[go: up one dir, main page]

CN100577396C - The solution to the backflow of aqueous solution at the edge of polymer solid - Google Patents

The solution to the backflow of aqueous solution at the edge of polymer solid Download PDF

Info

Publication number
CN100577396C
CN100577396C CN200510011548A CN200510011548A CN100577396C CN 100577396 C CN100577396 C CN 100577396C CN 200510011548 A CN200510011548 A CN 200510011548A CN 200510011548 A CN200510011548 A CN 200510011548A CN 100577396 C CN100577396 C CN 100577396C
Authority
CN
China
Prior art keywords
edge
aqueous solution
polymer
polishing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510011548A
Other languages
Chinese (zh)
Other versions
CN1843749A (en
Inventor
张继华
郭朝维
盛显良
江雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN200510011548A priority Critical patent/CN100577396C/en
Publication of CN1843749A publication Critical patent/CN1843749A/en
Application granted granted Critical
Publication of CN100577396C publication Critical patent/CN100577396C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paper (AREA)

Abstract

本发明涉及片材或管状固体边缘的表面处理技术,主要通过表面的超疏水化处理,提供一种彻底解决水溶液在聚合物固体边缘出现倒流现象的方法。在室温下,以4~20KPa的压强,用砂纸(GB/T 15305)对聚合物材料的边缘表面和下表面进行相同次数的打磨,使其表面与水的静态接触角接近或超过150°,达到超疏水效果,从而解决聚合物边缘的水溶液倒流问题。本发明方法设备简单,成本低,无环境污染,适应性强,可以在各种酸碱盐水溶液的接触下进行使用。The invention relates to the surface treatment technology of the edge of a sheet or tubular solid, and mainly provides a method for thoroughly solving the backflow phenomenon of an aqueous solution on the edge of a polymer solid through superhydrophobic treatment of the surface. At room temperature, with a pressure of 4-20KPa, use sandpaper (GB/T 15305) to polish the edge surface and lower surface of the polymer material for the same number of times, so that the static contact angle between the surface and water is close to or exceeds 150°, To achieve a super-hydrophobic effect, thereby solving the problem of backflow of aqueous solution at the edge of the polymer. The method of the invention has simple equipment, low cost, no environmental pollution and strong adaptability, and can be used in contact with various acid, alkali and salt solutions.

Description

Solve the method that the aqueous solution flows backwards at solid polymer edge
Technical field
The present invention relates to the process for treating surface at sheet material, bar or tube-type solid edge, main super-hydrophobicization processing by the surface provides a kind of thorough solution aqueous solution the method for refluence phenomenon to occur at solid polymer edge.
Background technology
The aqueous solution is to be prevalent in phenomenon in the daily life (flow backwards, refer to liquid from the solid upper surface, directly do not fall through the edge under the gravity effect, and the phenomenon of the lower surface certain distance of flowing through) in the refluence phenomenon of solid rim.Owing to flow backwards, make the aqueous solution not fall into corresponding position, and caused the loss of the aqueous solution according to predetermined track, and the incorrect flow direction, brought great inconvenience and danger.
In order to solve backward flow problem, people have taked the whole bag of tricks.Modal three kinds of methods are:
1. the method that adds running-on at the mouth of pipe: use this method can change the contact object of the aqueous solution in the refluence process, utilize the body factor of new object (to reduce the area that the aqueous solution flows back to lower surface, thereby utilize the gravity effect, overcome the adhesive force of the aqueous solution on running-on) the solution backward flow problem.
2. dwindle the method for runner: the form of similar " olecranon " is processed at solid rim one place,, increases the method for flow velocity, change the time of aqueous solution contact solid rim, solve the purpose that flows backwards thereby reach by reducing runner.
3. fully utilize two kinds of methods: as Chinese patent application number: 00128143.7 " self-cleaned bottle mouth " adds an inside and outside bottleneck device; Chinese patent application number: 99243478.5 " can prevent container outer wall from hanging the bottle neck of oil " add the bottle neck device of a complexity; Chinese patent application number: 92100156.8 " Frnnels ", add pointed leting slip a remark, or increase retaining mouthful at the running-on place, make liquid in flow process, be divided into some runners.
From the angle of engineering science, this several method all is of universal significance, but they have ignored the basic reason that causes the refluence phenomenon---surface wettability, thereby can not reach desirable effect.
Be result's (adopting ordinary optical glass is the object of material as research refluence phenomenon) that the inventor tests above several method below:
1. running-on form
Adopt plastics running-on commonly used, water will flow to sleeve edge, present refluence to a certain degree, under the certain flow rate condition, because action of inertia, even walk around the running-on edge along certain curve, flow to the lower surface of glass object.On the problem that solves refluence, almost do not have very big effect.
2. reduce runner, increase flow velocity
Under bigger flow conditions, effect is obvious; Under less flow velocity, effect extreme difference, current still can flow backwards, especially for the glass container that " olecranon " arranged commonly used.And because the increase of flow velocity, the difficulty of control flow strengthens.On the contrary, for adopting less runner, as pointed spout, can be with drop form control flow, but flow velocity is restricted, and can't apply among a large amount of actual needs.
3. fully utilize two kinds of methods
Have the shortcoming of two kinds of methods concurrently.In addition, project organization complexity, assembling difficulty, inefficiency.
Summary of the invention
The objective of the invention is thoroughly to solve the aqueous solution backward flow problem of solid polymer edge, thereby provide a kind of simple efficient, cost is low, and operation is easily gone, the method that the solution aqueous solution of non-environmental-pollution flows backwards in solid rim.
The present invention mainly passes through surface modification, patented technology (the application number: 200410004721.6) that has utilized the inventor formerly to apply for, sheet material, tubing and bar polymer solids edge of materials are carried out sufacing handle, preparation has the polymeric material edge of super hydrophobic surface.
The present invention solves the method that the aqueous solution flows backwards at solid polymer edge: at room temperature, with the pressure of 4~20KPa, polish back and forth more than 50 times at surface of polymer material with the sand paper (GB/T 15305) of different model.The polymer surfaces of water droplet after the polishing carried out contact angle determination, therefrom select the static contact angle that makes surface of polymer material and water near or sand paper model scope above 150 °.The sand paper that adopts this model scope carries out the polishing of same number to the edge surface and the lower surface of polymeric material, change the edge surface of polymeric material and the wellability of lower surface, make its surface and static contact angle of water near or above 150 °, reach super-hydrophobic effect, prevent the refluence of the aqueous solution.
Described sand paper model is at 60~No. 2000.
The shape of described polymeric material comprises: sheet material, tubing and bar.
The thickness of described polymer sheet is at 1~10mm, and the diameter of tubing and bar is at 8~50mm.
Described polymeric material is polytetrafluoroethylene (PTFE), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene, polyvinyl chloride and polystyrene etc.
Sand paper with above-mentioned model is polished to the polymeric material edge of sheet material, tubing or bar, and especially the edge surface of material and lower surface carry out the polishing of same number, to reach identical hydrophobic effect.
Acid, alkali, salting liquid and pure water are packed in the disposable syringe, under the control of automatic injector pusher, in certain flow rate with drop or flow regime, flow on the edge surface of difform polymeric material, with high-speed camera (German vossk ū hler Gmbh, HCC1000F, the fastest 1800fps that reaches) takes the refluence phenomenon of the aqueous solution.Inject 4~No. 16 syringe needles of used syringe needle.
Described acid is sulfuric acid or hydrochloric acid etc.; Used alkali is NaOH, potassium hydroxide or ammoniacal liquor etc.; It regulates the pH scope 1~13.
Described salting liquid is selected from sodium chloride, potassium chloride, sodium sulphate or potassium sulfate etc., adds water and regulates its concentration till saturated.
The solution aqueous solution of the present invention is in the advantage of the method that solid polymer edge flows backwards:
1. present device simple (manual grinding also can be obtained good effect), cost is low, and the production technology of polymeric material is not had specific (special) requirements, the aqueous solution backward flow problem at solution polymeric material edge that can essence.
2. adaptability of the present invention is strong, can use (comprising soda acid salt) under the aqueous solution of different condition.
3. under certain flow rate, can change the liquid form (with hydrophilic solid rim compare) of the aqueous solution, make the aqueous solution dirty, better control flow to drip shape in the polymeric material solid rim.
4. this method is applied widely, adopts cheap general-purpose plastics can reach effect preferably.
Below in conjunction with embodiment and accompanying drawing in detail the present invention is described in detail.
Description of drawings
Fig. 1. the relation curve of the embodiment of the invention 1 between the contact angle of surface of polymer material after the different sand paperings and water.
The polymer surfaces before 1 polishing of Fig. 2 A. embodiment of the invention and the contact angle photo of water.
Fig. 2 B. embodiment of the invention 1 is through selecting the surface of polymer material after the polishing of sand paper model and the contact angle photo of water.
Fig. 3. the photo that the embodiment of the invention 1 water droplet is taken through the different high-speed cameras that flow through the polymer sheet edge surface constantly.
Fig. 4. the photo that the embodiment of the invention 1 water droplet is taken through the different high-speed cameras that flow through polymer pipe that diameter is 20.76mm and bar edge surface constantly.
Fig. 5. the photo that the embodiment of the invention 1 current are taken through the different high-speed cameras that flow through the sheet polymer edge surface constantly.
The specific embodiment
Embodiment 1
1. when used sand paper model is 60~No. 2000, at room temperature, when being 4~10KPa, pressure polishes back and forth more than 50 times on the teflon substrate surface.Water droplet in the relation of this polishing static contact angle of ptfe surface and sand paper model as shown in Figure 1.
2. select 400~No. 1000 scopes to be best Sand paper for polishing model, to thickness is that 2.96mm, 5mm and 10mm polytetrafluoroethylsheet sheet and caliber are 7.8mm, 10.26mm, 20.76mm, 25.90mm, 40.13mm tubing, and diameter is that bar edge surface and the lower surface of 15.06mm, 19.93mm polished, and the polishing number of times is more than 50 times.
3. substrate, bar and the tubing to the polytetrafluoroethylene (PTFE) after the polishing soaks with acetone and sodium hydroxide/ethyl alcohol respectively, uses deionized water rinsing again, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 8 and No. 16, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.The position of fixed needle and polytetrafluoroethylene (PTFE), the distance at the polytetrafluoroethylene (PTFE) edge after control syringe needle and the polishing is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride, potassium chloride and sodium sulphate respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 hydrochloric acid and pH value are 8,9,10,11,12,13 sodium hydroxide solution, repetition 3~5 steps.
The ptfe surface before the polishing and the contact angle photo of water are shown in Fig. 2 A.The ptfe surface after the process sand papering and the contact angle photo of water are shown in Fig. 2 B.The photo that the high-speed camera that different water droplets constantly flow through the polytetrafluoroethylsheet sheet edge surface is taken as shown in Figure 3.Different water droplets constantly flow through photo that the high-speed camera of the polytetrafluoroethyltubing tubing of different-diameter and bar edge surface takes as shown in Figure 4.The photo that the different high-speed cameras that flow through the polytetrafluoroethylene (PTFE) edge surface of different shape constantly of current process are taken as shown in Figure 5.
The static contact angle of polytetrafluoroethylene (PTFE) before the polishing is 120.8 °, is 151.2 ° with the static contact angle of the polytetrafluoroethylene (PTFE) after the sand papering.Under three kinds of positions of test, water droplet all is from sheet material, tubing and the bar edge of polytetrafluoroethylene (PTFE) and drips a shape and tumble, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under sheet material, tubing and the bar marginal flow of polytetrafluoroethylene (PTFE), do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, the sheet material of polytetrafluoroethylene (PTFE), tubing and bar have all presented with above-mentioned identical, the same phenomenon when contacting with water.
Embodiment 2
1. when used sand paper model is 60~No. 2000, at room temperature, when being 5~9KPa, pressure polishes back and forth more than 50 times at the high density polyethylene (HDPE) substrate surface.
2. select 150~No. 1000 scope to be best Sand paper for polishing model, to thickness is that 1.05mm, 2.14mm and 3.22mm high density polyethylene (HDPE) sheet material and caliber are 5.86mm, 10.26mm and 20.12mm tubing, and diameter is 10.00mm, 20.08mm bar edge surface and lower surface polish, the polishing number of times be more than 50 times.
3. after substrate, bar and the tubing of the high density polyethylene (HDPE) after the polishing being soaked with sodium hydroxide/ethyl alcohol, use deionized water rinsing again, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 7 and No. 16, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.The position of the high density polyethylene (HDPE) after fixed needle and the polishing, the distance at control syringe needle and high density polyethylene (HDPE) edge is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride, potassium chloride and potassium sulfate respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 sulfuric acid and pH value are 8,9,10,11,12,13 potassium hydroxide solution, repetition 3~5 steps.
The static contact angle of high density polyethylene (HDPE) before the polishing is 92.7 °, is 135.6 ° with the static contact angle of the high density polyethylene (HDPE) after the sand papering.Under three kinds of positions of test, water droplet all is from sheet material, tubing and the bar edge of high density polyethylene (HDPE) and drips a shape and tumble, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under sheet material, tubing and the bar marginal flow of high density polyethylene (HDPE), do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, the sheet material of high density polyethylene (HDPE), tubing and bar have all presented with above-mentioned identical, the same phenomenon when contacting with water.
Embodiment 3
1. when used sand paper model is 60~No. 2000, at room temperature, when being 7~10KPa, pressure polishes back and forth more than 50 times on low-density polyethylene sheet surface.
2. select 150~No. 1000 scope to be best Sand paper for polishing model, to thickness is that 3.56mm and 8.03mm low density polyethylene sheet material and caliber are 10.20mm and 35.98mm tubing, and diameter is that the edge surface and the lower surface of 20.35mm bar polished, and the polishing number of times is more than 50 times.
3. after substrate, bar and the tubing of the low density polyethylene (LDPE) after the polishing being soaked with sodium hydroxide/ethyl alcohol respectively, use deionized water rinsing again, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 7 and No. 16, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.The position of fixed needle and low density polyethylene (LDPE), the distance at the low density polyethylene (LDPE) edge after control syringe needle and the polishing is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride, potassium chloride, potassium sulfate and sodium sulphate respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 sulfuric acid and pH value are 8,9,10,11,12,13 sodium hydroxide solution, repetition 3~5 steps.
The static contact angle of low density polyethylene (LDPE) before the polishing is 108.3 °, is 142.2 ° with the static contact angle of the low density polyethylene (LDPE) after the sand papering.Under three kinds of positions of test, water droplet all is from sheet material, tubing and the bar edge of low density polyethylene (LDPE) and drips a shape and tumble, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under sheet material, tubing and the bar marginal flow of low density polyethylene (LDPE), do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, the sheet material of low density polyethylene (LDPE), tubing and bar have all presented with above-mentioned identical, the same phenomenon when contacting with water.
Embodiment 4
1. when used sand paper model is 60~No. 2000, at room temperature, when being 7~11KPa, pressure polishes back and forth more than 50 times on polypropylene substrate surface.
2. select 60~No. 800 scope to be best Sand paper for polishing model, to thickness is that 1.24mm, 3.52mm and 5.07mm crystalline p p sheet and caliber are 15.26mm, 19.86mm and 40.2mm tubing, and bar edge surface and the lower surface of 10.32mm, 17.68mm polish, and the polishing number of times is more than 50 times.
3. after polyacrylic substrate, bar and tubing after the polishing being soaked with sodium hydroxide/ethyl alcohol respectively, use deionized water rinsing again, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 8 and No. 16, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.Polyacrylic position after fixed needle and the polishing, the distance at control syringe needle and polypropylene edge is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride, potassium chloride, potassium sulfate and sodium sulphate respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 hydrochloric acid and pH value are 8,9,10,11,12,13 ammonia spirit, repetition 3~5 steps.
Polyacrylic static contact angle before the polishing is 100.2 °, is 145.3 ° with the polyacrylic static contact angle after the sand papering.Under three kinds of positions of test, water droplet all is a shape and tumbles from polyacrylic sheet material, tubing and bar edge, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under polyacrylic sheet material, tubing and bar marginal flow, do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, polyacrylic sheet material, tubing and bar have all presented with above-mentioned identical, the same phenomenon when contacting with water.
Embodiment 5
1. when used sand paper model is 60~No. 2000, at room temperature, when being 5~15KPa, pressure polishes back and forth more than 50 times on polyvinyl chloride substrate surface.
2. select 60~No. 1000 scope to be best Sand paper for polishing model, to thickness is that 2.50mm, 5.62mm and 10.04mm polychlorovinyl sheet material and caliber are 39.2mm tubing, and the edge surface and the lower surface of 19.56mm, 25.66mm bar polish, and the polishing number of times is more than 50 times.
3. after substrate, bar and the tubing of polyvinyl chloride after the polishing being soaked with sodium hydroxide/ethyl alcohol respectively, after washing again with deionized water, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 8 and No. 14, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.The position of the polyvinyl chloride after fixed needle and the polishing, the distance at control syringe needle and polyvinyl chloride edge is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride and potassium chloride respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 hydrochloric acid and pH value are 8,9,10,11,12,13 sodium hydroxide solution, repetition 3~5 steps.
The static contact angle of polyvinyl chloride before the polishing is 85.4 °, is 146.3 ° with the static contact angle of the polyvinyl chloride after the sand papering.Under three kinds of positions of test, water droplet all is from sheet material, tubing and the bar edge of polyvinyl chloride and drips a shape and tumble, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under sheet material, tubing and the bar marginal flow of polyvinyl chloride, do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, the sheet material of polyvinyl chloride, tubing and bar have all presented with above-mentioned identical, the same phenomenon when contacting with water.
Embodiment 6
1. when used sand paper model is 60~No. 2000, at room temperature, when being 8~20KPa, pressure polishes back and forth more than 50 times on polystyrene substrate surface.
2. selecting 60~No. 600 scope to be best Sand paper for polishing model, is that the edge and the lower surface of 3.50mm, 8.77mm and 15.94mm polystyrene sheet material polished to thickness, and the polishing number of times is more than 50 times.
3. after the substrate of the polystyrene after the polishing being soaked with sodium hydroxide/ethyl alcohol, use deionized water rinsing again, oven dry.
4. be full of disposable syringe (20ml capacity) with secondary deionized water, behind the exhaust bubble, be contained in the automatic injector propeller (Beijing Silugao High Science ﹠ Technology Co., Ltd. produces, CPS2000) on, by the drippage of woven hose control syringe needle place water and the flow velocity of current.Selecting for use pin No.1 is No. 4, No. 8 and No. 16, and angle of rake flow velocity modification scope is at 0~300ml/h.
5. set angle of rake syringe capacity of automatic injector and flow velocity.Setting is connected with the parameter of the high-speed camera of PC, comprises the frame number that take each second, shooting time, screening-mode etc.The position of the polystyrene after fixed needle and the polishing, the distance at control syringe needle and polystyrene edge is in the scope of drop diameter.Begin to start the syringe propeller, start the shoot function of high-speed camera simultaneously.
6. observe phenomena finishes, and stops high-speed camera and syringe pusher.
7. the liquid in the 3rd step is changed to the saturated aqueous solution of sodium chloride, potassium chloride, potassium sulfate and sodium sulphate respectively, repeats 3~5 steps.
8. the liquid in the 3rd step being changed to pH value respectively is that 1,2,3,4,5,6 hydrochloric acid and pH value are 8,9,10,11,12,13 sodium hydroxide solution, repetition 3~5 steps.
The static contact angle of polystyrene before the polishing is 88.8 °, is 139.4 ° with the static contact angle of the polystyrene after the sand papering.Under three kinds of positions of test, water droplet all is from the sheet material edge of polystyrene and drips a shape and tumble, and edge surface is without any vestige, and water droplet flows backwards.Under three kinds of positions of test, the current of certain flow rate all under the sheet material marginal flow of polystyrene, do not flow backwards, and after current stopped, the polymeric material edge surface was without any washmarking.
Under the aqueous conditions of soda acid salt, the sheet material of polystyrene has all presented with above-mentioned identical, the same phenomenon when contacting with water.

Claims (10)

1.一种解决水溶液在聚合物固体边缘倒流的方法,其特征是:1. A method for solving the backflow of aqueous solution at the polymer solid edge, characterized in that: 在室温下,以4~20KPa的压强,用砂纸对聚合物材料的边缘表面和下表面进行相同次数的打磨,使其表面与水的静态接触角为135.6°、139.4°、142.2°、145.3°146.3°或超过150°,达到超疏水效果。At room temperature, with a pressure of 4-20KPa, sand the edge surface and lower surface of the polymer material for the same number of times with sandpaper, so that the static contact angles of the surface and water are 135.6°, 139.4°, 142.2°, 145.3° 146.3° or more than 150°, to achieve super-hydrophobic effect. 2.根据权利要求1所述的方法,其特征是:所述的对聚合物材料的边缘表面和下表面用砂纸打磨时,同时进一步对聚合物材料其它表面打磨,使聚合物材料其它表面与水的静态接触角为135.6°、139.4°、142.2°、145.3°146.3°或超过150°。2. The method according to claim 1, characterized in that: when said edge surface and lower surface of the polymer material are polished with sandpaper, the other surfaces of the polymer material are further polished simultaneously, so that other surfaces of the polymer material are in contact with the other surfaces of the polymer material. The static contact angle of water is 135.6°, 139.4°, 142.2°, 145.3°, 146.3° or more than 150°. 3.根据权利要求1或2所述的方法,其特征是:所述的砂纸打磨次数为50次以上。3. The method according to claim 1 or 2, characterized in that: the number of sanding times is more than 50. 4.根据权利要求1或2所述的方法,其特征是:所述的砂纸型号在60~2000号。4. The method according to claim 1 or 2, characterized in that: the type of sandpaper is No. 60-2000. 5.根据权利要求3所述的方法,其特征是:所述的砂纸型号在60~2000号。5. The method according to claim 3, characterized in that: the type of said sandpaper is No. 60-2000. 6.根据权利要求1或2所述的方法,其特征是:所述的聚合物材料选自聚四氟乙烯、高密度聚乙烯、低密度聚乙烯、聚丙烯、聚氯乙烯或聚苯乙烯。6. The method according to claim 1 or 2, characterized in that: the polymer material is selected from polytetrafluoroethylene, high-density polyethylene, low-density polyethylene, polypropylene, polyvinyl chloride or polystyrene . 7.根据权利要求1或2所述的方法,其特征是:所述的聚合物材料的形状选自片材、管材或棒材。7. The method according to claim 1 or 2, characterized in that the shape of said polymer material is selected from sheet, pipe or rod. 8.根据权利要求6所述的方法,其特征是:所述的聚合物材料的形状选自片材、管材或棒材。8. The method of claim 6, wherein said polymeric material is in a shape selected from sheet, tube or rod. 9.根据权利要求7所述的方法,其特征是:所述的聚合物片材的厚度在1~10mm,管材或棒材的直径在8~50mm。9. The method according to claim 7, characterized in that: the thickness of the polymer sheet is 1-10 mm, and the diameter of the pipe or rod is 8-50 mm. 10.根据权利要求8所述的方法,其特征是:所述的聚合物片材的厚度在1~10mm,管材或棒材的直径在8~50mm。10. The method according to claim 8, characterized in that: the thickness of the polymer sheet is 1-10 mm, and the diameter of the pipe or rod is 8-50 mm.
CN200510011548A 2005-04-08 2005-04-08 The solution to the backflow of aqueous solution at the edge of polymer solid Expired - Fee Related CN100577396C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200510011548A CN100577396C (en) 2005-04-08 2005-04-08 The solution to the backflow of aqueous solution at the edge of polymer solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200510011548A CN100577396C (en) 2005-04-08 2005-04-08 The solution to the backflow of aqueous solution at the edge of polymer solid

Publications (2)

Publication Number Publication Date
CN1843749A CN1843749A (en) 2006-10-11
CN100577396C true CN100577396C (en) 2010-01-06

Family

ID=37062731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510011548A Expired - Fee Related CN100577396C (en) 2005-04-08 2005-04-08 The solution to the backflow of aqueous solution at the edge of polymer solid

Country Status (1)

Country Link
CN (1) CN100577396C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115253943B (en) * 2022-06-22 2023-11-24 青岛大学 Preparation method and application of superhydrophobic low adhesion and large rolling angle polyethylene microdroplet reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381343A (en) 1989-08-25 1991-04-05 Sumitomo Metal Ind Ltd Method for producing polymeric materials
JPH04353529A (en) 1991-05-30 1992-12-08 Teijin Ltd Method for modifying surface of polyester
JPH0539374A (en) 1991-08-06 1993-02-19 Dainippon Printing Co Ltd Improvement in wettability of plastic film surface
CN1192224A (en) * 1995-06-30 1998-09-02 联邦科学及工业研究组织 Improved surface treatment of polymers
US5855804A (en) * 1996-12-06 1999-01-05 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical-mechanical planarization of substrates at desired endpoints
US6409581B1 (en) * 1998-01-27 2002-06-25 Micron Technology, Inc. Belt polishing pad method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381343A (en) 1989-08-25 1991-04-05 Sumitomo Metal Ind Ltd Method for producing polymeric materials
JPH04353529A (en) 1991-05-30 1992-12-08 Teijin Ltd Method for modifying surface of polyester
JPH0539374A (en) 1991-08-06 1993-02-19 Dainippon Printing Co Ltd Improvement in wettability of plastic film surface
CN1192224A (en) * 1995-06-30 1998-09-02 联邦科学及工业研究组织 Improved surface treatment of polymers
US5855804A (en) * 1996-12-06 1999-01-05 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical-mechanical planarization of substrates at desired endpoints
US6409581B1 (en) * 1998-01-27 2002-06-25 Micron Technology, Inc. Belt polishing pad method

Also Published As

Publication number Publication date
CN1843749A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
CN100577396C (en) The solution to the backflow of aqueous solution at the edge of polymer solid
CN108472479A (en) Wipe tip
CN209158363U (en) A kind of pressure vessel aperture lineation device
CN210446073U (en) Ball formula anesthesia branch of academic or vocational study is with disinfection brush
CN201180013Y (en) Hand sanitizer foam packaging bottle
CN105057014A (en) Transfer pipette capable of preventing liquid leakage
CN110065300A (en) A kind of novel doctor knife rest
CN209287361U (en) A kind of super-hydrophobicity low adsorption suction nozzle
WO2010034172A1 (en) Paint brush
CN205385951U (en) Full -automatic material brush of inhaling
CN212368749U (en) Straw with replaceable straw end and tight seal
CN206778459U (en) A kind of chemical experiment wash bottle
CN206082576U (en) Improved generation wash -bottle
CN207861854U (en) A kind of ink filling apparatus
CN206781357U (en) A kind of fine arts paintbrush
CN217796200U (en) Can quantitative liquid feeding wash-bottle
CN222548744U (en) A cotton-head Tibetan material continuous dropper bottle
CN221770798U (en) Handheld nasal cleaner
CN211794889U (en) Cleaning tool convenient for extruding cleaning agent
CN217067342U (en) An anesthesiology spray device
CN209567219U (en) A kind of saltmouth convenient for identification
CN213768068U (en) Ink bottle without dirtying hand
CN212189643U (en) A diaphragm pump watering can
CN213854609U (en) Filter flask convenient for taking out filtrate
CN214525105U (en) Filter antifogging agent bottle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100106

Termination date: 20190408