CN100574726C - Artificial joint prosthesis with local gradient pore structure and preparation method thereof - Google Patents
Artificial joint prosthesis with local gradient pore structure and preparation method thereof Download PDFInfo
- Publication number
- CN100574726C CN100574726C CN200810036140.9A CN200810036140A CN100574726C CN 100574726 C CN100574726 C CN 100574726C CN 200810036140 A CN200810036140 A CN 200810036140A CN 100574726 C CN100574726 C CN 100574726C
- Authority
- CN
- China
- Prior art keywords
- titanium
- gradient pore
- prosthesis
- pore structure
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 111
- 239000010936 titanium Substances 0.000 claims abstract description 96
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 96
- 239000000843 powder Substances 0.000 claims abstract description 30
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 38
- 238000005516 engineering process Methods 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 6
- 201000008482 osteoarthritis Diseases 0.000 claims 11
- 238000009413 insulation Methods 0.000 claims 2
- 230000001174 ascending effect Effects 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 34
- 239000002184 metal Substances 0.000 abstract description 34
- 230000012010 growth Effects 0.000 abstract description 6
- 230000010261 cell growth Effects 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 210000001503 joint Anatomy 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 4
- 210000000988 bone and bone Anatomy 0.000 abstract 2
- 210000001519 tissue Anatomy 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 206010060820 Joint injury Diseases 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种局部梯度孔隙结构人工关节假体及其制备方法,属于生物医学工程领域。本发明假体包括:假体柄、梯度孔隙结构体,梯度孔隙结构体焊接在假体柄的预设部位,梯度孔隙结构体包括:金属钛板、第一金属钛球、第二金属钛球、第三金属钛球,三个金属钛球尺寸由小到大,并分层次的烧结在金属钛板上。本发明先通过烧结工艺将球形金属粉末分层次烧结在金属钛板上,得到梯度孔隙结构体,然后焊接在关节假体的预定部位。本发明既可以使得假体柄免受高温热处理工艺,保持良好的高强度力学性能,并可以获得合适的梯度孔隙结构,为细胞、组织的长入提供空间,促进新生骨组织与宿主骨的长合,实现假体的生物固定,可应用于临床上关节损伤的修复。
An artificial joint prosthesis with a local gradient pore structure and a preparation method thereof belong to the field of biomedical engineering. The prosthesis of the present invention includes: a prosthesis handle, a gradient pore structure body, the gradient pore structure body is welded to a preset position of the prosthesis handle, and the gradient pore structure body includes: a metal titanium plate, a first metal titanium ball, and a second metal titanium ball 1. The third metal titanium ball, the three metal titanium balls are sintered on the metal titanium plate in layers from small to large in size. In the invention, the spherical metal powder is sintered on the metal titanium plate in layers through a sintering process to obtain a gradient pore structure, and then welded on the predetermined position of the joint prosthesis. The present invention can protect the prosthetic stem from high-temperature heat treatment process, maintain good high-strength mechanical properties, obtain a suitable gradient pore structure, provide space for the growth of cells and tissues, and promote the growth of new bone tissue and host bone. Combined, the biological fixation of the prosthesis can be realized, which can be applied to the repair of joint damage in clinical practice.
Description
技术领域 technical field
本发明涉及的是一种生物医学工程技术领域的骨科内植物假体及其制备方法,具体涉及一种局部梯度孔隙结构人工关节假体及其制备方法。The invention relates to an orthopedic implant prosthesis in the technical field of biomedical engineering and a preparation method thereof, in particular to an artificial joint prosthesis with a local gradient pore structure and a preparation method thereof.
背景技术 Background technique
人工关节置换术是临床上治疗因创伤或疾病导致的关节损伤的一种常见手术方法,临床应用效果良好。人工关节的力学和生物学性能是影响其临床修复关节损伤效果的关键要素。由不锈钢、钛及其合金等金属材料制造的关节假体通常都具有良好的力学性能,植入人体后,能够满足患者日常行为活动过程中受力的要求。虽然钛及其合金具有良好的耐腐蚀性和生物相容性。但是,目前临床上使用的各种钛及其合金材料的假体在生物学性能方面仍然存在严重的缺陷,如:大块金属假体不能与人体软硬组织很好的长合。为了克服这一问题,假体的局部被尝试着制作成了多孔结构,以便为人体细胞、组织的长入提供空间,促进新生组织与假体的长合,实现生物固定。Artificial joint replacement is a common surgical method for clinical treatment of joint injuries caused by trauma or disease, and the clinical application effect is good. The mechanical and biological properties of artificial joints are the key factors affecting its clinical effect in repairing joint damage. Joint prostheses made of metal materials such as stainless steel, titanium and their alloys usually have good mechanical properties, and after being implanted in the human body, they can meet the force requirements of patients during daily activities. Although titanium and its alloys have good corrosion resistance and biocompatibility. However, the prostheses of various titanium and its alloy materials currently used clinically still have serious defects in biological performance, such as: large metal prostheses cannot grow well with soft and hard tissues of the human body. In order to overcome this problem, the part of the prosthesis is tried to be made into a porous structure in order to provide space for the growth of human cells and tissues, promote the growth of new tissues and the prosthesis, and achieve biological fixation.
等离子喷涂技术是目前普遍采用的一种在假体表面的局部制备多孔结构的方法。这一技术是采用等离子弧作为热源,将金属材料加热到熔融或半熔融状态,并以高速喷向经过预处理的工件表面而形成附着牢固的表面层的方法,属于高温热处理技术。在向假体表面喷涂金属粉末的过程中,由于高温的作用,假体本身的力学性能就会受到影响,导致假体力学性能的降低,置换到人体后容易发生断裂。因此,在不降低假体本身力学性能的前提下,构建假体表面局部的孔隙结构,为细胞、组织的长入提供空间,促进新生组织与假体的长合,具有重要的工程意义和临床应用价值。Plasma spraying technology is a method commonly used to locally prepare porous structures on the surface of prostheses. This technology uses a plasma arc as a heat source to heat the metal material to a molten or semi-molten state, and sprays it on the surface of the pretreated workpiece at high speed to form a firmly attached surface layer, which belongs to the high-temperature heat treatment technology. During the process of spraying metal powder on the surface of the prosthesis, due to the effect of high temperature, the mechanical properties of the prosthesis itself will be affected, resulting in a decrease in the mechanical properties of the prosthesis, and it is prone to breakage after replacement into the human body. Therefore, on the premise of not reducing the mechanical properties of the prosthesis itself, it is of great engineering significance and clinical significance to construct a local pore structure on the surface of the prosthesis to provide space for the growth of cells and tissues, and to promote the growth of new tissues and the prosthesis. Value.
经对现有技术文献的检索发现,申请号:87101194.8,公开号:CN1033559名称:《多孔层烧结面人工关节制造工艺》,该技术公开的是一种将球形颗粒直接烧结在假体柄上的一种制造工艺,这种工艺过程中的假体柄同样要受到高温的作用,从而影响假体柄本身的力学性能;全球著名的Zimmer公司开发的多孔结构人工关节假体(www.zimmer.com),是采用等离子喷涂技术制备的一种局部多孔结构人工关节假体,假体柄的力学性能会受到高温的影响而有所降低。After searching the existing technical documents, it was found that the application number: 87101194.8, the publication number: CN1033559, and the name: "Manufacturing Technology of Artificial Joints with Porous Layer Sintered Surface". A manufacturing process in which the prosthetic stem is also subject to high temperature, thereby affecting the mechanical properties of the prosthetic stem itself; the porous structure artificial joint prosthesis developed by the world-renowned Zimmer company (www.zimmer.com ), is a local porous structure artificial joint prosthesis prepared by plasma spraying technology, the mechanical properties of the prosthesis stem will be affected by high temperature and will be reduced.
发明内容 Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种局部梯度孔隙结构人工关节假体及其制备方法,使其克服现有制备人工关节假体表面多孔结构过程中损伤假体本身力学性能的不足,为人体细胞、组织的长入提供空间,促进新生组织与关节假体的长合,实现假体的生物固定。The purpose of the present invention is to address the deficiencies of the prior art, to provide an artificial joint prosthesis with a local gradient pore structure and a preparation method thereof, so as to overcome the problem of damage to the mechanical properties of the prosthesis itself in the process of preparing the surface porous structure of the artificial joint prosthesis. Insufficient, it provides space for the growth of human cells and tissues, promotes the growth of new tissue and joint prosthesis, and realizes the biological fixation of the prosthesis.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明所述的局部梯度孔隙结构人工关节假体,包括:假体柄、梯度孔隙结构体,梯度孔隙结构体焊接在假体柄的预设部位,形成局部梯度孔隙结构的人工关节假体。The artificial joint prosthesis with a local gradient pore structure according to the present invention comprises: a prosthesis handle and a gradient pore structure, the gradient pore structure is welded to a preset position of the prosthesis handle to form an artificial joint prosthesis with a local gradient pore structure.
所述梯度孔隙结构体包括:金属钛板、第一金属钛球、第二金属钛球、第三金属钛球。第一金属钛球、第二金属钛球、第三金属钛球尺寸由小到大,并分层次的烧结在金属钛板上,其中尺寸最小的第一金属钛球与金属钛板接触。The gradient pore structure includes: a metal titanium plate, a first metal titanium sphere, a second metal titanium sphere, and a third metal titanium sphere. The first metal titanium balls, the second metal titanium balls and the third metal titanium balls are sintered on the metal titanium plate in stages in order of size from small to large, wherein the first metal titanium ball with the smallest size is in contact with the metal titanium plate.
所述第一金属钛球,其直径为100-200μm。The first metal titanium ball has a diameter of 100-200 μm.
所述第二金属钛球,其直径为200-300μm。The diameter of the second metal titanium ball is 200-300 μm.
所述第三金属钛球,其直径为300-500μm。The third metal titanium ball has a diameter of 300-500 μm.
所述梯度孔隙结构体,其孔隙率在20-50%。The gradient pore structure has a porosity of 20-50%.
所述金属钛板是钛及其合金板。The metal titanium plate is titanium and its alloy plate.
所述金属钛球,是球形钛及其合金粉末。The metal titanium ball is spherical titanium and its alloy powder.
上述的假体中,假体柄的作用是承载受力,梯度孔隙结构体的作用是为细胞、组织的生长提供空间,实现假体的生物固定。In the above-mentioned prosthesis, the function of the prosthesis handle is to bear the force, and the function of the gradient pore structure is to provide space for the growth of cells and tissues to realize the biological fixation of the prosthesis.
本发明所述局部梯度孔隙结构人工关节假体的制备方法,包括如下步骤:The preparation method of the local gradient pore structure artificial joint prosthesis of the present invention comprises the following steps:
第一步,在一块钛及其合金板上依次铺设三种直径的球形钛及其合金粉末,其中最小直径的球形钛及其合金粉末直接平铺在一块钛及其合金板上,铺1~2层,然后,在最小直径的球形钛及其合金粉末层上铺设中等直径的钛及其合金粉末,铺1~2层,最后在中等直径的钛及其合金粉末层上铺一层直径最大的球形钛及其合金粉末;In the first step, three kinds of diameters of spherical titanium and its alloy powders are successively laid on a titanium and its alloy plates, among which the spherical titanium and its alloy powders with the smallest diameter are directly spread on a titanium and its alloy plates, and spread for 1~ 2 layers, then lay medium-diameter titanium and its alloy powder on the smallest-diameter spherical titanium and its alloy powder layer, lay 1 to 2 layers, and finally lay a layer of medium-diameter titanium and its alloy powder layer with the largest diameter Spherical titanium and its alloy powder;
所述最小直径的球形钛及其合金粉末,其直径为100~200μm。The smallest diameter spherical titanium and its alloy powder have a diameter of 100-200 μm.
所述中等直径的钛及其合金粉末,其直径为200-300μm。The medium-diameter titanium and its alloy powders have a diameter of 200-300 μm.
所述直径最大的球形钛及其合金粉末,其直径为300~500μm。The spherical titanium and its alloy powder with the largest diameter have a diameter of 300-500 μm.
所述钛及其合金板,其长30~50mm、宽20~30mm、厚度3~5mm。The titanium and its alloy plates have a length of 30-50 mm, a width of 20-30 mm, and a thickness of 3-5 mm.
第二步,将上述铺有球形钛及其合金粉末的钛及其合金板置入真空烧结炉,进行烧结,入炉温度为室温,将炉温升温至1200-1400℃,烧结过程中向铺有球形粉末的钛及其合金板施加压力,保温、保压,其后将炉温炉冷却至室温,获得一种表面梯度孔隙结构的钛及其合金板;In the second step, put the above-mentioned titanium and its alloy plates covered with spherical titanium and its alloy powder into a vacuum sintering furnace for sintering. Titanium and its alloy plates with spherical powder are applied with pressure, kept warm and kept under pressure, and then the furnace temperature is cooled to room temperature to obtain a titanium and its alloy plates with surface gradient pore structure;
所述烧结炉,其真空度为1×10-3Pa。The sintering furnace has a vacuum degree of 1×10 -3 Pa.
所述升温,其速度为5℃/min-10℃/min。The speed of the temperature rise is 5°C/min-10°C/min.
所述施加压力,其压力范围为2Mpa-5Mpa。The applied pressure ranges from 2Mpa to 5Mpa.
所述保温、保压,其时间为1h-2h。The time for the heat preservation and pressure holding is 1h-2h.
第三步,利用激光焊接技术,将上述表面梯度孔隙结构的钛及其合金板焊接在关节假体上的预定位置,形成具有高强度力学性能和局部表面梯度多孔结构人工关节假体。The third step is to use laser welding technology to weld the titanium and its alloy plates with surface gradient pore structure on the predetermined position on the joint prosthesis to form an artificial joint prosthesis with high-strength mechanical properties and local surface gradient porous structure.
等离子喷涂技术制备的人工关节假体表面局部多孔结构,虽然可以为细胞、组织的生长提供空间,实现假体的生物固定。但是,由于高温的作用以及金属粉体在熔融或半熔化状态下的高速撞击,使得关节假体本身的力学性能受到影响,降低了假体原有的高强度力学性能。本发明制备的局部梯度孔隙结构人工关节假体不仅具有良好的孔隙结构,能够为细胞、组织的生长提供空间,实现假体的生物固定,而且还很好的保护了假体本身原有的高强度力学性能。Although the local porous structure on the surface of the artificial joint prosthesis prepared by plasma spraying technology can provide space for the growth of cells and tissues, the biological fixation of the prosthesis can be realized. However, due to the effect of high temperature and the high-speed impact of metal powder in a molten or semi-molten state, the mechanical properties of the joint prosthesis itself are affected, reducing the original high-strength mechanical properties of the prosthesis. The artificial joint prosthesis with local gradient pore structure prepared by the present invention not only has a good pore structure, can provide space for the growth of cells and tissues, and realize the biological fixation of the prosthesis, but also well protects the original height of the prosthesis itself. strength mechanical properties.
本发明采取了分步式的制造工艺,将高温烧结工艺与装配工艺分开,先通过高温烧结工艺将不同尺寸的球形金属粉末有层次的烧结在金属钛板上,形成具有梯度孔隙结构的部件,然后,采用激光焊接技术,在不损伤假体本身力学性能的前提下,将所制备的梯度孔隙结构部件焊接在关节假体的预定部位,形成具有高强度力学性能和局部梯度孔隙结构的人工关节假体,可应用于临床上关节损伤的修复。The present invention adopts a step-by-step manufacturing process, which separates the high-temperature sintering process from the assembly process, and first sinters spherical metal powders of different sizes on the metal titanium plate in a layered manner through the high-temperature sintering process to form a component with a gradient pore structure. Then, using laser welding technology, on the premise of not damaging the mechanical properties of the prosthesis itself, the prepared gradient pore structure components are welded to the predetermined parts of the joint prosthesis to form an artificial joint with high-strength mechanical properties and local gradient pore structure The prosthesis can be applied to the repair of joint damage clinically.
附图说明 Description of drawings
图1为本发明结构示意图Fig. 1 is a structural representation of the present invention
图2为梯度孔隙结构体示意图Figure 2 is a schematic diagram of the gradient pore structure
具体实施方式 Detailed ways
下面结合附图对本发明的实施例作详细说明:以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below in conjunction with the accompanying drawings: the following embodiments are implemented on the premise of the technical solutions of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following the described embodiment.
如图1所示,以下实施例中的假体包括:假体柄1、梯度孔隙结构体2,梯度孔隙结构体2焊接在假体柄1的预设部位,形成局部梯度孔隙结构的人工关节假体。As shown in Figure 1, the prosthesis in the following embodiments includes: a
如图2所示,以下实施例中的梯度孔隙结构体2包括:金属钛板3、尺寸为100-200μm的第一金属钛球4、尺寸为200-300μm的第二金属钛球5、尺寸为300-500μm的第三金属钛球6。三个金属钛球4、5、6分层次的烧结在金属钛板3上,形成梯度孔隙结构体2,其孔隙率在20-50%。As shown in Figure 2, the
以下详细给出所述局部梯度孔隙结构人工关节假体制备方法的实施例。An example of the method for preparing the artificial joint prosthesis with a local gradient pore structure is given below in detail.
实施例1Example 1
首先将直径为100μm的球形钛粉平铺在一块长30mm、宽20mm、厚度3mm的钛板上,铺3层,然后,再铺3层直径为200μm的球形钛粉,最后铺一层直径为300μm的球形钛粉;将上述铺有球形钛粉的钛板置入真空烧结炉,进行高温烧结,烧结炉的真空度为1×10-3Pa,入炉温度为室温,将炉温升至1200℃,升温速度为5℃/min,烧结过程中向铺有球形粉末的钛板施加5MPa的压力,保温、保压2h,其后将炉温炉冷却至室温,获得一种表面梯度孔隙结构的钛板;利用激光焊接技术,将上述表面梯度孔隙结构的钛板焊接在人工关节假体上的预定位置,形成局部梯度孔隙结构人工关节假体。实施例1对应的孔隙率(计算值)为32%。First, spread the spherical titanium powder with a diameter of 100 μm on a titanium plate with a length of 30 mm, a width of 20 mm, and a thickness of 3 mm, and spread 3 layers, and then spread 3 layers of spherical titanium powder with a diameter of 200 μm, and finally spread a layer of titanium powder with a diameter of 300 μm spherical titanium powder; put the above-mentioned titanium plate covered with spherical titanium powder into a vacuum sintering furnace for high-temperature sintering. The vacuum degree of the sintering furnace is 1×10 -3 Pa, and the furnace temperature is room temperature. 1200°C, the heating rate is 5°C/min. During the sintering process, a pressure of 5 MPa is applied to the titanium plate covered with spherical powder, and the heat preservation and pressure are maintained for 2 hours. After that, the furnace is cooled to room temperature to obtain a surface gradient pore structure. Titanium plate; using laser welding technology, the above-mentioned titanium plate with gradient pore structure on the surface is welded to a predetermined position on the artificial joint prosthesis to form an artificial joint prosthesis with a local gradient pore structure. Example 1 corresponds to a porosity (calculated value) of 32%.
实施例2Example 2
首先将直径为200μm的球形钛粉平铺在一块长50mm、宽40mm、厚度5mm的钛板上,铺1层,然后,再铺1层直径为300μm的球形钛粉,最后铺一层直径为500μm的球形钛粉;将上述铺有球形钛粉的钛板置入真空烧结炉,进行高温烧结,烧结炉的真空度为1×10-3Pa,入炉温度为室温,将炉温升至1400℃,升温速度为10℃/min,烧结过程中向铺有球形粉末的钛板施加2MPa的压力,保温、保压1h,其后将炉温炉冷却至室温,获得一种表面梯度孔隙结构的钛板;利用激光焊接技术,将上述表面梯度孔隙结构的钛板焊接在人工关节假体上的预定位置,形成局部梯度孔隙结构人工关节假体。实施例2对应的孔隙率(计算值)为23%。First, spread the spherical titanium powder with a diameter of 200 μm on a titanium plate with a length of 50 mm, a width of 40 mm, and a thickness of 5 mm, and spread one layer, and then spread another layer of spherical titanium powder with a diameter of 300 μm, and finally spread a layer of titanium powder with a diameter of 500 μm spherical titanium powder; put the above-mentioned titanium plate covered with spherical titanium powder into a vacuum sintering furnace for high-temperature sintering. The vacuum degree of the sintering furnace is 1×10 -3 Pa, and the furnace temperature is room temperature. 1400°C, the heating rate is 10°C/min. During the sintering process, a pressure of 2 MPa is applied to the titanium plate covered with spherical powder, and the heat preservation and pressure holding are carried out for 1 hour. After that, the furnace temperature is cooled to room temperature to obtain a surface gradient pore structure. Titanium plate; using laser welding technology, the above-mentioned titanium plate with gradient pore structure on the surface is welded to a predetermined position on the artificial joint prosthesis to form an artificial joint prosthesis with a local gradient pore structure. Example 2 corresponds to a porosity (calculated value) of 23%.
实施例3Example 3
首先将直径为150μm的球形钛粉平铺在一块长40mm、宽30mm、厚度4mm的钛板上,铺2层,然后,再铺2层直径为250μm的球形钛粉,最后铺一层直径为400μm的球形钛粉;将上述铺有球形钛粉的钛板置入真空烧结炉,进行高温烧结,烧结炉的真空度为1×10-3Pa,入炉温度为室温,将炉温升至1300℃,升温速度为7.5℃/min,烧结过程中向铺有球形粉末的钛板施加1.5MPa的压力,保温、保压1.5h,其后将炉温炉冷却至室温,获得一种表面梯度孔隙结构的钛板;利用激光焊接技术,将上述表面梯度孔隙结构的钛板焊接在人工关节假体上的预定位置,形成局部梯度孔隙结构人工关节假体。实施例3对应的孔隙率(计算值)为28%。First, spread the spherical titanium powder with a diameter of 150 μm on a titanium plate with a length of 40 mm, a width of 30 mm, and a thickness of 4 mm, and spread 2 layers, then spread 2 layers of spherical titanium powder with a diameter of 250 μm, and finally spread a layer of titanium powder with a diameter of 400 μm spherical titanium powder; put the above-mentioned titanium plate covered with spherical titanium powder into a vacuum sintering furnace for high-temperature sintering. The vacuum degree of the sintering furnace is 1×10 -3 Pa, and the furnace temperature is room temperature. 1300°C, the heating rate is 7.5°C/min. During the sintering process, a pressure of 1.5MPa is applied to the titanium plate covered with spherical powder, and the heat preservation and pressure are maintained for 1.5h. After that, the furnace temperature is cooled to room temperature to obtain a surface gradient. A titanium plate with a pore structure; using laser welding technology, the above-mentioned titanium plate with a surface gradient pore structure is welded to a predetermined position on the artificial joint prosthesis to form an artificial joint prosthesis with a local gradient pore structure. Example 3 corresponds to a porosity (calculated value) of 28%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810036140.9A CN100574726C (en) | 2008-04-17 | 2008-04-17 | Artificial joint prosthesis with local gradient pore structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810036140.9A CN100574726C (en) | 2008-04-17 | 2008-04-17 | Artificial joint prosthesis with local gradient pore structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101254139A CN101254139A (en) | 2008-09-03 |
CN100574726C true CN100574726C (en) | 2009-12-30 |
Family
ID=39889476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810036140.9A Expired - Fee Related CN100574726C (en) | 2008-04-17 | 2008-04-17 | Artificial joint prosthesis with local gradient pore structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100574726C (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101574541B (en) * | 2009-06-11 | 2012-12-05 | 同济大学 | Method for preparing high-strength rib grads multi-aperture bracket |
CN104212990A (en) * | 2014-08-30 | 2014-12-17 | 广东省工业技术研究院(广州有色金属研究院) | Preparation method of gradient porous titanium |
TWI606813B (en) * | 2016-12-30 | 2017-12-01 | 財團法人金屬工業研究發展中心 | Multi-piece combined artificial joint cup structure |
CN107260369A (en) * | 2017-06-15 | 2017-10-20 | 西安交通大学 | It is a kind of to be used for the personalized biological type cushion block of Cranial defect in total knee arthroplasty |
CN109172044B (en) * | 2018-07-24 | 2020-08-14 | 西安交通大学 | Degradable gradient pore mammary gland stent |
CN111281610B (en) * | 2019-12-30 | 2023-08-18 | 雅博尼西医疗科技(苏州)有限公司 | Connection structure between porous structure and substrate |
CN111631843A (en) * | 2020-06-05 | 2020-09-08 | 北京市春立正达医疗器械股份有限公司 | Hip joint femoral stem prosthesis and manufacturing method thereof |
CN112545713A (en) * | 2020-11-23 | 2021-03-26 | 天衍医疗器材有限公司 | Bone filling prosthesis and preparation process thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1033559A (en) * | 1987-12-18 | 1989-07-05 | 北京航空材料研究所人工关节厂 | Making technique of artificial joint with porous surface layer |
US5443510A (en) * | 1993-04-06 | 1995-08-22 | Zimmer, Inc. | Porous coated implant and method of making same |
EP0761182A2 (en) * | 1995-08-29 | 1997-03-12 | JOHNSON & JOHNSON PROFESSIONAL Inc. | Bone prosthesis with protected coating for penetrating bone intergrowth |
US5676700A (en) * | 1994-10-25 | 1997-10-14 | Osteonics Corp. | Interlocking structural elements and method for bone repair, augmentation and replacement |
CN2285640Y (en) * | 1996-12-31 | 1998-07-08 | 上海交通大学 | Combined matched artificial hip joint |
EP0573694B1 (en) * | 1990-09-17 | 1998-12-02 | Michael J. Pappas | Prothesis with biologically inert wear resistant surface |
CN1250820A (en) * | 1999-11-16 | 2000-04-19 | 王昭宇 | Osteo-implanted body of porous titanium with biological coating and its manufacture method |
US20070078521A1 (en) * | 2005-09-30 | 2007-04-05 | Depuy Products, Inc. | Aluminum oxide coated implants and components |
CN101020084A (en) * | 2007-03-15 | 2007-08-22 | 上海交通大学 | Prepn process of titanium sintering porous titanium artificial bone with bioceramic coating |
CN101053675A (en) * | 2007-05-16 | 2007-10-17 | 贵州大学 | Gradient biologically active ceramic coating material, broad band laser preparing method and product application |
-
2008
- 2008-04-17 CN CN200810036140.9A patent/CN100574726C/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1033559A (en) * | 1987-12-18 | 1989-07-05 | 北京航空材料研究所人工关节厂 | Making technique of artificial joint with porous surface layer |
EP0573694B1 (en) * | 1990-09-17 | 1998-12-02 | Michael J. Pappas | Prothesis with biologically inert wear resistant surface |
US5443510A (en) * | 1993-04-06 | 1995-08-22 | Zimmer, Inc. | Porous coated implant and method of making same |
US5676700A (en) * | 1994-10-25 | 1997-10-14 | Osteonics Corp. | Interlocking structural elements and method for bone repair, augmentation and replacement |
EP0761182A2 (en) * | 1995-08-29 | 1997-03-12 | JOHNSON & JOHNSON PROFESSIONAL Inc. | Bone prosthesis with protected coating for penetrating bone intergrowth |
CN2285640Y (en) * | 1996-12-31 | 1998-07-08 | 上海交通大学 | Combined matched artificial hip joint |
CN1250820A (en) * | 1999-11-16 | 2000-04-19 | 王昭宇 | Osteo-implanted body of porous titanium with biological coating and its manufacture method |
US20070078521A1 (en) * | 2005-09-30 | 2007-04-05 | Depuy Products, Inc. | Aluminum oxide coated implants and components |
CN101020084A (en) * | 2007-03-15 | 2007-08-22 | 上海交通大学 | Prepn process of titanium sintering porous titanium artificial bone with bioceramic coating |
CN101053675A (en) * | 2007-05-16 | 2007-10-17 | 贵州大学 | Gradient biologically active ceramic coating material, broad band laser preparing method and product application |
Non-Patent Citations (2)
Title |
---|
仿生UHMWPE软骨材料的制备和性能研究. 吴刚等.功能材料,第38卷第10期. 2007 |
仿生UHMWPE软骨材料的制备和性能研究. 吴刚等.功能材料,第38卷第10期. 2007 * |
Also Published As
Publication number | Publication date |
---|---|
CN101254139A (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100574726C (en) | Artificial joint prosthesis with local gradient pore structure and preparation method thereof | |
CN100588379C (en) | Preparation method of artificial joint prosthesis with locally controllable porous structure | |
CN101418392B (en) | Biomedical porous titanium material and preparation method thereof | |
CN104784760B (en) | Low-elasticity-modulus integrated titanium-based femoral stem and preparation method thereof | |
Prashar et al. | Performance of thermally sprayed hydroxyapatite coatings for biomedical implants: a comprehensive review | |
CN104818409B (en) | A high wear-resistant, high-strength medical zirconium alloy and its preparation method and application | |
JP4911566B2 (en) | MEDICAL DEVICE AND MEDICAL DEVICE SURFACE MODIFICATION METHOD | |
CN109706421B (en) | Method for preparing zirconium and zirconium alloy surface ceramic oxide layer and application | |
CN100560143C (en) | A Composite Process for Preparing Porous Titanium Coatings by Cold Spraying and Vacuum Sintering | |
JP7413554B2 (en) | Zirconium-niobium alloy tibial plateau prosthesis including trabecular oxide layer and method for manufacturing the same | |
CN106693069A (en) | Method for preparing medical porous titanium-tantalum artificial bone and artificial joint, and products thereof | |
CN106735185A (en) | Gradient porous titanium and preparation method thereof | |
JP7470194B2 (en) | Zirconium-niobium alloy hip joint prosthesis system containing an oxide layer and method of manufacture thereof | |
US20110195378A1 (en) | Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof | |
CN101283936B (en) | Local spatial grid structure artificial joint prosthesis and preparation method thereof | |
WO2022088702A1 (en) | Oxide layer-containing zirconium-niobium alloy ankle joint prosthetic system and manufacturing method | |
JP2007151804A (en) | Surface modification method for medical device and medical device | |
CN205460047U (en) | A composite structure of osseointegration-enhanced polyetheretherketone material | |
JP7392167B2 (en) | Zirconium-niobium alloy zoned trabecular single compartment femoral condyle with oxide layer and method for manufacturing the same | |
Baroutaji et al. | Metallic meta-biomaterial as biomedical implants | |
CN106319285B (en) | A kind of preparation method of high bioactivity nanoporous TiNbSn HA bio-medical compositions | |
CN102580154A (en) | Antifriction and toughening metal/ceramic bionic multilayer-film artificial joint | |
CN112294496B (en) | Zirconium-niobium alloy shoulder joint prosthesis system containing oxide layer and preparation method | |
CN204293312U (en) | A kind of magnesium alloy fills artificial joint prosthesis | |
CN113953515B (en) | Biomedical metal porous coating capable of replacing bone cement and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091230 Termination date: 20130417 |