CN100575282C - Refuse leachate treatment technology - Google Patents
Refuse leachate treatment technology Download PDFInfo
- Publication number
- CN100575282C CN100575282C CN200510048672A CN200510048672A CN100575282C CN 100575282 C CN100575282 C CN 100575282C CN 200510048672 A CN200510048672 A CN 200510048672A CN 200510048672 A CN200510048672 A CN 200510048672A CN 100575282 C CN100575282 C CN 100575282C
- Authority
- CN
- China
- Prior art keywords
- percolate
- stripping
- handled
- water
- ammonia nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Physical Water Treatments (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
The garbage filter liquid processing method.The invention belongs to sewage water treatment method, particularly to the treatment process of city garbage percolate.Treatment process of the present invention is handled by: (1) stripping, (2) internal circulating anaerobic mud fluidized bed processing, (3) active biological film and (4) catalytic oxidation four step associating formations successively.Adopt the less investment of art breading percolate of the present invention, processing cost is low, the efficient height, and water quality can reach emission standard.
Description
Technical field
The invention belongs to sewage disposal technology, particularly to the treatment technology of city garbage percolate.
Background technology
Percolate is the sewage that oozes out from refuse landfill, because it has dissolved the many materials in the component of refuse, thereby make the composition of percolate complicated unusually, principal pollutant comprise large amount of organic such as organic hydrocarbon and derivative thereof, sour lipid, heavy metal, nitrogen salt etc., wherein organic pollutant index COD is at several thousand to several ten thousand milligrams every liter, total nitrogen arrives several thousand milligrams every liter at hundreds of, if without harmless treatment, with soil and the water system around the severe contamination.
Up to now, the domestic ripe relatively method with the treating refuse percolate of studying mainly contains biological treatment and chemical method, and biochemical process comprises anaerobism, aerobic treatment, AB method (being adsorption-flocculation, two sections processing of bio-oxidation), bio-oxidation pond etc.Chemical method mainly contains ozone oxidation method, hydrogen peroxide oxidation process, active carbon adsorption etc.The method that developed countries adopts is more, than widespread be materialization and biochemical process combined since by biochemical process difficulty reach emission request, generally after biochemical treatment, all to adopt membrane filtration process.Some adopts condensed combustion method, osmosis filtration method to handle, and these two kinds of methods are difficult to apply because construction investment and working cost are high at home.The disposal site percolate of at present domestic many large-and-medium size cities all exist treatment effect relatively poor, also need enter problems such as the municipal sewage plant handles again after handling, so efficient is lower, cost is higher.
In Processing Technology Research about percolate, have and adopt materialization to combine with biochemical technology, the relatively low and effluent quality of construction investment and running cost can be stablized the method that reaches discharging standards, (seeing Chinese patent literature 03158354.7).The principal feature of this patented technology is that electrolysis process, anaerobic mud bed reactor and aerobic membrane bioreactor are combined, and makes the wastewater treatment qualified discharge.But because the electrolysis process cardinal principle is to utilize catalytic oxidation effect degradation of organic substances, current density is big more, and it is big more to remove amount of pollutant, but current consumption is also high more.Because electrolysis is removed the running cost and the construction investment of equivalent pollutent and is wanted high with respect to biochemical process, therefore, electrolysis process is placed on the initial section of treatment process, must cause running cost higher.Aerobic section utilizes the membrane filtration principle to carry out last processing again in this patented technology, because membrane technique is domestic newer technology, and since the aperture of film can dam greater than 0.1 micron small-molecule substance, not only the cost of film own is higher, and work-ing life is shorter, and construction investment and running cost still will become the factor of restriction technology popularization.
Summary of the invention
Technical problem to be solved by this invention provides a kind of refuse leachate treatment technology, its less investment, and processing cost is low, the efficient height, water quality can reach emission standard.
Solving the scheme that technical problem of the present invention adopts is: adopt following four procedures to handle successively to percolate, promptly
(1) stripping: regulate percolate pH value to 10~12, and in waste water, send into air, ammonia nitrogen is wherein taken out of;
(2) internal circulating anaerobic mud fluidized bed processing: the percolate that will go up after an operation is handled is sent into the anaerobic sludge fluidized-bed, anaerobic sludge is fully contacted with waste water, the organic contamination substrate concentration that utilizes internal recycle to dilute to enter, raising equipment is to the anti impulsion load ability of waste water;
(3) active biological film is handled: above the aerating apparatus in being filled with the purification tank for liquid waste of active sludge biofilm carrier is set, utilizes active sludge in the pond and the microorganism on the microbial film jointly to wastewater treatment;
(4) catalytic oxidation: utilize the organism in the further degrading waste water of catalytic oxidation effect.
Technical scheme of the present invention also comprises: in stripping was handled, gas-water ratio was according to the ammonia nitrogen concentration and the chemical oxygen demand (COD) (COD of percolate
5) determine with the ratio of ammonia nitrogen concentration, as, at COD
5Concentration is 12000mg/l, and ammonia nitrogen concentration is that gas-water ratio is about 1500~2000 under the condition of 1800mg/l;
In internal circulating anaerobic mud fluidized bed processing, waste water upper reaches speed is 0.8m/hr~1.2m/hr behind the water distributor water distribution;
In active biological film is handled, between the biofilm carrier and between biofilm carrier and pool wall the space is arranged, and biofilm carrier accounts for purification tank for liquid waste volumetrical 2/3rds, utilizes bio-carrier to sending into the cutting action of air simultaneously, improves the transfer rate of oxygen in water and the utilization ratio of oxygen.
Technique scheme of the present invention can reach following effect:
(1) solves total nitrogen and the high problem of ammonia nitrogen in the percolate, at first adopt stripping process in the beginning link, remove the ammonia nitrogen that may suppress microorganism growth, making waste water be beneficial to follow-up anaerobic and aerobic handles, be controlled denitrogenation, make processing afterwards easier, the biochemical treatment better effects if, and the ammonia nitrogen of collecting is recycling, can not cause secondary pollution to environment.Alleviate simultaneously catalytic oxidation again and removed the needed power consumption pressure of ammonia nitrogen.
(2) in operational path, upflowing mud fluidized-bed (UASB) the oxygen activity microbial film of becoming reconciled is placed after the denitrification process, before the electrocatalytic oxidation metallization processes, waste water most of pollutent before entering electrocatalysis technology is removed, thereby the current consumption of guaranteeing the electrocatalytic oxidation metallization processes is minimum, reduce processing cost, improved processing efficiency.
(3) the electrocatalytic oxidation metallization processes has except that smelling, decolouring, thoroughly remove the excellent results of ammonia nitrogen and most of pollutent, therefore catalytic oxidation is placed at last, can remove the pollutent that to degrade and remove by biochemical method, thereby guarantee effluent quality as required, it not only can save the high running cost that catalytic oxidation caused at the technology beginning, also can save high construction investment and running maintenance that film is handled simultaneously, although increased the stripping process of nitrogen, but working cost and construction investment will be lower than the above-mentioned patented technology of mentioning, and the effect that reaches all can realize qualified discharge.Utilize the electrocatalytic oxidation metallization processes, the residual contaminants after the biochemical treatment is carried out last processing, can remove the ammonia nitrogen in the waste water 100%.The TN clearance can reach 94%.The present invention is placed on the COD and the ammonia nitrogen qualified discharge that are used for guaranteeing sewage at last of technology to catalytic oxidation,
Embodiment
The example example
Percolate is introduced the equalizing tank that catchments earlier before stripping is handled, add alkali and stir in the pond, sends in the sealing tower again.Press table 1 and regulate the pH value of percolate, utilize gas blower to send into air then and take ammonia nitrogen in the percolate out of, the denitrogenation time is according to COD: TN: TP=100: 5: 1 ratio determines that gas-water ratio is 3000.
Stripping test removal effect table:
Stripping 24hr effect (mg/l) under the different PH conditions of table 1
PH | Former water | 9 | 10 | 11 | 12 |
TN | 1842 | 823.3 | 279.6 | 137.6 | 271.7 |
Clearance (%) | 0 | 55.3 | 84.8 | 92.5 | 85.2 |
As seen pH value is 10~12, and effect is better.
Draw water to upflowing sludge stream bed (UASB) with volume pump after the denitrogenation, the hydraulic detention time of design UASB is 2 days, adopt second-stage treatment, in UASB, the organic contamination substrate concentration that simultaneously utilizes internal recycle to dilute again to enter, waste water upper reaches speed control is 0.8m/hr~1.2m/hr behind the water distributor water distribution.
Table 2 UASB treating refuse percolate effect monitoring data
The anaerobism time | CODcr | TP | TN | PH |
Former water | 12671.58 | 53.627 | 857.84 | 7.5 |
1 | 12280.18 | 45.709 | 709.993 | 7.5 |
2 | 10976.85 | 46.946 | 631.823 | 7.8 |
3 | 9707.85 | 72.184 | 636.011 | 7.8 |
4 | 7488.565 | 48.184 | 723.95 | 8.0 |
5 | 7094.43 | 73.668 | 729.535 | 8.1 |
6 | 5479.68 | 56.686 | 633.587 | 8.2 |
7 | 4981.527 | 49.652 | 745.699 | 8.2 |
8 | 4363.638 | 28.174 | 617.864 | 8.3 |
9 | 3913.198 | 23.597 | 620.656 | 8.4 |
10 | 3296.034 | 15.908 | 648.398 | 8.4 |
11 | 2721.95 | / | / | 8.4 |
Handle the back water outlet and enter in the intermittent type active bio film device, stopped 1.5 days, should leave the space between the biofilm carrier and between biofilm carrier and pool wall, and biofilm carrier occupies purification tank for liquid waste volumetrical 2/3rds at intermittent type active bio film device.
Table 3 intermittent type active biological film processing data table
Catalytic oxidation is carried out in last draining, and stench and color in the water are eliminated fully, and ammonia nitrogen 100% is removed, and the TN clearance can reach 94%, reaches emission standard.
Table 4 catalytic oxidation art breading effect (I=5A, PH=8.8)
Electrolysis time | CODcr | TN | TP | The CODcr clearance | The TN clearance | The TP clearance | Voltage |
0 | 2596.413 | 627.586 | 14.582 | 7*5 | |||
1 | 2006.957 | 303.609 | 8.172 | 22.7 | 51.7 | 44.0 | 7*5 |
2 | 1331.539 | 83.371 | 5.03 | 48.7 | 86.7 | 65.5 | 6.5*5 |
3 | 892.605 | 74.341 | 4.773 | 65.6 | 88.2 | 67.3 | 6.5*5 |
4 | 476.301 | 64.951 | 4.667 | 81.7 | 89.7 | 68.0 | 6.5*5 |
5 | 218.941 | 61.936 | 3.495 | 91.6 | 90.1 | 76.1 | 7*5 |
6 | 84.208 | 57.341 | 3.521 | 96.8 | 90.9 | 75.9 | 8*5 |
7 | 42.104 | 49.643 | 3.521 | 98.4 | 92.1 | 75.9 | 8*5 |
The processing cost of percolate is as follows:
About 15 yuan/ton of working cost.
Wherein: 1) the stripping electricity charge: 2.66 yuan/ton; Medicament expense: 4 yuan/ton
2) the anaerobism electricity charge: 0.28 yuan/ton;
3) the aerobic electricity charge: 1.44 yuan/ton
4) the catalytic oxidation electricity charge: 2 yuan/ton
5) other expense: 4 yuan/ton.
Claims (3)
1, a kind of garbage filter liquid processing method is characterized in that: adopt following four procedures to handle successively to percolate,
(1) stripping: regulate percolate pH value to 10~12, and in waste water, send into air, ammonia nitrogen is wherein taken out of;
(2) internal circulating anaerobic mud fluidized bed processing: the percolate after will going up an operation and handling is sent into the anaerobic sludge fluidized-bed, and anaerobic sludge is fully contacted with waste water, the organic pollutant that utilizes internal recycle to dilute to enter;
(3) active biological film is handled: above the aerating apparatus in being filled with the purification tank for liquid waste of active sludge biofilm carrier is set, utilizes active sludge in the pond and the microorganism on the microbial film jointly to wastewater treatment;
(4) catalytic oxidation: utilize the organism in the further degrading waste water of catalytic oxidation effect.
2, by the described garbage filter liquid processing method of claim 1, it is characterized in that:
In stripping is handled, according to the ammonia nitrogen concentration and the chemical oxygen demand COD of percolate
5Determine gas-water ratio with the ratio of ammonia nitrogen concentration;
In internal circulating anaerobic mud fluidized bed processing, waste water upper reaches speed is 0.8m/hr~1.2m/hr behind the water distributor water distribution;
In active biological film is handled, between the biofilm carrier and between biofilm carrier and pool wall the space is arranged, and biofilm carrier accounts for purification tank for liquid waste volumetrical 2/3rds.
3, by the described garbage filter liquid processing method of claim 2, it is characterized in that: percolate is catchmenting earlier before stripping is handled and is adding alkali in the equalizing tank and stir, and sends into and seals stripping in the tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510048672A CN100575282C (en) | 2005-12-06 | 2005-12-06 | Refuse leachate treatment technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510048672A CN100575282C (en) | 2005-12-06 | 2005-12-06 | Refuse leachate treatment technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1978346A CN1978346A (en) | 2007-06-13 |
CN100575282C true CN100575282C (en) | 2009-12-30 |
Family
ID=38129687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200510048672A Expired - Fee Related CN100575282C (en) | 2005-12-06 | 2005-12-06 | Refuse leachate treatment technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100575282C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101333028B (en) * | 2007-06-29 | 2010-06-16 | 中芯国际集成电路制造(上海)有限公司 | Device for treating ammonia and nitrogen components in waste water |
CN100478289C (en) * | 2007-07-13 | 2009-04-15 | 北京大学 | Method for treating medium and terminal garbage percolate |
CN102001782B (en) * | 2009-09-02 | 2012-05-09 | 王宇 | Process method for treating garbage seeping liquid |
CN101723552B (en) * | 2009-12-07 | 2011-05-04 | 广州大学 | Treatment method of garbage leachate |
CN101723564B (en) * | 2010-01-22 | 2012-07-25 | 周建伟 | Garbage percolate treating process by biochemical and membrane separation |
CN102583894A (en) * | 2012-02-24 | 2012-07-18 | 浙江省农业科学院 | Method for treating landfill leachate tail water through magnetic carbon catalyzed ozonation |
CN109607970A (en) * | 2019-01-12 | 2019-04-12 | 深圳市泓达环境科技有限公司 | Method for treating garbage percolation liquid and garbage percolation liquid treating system |
CN110002639B (en) * | 2019-04-29 | 2020-06-19 | 桂润环境科技股份有限公司 | Device and method for treating landfill leachate of middle and late-stage domestic garbage landfill |
CN110772962B (en) * | 2019-11-29 | 2021-11-30 | 北京京城环保股份有限公司 | Method for denitration of waste incineration flue gas by ammonia in waste leachate |
CN112299669A (en) * | 2020-11-26 | 2021-02-02 | 桂润环境科技股份有限公司 | Landfill leachate treatment system, monitoring system and treatment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6387874B1 (en) * | 2001-06-27 | 2002-05-14 | Spartan Chemical Company, Inc. | Cleaning composition containing an organic acid and a spore forming microbial composition |
CN1544365A (en) * | 2003-11-27 | 2004-11-10 | 武汉安全环保研究院 | Urban refuse sanitary landfill leachate disposing process |
-
2005
- 2005-12-06 CN CN200510048672A patent/CN100575282C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6387874B1 (en) * | 2001-06-27 | 2002-05-14 | Spartan Chemical Company, Inc. | Cleaning composition containing an organic acid and a spore forming microbial composition |
CN1544365A (en) * | 2003-11-27 | 2004-11-10 | 武汉安全环保研究院 | Urban refuse sanitary landfill leachate disposing process |
Non-Patent Citations (2)
Title |
---|
垃圾渗滤液催化电解氧化深度处理的研究. 朱晓君等.净水技术,第24卷第3期. 2005 |
垃圾渗滤液催化电解氧化深度处理的研究. 朱晓君等.净水技术,第24卷第3期. 2005 * |
Also Published As
Publication number | Publication date |
---|---|
CN1978346A (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100398470C (en) | Infiltration method for treating garbage | |
CN107010788B (en) | Large-scale pig farm cultivation wastewater treatment system and method | |
CN102976566B (en) | System and method for treating high-concentration landfill leachate in aerobic composting site | |
CN103395937B (en) | Processing device and processing method applicable to high-ammonia-nitrogen agricultural wastewater | |
CN100448788C (en) | Composite micro-aerobic hydrolysis reaction device and method for treating sewage | |
CN101007678A (en) | Temperature controlled USAB anaerobic ammoxidation strain denitrogenation method and its apparatus | |
CN103739157B (en) | Method for processing middle and late period of landfill leachate | |
CN105384302A (en) | Aquaculture wastewater processing system and method thereof | |
CN105819567A (en) | Self-circulation anaerobic reactor | |
CN100575282C (en) | Refuse leachate treatment technology | |
CN108017160B (en) | Pressurized fluidized biological sewage and wastewater treatment device | |
CN212315845U (en) | Mobile garbage transfer station leachate treatment device | |
CN103922475B (en) | Biological degradation method of nitrogen-containing heterocyclic compound wastewater | |
CN105110571A (en) | Treatment system and method of high-concentration ammonia nitrogen organic wastewater | |
CN118125676A (en) | Sludge in-situ reduction device and technology for biochemical sewage treatment | |
CN101700950A (en) | Method for treating high-concentration fermented wastewater | |
CN216106228U (en) | Decarbonization and denitrification reactor for removing microbial metabolites in sewage | |
CN109320029A (en) | Liquor production wastewater processing method and system | |
CN112158943B (en) | A biological trickle device and its application based on dry garbage filler from domestic sources | |
CN104529059A (en) | Biological treatment method for phenol-containing oil-refining wastewater | |
CN103848536A (en) | Method for processing house refuse leachate | |
CN209307174U (en) | Liquor production wastewater processing system | |
CN209367934U (en) | A kind of step carbon utilizes intensified denitrification and dephosphorization integration apparatus | |
CN101113066A (en) | Sewage treatment system of plant pharmaceutical factory and its method | |
CN101070218A (en) | Neutralization-free furfural wastewater biochemical treatment process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091230 Termination date: 20111206 |