CN100577339C - Molten strip automatic compression arc cladding welding method and device - Google Patents
Molten strip automatic compression arc cladding welding method and device Download PDFInfo
- Publication number
- CN100577339C CN100577339C CN200710022231A CN200710022231A CN100577339C CN 100577339 C CN100577339 C CN 100577339C CN 200710022231 A CN200710022231 A CN 200710022231A CN 200710022231 A CN200710022231 A CN 200710022231A CN 100577339 C CN100577339 C CN 100577339C
- Authority
- CN
- China
- Prior art keywords
- metal strip
- metal
- strip
- workpiece
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims abstract description 87
- 230000006835 compression Effects 0.000 title claims abstract description 42
- 238000007906 compression Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005253 cladding Methods 0.000 title abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 116
- 239000002184 metal Substances 0.000 claims abstract description 116
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000010937 tungsten Substances 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 239000003223 protective agent Substances 0.000 claims description 28
- 229910001220 stainless steel Inorganic materials 0.000 claims description 21
- 239000010935 stainless steel Substances 0.000 claims description 21
- 230000008021 deposition Effects 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000011814 protection agent Substances 0.000 claims 2
- 239000000155 melt Substances 0.000 claims 1
- 239000002344 surface layer Substances 0.000 claims 1
- 230000035515 penetration Effects 0.000 abstract description 5
- 238000010790 dilution Methods 0.000 abstract description 4
- 239000012895 dilution Substances 0.000 abstract description 4
- 230000007704 transition Effects 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 41
- 239000010959 steel Substances 0.000 description 41
- 239000000758 substrate Substances 0.000 description 24
- 229910001369 Brass Inorganic materials 0.000 description 16
- 239000010953 base metal Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
Abstract
本发明公开了一种熔化带极自动压缩电弧熔敷焊方法及装置。该方法将金属带作为熔化带极,金属带穿过送带器直达工件表面待焊部位,焊枪设置在金属带上方,该金属带和焊枪中的钨电极之间产生压缩电弧;随着工件转动或直线运动并通过已凝固的熔敷金属提供送进动力,金属带自动随着向前移动,形成被动式自动送带方式持续至待焊部位;焊枪产生的压缩电弧将热量传给金属带表层,依靠热传导将热量传给金属带内部使之熔化,工件作步进式旋转或直线运动,金属带局部不断熔化形成连续的焊接熔池并不断凝固形成连续焊缝。该装置的送带器由陶瓷头、送粉器、铜导电头、矩形送带管和导电结构体组成。本发明无熔深、无稀释率问题、无需过渡层、工艺简单,成本低。
The invention discloses a method and a device for automatic compression arc cladding welding of molten strip. In this method, the metal belt is used as the melting belt electrode, and the metal belt passes through the belt feeder to the part to be welded on the surface of the workpiece. The welding gun is set above the metal belt, and a compression arc is generated between the metal belt and the tungsten electrode in the welding gun; Or linear motion and the feeding power is provided by the solidified deposited metal, and the metal belt automatically moves forward, forming a passive automatic belt feeding method that continues to the part to be welded; the compression arc generated by the welding torch transfers heat to the surface of the metal belt, Relying on heat conduction, the heat is transferred to the inside of the metal strip to melt it, and the workpiece makes a step-by-step rotation or linear motion, and the metal strip is partially continuously melted to form a continuous weld pool and continuously solidifies to form a continuous weld. The tape feeder of the device is composed of a ceramic head, a powder feeder, a copper conductive head, a rectangular tape feed pipe and a conductive structure. The invention has no penetration depth, no dilution rate problem, no transition layer, simple process and low cost.
Description
技术领域 technical field
本发明属于在钢基体上熔化带极自动熔敷焊铜、铝、不锈钢、纯铁等金属的特种焊接技术,特别是一种熔化带极自动压缩电弧熔敷焊方法及其装置。The invention belongs to the special welding technology of melting strip automatic deposition welding copper, aluminum, stainless steel, pure iron and other metals on a steel substrate, in particular to a melting strip automatic compression arc deposition welding method and its device.
背景技术 Background technique
在钢基体与铜、铝、不锈钢等金属的焊接中,如容器表面焊接耐蚀层、工程机械表面焊接耐磨层、兵器表面焊接铜合金层,通常采用送丝堆焊、激光熔覆、等离子堆焊、模中熔铸焊((Mold Soldification Welding,MSW)、摩擦焊等技术。如钢基体表面堆焊铜技术是在基体金属表面焊上一层铜及铜合金以使基体金属具有所需要的性能如硬度、导电性等,再如钢基体表面堆焊不锈材料技术是在基体金属表面焊上一层奥氏体不锈钢以使基体金属具有所需要的性能如耐腐蚀性等。堆焊技术如熔化极气体保护堆焊、TIG堆焊等,熔化电极与基体金属间产生电弧,基体金属作为阴极或阳极在电弧热的作用下熔化,熔敷金属和熔化的基体金属混合形成冶金结合,基体金属的熔化难以避免。堆焊工艺基体金属有很大的熔深,熔敷金属被基体熔化的金属所稀释,稀释率一般大于10%,熔敷层金属的性能因此而发生变化。对于耐蚀层基体金属的熔化使耐腐蚀功能大幅下降,对于兵器某类产品钢基体上堆焊铜,基体金属熔化和稀释使铜带层内部含有大量的铁,从而导致性能变化、焊接失败。In the welding of steel substrates and metals such as copper, aluminum, and stainless steel, such as welding corrosion-resistant layers on the surface of containers, welding wear-resistant layers on the surface of construction machinery, and welding copper alloy layers on the surface of weapons, wire feeding surfacing, laser cladding, and plasma welding are usually used. Overlay welding, Mold Soldification Welding (MSW), friction welding and other technologies. For example, copper overlay welding technology on the surface of steel substrate is to weld a layer of copper and copper alloy on the surface of the base metal to make the base metal have the required Properties such as hardness, electrical conductivity, etc. Another example is the stainless material technology of surfacing welding on the surface of the steel substrate, which is to weld a layer of austenitic stainless steel on the surface of the base metal so that the base metal has the required properties such as corrosion resistance. Surfacing technology Such as gas-shielded surfacing welding, TIG surfacing welding, etc., an arc is generated between the molten electrode and the base metal, and the base metal is melted under the action of the arc heat as the cathode or anode, and the deposited metal and the molten base metal are mixed to form a metallurgical bond. The melting of metal is unavoidable. The base metal in the surfacing process has a large penetration depth, and the deposited metal is diluted by the molten metal of the base. The dilution rate is generally greater than 10%, and the properties of the deposited metal change accordingly. For corrosion resistance The melting of the base metal of the layer greatly reduces the corrosion resistance. For some types of weapons, copper is surfacing on the steel base. The melting and dilution of the base metal will cause a large amount of iron to be contained in the copper strip layer, resulting in performance changes and welding failures.
模中熔铸焊(MSW)是在圆柱形工件表面焊接铜合金层,即在钢质圆柱体表面焊接一定厚度的纯铜层。该方法采用钢质(冲压件)成形模,模与基体焊接,清理基体与模之间的氧化物、铁锈等,将工件浸入液态保护剂中,基体与模之间充满保护剂,该过程也具有预热功效,再将工件浸入液态铜中,液态铜重而液态保护剂轻,铜液取代保护剂进入模中,待冷却后铜与钢基体实现冶金结合,焊后车削去除钢质保护模。该工艺方法易产生缩孔、缩松、气孔和夹渣物等缺陷,钢质保护模的焊接和去除影响效率和质量。In-mould casting welding (MSW) is to weld a copper alloy layer on the surface of a cylindrical workpiece, that is, to weld a certain thickness of pure copper layer on the surface of a steel cylinder. The method adopts steel (stamping parts) forming mold, the mold and the base are welded, the oxides and rust between the base and the mold are cleaned, the workpiece is immersed in the liquid protective agent, and the protective agent is filled between the base and the mold. It has preheating effect, and then immerses the workpiece in liquid copper, the liquid copper is heavy and the liquid protective agent is light, the copper liquid replaces the protective agent and enters the mold, after cooling, the copper and the steel matrix are metallurgically bonded, and the steel protective mold is removed by turning after welding . This process method is prone to defects such as shrinkage cavities, shrinkage porosity, pores and slag inclusions, and the welding and removal of steel protective molds affect efficiency and quality.
管形工件与铜环的摩擦焊技术是将铜质圆环与管形钢基体实现连接,如在30mm直径的管形工件上焊接约1mm厚的纯铜层。该工艺将轴向力转化为径向力,将圆环开缺口,夹具夹紧,弹体高速旋转,再将铜圈压向管形工件,利用惯性能量实现焊接。加热时间几秒钟,有一定的焊合面积,但不能保证焊合率达到100%,结合界面有夹渣等缺陷,结合强度和性能不稳定。The friction welding technology between the tubular workpiece and the copper ring is to connect the copper ring with the tubular steel substrate, such as welding a pure copper layer about 1mm thick on the 30mm diameter tubular workpiece. This process converts axial force into radial force, notches the ring, clamps the fixture, rotates the projectile at high speed, and then presses the copper ring to the tubular workpiece to realize welding by using inertial energy. The heating time is a few seconds, and there is a certain welding area, but the welding rate cannot be guaranteed to reach 100%. There are defects such as slag inclusion on the bonding interface, and the bonding strength and performance are unstable.
“钢基体上熔敷焊金属工艺”专利号为01142701.9,是采用感应热源加热预先放置在钢基体上的铜环或铜板,依靠高频感应加热并熔化铜环或铜板形成铜熔池,实现铜钢的冶金结合。“钢基体等离子熔敷金属工艺”专利号为01142702.7,是采用等离子弧加热预置在钢基体表面的铜环并使之熔化,实现铜钢冶金结合。The patent No. 01142701.9 of "metal deposition welding process on steel substrate" is to use induction heat source to heat the copper ring or copper plate pre-placed on the steel substrate, relying on high-frequency induction heating and melting the copper ring or copper plate to form a copper molten pool to realize copper welding. Metallurgical bonding of steel. The patent No. 01142702.7 of "Steel Substrate Plasma Deposited Metal Technology" is to use plasma arc to heat and melt the copper ring preset on the surface of the steel substrate to realize the metallurgical combination of copper and steel.
发明内容 Contents of the invention
本发明的发明目的在于提供一种熔化带极自动压缩电弧熔敷焊装置。The object of the present invention is to provide an automatic compression arc cladding welding device for molten strip.
本发明的发明目的还在于提供一种利用上述装置使界面焊合率高、结合强度大于特种功能熔敷层自身强度的熔化带极自动压缩电弧熔敷焊方法,该方法在钢表面无熔深自动熔敷焊铜、不锈钢、纯铁、铝等难蚀、有色等金属,以形成低硬度层、耐蚀层、导电层、隔磁层、高硬耐磨层等特种功能熔敷层,以实现钢基体与特种功能熔敷层的无熔深冶金结合。The object of the present invention is also to provide a method for automatic compression arc deposition welding of molten strips using the above-mentioned device to make the interface welding rate high and the bonding strength greater than the strength of the special function cladding layer itself. The method has no penetration depth on the steel surface. Automatic deposition welding of copper, stainless steel, pure iron, aluminum and other hard-to-corrod and non-ferrous metals to form low-hardness layers, corrosion-resistant layers, conductive layers, magnetic isolation layers, high-hard wear-resistant layers and other special functional deposition layers to Realize the non-penetrating metallurgical combination of the steel substrate and the special function cladding layer.
实现本发明目的的技术解决方案为:一种熔化带极自动压缩电弧熔敷焊装置,包括由机器人操作机控制的焊枪和作旋转或直线运动的工件,将金属带输送到工件表面待焊部位的送带器由陶瓷头、送粉器、铜导电头、矩形送带管和导电结构体组成,该陶瓷头设置在矩形送带管的前端,该陶瓷头靠近焊接区域;实现保护剂自动填充的送粉器为漏斗式结构,并设置在矩形送带管上方靠近陶瓷头;所述的铜导电头和导电结构体设置成一体紧靠送粉器,依靠弹簧压力将铜导电头压向金属带,实现金属带的导电功能;所述的金属带穿过矩形送带管内部,该矩形送带管内部为矩形孔,该矩形孔与金属带上表面之间的空腔填充保护剂。The technical solution to realize the purpose of the present invention is: an automatic compression arc cladding welding device for molten strip, including a welding torch controlled by a robot manipulator and a workpiece that rotates or linearly moves, and transports the metal strip to the part to be welded on the surface of the workpiece The tape feeder is composed of a ceramic head, a powder feeder, a copper conductive head, a rectangular tape feed tube and a conductive structure. The ceramic head is set at the front end of the rectangular tape feed tube, and the ceramic head is close to the welding area; the automatic filling of the protective agent is realized. The powder feeder is a funnel-type structure, and is set above the rectangular feeding tube close to the ceramic head; the copper conductive head and the conductive structure are set as a whole close to the powder feeder, and the copper conductive head is pressed against the metal by spring pressure. The strip realizes the conductive function of the metal strip; the metal strip passes through the inside of the rectangular strip feeding tube, and the inside of the rectangular strip feeding tube is a rectangular hole, and the cavity between the rectangular hole and the upper surface of the metal strip is filled with a protective agent.
一种熔化带极自动压缩电弧熔敷焊方法,首先采用金属带作为熔化带极,即金属带作为压缩电弧的阳极,该金属带穿过送带器的矩形送带管直达工件表面待焊部位,焊枪设置在处于待焊部位的金属带上方,该金属带和焊枪中的钨电极之间产生压缩电弧以加热并熔化金属带;An automatic compression arc deposition welding method for molten strip poles. First, a metal strip is used as the molten strip pole, that is, the metal strip is used as the anode of the compression arc. , the welding torch is set above the metal strip at the position to be welded, and a compression arc is generated between the metal strip and the tungsten electrode in the welding torch to heat and melt the metal strip;
其次,工件作旋转或直线运动,压缩电弧的轴线位于未熔化和已凝固金属带的结合部偏未熔化金属带一侧,即偏向工件运动的反方向,焊枪在金属带宽度范围内水平运动,当焊枪运动至金属带一端时,另一端熔化的金属带已经凝固,使金属带与工件连接在一起,随着工件转动或直线运动并通过已凝固的熔敷金属提供送进动力,金属带自动随着向前移动,形成被动式自动送带方式持续至待焊部位;所述的矩形送带管的矩形孔与金属带的厚度差为保护剂的数量,随着金属带的自动送进,保护剂依靠自身重量均匀自动的铺撒于金属带表面,保证焊接接头质量;Secondly, the workpiece rotates or moves linearly. The axis of the compression arc is located at the junction of the unmelted and solidified metal strips, which is on the side of the unmelted metal strip, that is, to the opposite direction of the workpiece movement. The welding torch moves horizontally within the width of the metal strip. When the welding torch moves to one end of the metal belt, the molten metal belt at the other end has solidified, so that the metal belt and the workpiece are connected together. As the workpiece rotates or moves linearly and provides feeding power through the solidified deposited metal, the metal belt automatically As it moves forward, the passive automatic tape feeding mode is formed and continues to the position to be welded; the thickness difference between the rectangular hole of the rectangular feeding tube and the metal tape is the amount of the protective agent. With the automatic feeding of the metal tape, the protection The agent is evenly and automatically spread on the surface of the metal strip by its own weight to ensure the quality of the welded joint;
最后,焊枪产生的压缩电弧将热量传给金属带表层,依靠热传导将热量传给金属带内部使之熔化,工件的金属接受传导热量,但低于其自身熔点,金属带局部沿长度方向熔化形成连续的焊接熔池,工件接受熔池的传导热量温度上升至熔敷焊接所需温度,并与已熔化的金属带形成冶金结合,所述的压缩电弧继续沿带宽运动,工件作步进式旋转或直线运动,金属带局部不断熔化形成连续的焊接熔池并不断凝固形成连续焊缝。Finally, the compression arc generated by the welding torch transfers heat to the surface of the metal strip, and relies on heat conduction to transfer the heat to the inside of the metal strip to melt it. The metal of the workpiece accepts the heat conduction, but it is lower than its own melting point, and the metal strip is partially melted along the length direction to form Continuous welding pool, the workpiece accepts the heat conduction temperature of the molten pool to rise to the temperature required for cladding welding, and forms a metallurgical bond with the molten metal strip, the compression arc continues to move along the bandwidth, and the workpiece rotates step by step Or linear motion, the metal strip is continuously melted locally to form a continuous weld pool and is continuously solidified to form a continuous weld.
本发明与现有技术相比,其显著优点:(1)无熔深,熔深为0;(2)距界面10---50μm后熔敷金属中铁含量已低于1%,无稀释率问题,熔敷层成分与性能不受基体金属的影响,对于兵器弹带焊接中无“泛铁”现象,质量稳定、无废品;(3)对于耐腐蚀熔敷,耐蚀层性能稳定,无需过渡层;(4)加热成型无需成形模,因而工艺简单,成本低,焊合率达到100%,明显优于径向摩擦焊;(5)熔敷焊接强度高于铜-钢管型摩擦焊弹带,焊接质量稳定,弹带界面无夹渣、未焊合等缺陷;(6)相对于预置环(板)钢基体上等离子熔敷金属方法,金属带和基体之间无需预置保护剂,也无需“金属环或板”的安装严格工序。Compared with the prior art, the present invention has significant advantages: (1) no penetration, the penetration is 0; (2) the iron content in the deposited metal is lower than 1% after 10-50 μm from the interface, and there is no dilution rate The problem is that the composition and performance of the cladding layer are not affected by the base metal. There is no "pan-iron" phenomenon in the welding of weapon belts, and the quality is stable and there is no waste product; (3) For corrosion-resistant cladding, the performance of the corrosion-resistant layer is stable, no need Transition layer; (4) Heating forming does not require forming molds, so the process is simple, the cost is low, and the welding rate reaches 100%, which is obviously better than radial friction welding; (5) The welding strength of deposition welding is higher than that of copper-steel pipe friction welding bombs The welding quality is stable, and there are no defects such as slag inclusions and unwelded joints at the interface of the elastic belt; (6) Compared with the method of plasma cladding metal on the steel substrate of the preset ring (plate), there is no need to preset a protective agent between the metal belt and the substrate , and there is no need for a strict process of "metal ring or plate" installation.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明 Description of drawings
图1是本发明的熔化带极自动压缩电弧熔敷焊装置的示意图。Fig. 1 is a schematic diagram of an automatic compression arc cladding welding device for a molten strip electrode according to the present invention.
图2是本发明熔化带极自动压缩电弧熔敷焊装置的送带器结构示意图。Fig. 2 is a structural schematic diagram of the belt feeder of the automatic compression arc cladding welding device for molten belt according to the present invention.
图3是本发明的熔化带极自动压缩电弧熔敷焊方法的流程图。Fig. 3 is a flow chart of the method for automatic compression arc cladding welding of molten strip according to the present invention.
具体实施方式 Detailed ways
结合图1和图2,本发明熔化带极自动压缩电弧熔敷焊装置,包括由机器人操作机控制的焊枪1和作旋转或直线运动的工件4,将金属带5穿过专门设计的送带器3直达工件4表面待焊部位,该送带器3由陶瓷头6、送粉器7、铜导电头8、矩形送带管9和导电结构体10组成,该陶瓷头6设置在矩形送带管9的前端,即采用矩形送带管9插入陶瓷头6方式连接,该陶瓷头6靠近焊接区域;实现保护剂自动填充的送粉器7为漏斗式结构,并设置在矩形送带管9上方靠近陶瓷头6;所述的铜导电头8和导电结构体10设置成一体紧靠送粉器7,依靠弹簧压力将铜导电头8压向金属带5,实现金属带5的导电功能;所述的金属带5穿过矩形送带管9内部,该矩形送带管9内部为矩形孔,该矩形孔与金属带5上表面之间的空腔填充保护剂。With reference to Fig. 1 and Fig. 2, the automatic compression arc cladding welding device for molten strip of the present invention includes a
结合图3,一种利用上述装置的熔化带极自动压缩电弧熔敷焊方法,首先采用金属带5作为熔化带极,金属带5作为压缩电弧2的阳极,该金属带5穿过送带器3的矩形送带管9直达工件4表面待焊部位,焊枪1设置于处于待焊部位的金属带上方,该金属带5和焊枪1中的钨电极之间产生压缩电弧2以加热并熔化金属带5。金属带5可以为不锈钢、纯铜、铜合金、纯铁、铝或铝合金。In conjunction with Fig. 3, an automatic compression arc deposition welding method for molten strip using the above-mentioned device, first adopts a
其次,工件4作旋转或直线运动,压缩电弧2的轴线位于未熔化和已凝固金属带的结合部偏未熔化金属带5的一侧,即偏向工件4运动的反方向,焊枪1在金属带5宽度范围内水平运动,当焊枪1运动至金属带5一端时,另一端熔化的金属已经凝固,使金属带5与工件4连接在一起,随着工件4转动或直线运动并通过已凝固的熔敷金属提供送进动力,金属带5自动随着向前移动,形成被动式自动送带方式持续至待焊部位;保护剂由送粉器7通过矩形送带管9由金属带5作载体自动输送保护剂,所述的矩形送带管9的矩形孔与金属带5的厚度差决定了保护剂的数量,随着金属带5的自动送进,保护剂依靠自身重量均匀自动的铺撒于金属带表面,保证了焊接接头的质量。Secondly, the
最后,焊枪1产生的压缩电弧2将热量传给金属带5表层,依靠热传导将热量传给金属带5内部使之熔化,工件4接受传导热量,但低于其自身熔点,金属带局部不断熔化并先随压缩电弧2横向运动、再随工件4的步进式转动形成连续的焊接熔池,并不断凝固形成连续焊缝,工件4接受熔池的传导热量温度上升至熔敷焊接所需温度,并与已熔化的金属带形成冶金结合。其中,由送粉器7输送随金属带5一起送出的保护剂和焊枪1喷出的保护气体联合保护熔池过程免受氧化,保护剂颗粒度为30-200目。工件4可以为钢基体,这些钢基体为低碳钢基体、普低钢基体、中碳钢基体、中碳调质钢基体、高合金钢基体、高碳钢基体等。Finally, the compression arc 2 generated by the
下面以实施例来详细描述本发明的熔化带极自动压缩电弧熔敷焊工艺方法及其装置。The following examples are used to describe in detail the fusion zone automatic compression arc cladding welding process method and its device of the present invention.
实施例1:结合图1至3,以155mm直径58SiMn筒形体(圆柱体)表面熔敷焊黄铜层为例。将5cm×5mm96黄铜金属带穿过专门设计的送带器3的矩形送带管9直达管形(155mm外径)钢基体表面待焊部位,矩形送带管9内孔宽55mm、高6mm,矩形送带管9上方有保护剂自动填充装置送粉器7(填充漏斗),漏斗底部漏孔尺寸为20-35mm×20-30mm,保护剂目数为60-120目,矩形送带管9内矩形孔厚度与黄铜金属带厚度差1mm决定了保护剂的输送数量,随黄铜金属带的自动送进,保护剂均匀自动的铺展于黄铜金属带表面,焊枪1设置于黄铜金属带的上方,焊枪1产生的压缩电弧2弧长为3-6mm,位于未熔化和已凝固黄铜金属带的结合线偏未熔化黄铜金属带一侧3-4mm处,焊枪1在黄铜金属带宽度范围内运动,并在长度方向即钢基体运动的切线方向上摆动,摆幅1mm,焊枪1运动至黄铜金属带左端时,右端熔化的黄铜金属带已经凝固,焊枪1运动至金属带右端时,左端熔化的黄铜金属带已经凝固,且将黄铜金属带与钢基体连在一起,当钢基体转动,黄铜金属带自动随着向前运动,形成被动式自动送带,压缩电弧2将热量传给金属带表层,电弧电流170A,弧压29V,运动速度20cm/min,钢基体转速90秒/转。压缩电弧2下方的黄铜金属带局部熔化形成熔池,热量也随之传给钢基体,钢基体温度升高但不超过液态黄铜金属的温度,熔化的黄铜金属在钢基体表面凝固并形成冶金结合。随着压缩电弧2和钢基体的运动,不断形成熔池、凝固形成连续的焊缝。Embodiment 1: With reference to Figures 1 to 3, a brass layer deposited on the surface of a 58SiMn cylindrical body (cylinder) with a diameter of 155 mm is taken as an example. Pass the 5cm×5mm96 brass metal strip through the specially designed rectangular
实施例2:结合图1至3,以170mm直径45筒形体(圆柱体)表面熔敷不锈钢层为例。将4cm×4mm1Cr18Ni9Ti不锈钢带穿过专门设计的送带器的矩形送带管9直达管形(170mm外径)钢基体表面待焊部位,矩形送带管9槽厚5.0mm,槽宽4.5mm,矩形送带管9上方有保护剂自动填充装置送粉器7(填充漏斗),漏斗底部漏孔尺寸为20-30mm×20-25mm,保护剂目数为40-80目,矩形送带管9内矩形孔厚度与不锈钢带厚度差1mm决定了保护剂的输送数量,随不锈钢带的自动送进,保护剂均匀自动的铺展于不锈钢带表面,焊枪1设置于不锈钢带的上方,焊枪1产生的压缩电弧2弧长为3-6mm,位于未熔化和已凝固不锈钢带的结合线偏未熔化金属带一端3-4mm处,焊枪1(压缩电弧2)在不锈钢带宽度范围内运动,并在长度方向摆动,摆幅1mm,焊枪1运动至不锈钢带左端时,右段熔化的不锈钢带已经凝固,焊枪1运动至金属带右端时,左端熔化的不锈钢带已经凝固,且将不锈钢带与钢基体连在一起,当钢基体转动,不锈钢带自动随着向前运动,形成被动式自动送带,压缩电弧2将热量传给不锈钢带表层,电弧电流190A,弧压30V,运动速度18cm/min,基体转速90秒/转。压缩电弧2下方的不锈钢金属带局部熔化形成熔池,热量也随之传给钢基体,钢基体温度升高但不超过液态不锈钢金属的温度,熔化的不锈钢金属在钢基体表面凝固并形成冶金结合。随压缩电弧2和钢基体的运动,不断形成熔池、凝固形成连续的焊缝。Embodiment 2: With reference to Figures 1 to 3, a stainless steel layer deposited on the surface of a 170 mm diameter 45 cylindrical body (cylindrical body) is taken as an example. Pass the 4cm×4mm 1Cr18Ni9Ti stainless steel strip through the specially designed rectangular
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710022231A CN100577339C (en) | 2007-05-10 | 2007-05-10 | Molten strip automatic compression arc cladding welding method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710022231A CN100577339C (en) | 2007-05-10 | 2007-05-10 | Molten strip automatic compression arc cladding welding method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101301697A CN101301697A (en) | 2008-11-12 |
CN100577339C true CN100577339C (en) | 2010-01-06 |
Family
ID=40111890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710022231A Active CN100577339C (en) | 2007-05-10 | 2007-05-10 | Molten strip automatic compression arc cladding welding method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100577339C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489841B (en) * | 2011-11-24 | 2016-03-23 | 重庆理工大学 | Tungsten argon arc welding method filled by the alloy powder of aluminium alloy |
CN102642070A (en) * | 2012-04-20 | 2012-08-22 | 哈尔滨工业大学 | Narrow-gap GMAW (gas metal arc welding) method for band electrode |
CN103302405A (en) * | 2013-05-20 | 2013-09-18 | 江苏久保联实业有限公司 | Internal applying welding device for gracile high temperature alloy furnace tube |
CN103433601B (en) * | 2013-08-12 | 2015-09-30 | 沈阳理工大学 | A kind of low dilution rate jet overlaying method for vertical direction built-up welding |
CN114888407B (en) * | 2022-05-30 | 2024-03-05 | 太重(天津)滨海重型机械有限公司 | Technological method for surfacing H2Cr13 on outer circle surface of large plunger |
-
2007
- 2007-05-10 CN CN200710022231A patent/CN100577339C/en active Active
Non-Patent Citations (2)
Title |
---|
铜钢熔敷焊工艺方法分析研究. 徐越兰,余进,王建平,顾民乐,王克鸿.南京理工大学学报,第26卷第4期. 2002 |
铜钢熔敷焊工艺方法分析研究. 徐越兰,余进,王建平,顾民乐,王克鸿.南京理工大学学报,第26卷第4期. 2002 * |
Also Published As
Publication number | Publication date |
---|---|
CN101301697A (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101351298B (en) | Method for joining members of different kinds | |
CN102333613B (en) | The complex welding method that composition gas shielded arc welding and hidden arc welding form and composite arc bonding machine thereof | |
CN100577339C (en) | Molten strip automatic compression arc cladding welding method and device | |
CN102126064B (en) | Light metal and bare steel plate spot-welding method based on bulk forming solder | |
CN107999916B (en) | A kind of compound silk filling melt-brazing method of the double light beam laser-TIG of dissimilar material | |
CN107414303A (en) | A kind of laser scanning combination laser heating wire TIG complex welding method | |
CN101264547A (en) | Tungsten-melting electrode indirect arc welding device and welding method | |
CN103551711B (en) | A high-efficiency welding method for single-pass single-side welding and double-side forming of medium-thick plates | |
CN108188582B (en) | Laser-electric arc composite filler wire welding method for preparing magnesium/steel dissimilar metal | |
SG137730A1 (en) | Gas-less process and system for girth welding in high strength applications | |
CN101579777A (en) | Method for welding aluminum-steel by pre-placing Al coating on steel surface | |
CN101468419A (en) | Induction and electrical arc composite heat source stud welding method | |
CN114713942A (en) | Tungsten electrode argon arc additive manufacturing method based on negative pressure constraint of electric arc | |
CN107570900B (en) | High-frequency-electric arc hybrid welding method | |
CN107717185A (en) | The welding method of three layers of two-sided stainless steel clad plate | |
CN102114529B (en) | Method for induction heating fusion-cast welding of copper-tungsten mold | |
FR2874850A1 (en) | LASER-MIG HYBRID WELDING PROCESS WITH HIGH WIRE SPEED | |
CN103223547B (en) | Dual-hot wire system and welding method for aluminum/steel dissimilar metal TIG (Tungsten Inert Gas) arc fused braze welding | |
CN105312739B (en) | A kind of TIG weld device and its welding method suitable for Narrow sloping-glot | |
CN103433601B (en) | A kind of low dilution rate jet overlaying method for vertical direction built-up welding | |
CN105431249A (en) | Device for producing a weld joint in a narrow chamfer | |
CN101774062B (en) | Lamination composite material and stainless steel argon arc melt-brazing method | |
CN101007372B (en) | arc welding wire | |
CN109202235A (en) | Welding gun conductive nozzle air nozzle anti-splashing layer | |
CN100478111C (en) | Method for inert gas-shielded soldering Bashi alloying tungsten electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Jiangsu Jinxin Electrical Equipment Co., Ltd. Assignor: Nanjing University of Science and Technology Contract record no.: 2011320000360 Denomination of invention: Melting strip electrode automatic condensed electric arc re-melt deposit welding method and device thereof Granted publication date: 20100106 License type: Exclusive License Open date: 20081112 Record date: 20110322 |