secondary batteries described in 8 above.
本发明的锂离子传导性固体电解质由于具有至少在10V以上的分解电压,是无机固体,因此为不可燃性,在保持锂离子迁移率为1的特性的同时,在室温下显示出10-3S/cm左右的极高的锂离子传导性。Since the lithium ion conductive solid electrolyte of the present invention has a decomposition voltage of at least 10 V or more, it is an inorganic solid, so it is non-flammable, and exhibits 10 -3 at room temperature while maintaining the characteristic of lithium ion mobility of 1. Very high lithium ion conductivity around S/cm.
所以,极为适合用作锂电池的固体电解质材料。Therefore, it is very suitable as a solid electrolyte material for lithium batteries.
另外,使用了本发明的锂离子传导性固体电解质的全固体锂电池不仅能量密度高,在安全性及充放电循环使用特性方面优良,而且在所用的原料中没有高毒性。In addition, the all-solid lithium battery using the lithium ion conductive solid electrolyte of the present invention not only has high energy density, is excellent in safety and charge-discharge cycle performance, but also has no high toxicity in the raw materials used.
附图说明 Description of drawings
图1是表示实施例1中得到的熔融反应物(热处理前)及热处理物的粉末试样的X射线衍射谱图的图。FIG. 1 is a graph showing X-ray diffraction patterns of powder samples of molten reactants (before heat treatment) and heat-treated products obtained in Example 1. FIG.
图2是表示实施例6的热处理物的循环伏安曲线的图。FIG. 2 is a graph showing a cyclic voltammetry curve of a heat-treated product in Example 6. FIG.
图3是表示实施例7中得到的电池的充放电特性的图。FIG. 3 is a graph showing the charge-discharge characteristics of the battery obtained in Example 7. FIG.
具体实施方式 Detailed ways
本发明的锂离子传导性固体电解质作为构成成分,含有锂、硼、硫及氧元素,硫与氧元素的比率(O/S)为0.01~1.43,优选0.03~1.2,更优选0.05~1.0。The lithium ion conductive solid electrolyte of the present invention contains lithium, boron, sulfur and oxygen as constituents, and the ratio (O/S) of sulfur to oxygen is 0.01-1.43, preferably 0.03-1.2, more preferably 0.05-1.0.
所述锂离子传导性固体电解质包括:将后述的熔融反应物急冷而得的硫化物类玻璃;将该玻璃热处理而得的硫化物类结晶化玻璃;以及硫化物类玻璃及硫化物类结晶化玻璃的任意的比例的混合物。The lithium ion conductive solid electrolyte includes: sulfide-based glass obtained by rapidly cooling molten reactants described later; sulfide-based crystallized glass obtained by heat-treating the glass; and sulfide-based glass and sulfide-based crystallized glass. Mixture of any proportion of tempered glass.
另外,本发明的锂离子传导性固体电解质是具有如下特征的锂离子传导性固体电解质,即,硫化锂(Li2S)∶三硫化二硼(B2S3)∶以LiaMOb表示的化合物的摩尔%比具有以X(100-Y)∶(1-X)(100-Y)∶Y表示的组成。In addition, the lithium ion conductive solid electrolyte of the present invention is a lithium ion conductive solid electrolyte characterized by lithium sulfide (Li 2 S): diboron trisulfide (B 2 S 3 ): represented by Li a MO b The molar % ratio of the compound has a composition represented by X(100-Y):(1-X)(100-Y):Y.
[其中,M表示选自磷(P)、硅(Si)、铝(Al)、硼(B)、硫(S)、锗(Ge)、镓(Ga)、铟(In)中的元素,a及b独立地表示1~10的数,X表示0.5~0.9的数,Y表示0.5~30摩尔%。][Wherein, M represents an element selected from phosphorus (P), silicon (Si), aluminum (Al), boron (B), sulfur (S), germanium (Ge), gallium (Ga), indium (In), a and b independently represent a number of 1 to 10, X represents a number of 0.5 to 0.9, and Y represents 0.5 to 30 mol%. ]
所述锂离子传导性固体电解质包括:将后述的熔融反应物急冷而得的硫化物类玻璃;将该玻璃热处理而得的硫化物类结晶化玻璃;以及硫化物类玻璃及硫化物类结晶化玻璃的任意的比例的混合物。The lithium ion conductive solid electrolyte includes: sulfide-based glass obtained by rapidly cooling molten reactants described later; sulfide-based crystallized glass obtained by heat-treating the glass; and sulfide-based glass and sulfide-based crystallized glass. Mixture of any proportion of tempered glass.
另外,本发明的锂离子传导性固体电解质作为构成成分,含有锂、硼、硫及氧元素,在X射线衍射(CuKα:λ=0.15418nm)中,在2θ=19.540±0.3deg、28.640±0.3deg及29.940±0.3deg处具有衍射峰。In addition, the lithium-ion conductive solid electrolyte of the present invention contains lithium, boron, sulfur, and oxygen elements as constituents, and in X-ray diffraction (CuKα: λ=0.15418nm), at 2θ=19.540±0.3deg, 28.640±0.3 There are diffraction peaks at deg and 29.940±0.3deg.
所述锂离子传导性固体电解质包括将后述的硫化物类玻璃热处理而得的硫化物类结晶化玻璃。The lithium ion conductive solid electrolyte includes sulfide-based crystallized glass obtained by heat-treating sulfide-based glass described later.
而且,在本发明的锂离子传导性固体电解质中,作为其他的构成成分,还可以添加选自硅、磷、铝、锗、镓、铟中的元素。Furthermore, in the lithium ion conductive solid electrolyte of the present invention, elements selected from silicon, phosphorus, aluminum, germanium, gallium, and indium may be added as other constituents.
本发明的锂离子传导性固体电解质可以通过在将硫化锂∶三硫化二硼或与三硫化二硼相当的摩尔比的硼与硫元素的混合物∶以LiaMOb表示的化合物的摩尔%比为X(100-Y)∶(1-X)(100-Y)∶Y所构成的原料混合物熔融反应后,进行急冷来制造。The lithium ion conductive solid electrolyte of the present invention can be obtained by making lithium sulfide: diboron trisulfide or a mixture of boron and sulfur elements in a molar ratio equivalent to diboron trisulfide: the mole % ratio of the compound represented by Li a MO b A raw material mixture composed of X(100-Y):(1-X)(100-Y):Y is melted and reacted, and then quenched to produce it.
M、a、b、X及Y与所述相同。M, a, b, X and Y are the same as described above.
另外,本发明的锂离子传导性固体电解质可以通过在将硫化锂∶三硫化二硼或与三硫化二硼相当的摩尔比的硼与硫元素的混合物∶以LiaMOb表示的化合物的摩尔%比为X(100-Y)∶(1-X)(100-Y)∶Y所构成的原料混合物熔融反应后,进行急冷,继而在100~350℃下热处理来制造。In addition, the lithium ion conductive solid electrolyte of the present invention can be obtained by making lithium sulfide: diboron trisulfide or a mixture of boron and sulfur elements in a molar ratio equivalent to diboron trisulfide: the mole of the compound represented by Li a MO b The % ratio is X(100-Y):(1-X)(100-Y):Y, the raw material mixture is melted and reacted, then rapidly cooled, and then heat-treated at 100-350° C. to manufacture.
本发明中所用的硫化锂没有特别限制,但是越是高纯度则越理想。The lithium sulfide used in the present invention is not particularly limited, but the higher the purity, the better.
另外,三硫化二硼、硼及硫也没有特别限制,但是越是高纯度则越理想。In addition, diboron trisulfide, boron, and sulfur are not particularly limited, but the higher the purity, the better.
另外,以通式LiaMOb[其中,M表示选自磷、硅、铝、硼、硫、锗、镓、铟中的元素,a及b独立地表示1~10的数]表示的化合物也没有特别限制,但是越是高纯度则越理想。In addition, a compound represented by the general formula Li a MO b [wherein, M represents an element selected from phosphorus, silicon, aluminum, boron, sulfur, germanium, gallium, and indium, and a and b independently represent numbers from 1 to 10] It is not particularly limited, but the higher the purity, the more desirable it is.
作为以通式LiaMOb表示的化合物,可以理想地举出硅酸锂(Li4SiO4)、硼酸锂(LiBO2)及磷酸锂(Li3PO4)。Lithium silicate (Li 4 SiO 4 ), lithium borate (LiBO 2 ), and lithium phosphate (Li 3 PO 4 ) are ideally exemplified as the compound represented by the general formula Li a MO b .
所述M为硅以外的选自磷、铝、硼、锗、镓、铟的元素的化合物的化合物,只要形成与硅酸锂、硼酸锂及磷酸锂相同的晶体构造的化合物,就没有特别限制。The above-mentioned M is a compound of an element selected from phosphorus, aluminum, boron, germanium, gallium, and indium other than silicon, and it is not particularly limited as long as it forms a compound having the same crystal structure as lithium silicate, lithium borate, and lithium phosphate. .
作为这些化合物,例如可以举出LiAlO2、Li3BO3、Li2SO4等。Examples of these compounds include LiAlO 2 , Li 3 BO 3 , Li 2 SO 4 and the like.
本发明中所用的三硫化二硼、硼、硫及以通式LiaMOb表示的化合物只要是高纯度,则可以使用市售品。As diboron trisulfide, boron, sulfur, and compounds represented by the general formula Li a MO b used in the present invention, commercially available products can be used as long as they are of high purity.
本发明中,原料混合物中的以通式LiaMOb表示的化合物的含量为0.5~30摩尔%,优选1~20摩尔%,更优选1~15摩尔%。In the present invention, the content of the compound represented by the general formula Li a MO b in the raw material mixture is 0.5-30 mol%, preferably 1-20 mol%, more preferably 1-15 mol%.
另外,硫化锂的含量优选50~99摩尔%,更优选55~85摩尔%,进一步优选60~80摩尔%,此外余部为三硫化二硼或与三硫化二硼相当的摩尔比的硼与硫元素的混合物。In addition, the content of lithium sulfide is preferably 50 to 99 mol%, more preferably 55 to 85 mol%, and even more preferably 60 to 80 mol%, and the rest is diboron trisulfide or boron and sulfur in a molar ratio equivalent to diboron trisulfide. A mixture of elements.
所述混合物的熔融反应温度通常为400~1000℃,优选600~1000℃,进一步优选700~1000℃,熔融反应时间通常为0.1~12小时,优选0.5~10小时。The melting reaction temperature of the mixture is usually 400-1000°C, preferably 600-1000°C, more preferably 700-1000°C, and the melting reaction time is usually 0.1-12 hours, preferably 0.5-10 hours.
所述熔融反应物的急冷温度通常为10℃以下,优选0℃以下,其冷却速度为0.01~10000K/sec左右,优选1~10000K/sec。The quenching temperature of the molten reactant is usually below 10°C, preferably below 0°C, and the cooling rate is about 0.01-10000K/sec, preferably 1-10000K/sec.
如此得到的熔融反应物(硫化物类玻璃)为玻璃态(完全非晶态),通常来说,离子传导率为0.5~10×10-4(S/cm)。The molten reactant (sulfide-based glass) thus obtained is glassy (completely amorphous), and generally has an ion conductivity of 0.5 to 10×10 -4 (S/cm).
本发明的锂离子传导性固体电解质也可以通过将所述熔融反应物(硫化物玻璃)热处理来制造。The lithium ion conductive solid electrolyte of the present invention can also be produced by heat-treating the molten reactant (sulfide glass).
热处理为100~350℃,优选150~340℃,更优选180~330℃,热处理时间虽然由热处理温度左右,但是通常为0.01~240小时,优选0.1~24小时。The heat treatment is 100-350°C, preferably 150-340°C, more preferably 180-330°C, and the heat treatment time is usually 0.01-240 hours, preferably 0.1-24 hours, although it depends on the heat treatment temperature.
利用该热处理,可以获得局部或完全结晶化了的固体电解质。By this heat treatment, a partially or completely crystallized solid electrolyte can be obtained.
如此得到的固体电解质通常显示出3.0×10-4~3.0×10-3(S/cm)的离子传导率。The solid electrolyte thus obtained generally exhibits an ion conductivity of 3.0×10 -4 to 3.0×10 -3 (S/cm).
作为本发明中所用的硫化锂的制造方法,只要是可以减少杂质的方法,就没有特别限制。The method for producing lithium sulfide used in the present invention is not particularly limited as long as it can reduce impurities.
例如,也可以通过将利用以下的方法制造的硫化锂精制来获得。For example, it can also be obtained by refining lithium sulfide produced by the following method.
以下的制造方法当中,特别优选a或b的方法。Among the following production methods, the method a or b is particularly preferable.
a.在非质子性有机溶剂中使氢氧化锂与硫化氢在0~150℃下反应而生成氢硫化锂,然后将该反应液在150~200℃下脱硫化氢化的方法(特开平-330312号公报)。a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150°C in an aprotic organic solvent to generate lithium hydrosulfide, and then the reaction solution is dehydrogenated at 150 to 200°C (JP-330312 Bulletin).
b.在非质子性有机溶剂中使氢氧化锂与硫化氢在150~200℃下反应,直接生成硫化锂的方法(特开平7-330312号公报)。b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent at 150 to 200° C. (JP-A-7-330312).
c.使氢氧化锂与气体状硫源在130~445℃的温度下反应的方法(特开平9-283156号公报)。c. A method of reacting lithium hydroxide with a gaseous sulfur source at a temperature of 130 to 445°C (JP-A-9-283156).
作为如上所述地得到的硫化锂的精制方法,没有特别限制。There are no particular limitations on the method of refining the lithium sulfide obtained as described above.
作为优选的精制法,例如可以举出特愿2003-363403号等。As a preferable purification method, Japanese Patent Application No. 2003-363403 etc. are mentioned, for example.
具体来说,将如上所述地得到的硫化锂使用有机溶剂,在100℃以上的温度下洗涤。Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100° C. or higher using an organic solvent.
在100℃以上的温度下使用有机溶剂的理由是因为,由于在硫化锂制造时所用的有机溶剂为N-甲基-2-吡咯烷酮(NMP)的情况下生成的杂质N-甲基氨基丁酸锂(LMAB)可溶于有机溶剂中的温度为100℃,因此将LMAB溶解于洗涤用的有机溶剂中,从硫化锂中除去。The reason why the organic solvent is used at a temperature above 100°C is because N-methylaminobutyric acid, an impurity generated when the organic solvent used in the production of lithium sulfide is N-methyl-2-pyrrolidone (NMP) The temperature at which lithium (LMAB) can be dissolved in an organic solvent is 100°C, so LMAB is dissolved in an organic solvent for washing to remove it from lithium sulfide.
洗涤中所用的有机溶剂优选非质子性极性溶剂,另外更优选在硫化锂制造时所用的非质子性有机溶剂与洗涤中所用的非质子性极性有机溶剂相同。The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably the same aprotic organic solvent used in the production of lithium sulfide is the same as the aprotic polar organic solvent used for washing.
作为在洗涤中可以理想地使用的非质子性极性有机溶剂,例如可以举出酰胺化合物、内酰胺化合物、尿素化合物、有机硫化合物、环式有机磷化合物等非质子性的极性有机化合物,可以作为单独溶剂或混合溶剂理想地使用。As an aprotic polar organic solvent that can be ideally used in washing, for example, aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organosulfur compounds, and cyclic organophosphorus compounds, It can be ideally used as a single solvent or a mixed solvent.
这些非质子性的极性有机溶剂当中,作为所述酰胺化合物,例如可以举出N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二甲基乙酰胺、N,N-二丙基乙酰胺、N,N-二甲基苯甲酰胺等。Among these aprotic polar organic solvents, examples of the amide compound include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide , N, N-dipropylacetamide, N, N-dimethylbenzamide, etc.
另外,作为所述内酰胺化合物,例如可以举出己内酰胺、N-甲基己内酰胺、N-乙基己内酰胺、N-异丙基己内酰胺、N-异丁基己内酰胺、N-正丙基己内酰胺、N-正丁基己内酰胺、N-环己基己内酰胺等N-烷基己内酰胺类;N-甲基-2-吡咯烷酮(NMP)、N-乙基-2-吡咯烷酮、N-异丙基-2-吡咯烷酮、N-异丁基-2-吡咯烷酮、N-正丙基-2-吡咯烷酮、N-正丁基-2-吡咯烷酮、N-环己基-2-吡咯烷酮、N-甲基-3-甲基-2-吡咯烷酮、N-乙基-3-甲基-2-吡咯烷酮、N-甲基-3,4,5-三甲基-2-吡咯烷酮、N-甲基-2-哌啶酮、N-乙基-2-哌啶酮、N-异丙基-2-哌啶酮、N-甲基-6-甲基-2-哌啶酮、N-甲基-3-乙基-2-哌啶酮等。In addition, examples of the lactam compound include caprolactam, N-methylcaprolactam, N-ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-n-propylcaprolactam, N- N-alkylcaprolactams such as n-butylcaprolactam and N-cyclohexylcaprolactam; N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N -Isobutyl-2-pyrrolidone, N-n-propyl-2-pyrrolidone, N-n-butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2- Pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5-trimethyl-2-pyrrolidone, N-methyl-2-piperidone, N-ethyl -2-piperidone, N-isopropyl-2-piperidone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethyl-2-piperidone wait.
作为所述有机硫化合物,例如可以举出二甲亚砜、二乙基亚砜、二亚苯基砜(diphenylene sulfone)、1-甲基-1-氧砜(oxosulfolane)、1-苯基-1-氧砜等。Examples of the organosulfur compound include dimethyl sulfoxide, diethyl sulfoxide, diphenylene sulfone, 1-methyl-1-oxosulfolane, 1-phenyl- 1-Oxysulfone etc.
各种非质子性有机化合物可以分别单独使用一种,另外也可以将两种以上混合,还可以与不妨碍本发明的目的的其他的溶剂成分混合,作为所述非质子性有机溶剂使用。Various aprotic organic compounds may be used alone or in combination of two or more, or may be mixed with other solvent components that do not interfere with the object of the present invention and used as the aprotic organic solvent.
所述各种非质子性有机溶剂中优选的溶剂是N-烷基己内酰胺及N-烷基吡咯烷酮,特别优选的溶剂是N-甲基-2-吡咯烷酮(NMP)。Preferred solvents among the various aprotic organic solvents are N-alkylcaprolactam and N-alkylpyrrolidone, and a particularly preferred solvent is N-methyl-2-pyrrolidone (NMP).
洗涤中所用的有机溶剂的量没有特别限定,另外洗涤的次数也没有特别限定,然而优选2次以上。The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is also not particularly limited, but preferably 2 or more times.
洗涤最好在氮气、氩气等惰性气体下进行。Washing is preferably performed under inert gas such as nitrogen or argon.
通过将被洗涤了的硫化锂在洗涤中所用的非质子性有机溶剂的沸点以上的温度下,在氮气等惰性气体气流下,在常压或减压下,干燥5分钟以上,优选约2~3小时以上,就可以获得本发明中所用的高纯度硫化锂。By drying the washed lithium sulfide at a temperature above the boiling point of the aprotic organic solvent used in the washing, under the flow of an inert gas such as nitrogen, under normal pressure or reduced pressure, drying for more than 5 minutes, preferably about 2 to 5 minutes. More than 3 hours, just can obtain the high-purity lithium sulfide used in the present invention.
通过使用如上所述具有优异特性的本发明的固体电解质,可以获得长期稳定性优异的全固体锂电池。By using the solid electrolyte of the present invention having excellent characteristics as described above, an all-solid lithium battery excellent in long-term stability can be obtained.
作为本发明的全固体锂电池的负极活性物质,可以举出碳、铟、锂、LiAl、LiWO2、LiMoO2、LiTiS2等,优选铟。Examples of the negative electrode active material of the all-solid lithium battery of the present invention include carbon, indium, lithium, LiAl, LiWO 2 , LiMoO 2 , LiTiS 2 , and the like, preferably indium.
另外,作为正极活性物质,可以举出LiCoO2、LiNiO2、LiMn2O4等金属酸锂盐及MnO2、V2O5等,优选LiCoO2。In addition, examples of the positive electrode active material include metal acid lithium salts such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , MnO 2 , V 2 O 5 , and the like, among which LiCoO 2 is preferable.
使用利用本发明的方法得到的锂离子传导性固体电解质来制造全固体锂电池的方法可以使用以往公知的方法。As a method of manufacturing an all-solid lithium battery using the lithium ion conductive solid electrolyte obtained by the method of the present invention, conventionally known methods can be used.
例如,在电池外壳内,由封口板、绝缘填料、极板组、正极板、正极引线、负极板、负极引线、固体电解质、绝缘圈构成的全固体锂电池中,可以将固体电解质以薄片状成形、装入而使用。For example, in an all-solid lithium battery consisting of a sealing plate, an insulating filler, a plate group, a positive plate, a positive lead, a negative plate, a negative lead, a solid electrolyte, and an insulating ring in a battery case, the solid electrolyte can be placed in a thin sheet Forming, packing and use.
作为全固体锂电池的形状,无论是硬币型、纽扣型、薄片型、层叠型、圆筒型、扁平型、方型、电动汽车等中所用的大型的形状等的哪一种都可以使用。Any shape of the all-solid lithium battery can be used, such as a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square shape, a large shape used in electric vehicles, and the like.
实施例 Example
下面,将利用实施例及比较例对本发明进行更为详细的说明,然而本发明并不受这些例子限定。Hereinafter, the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited by these examples.
参考例1Reference example 1
(1)硫化锂的制造(1) Manufacture of lithium sulfide
硫化锂是依照特开平7-330312号公报的第一方式(2工序法)的方法制造的。Lithium sulfide is produced according to the first method (two-step method) of JP-A-7-330312.
具体来说,向装有搅拌叶片的10升高压釜中,加入N-甲基-2-吡咯烷酮(NMP)3326.4g(33.6摩尔)及氢氧化锂287.4g(12摩尔),以300rpm升温到130℃。Specifically, in a 10-liter autoclave equipped with stirring blades, 3326.4 g (33.6 moles) of N-methyl-2-pyrrolidone (NMP) and 287.4 g (12 moles) of lithium hydroxide were added, and the temperature was raised to 130 ℃.
升温后,以3升/分钟的供给速度向液体中吹入硫化氢2小时。After the temperature was raised, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters/minute for 2 hours.
接下来,将该反应液在氮气气流下(200cm3/分钟)升温,将反应了的硫化氢的一部分脱硫化氢化。Next, the temperature of the reaction solution was raised under nitrogen gas flow (200 cm 3 /min), and part of the reacted hydrogen sulfide was dehydrosulfurized.
随着升温的进行,因所述硫化氢与氢氧化锂的反应而副产的水开始蒸发,而该水由冷凝器冷凝,向体系外排出。As the temperature rises, by-produced water due to the reaction of hydrogen sulfide and lithium hydroxide begins to evaporate, and the water is condensed by the condenser and discharged outside the system.
在将水向体系外蒸馏除去的同时,反应液的温度上升,然而在到达了180℃的时刻停止升温,保持为一定温度。While the temperature of the reaction solution rose while distilling water out of the system, the temperature rise was stopped when it reached 180° C., and the temperature was kept constant.
脱硫化氢反应结束后(约80分钟),结束反应,得到了硫化锂。After the hydrogen sulfide removal reaction was completed (about 80 minutes), the reaction was terminated to obtain lithium sulfide.
(2)硫化锂的精制(2) Refining of lithium sulfide
在将所述(1)中得到的500mL的料浆反应溶液(NMP-硫化锂料浆)中的NMP倾析后,添加脱水了的NMP100mL,在105℃下搅拌约1小时。After decanting NMP in 500 mL of the slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1), 100 mL of dehydrated NMP was added and stirred at 105° C. for about 1 hour.
在保持该温度的状态下将NMP倾析。NMP was decanted while maintaining the temperature.
继而,添加NMP100mL,在105℃下搅拌约1小时,在保持该温度的状态下将NMP倾析,将相同的操作反复进行共4次。Next, 100 mL of NMP was added, stirred at 105° C. for about 1 hour, and the NMP was decanted while maintaining the temperature, and the same operation was repeated four times in total.
倾析结束后,在230℃下减压下干燥2小时,得到了高纯度硫化锂。After the decantation was completed, it was dried under reduced pressure at 230° C. for 2 hours to obtain high-purity lithium sulfide.
实施例1Example 1
在将参考例1的高纯度硫化锂(Li2S)0.2903g(0.00632摩尔)、三硫化二硼(B2S3)0.3240g(0.00272摩尔)及硅酸锂(Li4SiO4)0.0562g(0.00047摩尔)在乳钵中充分地混合后,颗粒化,加入实施了碳涂覆的石英玻璃管中,进行了真空密封。0.2903g (0.00632 mole) of high-purity lithium sulfide (Li 2 S) of reference example 1, 0.3240g (0.00272 mole) of diboron trisulfide (B 2 S 3 ) and lithium silicate (Li 4 SiO 4 ) 0.0562g (0.00047 mol) was thoroughly mixed in a mortar, granulated, put into a carbon-coated quartz glass tube, and vacuum-sealed.
然后,加入立式反应炉中,用4小时升温到800℃,在该温度下进行了2小时熔融反应。Then, it was charged into a vertical reaction furnace, and the temperature was raised to 800° C. over 4 hours, and a melting reaction was performed at this temperature for 2 hours.
反应结束后,将石英管投入冰水中急冷。After the reaction, the quartz tube was plunged into ice water for rapid cooling.
将石英管打开,对所得的熔融反应物(硫化物类玻璃)的粉末试样进行了X射线衍射,其结果为,硫化锂、三硫化二硼及硅酸锂的峰消失,可以确认发生了玻璃化。The quartz tube was opened, and X-ray diffraction was performed on the powder sample of the obtained molten reactant (sulfide-based glass). As a result, the peaks of lithium sulfide, diboron trisulfide, and lithium silicate disappeared, and it was confirmed that a vitrified.
将该粉末试样在215℃下热处理30分钟。The powder samples were heat treated at 215°C for 30 minutes.
对所得的热处理物(硫化物类结晶化玻璃)的粉末试样进行了X射线衍射,其结果为,可以确认发生了一部分结晶化(参照图1)。X-ray diffraction was performed on the obtained powder sample of the heat-treated product (sulfide-based crystallized glass), and as a result, it was confirmed that a part of crystallization occurred (see FIG. 1 ).
另外,对热处理物的粉末试样,利用交流阻抗法进行了电导率的测定,其结果为,室温下的离子传导率为10.1×10-4S/cm。In addition, the electrical conductivity of the powder sample of the heat-treated product was measured by AC impedance method. As a result, the ion conductivity at room temperature was 10.1×10 -4 S/cm.
同样地,对熔融反应物(热处理前)的粉末试样,进行了X射线衍射(参照图1)。Similarly, X-ray diffraction was performed on a powder sample of the molten reactant (before heat treatment) (see FIG. 1 ).
另外,测定了电导率,其结果为,室温下的离子传导率为3.5×10- 4S/cm。In addition, the electrical conductivity was measured, and as a result, the ion conductivity at room temperature was 3.5× 10 −4 S /cm.
将所得的结果表示于表1中。而且,表1中,所谓未处理是指热处理前。Table 1 shows the obtained results. In addition, in Table 1, "untreated" means before heat treatment.
实施例2Example 2
除了将硅酸锂替换为0.0336g(0.00028摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1 except that lithium silicate was replaced with 0.0336 g (0.00028 mol).
将所得的结果表示于表1中。Table 1 shows the obtained results.
实施例3Example 3
除了将硅酸锂替换为0.0456g(0.00038摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1 except that lithium silicate was replaced with 0.0456 g (0.00038 mol).
将所得的结果表示于表1中。Table 1 shows the obtained results.
实施例4Example 4
除了将硅酸锂替换为0.0692g(0.00058摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1 except that lithium silicate was replaced with 0.0692 g (0.00058 mol).
将所得的结果表示于表1中。Table 1 shows the obtained results.
实施例5Example 5
除了将硅酸锂替换为0.0815g(0.000688摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1 except that lithium silicate was replaced with 0.0815 g (0.000688 mol).
将所得的结果表示于表1中。而且,表1中的所谓未处理是指热处理前。Table 1 shows the obtained results. In addition, the term "untreated" in Table 1 means before heat treatment.
实施例6Example 6
使用实施例1中合成的热处理物(硫化物类结晶玻璃),将扫描速度设为10mV/sec,在-0.5~10V的范围中测定了循环伏安曲线。Using the heat-treated product (sulfide-based crystallized glass) synthesized in Example 1, the cyclic voltammetry curve was measured in the range of -0.5 to 10V at a scan rate of 10 mV/sec.
将结果表示于图2中。The results are shown in FIG. 2 .
而且,纵轴表示电流/A,横轴表示电位(VvsLi+/Li)。Also, the vertical axis represents current/A, and the horizontal axis represents potential (VvsLi + /Li).
实施例7Example 7
使用实施例4中合成的热处理物(硫化物类结晶玻璃)、作为正极活性物质的钴酸锂(LiCoO2)、作为负极活性物质的铟(In),如下所示地制作了锂电池,评价了其电池特性。Using the heat-treated product (sulfide-based crystallized glass) synthesized in Example 4, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and indium (In) as a negative electrode active material, a lithium battery was produced as follows, and evaluated its battery characteristics.
使用所述负极活性物质(56.6mg)和正极活性物质(11.9mg),在它们之间夹隔所述热处理物(165.5mg),制成3层的颗粒(pellet)状,形成了测定单元电池。Using the negative electrode active material (56.6 mg) and the positive electrode active material (11.9 mg), the heat-treated product (165.5 mg) was sandwiched between them to make three layers of pellets to form a measurement unit cell. .
对该测定单元电池,将充放电的上限电压设为3.7V,将下限电压设为2V,将电流密度设为12.7μA·cm-2,研究了充放电。The upper limit voltage of charge and discharge was set to 3.7 V, the lower limit voltage was set to 2 V, and the current density was set to 12.7 μA·cm −2 for the measurement cell, and charge and discharge were studied.
将所得的结果表示于图3中。The obtained results are shown in FIG. 3 .
而且,纵轴表示单元电池电压/V,横轴表示相对于1g钴酸锂的容量/mAh·g-1。Furthermore, the vertical axis represents the cell voltage/V, and the horizontal axis represents the capacity/mAh·g -1 relative to 1 g of lithium cobaltate.
比较例1Comparative example 1
除了未添加硅酸锂以外,与实施例1相同地进行了反应及操作。The reaction and operation were carried out in the same manner as in Example 1 except that lithium silicate was not added.
将所得的结果表示于表1中。Table 1 shows the obtained results.
比较例2Comparative example 2
除了未添加硅酸锂,将高纯度硫化锂设为0.3489g(0.00759摩尔),将三硫化二硼设为0.3396g(0.00288摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1, except that lithium silicate was not added, high-purity lithium sulfide was 0.3489 g (0.00759 mol), and diboron trisulfide was 0.3396 g (0.00288 mol).
将所得的结果表示于表1中。Table 1 shows the obtained results.
比较例3Comparative example 3
除了未添加硅酸锂,将高纯度硫化锂设为0.2651g(0.00577摩尔),将三硫化二硼设为0.3349g(0.00284摩尔)以外,与实施例1相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 1, except that lithium silicate was not added, high-purity lithium sulfide was 0.2651 g (0.00577 mol), and diboron trisulfide was 0.3349 g (0.00284 mol).
将所得的结果表示于表1中。Table 1 shows the obtained results.
表1Table 1
实施例8Example 8
在将参考例1的高纯度硫化锂(Li2S)0.2903g(0.00632摩尔)、三硫化二硼(B2S3)0.3204g(0.00272摩尔)及硼酸锂(LiBO2)0.0338g(0.00068摩尔)在乳钵中充分地混合后,颗粒化,加入实施了碳涂覆的石英玻璃管中,进行了真空密封。0.2903g (0.00632 moles) of high-purity lithium sulfide (Li 2 S) of Reference Example 1, 0.3204g (0.00272 moles) of diboron trisulfide (B 2 S 3 ) and 0.0338g (0.00068 moles) of lithium borate (LiBO 2 ) ) were thoroughly mixed in a mortar, granulated, put into a carbon-coated quartz glass tube, and vacuum-sealed.
然后,加入立式反应炉中,用4小时升温到800℃,在该温度下进行了2小时熔融反应。Then, it was charged into a vertical reaction furnace, and the temperature was raised to 800° C. over 4 hours, and a melting reaction was performed at this temperature for 2 hours.
反应结束后,将石英管投入冰水中急冷。After the reaction, the quartz tube was plunged into ice water for rapid cooling.
将石英管打开,对所得的熔融反应物(硫化物类玻璃)的粉末试样进行了X射线衍射,其结果为,未观测到明显的衍射线,可以确认试样发生了玻璃化。The quartz tube was opened, and X-ray diffraction was performed on the obtained powder sample of the molten reactant (sulfide-based glass). As a result, no clear diffraction line was observed, and vitrification of the sample was confirmed.
对该熔融反应物的粉末试样利用交流阻抗法测定了电导率,其结果为,室温下的离子传导率为6.7×10-4S/cm。The electrical conductivity of this powder sample of the molten reactant was measured by an AC impedance method, and as a result, the ion conductivity at room temperature was 6.7×10 -4 S/cm.
将所得的结果表示于表2中。而且,表2中,所谓未处理是指热处理前。Table 2 shows the obtained results. In addition, in Table 2, "untreated" means before heat treatment.
实施例9Example 9
除了将硼酸锂替换为0.0443g(0.00089摩尔)以外,与实施例8相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 8, except that lithium borate was replaced with 0.0443 g (0.00089 mol).
对所得的熔融反应物(硫化物类玻璃)的粉末试样进行了X射线衍射,其结果为,未观测到明显的衍射线,可以确认试样发生了玻璃化。As a result of X-ray diffraction of the obtained powder sample of the molten reactant (sulfide-based glass), no clear diffraction line was observed, and it was confirmed that the sample was vitrified.
对该熔融反应物的粉末试样测定了电导率,其结果为,室温下的离子传导率为9.5×10-4S/cm。The electrical conductivity of the powder sample of the molten reactant was measured, and as a result, the ion conductivity at room temperature was 9.5×10 -4 S/cm.
将所得的结果表示于表2中。Table 2 shows the obtained results.
实施例10Example 10
除了将硼酸锂替换为磷酸锂(Li3PO4),将使用量替换为0.0534g(0.000475摩尔)以外,与实施例8相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 8, except that lithium borate was replaced by lithium phosphate (Li 3 PO 4 ) and the amount used was replaced by 0.0534 g (0.000475 mol).
对所得的熔融反应物(硫化物类玻璃;热处理前)的粉末试样进行了X射线衍射,其结果为,未观测到明显的衍射线,可以确认试样发生了玻璃化。As a result of X-ray diffraction of the obtained powder sample of the molten reactant (sulfide-based glass; before heat treatment), no clear diffraction line was observed, and it was confirmed that the sample was vitrified.
对该熔融反应物的粉末试样测定了电导率,其结果为,室温下的离子传导率为8.1×10-4S/cm。As a result of measuring the electrical conductivity of the powder sample of the molten reactant, the ion conductivity at room temperature was 8.1×10 -4 S/cm.
将该熔融反应物(热处理前)的粉末试样在230℃下热处理30分钟。A powder sample of the molten reactant (before heat treatment) was heat treated at 230° C. for 30 minutes.
对所得的热处理物(硫化物类结晶化玻璃)的粉末试样测定了电导率,其结果为,室温下的离子传导率为22.0×10-4S/cm。The electrical conductivity of the obtained powder sample of the heat-treated product (sulfide-based crystallized glass) was measured. As a result, the ion conductivity at room temperature was 22.0×10 -4 S/cm.
将所得的结果表示于表2中。Table 2 shows the obtained results.
实施例11Example 11
除了将硼酸锂替换为磷酸锂(Li3PO4),将使用量替换为0.0787g(0.00068摩尔)以外,与实施例8相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 8, except that lithium borate was replaced with lithium phosphate (Li 3 PO 4 ) and the amount used was replaced with 0.0787 g (0.00068 mol).
对所得的熔融反应物(硫化物类玻璃;热处理前)的粉末试样进行了X射线衍射,其结果为,未观测到明显的衍射线,可以确认试样发生了玻璃化。As a result of X-ray diffraction of the obtained powder sample of the molten reactant (sulfide-based glass; before heat treatment), no clear diffraction line was observed, and it was confirmed that the sample was vitrified.
对该熔融反应物的粉末试样测定了电导率,其结果为,室温下的离子传导率为8.0×10-4S/cm。The electrical conductivity of the powder sample of the molten reactant was measured, and as a result, the ion conductivity at room temperature was 8.0×10 -4 S/cm.
将该熔融反应物(热处理前)的粉末试样在230℃下热处理30分钟。A powder sample of the molten reactant (before heat treatment) was heat treated at 230° C. for 30 minutes.
对所得的热处理物(硫化物类结晶玻璃)的粉末试样测定了电导率,其结果为,室温下的离子传导率为24.0×10-4S/cm。The electrical conductivity of the obtained powder sample of the heat-treated product (sulfide-based crystallized glass) was measured. As a result, the ion conductivity at room temperature was 24.0×10 -4 S/cm.
将所得的结果表示于表2中。Table 2 shows the obtained results.
实施例12Example 12
除了将硼酸锂替换为磷酸锂(Li3PO4),将使用量替换为0.0324g(0.00028摩尔)以外,与实施例8相同地进行了反应及操作。Reaction and operation were carried out in the same manner as in Example 8, except that lithium borate was replaced by lithium phosphate (Li 3 PO 4 ) and the amount used was replaced by 0.0324 g (0.00028 mol).
对所得的熔融反应物(硫化物类玻璃;热处理前)的粉末试样进行了X射线衍射,其结果为,未观测到明显的衍射线,可以确认试样发生了玻璃化。As a result of X-ray diffraction of the obtained powder sample of the molten reactant (sulfide-based glass; before heat treatment), no clear diffraction line was observed, and it was confirmed that the sample was vitrified.
对该熔融反应物的粉末试样测定了电导率,其结果为,室温下的离子传导率为6.1×10-4S/cm。The electrical conductivity of this powder sample of the molten reactant was measured, and as a result, the ion conductivity at room temperature was 6.1×10 -4 S/cm.
将该熔融反应物(热处理前)的粉末试样在230℃下热处理30分钟。A powder sample of the molten reactant (before heat treatment) was heat treated at 230° C. for 30 minutes.
对所得的热处理物(硫化物类结晶玻璃)的粉末试样测定了电导率,其结果为,室温下的离子传导率为19.0×10-4S/cm。The electrical conductivity of the obtained powder sample of the heat-treated product (sulfide-based crystallized glass) was measured. As a result, the ion conductivity at room temperature was 19.0×10 -4 S/cm.
将所得的结果表示于表2中。而且,表2中的所谓未处理是指热处理前。Table 2 shows the obtained results. In addition, the term "untreated" in Table 2 means before heat treatment.
表2Table 2
工业上的利用可能性Industrial Utilization Possibility
利用本发明的方法得到的锂离子传导性固体电解质可以作为携带信息终端、携带电子机器、家用小型蓄电装置、以电动机为动力源的二轮摩托车、电动汽车、复合型电动汽车等的全固体锂电池使用,然而并不特别限定于它们。The lithium ion conductive solid electrolyte obtained by the method of the present invention can be used as a complete battery for portable information terminals, portable electronic equipment, household small power storage devices, two-wheeled motorcycles with electric motors as the power source, electric vehicles, and compound electric vehicles. Solid lithium batteries are used, however, it is not particularly limited to them.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP004511/2005 | 2005-01-11 | ||
JP2005004511 | 2005-01-11 | ||
JP240783/2005 | 2005-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101103486A CN101103486A (en) | 2008-01-09 |
CN100583543C true CN100583543C (en) | 2010-01-20 |
Family
ID=39036782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680001957A Expired - Fee Related CN100583543C (en) | 2005-01-11 | 2006-01-10 | Lithium ion conductive solid electrolyte, method for producing same, solid electrolyte for lithium secondary battery using same, and all-solid-state lithium battery using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100583543C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109065837A (en) * | 2014-11-10 | 2018-12-21 | 株式会社村田制作所 | lithium ion conductor, battery and electronic device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010225522A (en) * | 2009-03-25 | 2010-10-07 | Sony Corp | Electrolyte, and secondary battery |
US20110171528A1 (en) * | 2010-01-12 | 2011-07-14 | Oladeji Isaiah O | Solid state electrolytes having high lithium ion conduction |
JP5561383B2 (en) * | 2013-01-11 | 2014-07-30 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material |
CN110313038B (en) * | 2017-03-30 | 2021-01-19 | Tdk株式会社 | All-solid-state secondary battery |
WO2020194823A1 (en) * | 2019-03-26 | 2020-10-01 | 日本碍子株式会社 | All-solid-state secondary battery |
CN112242555B (en) * | 2019-07-16 | 2021-10-22 | 宁德时代新能源科技股份有限公司 | Sulfide solid electrolyte sheet and preparation method thereof |
WO2021128228A1 (en) * | 2019-12-27 | 2021-07-01 | 微宏动力系统(湖州)有限公司 | Electrolyte containing solid particles and lithium ion secondary battery |
CN114784369B (en) * | 2022-05-05 | 2025-02-25 | 南方科技大学 | A solid electrolyte and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200707B1 (en) * | 1997-09-03 | 2001-03-13 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic moldings, electrode moldings, and electrochemical elements including a polybutadiene block copolymer |
JP2002109955A (en) * | 2000-10-02 | 2002-04-12 | Osaka Prefecture | Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery |
US20030205467A1 (en) * | 1995-11-15 | 2003-11-06 | Jie Fu | Alkali ion conductive glass-ceramics and electric cells and gas sensors using the same |
-
2006
- 2006-01-10 CN CN200680001957A patent/CN100583543C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030205467A1 (en) * | 1995-11-15 | 2003-11-06 | Jie Fu | Alkali ion conductive glass-ceramics and electric cells and gas sensors using the same |
US6200707B1 (en) * | 1997-09-03 | 2001-03-13 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic moldings, electrode moldings, and electrochemical elements including a polybutadiene block copolymer |
JP2002109955A (en) * | 2000-10-02 | 2002-04-12 | Osaka Prefecture | Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109065837A (en) * | 2014-11-10 | 2018-12-21 | 株式会社村田制作所 | lithium ion conductor, battery and electronic device |
CN109065837B (en) * | 2014-11-10 | 2021-08-24 | 株式会社村田制作所 | Lithium ion conductor, battery, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN101103486A (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8053116B2 (en) | Lithium ion-conductive solid electrolyte | |
JP4873479B2 (en) | High performance all solid lithium battery | |
CN100583543C (en) | Lithium ion conductive solid electrolyte, method for producing same, solid electrolyte for lithium secondary battery using same, and all-solid-state lithium battery using same | |
US8962194B2 (en) | Lithium ion conducting sulfide based crystallized glass and method for production thereof | |
CN109775744B (en) | Preparation method of lithium yttrium halide and its application in solid electrolyte and battery | |
CN101326673B (en) | Lithium ion conductive sulfide solid electrolyte and all-solid-state lithium battery using same | |
JP3433173B2 (en) | Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery | |
JP5368711B2 (en) | Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery | |
EP2919313A1 (en) | Solid electrolyte | |
US20160156064A1 (en) | Sulfide-Based Solid Electrolyte for Lithium Ion Battery | |
JP2006277997A (en) | High performance all solid lithium battery | |
JP4621139B2 (en) | Method for producing lithium ion conductive solid electrolyte | |
JP2008027581A (en) | Electrode material, electrode and all solid state secondary battery | |
JP2014029796A (en) | Lithium ion conductive crystallized solid electrolyte, and method for manufacturing the same | |
KR20160074318A (en) | A sulfide based crystallized glass including a lithium borate for all-solid secondary battery and a method for production | |
CN100514510C (en) | High-performance all-solid-state lithium battery | |
Hayashi et al. | High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries | |
JPH05306118A (en) | Amorphous lithium ion conductive solid electrolyte and its synthesizing method | |
KR102180352B1 (en) | Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte | |
KR20200013409A (en) | Sulfides solid electrolyte, method for producing the same, and all-solid-state secondary battery including the same | |
Hu | Studies on mixed oxy-sulfide and mixed oxy-sulfide-nitride lithium glassy solid-state electrolytes | |
TW202504142A (en) | Manufacturing method of LGPS solid electrolyte | |
KR20070017190A (en) | High performance all-solid lithium battery | |
CN115441046A (en) | A kind of solid-state electrolyte containing lithium cyanamide compound, preparation method and application thereof and solid-state lithium battery | |
Khatua et al. | NASICON-type Li-ion Conducting Solid Electrolytes for All-Solid-State Li-ion Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100120 Termination date: 20180110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |