CN100576933C - Method, device and autostereoscopic display for tracking optimal position - Google Patents
Method, device and autostereoscopic display for tracking optimal position Download PDFInfo
- Publication number
- CN100576933C CN100576933C CN200680006173A CN200680006173A CN100576933C CN 100576933 C CN100576933 C CN 100576933C CN 200680006173 A CN200680006173 A CN 200680006173A CN 200680006173 A CN200680006173 A CN 200680006173A CN 100576933 C CN100576933 C CN 100576933C
- Authority
- CN
- China
- Prior art keywords
- observer
- matrix
- lighting
- ray tracing
- lighting elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/366—Image reproducers using viewer tracking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/32—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Liquid Crystal (AREA)
Abstract
本发明涉及一种用于跟踪透射电子显示器中最佳位置单元的最佳位置的方法和装置。本发明的目的在于提高这类显示器的重建质量和照明均匀性。该显示器除了图像矩阵(4)之外还包含由照明矩阵(1)和重建元件组成的最佳位置单元。一旦至少一个观察者眼睛(6)位置被控制单元利用逆光线追踪确定,就从位置数据提供用于开启照明矩阵(1)的照明元件(LE)的地址数据,以向所述观察者眼睛(6)准备确定的最佳位置(5)。为了提高重建质量,将附加的光学组件用于逆光线追踪的光线路径中。处理观察者的视角(α)之外,控制单元还检测预先确定的角度范围的散射或衍射元件的确定角度(θ)并将其纳入考虑。这就可使附加地址数据为照明元件(LE)开启,确定的最佳位置(5)可以用统一的方式照亮。
The present invention relates to a method and apparatus for tracking the optimum position of a optimum position unit in a transmissive electronic display. The object of the present invention is to improve the reconstruction quality and illumination uniformity of such displays. The display contains, in addition to the image matrix (4), an optimal position unit consisting of an illumination matrix (1) and reconstruction elements. Once at least one observer's eye (6) position is determined by the control unit using inverse ray tracing, address data for switching on the lighting elements (LE) of the lighting matrix (1) are provided from the position data to the said observer's eye ( 6) Prepare to determine the best position (5). To improve the reconstruction quality, additional optical components are used in the ray paths of inverse ray tracing. In addition to processing the observer's viewing angle (α), the control unit also detects and takes into account certain angles (θ) of scattering or diffractive elements of a predetermined angular range. This enables additional address data to be turned on for the lighting elements (LE), and the determined optimum positions (5) can be illuminated in a uniform manner.
Description
本发明涉及一种用于跟踪显示信息的透射电子显示器中最佳位置单元的最佳位置的方法和装置,所述方法和装置在调制信息后,以定向的方式通过显示器将光投射到最佳位置上的至少一个观察者的眼睛上。The present invention relates to a method and apparatus for tracking the optimum position of an optimum position unit in a transmissive electronic display for displaying information, said method and apparatus projecting light through the display in a directional manner to the optimum position after the information has been modulated. position on at least one of the observer's eyes.
本发明可用于一个或多个观察者的单视场和/或自动立体显示器。根据本发明的显示装置可使图像可选择地以二维、三维模式或混合模式显示。在本文件中,术语“自动立体显示器”表示一种显示装置,利用该显示装置,至少一个观察者不用任何额外辅助就可以从很多个由其自由选择的位置上观看三维图像。The invention may be used with monoscopic and/or autostereoscopic displays for one or more observers. The display device according to the present invention enables images to be selectively displayed in two-dimensional, three-dimensional or mixed modes. In this document, the term "autostereoscopic display" designates a display device with which at least one observer can view a three-dimensional image from a plurality of freely selectable positions without any additional assistance.
从光传播的方向上看,显示器的最佳位置单元包含一个具有多个发射或传送光的照明原件的照明矩阵,以及具有成像原件的成像装置。成像装置将照明阵列开启的照明原件的光以一个或多个最佳位置的方式,以差不多理想的平行光束,投射到至少一个观察者的眼睛中。为此,将多个照明元件分配给成像装置的每个成像元件。最佳位置是可以高质量观察信息面板所提供的信息的区域。Viewed in the direction of light propagation, the display's sweet spot unit comprises an illumination matrix with a plurality of illumination elements that emit or transmit light, and an imaging device with imaging elements. The imaging device projects the light of the illumination elements with the illumination array turned on in one or more optimal positions, in an almost ideally parallel beam, into the eye of at least one observer. To this end, a plurality of illumination elements are assigned to each imaging element of the imaging device. The sweet spot is the area where the information provided by the info panel can be observed in high quality.
在最佳位置上必须一直保证信息面板上显示的信息的均匀性,并且当观看三维内容时,必须防止观察者的眼睛之间的信息串扰。如果观察者在显示装置前方的空间中改变其位置,这些条件必须持续达到,以持续不断地向观察者提供高质量的单视场或立体图像内容。例如,在用于车辆的单视场显示器中,在向驾驶员提供路线图的同时乘客可以观看电影。两人都应该可以在一定范围内移动而不失去其特定的信息。The uniformity of information displayed on the information panel must always be ensured at the optimum position, and information crosstalk between the eyes of the viewer must be prevented when viewing three-dimensional content. These conditions must be continuously fulfilled in order to continuously provide high quality monoscopic or stereoscopic image content to the observer if the observer changes his position in the space in front of the display device. For example, in a monoscopic display for a vehicle, passengers can watch a movie while a route map is provided to the driver. Both should be able to move within a certain range without losing their specific information.
此外,已经证明,如果为确定的最佳位置开启的光源数量仅有轻微的过小或过大,那么干扰和成像缺陷很可能就会出现。例如,观察者可能会感受到各最佳位置之间的串扰,以及诸如均匀度和对比度的图像质量的恶化。人眼可以很轻易地觉察到这种变化。Furthermore, it has been found that if the number of light sources switched on for a determined optimum position is only slightly too small or too large, interference and imaging defects are likely to occur. For example, observers may perceive crosstalk between the sweet spots, as well as deterioration of image quality such as uniformity and contrast. The human eye can easily detect this change.
人们期望自动立体显示器呈现高质量的三维场景,而且表现出与观察者数量无关的特征,例如观察者的自由、分立移动,以及获得二维和/或三维模式下的多个图的可选择的通路。Autostereoscopic displays are expected to render high-quality 3D scenes and exhibit features independent of the number of observers, such as observer freedom, discrete movement, and the option to obtain multiple maps in 2D and/or 3D path.
为了能够尽量满足所有这些需求,就需要一个合适的跟踪系统,其为跟踪装置的后续处理过程和立体信息显示器提供信息。这种跟踪系统必须能够不断地检测观察者在显示装置前方尽可能大的观看空间中的移动,以向每个观察者始终提供与其实际位置无关的特定图像信息。这就对位置检测器的精度、显示器单个元件的质量以及显示器总体成像质量提出了极高的要求。In order to be able to meet all these requirements as far as possible, a suitable tracking system is required, which provides information for the subsequent processing of the tracking device and the stereoscopic information display. Such a tracking system must be able to constantly detect the movement of observers in as large a viewing space as possible in front of the display device in order to always provide each observer with specific image information independent of their actual position. This places extremely high demands on the accuracy of the position detector, the quality of the individual components of the display and the overall image quality of the display.
已有利用机械、光学及其它方式、或其结合的用于跟踪的跟踪系统。但是,这些系统承受精度或实时应用的适应性受到不良影响的缺点。它们的设计往往体积庞大,而且可以向观察者提供信息的观看空间非常有限。此外,所需的计算时间相当多地增加了在位置检测至信息提供过程中需要考虑的因素。Tracking systems exist for tracking using mechanical, optical and other means, or a combination thereof. However, these systems suffer from the disadvantage that the accuracy or suitability for real-time applications is adversely affected. Their designs are often bulky and have very limited viewing space that can provide information to the observer. Furthermore, the required computation time considerably increases the considerations in the process from position detection to information provision.
WO 03/053072A1专利申请文件公开了一种具有收集三维位置信息的跟踪系统和连续立体图像展示的多用户显示器。该显示器包含依次排列的可以三维寻址的背光、用于将光线聚焦于观察者的大面积成像透镜、以及作为图像矩阵的光调制器。背光由多个二维光源阵列组成,该二维光源阵列在多个平面中依次逐个排列。背光的光源阵列中的一个的照明元件根据观察者的实际位置来决定其开启。这种方法还可使光源分别对一个或多个观察者与显示器之间的距离进行跟踪。动态检测所有观察者眼睛的三维位置信息,打开背光的可分配照明元件,将光束与调制的图像同时聚焦至观察者的各左/右眼。WO 03/053072A1 patent application document discloses a multi-user display with a tracking system for collecting three-dimensional position information and continuous stereoscopic image display. The display consists of a sequential arrangement of a three-dimensionally addressable backlight, a large-area imaging lens to focus light on the viewer, and a light modulator as an image matrix. The backlight is composed of a plurality of two-dimensional light source arrays, and the two-dimensional light source arrays are sequentially arranged in multiple planes one by one. A lighting element in one of the light source arrays of the backlight is turned on depending on the actual position of the viewer. This approach also allows the light source to track the distance between one or more observers and the display, respectively. Dynamically detect the three-dimensional position information of all observers' eyes, turn on the assignable lighting elements of the backlight, and focus the light beam and the modulated image to the observer's left/right eyes at the same time.
这种显示器的缺点是低亮度,因为仅有一个可局部选择的点光源可用于照亮每个观察者眼睛的整个图像,而且还因为光路中的未开启光源阵列吸收了该光的一部分。除了其庞大的体积之外,这种三维背光制造也困难。The disadvantage of such displays is low brightness because only one locally selectable point light source is available to illuminate the entire image for each observer's eye, and also because a portion of this light is absorbed by the array of unactivated light sources in the light path. In addition to its bulky size, such three-dimensional backlights are also difficult to manufacture.
US 6014164号专利公开了一种具有光源跟踪系统的用于多个观察者的自动立体显示器。对每个观察者成对安排的光源可以在x、y和z方向上移动,以在控制系统的帮助下跟踪观察者位置的变化。该方法可在信息面板上向观察者连续不断地提供三维场景。因为该系统也使用了光源跟踪法,所以上述缺点同样也出现在该系统中。具体说,因为对每个观察者必须单独跟踪观察者特定的光源对,所以需要昂贵的跟踪装置。这些装置不允许显示装置实现平面设计。US 6014164 patent discloses an autostereoscopic display for multiple observers with a light source tracking system. The light sources arranged in pairs for each observer can be moved in x, y and z directions to track changes in the observer's position with the help of a control system. The method can continuously provide the three-dimensional scene to the observer on the information panel. Because this system also uses the light source tracking method, the above-mentioned disadvantages also appear in this system. In particular, since the observer-specific pair of light sources must be tracked individually for each observer, expensive tracking devices are required. These devices do not allow the display device to achieve a flat design.
公知的跟踪方法仅能向位于相当受制约的立体观看空间中不同位置上的观察者放送特定的信息。跟踪范围和图像矩阵的亮度受到限制。此外,显示器体积庞大,需要昂贵的装置、包括计算装置来实现跟踪。位于显示器前方不同位置上的观察者越多,所要计算的数据量就越大,因而位置检测和最佳位置的实际提供之间的延迟就会更加增长。因此,已经形成了普遍的惯例,即并不实时计算数据的某些部分,而是将预先计算的数据存储在查找表中,在需要时查找并处理这些数据。另一个缺点是,该系统的存储容量在观察者增加时将会很快用光。Known tracking methods are only able to deliver specific information to viewers at different positions in a rather constrained stereoscopic viewing space. The tracking range and brightness of the image matrix are limited. Furthermore, the displays are bulky and require expensive equipment, including computing equipment, to enable tracking. The more observers are located at different positions in front of the display, the greater the amount of data to be calculated and thus the greater the delay between position detection and the actual provision of the best position. As a result, it has become a common practice not to compute parts of the data in real time, but to store precomputed data in lookup tables that are looked up and processed when needed. Another disadvantage is that the storage capacity of the system will quickly be used up as the number of observers increases.
本发明的一个目的是借助于逆光线追踪法防止或减小上述公知技术的缺点。这里使用的逆光线追踪法基于光学组件的几何布置来确定光的传播。其利用光路可逆的光特性,因而所有光线可以从眼睛反向跟踪至其起源点。It is an object of the invention to prevent or reduce the above-mentioned disadvantages of the known technique by means of inverse ray tracing. The inverse ray tracing method used here determines the propagation of light based on the geometric arrangement of optical components. It exploits the property of light that the path of light is reversible, so that all light rays can be traced back from the eye to their point of origin.
具体地说,本发明的一个目的是提供具有最佳位置单元的显示器,该显示器具有这样的能力,即在较大的观看空间中根据观察者位置的变化,快速非机械跟踪扩展了的最佳位置,并在图像矩阵中向单个最佳位置区域传送观察者特定图像信息,同时保持连续的高画质和信息面板的均匀照明。In particular, it is an object of the present invention to provide a display with an optimal position unit that has the ability to rapidly and non-mechanically track an extended optimal position as a function of the position of the observer over a large viewing space. position and deliver observer-specific image information to a single sweet spot area in the image matrix while maintaining continuous high image quality and uniform illumination of the information panel.
同时,增加跟踪范围,对每个观察者特定的图像除去串扰。此外,在保证可接受的计算时间的同时,减少跟踪方法要实时计算的数据量,而且存储在查找表中的预先计算的数据量也尽可能保持低。At the same time, the tracking range is increased, and crosstalk is removed for each observer-specific image. Furthermore, the amount of data to be computed by the tracking method in real time is reduced while maintaining an acceptable computation time, and the amount of precomputed data stored in the lookup table is also kept as low as possible.
一个已经公知的事实是,光路中光学组件的散射和衍射极大地影响图像质量,并从而影响最佳位置的均匀照明。选择某些光学组件可能会在水平或垂直平面上或所有平面上引起散射和衍射。有目的地使用散射和衍射装置,可以进一步提高照明均匀度和最佳位置的质量,特别是如果照明元件的结构非常纤细。It is a well-known fact that scattering and diffraction by optical components in the light path greatly affects the image quality and thus the homogeneous illumination of the sweet spot. The selection of certain optical components may cause scattering and diffraction in the horizontal or vertical plane or in all planes. The purposeful use of scattering and diffractive devices further improves the uniformity of illumination and the quality of the sweet spot, especially if the structure of the illumination elements is very thin.
该目的在本发明的一种以用于具有最佳位置单元和图像矩阵的显示器的跟踪方法为基础的方式中得以解决,在其多个处理步骤中,以通过位置检测器、照明元件实时检测观察者眼睛的空间位置开始,其中照明元件在照明矩阵中排列成规则的图案,并在光学通路中开启,用以向观察者提供确定的最佳位置。This object is solved in a manner according to the invention based on a tracking method for a display with an optimal position unit and an image matrix, in its multiple processing steps to detect in real time by position detectors, lighting elements The spatial position of the observer's eyes begins with the illumination elements arranged in a regular pattern in the illumination matrix and switched on in the optical pathway to provide the observer with a defined optimal position.
根据本发明,该目的通过一种跟踪方法得以解决,该跟踪方法包括逆光线追踪,在其中,追踪从观察者眼睛通过图像矩阵和成像装置到达照明矩阵的光线。这使那些观察者透过图像矩阵观看时可以看到的照明矩阵的照明元件准确开启。与成像装置结合,但与所用成像装置的类型无关,观察者眼睛在最佳位置接收分配给他们的定向照明。According to the invention, this object is solved by a tracing method comprising inverse ray tracing in which rays are traced from the viewer's eye through the image matrix and the imaging device to the illumination matrix. This enables the exact switching on of the lighting elements of the lighting matrix that are visible to a viewer looking through the image matrix. In conjunction with the imaging device, but independently of the type of imaging device used, the observer's eyes receive the directional illumination assigned to them at an optimal position.
借助于位置检测器连续检测到至少一个观察者的眼睛的空间位置之后,将检测到的位置信息传送给执行逆光线追踪的控制单元。取决于位置检测器的精度和/或其它参数、特别是观察者眼睛和显示器之间的距离,在分立的步骤中,在控制单元内通过确定参考点形成所需的最佳位置的几何形状。对每个观察者眼睛的参考点的数目和位置可以自由选择。本发明中,首选参考点的正方形排列,也就是说,在最好形成矩形的至少四个点上执行逆光线追踪。After successive detections of the spatial position of at least one observer's eye by means of the position detector, the detected position information is transmitted to a control unit which performs inverse ray tracing. Depending on the accuracy of the position detector and/or other parameters, in particular the distance between the viewer's eyes and the display, the desired optimal position geometry is formed within the control unit by determining reference points in a separate step. The number and position of reference points for each observer's eyes can be freely selected. In the present invention, a square arrangement of reference points is preferred, that is, inverse ray tracing is performed on at least four points preferably forming a rectangle.
参考点的数目必须足够大,以使最佳位置始终均匀照明,但也要足够小,以使所需的计算能力和存储容量尽可能低。如果观察者例如位于距显示器相对较远的位置,那么最佳位置的范围就必须要变大,因而位置检测的精度显著降低。The number of reference points must be large enough so that the sweet spot is always evenly illuminated, but small enough that the required computing power and storage capacity are as low as possible. If the observer is located relatively far away from the display, for example, the range of optimal positions has to be larger, so that the accuracy of position detection is significantly reduced.
控制单元执行逆光线追踪,从每个参考点直至排列在图像矩阵栅格内并由至少一个参数确定的像素。最好不对所有像素都执行计算,而是只对位于一列中的像素执行计算,这样其就可以根据给定的图像矩阵栅格仅由一个参数加以确定。The control unit performs backward ray tracing from each reference point up to pixels arranged in the image matrix grid and determined by at least one parameter. It is better not to perform calculations on all pixels, but only on those pixels that lie in a column, so that it can be determined by only one parameter from a given image matrix grid.
逆光线追踪从像素通过成像装置直至照明元件。计算产生具有该照明元件地址信息的数据记录,该地址信息由相应的成像装置投射到各自的参考点。在接下来的处理步骤中,基于地址信息生成要开启的照明元件图案,所述图案由成像装置对每个观察者眼睛以上述最佳位置的方式成像。Backward ray tracing from the pixels through the imaging device to the lighting elements. The calculation generates a data record with address information of the lighting element, which is projected by the corresponding imaging device to the respective reference point. In a subsequent processing step, a pattern of lighting elements to be switched on is generated on the basis of the address information, which pattern is imaged by the imaging device in the above-mentioned optimum position for each observer's eye.
根据本发明的方法对用于至少一个观察者的单视场和自动立体显示器都可应用。The method according to the invention is applicable to both monoscopic and autostereoscopic displays for at least one observer.
尽管对每个像素的逆光线追踪最好对图像矩阵的中心列实时执行,控制单元为其它光线路径寻找存储在查找表中用以查找照明元件地址信息的预先计算的数据记录。对应于当前观察者位置的照明元件图案的地址信息由控制单元通过比较数据记录的方式查找,并被用于生成相应的最佳位置,其中视角α确定从参考点到图像矩阵的观看像素的光线路径。从图像矩阵的栅格中的每个像素到每个照明矩阵的照明元件的光线的预先计算的光线路径存储在查找表中的数据记录中。While back ray tracing for each pixel is preferably performed in real-time for the central column of the image matrix, the control unit looks for other ray paths to precomputed data records stored in lookup tables for lookup lighting element address information. The address information of the lighting element pattern corresponding to the current observer position is looked up by the control unit by means of comparison data records and is used to generate the corresponding optimal position, where the viewing angle α determines the light rays from the reference point to the viewing pixels of the image matrix path. The precomputed ray paths of rays from each pixel in the grid of the image matrix to each lighting element of the lighting matrix are stored in data records in the look-up table.
由成像装置引起的失常,例如像场曲率,最好在数据记录中加以考虑。同样也要考虑公知材料和制造误差以及所用光学元件的温度效应特性。Aberrations caused by the imaging device, such as field curvature, are best accounted for in the data recording. The well-known material and manufacturing tolerances as well as the temperature-dependent behavior of the optics used must also be taken into account.
使用视角作为逆光线追踪的一个参数有其优势,那就是可以减少要执行的计算的量,因为某些视角不仅可以应用与位于显示器前一定距离的一个观察者,还可以用于位于不同距离的多个观察者。如果向所有观察者提供相同的立体图像,则地址信息最好只包含照明元件的两个分开的序列,其分别用于检测到的观察者所有左眼和右眼的位置。查找表包含多个预先计算的光线和视角,其用于为图像矩阵的相关像素和照明矩阵的所有照明元件生成最佳位置。这些数据记录整体表示查找表的转换数据。Using viewing angles as a parameter for inverse ray tracing has the advantage that it reduces the amount of calculations to be performed, since certain viewing angles apply not only to one observer located at a certain distance in front of the display, but also to viewers located at different distances. multiple observers. If the same stereoscopic image is provided to all observers, the address information preferably only contains two separate sequences of lighting elements, one for each detected position of all left and right eyes of the observers. The lookup table contains a number of precomputed rays and view angles that are used to generate optimal positions for associated pixels of the image matrix and all lighting elements of the lighting matrix. These data records collectively represent the conversion data for the lookup table.
本发明的一个实施例包含由光阀(shutter)组成的照明矩阵,其中该光阀具有结合有定向背光的分立可控子像素。可选择地,照明矩阵可以包含分立可控的发光照明元件,例如LEDs或OLEDs,从而去除多余的背光,保持显示器的平面设计。One embodiment of the invention includes an illumination matrix consisting of shutters with discretely controllable sub-pixels combined with a directional backlight. Alternatively, the lighting matrix can contain discrete controllable light-emitting lighting elements such as LEDs or OLEDs, thereby removing redundant backlighting and maintaining the flat design of the display.
此外,本发明涉及一种用于在显示器中为最佳位置单元的最佳位置的跟踪提供控制信号的装置,其包含适当的控制和存储装置,以实现根据本发明的方法。Furthermore, the invention relates to a device for providing control signals in a display for the tracking of the best position of the best position unit, comprising suitable control and storage means to implement the method according to the invention.
根据本发明的另一实施例,在光路中使用了散射或衍射元件形式的至少一个附加光学组件,这就是为什么存在一个用于查找地址信息并从而提高画质和照明均匀度的附加参数。控制单元还检测并考虑角度θ(在角度范围内),其确定散射或衍射装置的光学特性。According to another embodiment of the invention, at least one additional optical component in the form of a scattering or diffractive element is used in the light path, which is why there is an additional parameter for finding address information and thus improving the picture quality and illumination uniformity. The control unit also detects and takes into account the angle Θ (in the angular range), which determines the optical properties of the scattering or diffractive means.
角度θ为包含至少一个散射元件的散射装置的散射角,或包含至少一个衍射元件的衍射装置的衍射角。The angle Θ is the scattering angle of a scattering device comprising at least one scattering element, or the diffraction angle of a diffractive device comprising at least one diffractive element.
因为需要多个光线来生成最佳位置,所以有多个与角度α有关的角度范围用于计算。控制单元最好依实际使用的照明矩阵栅格的大小来检测这些角度范围。为了保持计算简单,角度范围信息不依赖于散射或衍射装置在光路中的位置进行检测和考虑,而是始终处于逆光线追踪过程中可以触及的位置上。为了生成确定的最佳位置,开启所有在逆光线追踪过程中找出的照明矩阵的照明元件。Since multiple rays are required to generate the optimal position, there are multiple ranges of angles related to angle α for the calculation. The control unit preferably detects these angular ranges depending on the size of the lighting matrix grid actually used. To keep calculations simple, the angular extent information is not detected and taken into account depending on the position of scattering or diffractive devices in the light path, but is always at a position accessible during inverse ray tracing. To generate the determined optimal position, all lighting elements of the lighting matrix found during inverse ray tracing are turned on.
由于根据本发明的逆光线追踪过程中考虑到了散射或衍射装置,附加照明元件将会以简单的方式开启。这进一步减小或者甚至消除了图像缺陷,例如暗带、串扰和缺乏对比度。Due to the consideration of scattering or diffractive means during the inverse ray tracing according to the invention, additional lighting elements will be switched on in a simple manner. This further reduces or even eliminates image defects such as dark bands, crosstalk and lack of contrast.
根据本发明的用于跟踪最佳位置单元的最佳位置的方法,使减小存储在查找表中的转换数据的量和所需的计算时间成为可能。特别地,如果在二维和/或三维模式下向个别观察者同时提供不同的信息,即使观察者在观看空间中改变其位置时最好也可以实时高质量跟踪观察者特定的图像信息。The method for tracking the best position of the best position unit according to the present invention makes it possible to reduce the amount of conversion data stored in the look-up table and the required calculation time. In particular, if individual observers are simultaneously provided with different information in 2D and/or 3D mode, observer-specific image information can preferably be tracked in real time with high quality even when the observer changes his position in the viewing space.
现在,将对根据本发明的方法及相应的装置进行详细说明。图中Now, the method and corresponding device according to the present invention will be described in detail. in the picture
图1是示意性表示具有最佳位置单元、图像矩阵4和最佳位置5中的观察者眼睛6的多用户显示器的俯视图,Figure 1 is a top view schematically representing a multi-user display with a sweet spot unit, an
图2是表示光线的俯视图,该光线以相应的观察角α从最佳位置的参考点P1至P4出发,到达图像矩阵4的像素Dp和Dr,Fig. 2 is a top view showing the light rays starting from the reference points P1 to P4 of the optimum position at the corresponding viewing angle α to the pixels Dp and Dr of the
图3a表示照明元件的序列7,其形成照明元件LE的图案M,Figure 3a represents a
图3b表示具有开启和未开启的照明元件LE的照明矩阵1的详细情况Fig. 3b shows a detail of a
图4是表示沿着逆光线追踪过程的光线RTi的俯视图,所述光线通过散射装置SF以±θ的角度范围散射,散射的光线部分RTi0至RTi3投向照明元件LE,以及Fig. 4 is a top view showing rays RT i along the reverse ray tracing process, said rays are scattered by the scattering device SF in an angle range of ±θ, and the scattered rays RT i0 to RT i3 are directed to the lighting elements LE, and
图5是表示显示装置中逆光线追踪程序的流程图。FIG. 5 is a flow chart showing a backward ray tracing program in the display device.
说明最好参照自动立体显示器。The description is best referred to in autostereoscopic displays.
现在,结合自动立体显示器,并参照图1至5,对根据本发明的用于如果一个或多个观察者在观察空间中改变其位置时,跟踪最佳位置单元最佳位置5的方法以及相应的装置进行更详细的说明。该方法基于这样的思想,即:为了生成最佳位置,在该最佳位置提供以理想亮度和均匀度显示的立体图像、并保持高画质,对于每个观察者的位置,仅开启那些照明元件LE。本发明的目的借助于逆光线追踪法和相应的装置得以实现。Now, in connection with an autostereoscopic display, and with reference to FIGS. The device is described in more detail. The method is based on the idea that for each observer's position only those lights are turned on Element LE. The object of the present invention is achieved by means of an inverse ray tracing method and a corresponding device.
参照图1,自动立体显示器包括以下主要组件:最佳位置单元,其包含具有照明元件LE0n至LEqk的照明矩阵1和成像装置,其中成像装置包含透镜2和菲涅耳(Fresnel)透镜3。具有像素Do至Dq的透明图像矩阵4用于呈现立体图像,最佳位置单元的未调制光穿透该透明图像矩阵。为了简化,图中仅表示出了一个观察者眼睛6和一个由参考点P0至Pn确定的最佳位置5。Referring to FIG. 1 , an autostereoscopic display comprises the following main components: a sweet spot unit comprising an
图2说明逆光线追踪的过程,其分别表示从最佳位置的参考点P1至P4投向图像矩阵4随机选择的两个像素Dr和Dp的假定光线路径,以及相应的四个视角αr1至αr4和αp1至αp4。Figure 2 illustrates the process of inverse ray tracing, which respectively represent the hypothetical ray paths projected from the reference points P1 to P4 at the best position to two pixels Dr and Dp randomly selected in the
图3a表示照明元件的序列7,其包含由控制单元建立的照明矩阵1的照明元件LE的所有地址信息,所述照明元件序列形成图案M。生成确定的最佳位置5的照明元件LE(见图3b)将根据上述图案M开启。FIG. 3 a represents a
图4表示从随机选择的参考点发出的计算的光线RTi及其通过示例性的散射片SF以散射角θ散射的路径。其说明了当附加的光学元件具有±θ及±θ/2的角度范围时,以散射或衍射装置上的散射角θ为基础,如何开启附加照明元件LE。这里的角度范围±θ仅在水平方向上检测。通常,该过程也可以在垂直方向上完成。Fig. 4 shows the calculated light RT i emanating from a randomly selected reference point and its path scattered at a scattering angle θ by an exemplary scattering sheet SF. It illustrates how to turn on the additional lighting element LE based on the scattering angle Θ on the scattering or diffractive device when the additional optical element has an angular range of ±Θ and ±Θ/2. Here the angular range ±θ is detected only in the horizontal direction. Often, the process can also be done vertically.
图5是表示逆光线追踪程序主要处理步骤的流程图。Fig. 5 is a flowchart showing the main processing steps of the inverse ray tracing program.
照明矩阵1是多用户显示器最佳位置单元的主要元件。其不断地通过最佳位置5向观察者提供理想、均匀的照亮的立体图像,观察者移动时也是如此。The
正如主要专利申请所述,要生成的最佳位置5的位置、数量以及范围可以通过控制单元控制,并借助于由多个照明元件LE0n至LEqk组成的照明矩阵1实现,该照明元件可以如图1所示分立地开启。在所述的实施例中,照明元件LE为由背光(图中未表示)照明的LCD的单色照明元件。As described in the main patent application, the position, number and extent of the
然而,其还可以是排列成规则图案,并且可以分立开启的LEDs、OLEDs或类似的点或线状照明元件。However, it can also be LEDs, OLEDs or similar point or line lighting elements arranged in a regular pattern and which can be turned on discretely.
成像装置为多部分组件,其由代表光学成像系统的透镜2和作为物镜的菲涅耳透镜3组成,其中菲涅耳透镜将最佳位置5投射到观察者眼睛6上。可选择地,成像装置可以只是透镜2。如果需要,可以将附加的光学装置整合到成像装置中,以提高投射条件。用至少一个由水平排列的微透镜构成的透镜来补充由垂直排列的微透镜构成的透镜2是可能的。更多透镜的结合也是可能的。可以使用由排列成矩阵的透镜阵列或由棱镜元件构成的光学系统来代替透镜2。The imaging device is a multi-part assembly consisting of a
在另一实施例中,成像装置还可以包含用于像场曲率矫正的矫正阵列。根据使用的图像矩阵4的类型,可以在光学投射路径中设置一个附加的延迟片(retarder foil),以改变光的偏振。一定数目的照明元件LE始终分配给每个成像元件。In another embodiment, the imaging device may further include a correction array for correction of the curvature of the image field. Depending on the type of
参照图1中的俯视图,一个观察者的眼睛6位于显示器前方的观看空间中,更准确地说,位于给定平面中扩展的最佳位置5中。首先,最佳位置5现实中并不存在,只是考虑到系统参数和观看条件将其预先确定。最佳位置的范围由参考点P1至Pn说明。参考点P1至Pn还可以排列成任意图案,包括三维图案。参数n应该至少为4,从而形成用于逆光线追踪的矩形,用以能够实现清楚的最佳位置5。在本实施例中,n为12。根据所使用的位置检测器的精度和/或观察者眼睛6相对于显示器的位置,最佳位置5的深度可以比此处所示更低或更大。位置检测器工作更精密,最佳位置范围就可以更小。点P0表示被位置检测器检测到的眼睛位置。如果观察者多于一个,则动态检测观看空间中的所有眼睛6的位置,并将相应的位置信息提供给控制单元用于逆光线追踪。Referring to the top view in Fig. 1, the
连续实时检测点P0上的观察者眼睛6的空间位置之后,借助于分散的参考点P1至Pn在眼睛周围形成一个假想的最佳位置5。在控制单元中对从每个参考点P1至Pn到选择的图像矩阵4的列中的像素D0至Dq的光线路径RT1至RTn进行计算(见图1)。图像矩阵4分成间距恒定的栅格,其形成像素计算的基础。栅格间距可以或不可以与图像矩阵4的间距相同。然而,使用由多个具有不同间距的区域组成的栅格也是可能的。然而,在逆光线追踪的情况中,使用的间距最好大于图像矩阵的间距,因为这明显减少所需的计算能力。After continuous real-time detection of the spatial position of the observer's
像素D0至Dq通过其所位于的列中的x坐标来识别。实际上,使用图像矩阵的中心列,因为观察者更愿意向图像显示器的中心观看。计算所需的另一参数为视角α,在该视角下,来自参考点P1至Pn的光线打到栅格的像素D0至Dq上。经验发现,大约要使用4000个视角α才能获得可感计算结果。如果视角数目相当多地小于4000,那么跟踪精度将会收到不良影响。Pixels D 0 to D q are identified by their x-coordinates in the column in which they are located. In practice, the center column of the image matrix is used because the viewer prefers to look towards the center of the image display. Another parameter required for the calculation is the viewing angle α at which rays from the reference points P 1 to P n strike the pixels D 0 to D q of the grid. Experience has found that about 4000 viewing angles α are used to obtain sensible calculation results. If the number of views is considerably less than 4000, then the tracking accuracy will be adversely affected.
在二维成像装置的情况下,像素不仅由其x坐标限定,还由其x和y坐标限定。In the case of a two-dimensional imaging device, a pixel is not only defined by its x-coordinate, but also by its x and y-coordinates.
在图1所示的实施例中,照明元件LE0n至LEqk为由背光照明的光阀(图中未表示)的单色照明元件。观察者眼睛6位于参考点P0上。由逆光线追踪法计算的从外部参考点Pk和Pn投向外部像素D0和Dq的光线示于图中。从参考点P1投向像素Dp的光线与视角αp1一起表示,在该视角下光线打到图像矩阵4的一个像素上。In the embodiment shown in FIG. 1, the lighting elements LE On to LE qk are monochromatic lighting elements of a light valve (not shown in the figure) illuminated by a backlight. The observer's
来自像素Dp的光线路径通过成像元件在照明矩阵1的照明元件LEp1终止,所述元件最好位于图像矩阵4的中心列中。对所有像素D0至Dq和大量视角α完成这种计算。这保证了为获得参考点P1至Pn形成的最佳位置5的均匀照明而必须开启的所有照明元件LE0n至LEqk都被打到。被光线打到的照明元件LE0n至LEqk将与相应的栏一起打开。The light path from the pixel D p terminates at the lighting element LE p1 of the
如果照明元件LE0n至LEqk开启过少,最佳位置5和接通的图像将会照明不足。相反,如果照明元件LE0n至LEqk开启过多,最佳位置5就会额外地照明另一只眼睛,从而导致串扰和立体图像对比度的降低。If too few lighting elements LE 0n to LE qk are switched on, the
另一种确定的最佳位置的变化示于图2。可以看到在逆光线追踪过程中光线如何从四个参考点P1至P4投向两个像素Dr和Dp,从而分别具有不同的视角αr1至αr4和p1至αp4。如果观察者位于非常接近于位置检测器,最好使用这种最佳位置结构,以通过极少的参考点高精度确定观察者的位置。Another variation of the identified optimal position is shown in Figure 2. It can be seen how light rays project from four reference points P 1 to P 4 to two pixels D r and D p in the process of inverse ray tracing, thereby having different viewing angles α r1 to α r4 and p1 to α p4 respectively. If the observer is located very close to the position detector, it is best to use this optimal position structure in order to determine the position of the observer with high accuracy with very few reference points.
从确定的最佳位置5的参考点P到相应的图像矩阵4的栅格的像素D的实时逆光线追踪产生作为输入数据的结果,用于找到存储在查找表(LUT)中预先计算的数据。Real-time inverse ray tracing from the reference point P of the determined
查找表含有预先计算的数据记录,其代表了大量已经根据同一算法完成的光线路径的计算结果,而且其实时计算将或占用大量的时间。这就是为什么要将从图像矩阵4的栅格中的每个像素D通过成像元件到达照明矩阵1的照明元件LE的二维坐标的光线路径预先进行计算,并存储在查找表中的数据记录中。The lookup table contains precomputed data records, which represent the calculation results of a large number of ray paths that have been completed according to the same algorithm, and its real-time calculation may take a large amount of time. This is why the ray path from each pixel D in the grid of the
然而,实时计算到达透镜2的光线路径也是可能的。这减少数据记录的数量,并从而节省了存储容量。However, it is also possible to calculate the ray path to the
实时计算的数据记录的参数和那些预先计算并存储在控制单元中的参数的比较产生照明元件LE的地址信息,其通过透镜2和菲涅耳透镜3投射到相应的参考点P。成像元件可以被假象的光线多次打到,如图3a中所示的照明元件的序列7所见。序列中的数字表示在参考点P上开始的逆光线追踪过程中照明元件LE被打到了多少次。然而,当开启照明元件LE时打到的次数并不相关。一般地,被光线RT至少打到一次的照明元件LE会被开启。控制单元基于地址信息生成一个所有照明元件LE开启照明矩阵1相应栏的图案M(见图3b)。现在,该图案用于在确定的位置为观察者眼睛6实现最佳位置5。A comparison of the parameters of the data record calculated in real time with those pre-calculated and stored in the control unit yields address information of the lighting elements LE, which are projected to the corresponding reference points P through the
如果在显示器前方有多个观察者,确定对应于实际观察者眼睛数目的要开启的照明元件LE的图案M的次序。例如,如果所有观察者想观看相同的内容,首先可以利用逆光线追踪法向所有左眼提供所需的立体信息,然后是所有的右眼。If there are several observers in front of the display, the order of the pattern M of lighting elements LE to be switched on corresponding to the actual number of observer's eyes is determined. For example, if all viewers want to watch the same content, first all left eyes can be provided with the required stereo information using inverse ray tracing, and then all right eyes.
如果根据所述的逆光线追踪法,多个照明元件LE未开启,从最佳位置5的位置感受到的立体图像具有上述缺点。例如,单个微透镜的边缘空白会被作为图像中的暗带被觉察到,而且图像矩阵4的照明会不均匀。已经证明,最好在逆光线追踪过程中额外考虑光的散射或衍射。If, according to the described inverse ray tracing method, the lighting elements LE are not switched on, the stereoscopic image perceived from the position of the
根据本发明的另一实施例,引入了可以是散射角或衍射角的角度θ。其在确定的角度范围内在逆光线追踪过程中检测和考虑。为了简化起见,本发明以下将借助于散射装置进行说明。然而,其它设备中也可以类似地使用散射装置。成像装置最好在光路中分配一个具有至少一个散射元件的散射装置。散射元件可以是具有确定散射角的散射片SF。其可以位于菲涅耳透镜3的后方或前方,或位于光路中的其它位置。如果使用多个散射片SF,每个散射片SF可以具有不同的散射角,这样角度范围内的附加参数可以检测和考虑,以找到地址信息,如图4所示。这也同样类似地用于衍射装置和衍射角。According to another embodiment of the invention, an angle θ is introduced which may be a scattering angle or a diffraction angle. It is detected and taken into account during inverse raytracing within a defined range of angles. For the sake of simplicity, the invention will be described below with the aid of a scattering device. However, scattering means may similarly be used in other devices. The imaging device is preferably assigned a scattering device with at least one scattering element in the beam path. The scattering element can be a scattering sheet SF with a defined scattering angle. It can be located behind or in front of the
本发明还包括可这样的可能性,即在水平和垂直方向上都可以检测和考虑角度范围,以寻找附加的地址信息。参照图4所示的实施例,其示意性说明如何以已知散射片SF的散射角θ为基础,确定追踪的光线RTi的角度范围。选择的光线RTi来自随机的参考点P,并在像素D穿过图像矩阵4。其被散射片SF散射,这样大量的光线RTi0至RTi3(以箭头表示)投向照明矩阵1的照明元件LEi-2至LEi+2。如果将角度范围±θ用于逆光线追踪,那么每隔一个的照明元件将会开启。如果角度范围再除以2(θ/2,如图3所示),照明元件LEi-1和LEi+1在逆光线追踪的过程中也将会被光线打到。从而可以更精确地查找要开启的照明元件LE的数目,其对确定的最佳位置5的照明均匀度有贡献,而且还进一步降低了照明元件LE不打开的风险。事实上,要额外开启的光线数目要大得多。The invention also includes the possibility to detect and take into account angular ranges in both horizontal and vertical directions in order to find additional address information. Referring to the embodiment shown in FIG. 4 , it schematically illustrates how to determine the angle range of the traced light RT i based on the known scattering angle θ of the scattering sheet SF. A selected ray RT i originates from a random reference point P and passes through the
在特定情况下要使用的角度范围还取决于所使用的照明矩阵1的栅格大小。The range of angles to be used in a particular case also depends on the grid size of the
照明矩阵1的尺寸越小,基于实际的散射或衍射角度,用于逆光线追踪的角度范围就确定得越小。但是,必须要注意的是,角度范围越小,查找的地址信息就越多,所需的计算时间也就越多。这就是为什么在应用逆光线追踪法时,重点将相当多的精力用在装置和计算能力上,而仍然还能够获得确定的最佳位置5的良好画质和照明均匀度。The smaller the size of the
控制单元将利用所有找到的大量角度范围的值检测和考虑地址信息。地址信息除了x坐标之外还包括视角α和对应于散射角或衍射角的角度θ或θ/2。额外查找的地址信息增加了生成最佳位置5的要开启的照明元件LE的最小数目的精确度。The control unit will detect and take into account the address information with all found values for a large range of angles. The address information includes the viewing angle α and the angle θ or θ/2 corresponding to the scattering angle or the diffraction angle in addition to the x-coordinate. The address information of the additional lookup increases the accuracy of generating the minimum number of lighting elements LE to switch on for the
参照图5,其表示逆光线追踪过程的流程,该流程从位置检测器检测观察者眼睛6位置开始,直到照明元件LE的图案M形成,以生成确定的最佳位置5。Referring to FIG. 5 , it shows the flow of the inverse ray tracing process, which starts from the position detector detecting the position of the viewer's
本发明还涉及一种装置,更具体地说,涉及一种包含独立装置权利要求所述的、用于实现上述逆光线追踪法的各种功能单元的处理器。The present invention also relates to a device, more specifically to a processor comprising various functional units for implementing the above-mentioned inverse ray tracing method described in the independent device claims.
本发明的用于跟踪最佳位置单元的最佳位置的方法最好提供一个显示器,该显示器具有以最小数据量确定照明元件的最佳图案的能力,以在观察平面上生成最佳位置,观察者在其中观看由始终被均匀照明的图像矩阵提供的特定的信息。因为在逆光线追踪法中已将失常考虑在内,所以显示器最佳地仅显示很小的光学误差。The method of the present invention for tracking the optimal position of the optimal position unit preferably provides a display which has the ability to determine the optimal pattern of lighting elements with a minimum amount of data to generate the optimal position on the viewing plane, observing where the viewer views specific information provided by a matrix of images that is uniformly illuminated at all times. Since the aberrations are already taken into account in the backward ray tracing method, the display optimally shows only small optical errors.
查找表的使用具有这样的优势,即不必反复重新计算需要生成最佳位置的单个照明元件。The use of a look-up table has the advantage that it is not necessary to repeatedly recalculate the individual lighting elements needed to generate the optimal position.
因此,可以根据观察者眼睛的移动,实时快速准确地跟踪最佳位置和相应的立体图像,同时,可以增加跟踪观察者的范围。Therefore, according to the movement of the observer's eyes, the optimal position and the corresponding stereoscopic image can be tracked quickly and accurately in real time, and at the same time, the range of tracking the observer can be increased.
元件标记列表Component Mark List
1-照明矩阵1- Lighting Matrix
2-透镜2-lens
3-菲涅耳透镜3-Fresnel lens
4-图像矩阵4- Image matrix
5-最佳位置5- Best location
6-观察者眼睛6- Observer eyes
7-照明元件序列7- Sequence of Lighting Elements
LE-照明元件LE - lighting element
D-像素D-pixel
M-图案M-Pattern
P-参考点P-reference point
RT-光线RT-Ray
SF-散射片SF-diffuser
α-视角α-angle
θ-角度(散射角或衍射角)θ-angle (scattering angle or diffraction angle)
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005010250.6 | 2005-02-25 | ||
DE102005010250A DE102005010250B4 (en) | 2005-02-25 | 2005-02-25 | Method and device for tracking sweet spots |
DE102005040597.5 | 2005-08-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101129074A CN101129074A (en) | 2008-02-20 |
CN100576933C true CN100576933C (en) | 2009-12-30 |
Family
ID=36848190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680006173A Expired - Fee Related CN100576933C (en) | 2005-02-25 | 2006-02-24 | Method, device and autostereoscopic display for tracking optimal position |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100576933C (en) |
DE (1) | DE102005010250B4 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007043149B4 (en) * | 2007-09-03 | 2016-09-29 | Seereal Technologies S.A. | Method and device for transmitting holographic video data |
KR102088685B1 (en) | 2012-12-19 | 2020-03-13 | 바스프 에스이 | Detector for optically detecting at least one object |
KR20160019067A (en) | 2013-06-13 | 2016-02-18 | 바스프 에스이 | Detector for optically detecting an orientation of at least one object |
AU2014280338B2 (en) | 2013-06-13 | 2017-08-17 | Basf Se | Detector for optically detecting at least one object |
WO2015024871A1 (en) * | 2013-08-19 | 2015-02-26 | Basf Se | Optical detector |
DE102014003351B4 (en) * | 2014-03-07 | 2022-11-03 | Dioptic Gmbh | Head-up display and display method |
GB2527548A (en) * | 2014-06-25 | 2015-12-30 | Sharp Kk | Variable barrier pitch correction |
US11041718B2 (en) | 2014-07-08 | 2021-06-22 | Basf Se | Detector for determining a position of at least one object |
WO2016051323A1 (en) | 2014-09-29 | 2016-04-07 | Basf Se | Detector for optically determining a position of at least one object |
US11125880B2 (en) | 2014-12-09 | 2021-09-21 | Basf Se | Optical detector |
WO2016120392A1 (en) | 2015-01-30 | 2016-08-04 | Trinamix Gmbh | Detector for an optical detection of at least one object |
CN108027239B (en) | 2015-07-17 | 2020-07-24 | 特里纳米克斯股份有限公司 | Detector for optically detecting at least one object |
KR102539263B1 (en) | 2015-09-14 | 2023-06-05 | 트리나미엑스 게엠베하 | camera recording at least one image of at least one object |
CN109564927B (en) | 2016-07-29 | 2023-06-20 | 特里纳米克斯股份有限公司 | Optical sensor and detector for optical detection |
EP3532864B1 (en) | 2016-10-25 | 2024-08-28 | trinamiX GmbH | Detector for an optical detection of at least one object |
KR102575104B1 (en) | 2016-10-25 | 2023-09-07 | 트리나미엑스 게엠베하 | Infrared optical detector with integrated filter |
US11635486B2 (en) | 2016-11-17 | 2023-04-25 | Trinamix Gmbh | Detector for optically detecting at least one object |
US11860292B2 (en) | 2016-11-17 | 2024-01-02 | Trinamix Gmbh | Detector and methods for authenticating at least one object |
CN108345122B (en) * | 2018-01-29 | 2019-10-22 | 中山大学 | A method and system for determining the backlight corresponding to the viewing area of naked-eye 3D display |
CN110459026A (en) * | 2019-06-04 | 2019-11-15 | 恒大智慧科技有限公司 | Specific people's tracking positioning method, platform, server and storage medium |
CN111308698B (en) * | 2020-02-14 | 2021-06-29 | 浙江大学 | A directional display screen, an inductive three-dimensional display device and a display method thereof |
DE102023114655A1 (en) | 2023-06-05 | 2024-12-05 | Sioptica Gmbh | Screen |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8716369D0 (en) * | 1987-07-10 | 1987-08-19 | Travis A R L | Three-dimensional display device |
GB2363273A (en) * | 2000-06-09 | 2001-12-12 | Secr Defence | Computation time reduction for three dimensional displays |
-
2005
- 2005-02-25 DE DE102005010250A patent/DE102005010250B4/en not_active Expired - Fee Related
-
2006
- 2006-02-24 CN CN200680006173A patent/CN100576933C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
The optical design and analysis for super-multiview three-dimensional imaging system. Sung-Sik Kim ET AL.Proceedings of SPIE,SPIE,BELLINGHAM,VA,US,Vol.4297. 2001 * |
Also Published As
Publication number | Publication date |
---|---|
DE102005010250A1 (en) | 2006-09-07 |
CN101129074A (en) | 2008-02-20 |
DE102005010250B4 (en) | 2007-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100576933C (en) | Method, device and autostereoscopic display for tracking optimal position | |
JP4724186B2 (en) | Method and apparatus for tracking sweet spots | |
US10685492B2 (en) | Switchable virtual reality and augmented/mixed reality display device, and light field methods | |
JP5112326B2 (en) | Optical system for 3D display | |
JP6925342B2 (en) | Automatic stereoscopic display device and display method | |
Itoh et al. | Occlusion leak compensation for optical see-through displays using a single-layer transmissive spatial light modulator | |
US20110216407A1 (en) | Lighting device for an autostereoscopic display | |
US11546574B2 (en) | High resolution 3D display | |
US9148658B2 (en) | Light-based caustic surface calibration | |
CN105527718B (en) | The analog analysing method of naked eye 3D display method, display system and display system | |
US20110063289A1 (en) | Device for displaying stereoscopic images | |
JP2005515487A (en) | 3D image projection using retroreflective screen | |
CN101281298A (en) | A screen device that realizes a three-dimensional display of a full field of view | |
JP2004537933A (en) | Autostereoscopic image display system equipped with a person tracking system | |
TW200950501A (en) | Autostereoscopic display device | |
JP2000509591A (en) | Three-dimensional image generation method and apparatus | |
CN103913845A (en) | Method for displaying three-dimensional integral images using mask and time division multiplexing | |
CN110264905A (en) | A kind of light field display system | |
KR101749978B1 (en) | Stereoscopic 3d display device | |
JP2004144874A (en) | Picture display device and picture display method | |
CN105158917B (en) | Display and its transmittance/reflectance determine method and apparatus | |
US20220082853A1 (en) | Display device | |
JP2010122646A (en) | Screen and image display device | |
JP2007088536A (en) | 3D image presentation and imaging device | |
JP2004258594A (en) | Three-dimensional image display device realizing appreciation from wide angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091230 Termination date: 20140224 |