[go: up one dir, main page]

CN100568613C - Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction - Google Patents

Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction Download PDF

Info

Publication number
CN100568613C
CN100568613C CN 200480042697 CN200480042697A CN100568613C CN 100568613 C CN100568613 C CN 100568613C CN 200480042697 CN200480042697 CN 200480042697 CN 200480042697 A CN200480042697 A CN 200480042697A CN 100568613 C CN100568613 C CN 100568613C
Authority
CN
China
Prior art keywords
battery
water
active metal
aqueous
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 200480042697
Other languages
Chinese (zh)
Other versions
CN1938895A (en
Inventor
S·J·维斯科
Y·S·尼蒙
B·D·卡茨
L·C·德永赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplus Battery Co Inc
Original Assignee
Polyplus Battery Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplus Battery Co Inc filed Critical Polyplus Battery Co Inc
Publication of CN1938895A publication Critical patent/CN1938895A/en
Application granted granted Critical
Publication of CN100568613C publication Critical patent/CN100568613C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/128

Landscapes

  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

活性金属和具有离子导电保护构造的活性金属嵌入电极结构和电池组电池,该离子导电保护构造包括活性金属(例如锂)导电不透水层,该不透水层通过用非水电解质(阳极电解液)浸渍的多孔隔膜与电极(阳极)分开。这种保护构造防止了活性金属与不透水层另一(阴极)侧上环境的不利反应,该环境可包括含水或非水液体电解质(阴极电解液)和/或各种电化学活性材料,包括液体、固体和气体氧化剂。还提供了安全性添加剂和有利于制造的设计。

Active metals and active metal intercalation electrode structures and battery cells with an ionically conductive protective structure comprising an active metal (e.g. The impregnated porous membrane is separated from the electrode (anode). This protective construction prevents adverse reactions of the active metal with the environment on the other (cathode) side of the impermeable layer, which may include an aqueous or non-aqueous liquid electrolyte (catholyte) and/or various electrochemically active materials, including Liquid, solid and gaseous oxidizers. Safety additives and manufacturing-friendly designs are also provided.

Description

具有非水中间层构造的受保护的活性金属电极和电池组电池结构 Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction

发明背景Background of the invention

1.发明领域 1. Field of invention

本发明一般涉及活性金属电化学装置。更特别地,本发明涉及活性金属(例如碱金属,如锂)、活性金属嵌入(例如锂-碳、碳)和活性金属合金(例如锂-锡)合金或合金化金属(例如锡)电化学(例如电极)结构和电池组电池。电极结构具有离子导电保护构造,该保护构造包括活性金属(例如锂)导电不透水层,其被用非水电解质浸渍的多孔隔膜与电极(阳极)隔开。这种保护结构防止了活性金属与不透水层的另一(阴极)侧上环境的有害反应,环境可包括含水、空气或有机液体电解质和/或电化学活性材料。The present invention generally relates to active metal electrochemical devices. More particularly, the present invention relates to active metal (e.g. alkali metals such as lithium), active metal intercalation (e.g. lithium-carbon, carbon) and active metal alloy (e.g. lithium-tin) alloys or alloyed metals (e.g. tin) electrochemical (eg electrodes) structures and battery cells. The electrode structure has an ionically conductive protective structure comprising an active metal (eg lithium) conductive water impermeable layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte. This protective structure prevents unwanted reactions of the active metal with the environment on the other (cathode) side of the impermeable layer, which may include aqueous, air or organic liquid electrolytes and/or electrochemically active materials.

2.相关技术描述2. Description of related technologies

碱金属如锂的低当量使它们作为电池电极部件尤其有吸引力。锂能提供比传统电池标准-镍和镉更大的每体积的能量。不幸的是,可再充电锂金属电池在市场上还没有成功。The low equivalent weight of alkali metals such as lithium makes them especially attractive as battery electrode components. Lithium can provide greater energy per volume than traditional battery standards - nickel and cadmium. Unfortunately, rechargeable lithium metal batteries have not been successful in the market.

可再充电锂金属电池的失败很大程度上归因于电池循环问题。在反复的充电和放电循环中,锂“枝晶”通过电解质从锂金属电极逐渐生长出来,并最终接触正极。这导致电池内部短路,使电池在较少的几次循环后就不能再使用。在循环的同时,锂电极还可能生长出会从负极上移开的“海绵状”沉积物,并因此降低了电池容量。The failure of rechargeable lithium metal batteries has largely been attributed to battery cycling issues. During repeated charge and discharge cycles, lithium "dendrites" gradually grow from the lithium metal electrode through the electrolyte and eventually contact the positive electrode. This causes an internal short circuit in the battery, rendering the battery unusable after a relatively few cycles. While cycling, lithium electrodes can also grow "spongy" deposits that dislodge from the negative electrode, thereby reducing battery capacity.

为了解决锂在液体电解质体系中差的循环性能,一些研究人员提出对锂负极面向电解质的侧涂敷“保护层”。这种保护层必须能传导锂离子,但同时防止锂电极表面和主体电解质之间的接触。许多应用保护层的技术都没有成功。In order to solve the poor cycle performance of lithium in liquid electrolyte systems, some researchers proposed to apply a "protective layer" to the side of the lithium anode facing the electrolyte. This protective layer must conduct lithium ions, but at the same time prevent contact between the lithium electrode surface and the bulk electrolyte. Many techniques for applying layers of protection have been unsuccessful.

一些预期的锂金属保护层都在原位通过锂金属和接触锂的电池电解质中的化合物之间的反应来形成。这些原位薄膜中的大部分都是通过组装电池后的控制化学反应来生长。通常,这种薄膜具有允许部分电解质渗透到裸锂金属表面上的多孔形态。因此,它们不能充分地保护锂电极。Some of the contemplated lithium metal protective layers are formed in situ by the reaction between lithium metal and compounds in the battery electrolyte in contact with lithium. Most of these in situ films are grown by controlled chemical reactions after the battery is assembled. Typically, such films have a porous morphology that allows partial electrolyte penetration onto the bare Li metal surface. Therefore, they cannot sufficiently protect lithium electrodes.

还考虑了各种预先成形的锂保护层。例如,美国专利5314765(1994年5月24日签发给Bates)描述了制造包含一薄层溅射的氧氮磷锂(“LiPON”)或相关材料的锂电极的外部技术。LiPON为一种玻璃态单离子导体(传导锂离子),其已被研究作为固态锂微电池的可能电解质,固态锂微电池被制造在硅上并用于功率集成电路(参见美国专利5597660、5567210、5338625和5512147,全部签发给Bates等)。Various preformed lithium protective layers are also contemplated. For example, US Patent 5,314,765 (issued to Bates on May 24, 1994) describes an extrinsic technique for fabricating lithium electrodes comprising a thin layer of sputtered lithium oxynitride ("LiPON") or related materials. LiPON, a glassy single-ion conductor (conducting lithium ions), has been investigated as a possible electrolyte for solid-state lithium microbatteries fabricated on silicon and used in power integrated circuits (see US patents 5597660, 5567210, 5338625 and 5512147, all issued to Bates et al).

本申请人实验室中的工作已开发了在活性金属电池电极中使用玻璃态或非晶态保护层如LiPON的技术。(参见例如美国专利6025094,02/15/00签发,6402795,06/11/02签发,6214061,04/10/01签发,和6413284,07/02/02签发,全部转让给PolyPlus Battery公司)。Work in the applicant's laboratory has developed techniques for using glassy or amorphous protective layers such as LiPON in active metal battery electrodes. (See, eg, U.S. Patents 6,025,094, issued 02/15/00, 6,402,795, issued 06/11/02, 6,214,061, issued 04/10/01, and 6,413,284, issued 07/02/02, all assigned to PolyPlus Battery, Inc.).

在含水环境中使用锂阳极的现有努力依靠强碱性条件的使用如浓KOH水溶液的使用来减缓Li电极的腐蚀,或依靠在Li电极上使用聚合物涂层来阻止水扩散到Li电极表面上。但是,在所有情况下,都存在大量的碱金属电极与水的反应。对此,现有技术教导与Li-金属阳极一起使用含水阴极或电解质是不可能的,因为水的击穿电压为约1.2V,Li/水电池可具有约3.0V的电压。锂金属和水溶液之间的直接接触导致强烈的寄生化学反应和没有任何有用目的的锂电极的腐蚀。因此,锂金属电池领域中的研究焦点直接在有效的非水(大部分为有机)电解质体系的开发上。Existing efforts to use lithium anodes in aqueous environments rely on the use of strongly alkaline conditions such as the use of concentrated KOH aqueous solution to slow down Li electrode corrosion, or rely on the use of polymer coatings on Li electrodes to prevent water from diffusing to the Li electrode surface. superior. In all cases, however, there is substantial reaction of the alkali metal electrode with water. For this, the prior art teaches that it is not possible to use an aqueous cathode or electrolyte with a Li-metal anode, since the breakdown voltage of water is about 1.2V, a Li/water cell can have a voltage of about 3.0V. The direct contact between Li metal and aqueous solution leads to strong parasitic chemical reactions and corrosion of Li electrodes without any useful purpose. Research in the field of lithium metal batteries has therefore focused directly on the development of efficient non-aqueous (mostly organic) electrolyte systems.

发明概述Summary of the invention

本发明一般涉及活性金属电化学装置。更特别地,本发明涉及活性金属(例如碱金属,如锂)、活性金属嵌入(例如锂-碳、碳)和活性金属合金(例如锂-锡)合金或合金化金属(例如锡)电化学(例如电极)结构和电池组电池。电极结构具有离子导电的保护构造,该保护构造包括活性金属(例如锂)离子导电基本不透水层,其被用非水电解质(阳极电解液)浸渍的多孔隔膜与电极(阳极)隔开。这种保护构造防止了活性金属与不透水层的另一(阴极)侧上环境的有害反应,环境可包括含水、空气或有机液体电解质(阴极电解液)和/或电化学活性材料。The present invention generally relates to active metal electrochemical devices. More particularly, the present invention relates to active metal (e.g. alkali metals such as lithium), active metal intercalation (e.g. lithium-carbon, carbon) and active metal alloy (e.g. lithium-tin) alloys or alloyed metals (e.g. tin) electrochemical (eg electrodes) structures and battery cells. The electrode structure has an ionically conductive protective structure comprising an ionically conductive, substantially water-impermeable layer of an active metal (eg lithium), separated from the electrode (anode) by a porous membrane impregnated with a non-aqueous electrolyte (anolyte). This protective construction prevents detrimental reactions of the active metal with the environment on the other (cathode) side of the impermeable layer, which may include aqueous, air or organic liquid electrolytes (catholyte) and/or electrochemically active materials.

保护构造的隔膜层(中间层)防止阳极的活性金属(例如锂)和活性金属离子导电基本不透水层之间的有害反应。因此,该构造有效地隔离(分离)了阳极/阳极电解液与溶剂、电解质处理和/或阴极环境,包括通常对Li或其它活性金属强腐蚀的这种环境,并且同时允许离子传递进入和离开这些可能腐蚀的环境。The separator layer (intermediate layer) of the protective construction prevents detrimental reactions between the active metal (eg lithium) of the anode and the active metal ion conductive substantially water impermeable layer. Thus, the configuration effectively isolates (separates) the anode/anolyte from the solvent, electrolyte handling, and/or cathode environment, including such environments that are typically highly corrosive to Li or other active metals, and simultaneously allows ion transport into and out of these potentially corrosive environments.

本发明的电池和电池结构的各种实施方案包括活性金属、活性金属离子、活性金属合金化金属和活性金属嵌入阳极材料,这些材料被具有非水阳极电解液的离子导电保护构造所保护。这些阳极可在电池组电池中与各种可能的阴极体系结合,阴极体系包括水、空气、金属氢化物和金属氧化物阴极和相关的阴极电解液体系,尤其是含水阴极电解液体系。Various embodiments of the batteries and battery structures of the present invention include active metals, active metal ions, active metal alloying metals, and active metal intercalation anode materials protected by an ionically conductive protective construction with a non-aqueous anolyte. These anodes can be combined in battery cells with various possible cathode systems including water, air, metal hydride and metal oxide cathodes and associated catholyte systems, especially aqueous catholyte systems.

对于保护构造的基本不透水层(例如玻璃或玻璃-陶瓷膜)破裂或以其它方式破碎并允许侵蚀性阴极电解液进入和接近锂电极的情况,还可向本发明的结构和电池内引入安全性添加剂。非水中间层结构可掺入当与反应性阴极电解液接触时会引起锂表面上形成不透水聚合物的凝胶/聚合剂。例如,阳极电解液可包括在水中不溶或很少溶解的聚合物的单体,例如二氧戊环(Diox)/聚二氧戊环(polydioxaloane),阴极电解液可包括单体用聚合引发剂,例如质子酸。Safeguards can also be introduced into the structures and cells of the present invention in the event that the substantially impermeable layer of the protective structure (such as a glass or glass-ceramic membrane) breaks or otherwise breaks and allows the aggressive catholyte to enter and gain access to the lithium electrode. sexual additives. The non-aqueous interlayer structure may incorporate gelling/polymerizing agents that cause the formation of water-impermeable polymers on the lithium surface when in contact with the reactive catholyte. For example, the anolyte may include monomers of polymers that are insoluble or poorly soluble in water, such as dioxolane (Diox)/polydioxaloane, and the catholyte may include a polymerization initiator for the monomers , such as protonic acids.

另外,本发明的结构和电池可采用任何合适的形式。有利于制造的一种有利形式为管状形式。Additionally, the structures and batteries of the present invention may take any suitable form. One advantageous form to facilitate manufacture is the tubular form.

在一个方面,本发明涉及电化学电池结构。该结构包括由活性金属、活性金属离子、活性金属合金、活性金属合金化金属或活性金属嵌入材料组成的阳极。阳极在它的表面上具有离子导电保护构造。该构造包括具有非水阳极电解液并与活性金属化学相容且接触阳极的活性金属离子导电隔膜层,和与隔膜层和含水环境化学相容且接触隔膜层的基本不透水离子导电层。隔膜层可为用有机阳极电解液浸渍的半透膜,例如用液体或凝胶相阳极电解液浸渍的微孔聚合物。这种电化学(电极)结构可与阴极体系包括含水阴极体系配对形成根据本发明的电池组电池。In one aspect, the invention relates to electrochemical cell structures. The structure includes an anode composed of an active metal, active metal ion, active metal alloy, active metal alloyed metal, or active metal intercalation material. The anode has an ionically conductive protective structure on its surface. The construction includes an active metal ionically conductive membrane layer having a nonaqueous anolyte and chemically compatible with the active metal and contacting the anode, and a substantially water impermeable ionically conductive layer chemically compatible with the membrane layer and an aqueous environment and contacting the membrane layer. The separator layer may be a semipermeable membrane impregnated with an organic anolyte, such as a microporous polymer impregnated with a liquid or gel phase anolyte. Such electrochemical (electrode) structures can be paired with cathode systems, including aqueous cathode systems, to form battery cells according to the invention.

本发明的结构和结合本发明结构的电池组电池可具有各种构造(包括棱柱状和圆柱状)和组成,包括活性金属离子、合金和嵌入阳极,含水的、水、空气、金属氢化物和金属氧化物阴极,和含水的、有机或离子液体阴极电解液;增强电池安全性和/或性能的电解质(阳极电解液和/或阴极电解液)组和物;和制造技术。The structures of the invention and battery cells incorporating the structures of the invention can have a variety of configurations (including prismatic and cylindrical) and compositions, including active metal ions, alloys and intercalated anodes, aqueous, water, air, metal hydride and Metal oxide cathodes, and aqueous, organic or ionic liquid catholytes; electrolyte (anolyte and/or catholyte) assemblies and components that enhance battery safety and/or performance; and manufacturing techniques.

在下文的详细描述中进一步描述和列举本发明的这些和其它特征。These and other features of the present invention are further described and enumerated in the detailed description below.

附图简述Brief description of the drawings

图1为结合了根据本发明的离子导电保护中间层构造的电化学结构电池的示意图。Figure 1 is a schematic diagram of an electrochemical structural cell incorporating an ion-conducting protective interlayer construction according to the present invention.

图2为结合了根据本发明的离子导电保护中间层构造的电池组电池的示意图。Figure 2 is a schematic illustration of a battery cell incorporating an ionically conductive protective interlayer construction according to the present invention.

图3A-C图示了根据本发明的使用管状保护阳极设计的电池组电池的实施方案。3A-C illustrate an embodiment of a battery cell using a tubular guarded anode design according to the present invention.

图4-7为图示结合了本发明的离子导电保护中间层构造的各种电池的性能的数据图。4-7 are graphs of data illustrating the performance of various cells incorporating ionically conductive protective interlayer configurations of the present invention.

图8图示了在用于产生图7所示数据的含水电解质中试验各种Li箔厚度的试验电池。FIG. 8 illustrates a test cell for testing various Li foil thicknesses in the aqueous electrolyte used to generate the data shown in FIG. 7 .

图9为结合了具有不同厚度的本发明离子导电保护中间层构造的阳极的电池比能推测曲线、Li厚度为3.3mm的保护阳极的电池重量比能值和电池结构图示以及计算用的参数。Fig. 9 is the battery specific energy estimation curve of the anode combined with the ion-conducting protective interlayer structure of the present invention with different thicknesses, the battery weight specific energy value of the protected anode with a Li thickness of 3.3mm, the battery structure illustration and the parameters used for calculation .

图10图示了根据本发明一种实施方案的Li/水电池和燃料电池用氢发生器。Figure 10 illustrates a hydrogen generator for Li/water batteries and fuel cells according to one embodiment of the present invention.

具体实施方案详述Detailed description of the specific implementation plan

现在将对本发明的具体实施方案详细说明。具体实施方案的例子图示在附图中。尽管结合这些具体实施方案描述了本发明,但应认识到并不打算限制本发明到这种具体实施方案。相反,旨在覆盖如附加权利要求所限定的本发明的精神和范围内包括的替代方案、改进和等价物。在下面的描述中,为了提供对本发明的彻底了解而阐述了大量具体细节。没有部分或全部这些具体细节也可实施本发明。在其它情况下,为了不会不必要地使本发明模糊,没有详细描述众所周知的过程操作。Specific embodiments of the present invention will now be described in detail. Examples of specific embodiments are illustrated in the accompanying drawings. While the invention has been described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.

当在本说明书和附加权利要求中结合“包括”、“一种方法包括”、“一种装置包括”或类似语言使用时,单数形式“一”和“该”包括复数引用,除非文中另外明确指明。除非另外定义,本文使用的全部技术和科学术语具有与本发明所属技术领域的普通技术人员常规理解相同的含义。When used in conjunction with "comprises", "a method comprising", "a means comprising" or similar language in this specification and the appended claims, the singular forms "a" and "the" include plural referents unless the context clearly dictates otherwise specified. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

引言introduction

活性金属在环境空气条件下反应性高,并在用作电极时能从阻挡层受益。它们通常为碱金属如(例如锂、钠或钾)、碱土金属(例如钙或镁),和/或某些过渡金属(例如锌),和/或这些中两种或多种的合金。可使用以下活性金属:碱金属(例如Li、Na、K)、碱土金属(例如Ca、Mg、Ba)或与Ca、Mg、Sn、Ag、Zn、Bi、Al、Cd、Ga、In的二元或三元碱金属合金。优选的合金包括锂铝合金、锂硅合金、锂锡合金、锂银合金和钠铅合金(例如Na4Pb)。优选的活性金属电极由锂构成。Active metals are highly reactive under ambient air conditions and benefit from barrier layers when used as electrodes. These are typically alkali metals such as (eg, lithium, sodium, or potassium), alkaline earth metals (eg, calcium or magnesium), and/or certain transition metals (eg, zinc), and/or alloys of two or more of these. The following active metals can be used: alkali metals (e.g. Li, Na, K), alkaline earth metals (e.g. Ca, Mg, Ba) or dioxos with Ca, Mg, Sn, Ag, Zn, Bi, Al, Cd, Ga, In elemental or ternary alkali metal alloys. Preferred alloys include lithium aluminum alloys, lithium silicon alloys, lithium tin alloys, lithium silver alloys, and sodium lead alloys (eg Na4Pb ). A preferred active metal electrode consists of lithium.

碱金属如锂的低当量使它们作为电池电极成分尤其有吸引力。锂能提供比传统电池标准-镍和镉更大的单位体积能量。但是,锂金属或结合锂的、电势接近锂金属电势(例如在约1伏内)的化合物,如锂合金和锂-离子(锂嵌入)阳极材料,对许多潜在的有吸引力的电解质和阴极材料有高的反应性。本发明描述了使用非水电解质中间层构造来隔离活性金属(例如碱金属,如锂)、活性金属合金或活性金属离子电极(通常是电池组电池的阳极)与周围环境和/或电池的阴极侧。该构造包括具有非水阳极电解液(即在阳极周围的电解质)的活性金属离子导电隔膜层,该隔膜层与活性金属化学相容并接触阳极,还包括与隔膜层和含水环境化学相容并接触隔膜层的基本不透水离子导电层。非水电解质中间层构造有效地隔离(分离)了阳极与周围环境和/或阴极,包括阴极电解液(即在阴极周围的电解质)环境,包括通常对Li或其它活性金属强腐蚀的这种环境,并且同时允许离子传递进入和离开这些可能腐蚀的环境。按照这种方式,允许电化学装置如电池组电池的其它部件用这种构造制成就有大的灵活度。阳极按照这种方式与电池组或其它电化学电池的其它部件的隔离允许与阳极结合使用几乎任何溶剂、电解质和/或阴极材料。而且,可进行电解质或阴极侧溶剂体系的优化,而不会影响阳极稳定性或性能。The low equivalent weight of alkali metals such as lithium makes them especially attractive as battery electrode components. Lithium can provide greater energy per unit volume than traditional battery standards - nickel and cadmium. However, lithium metal or compounds that incorporate lithium at potentials close to that of lithium metal (e.g., within about 1 volt), such as lithium alloys and lithium-ion (lithium intercalation) anode materials, are potentially attractive electrolytes and cathodes for many The material is highly reactive. The present invention describes the use of a non-aqueous electrolyte interlayer construction to isolate an active metal (e.g. alkali metal, such as lithium), active metal alloy, or active metal ion electrode (typically the anode of a battery cell) from the surrounding environment and/or the cathode of the cell side. The configuration includes an active metal ion conducting membrane layer having a non-aqueous anolyte (i.e., the electrolyte surrounding the anode) that is chemically compatible with the active metal and in contact with the anode, and a membrane layer that is chemically compatible with the membrane layer and the aqueous environment and The substantially water-impermeable ionically conductive layer contacts the membrane layer. The non-aqueous electrolyte interlayer configuration effectively isolates (separates) the anode from the surrounding environment and/or the cathode, including the catholyte (i.e., the electrolyte surrounding the cathode) environment, including such environments that are generally highly corrosive to Li or other active metals , and at the same time allow ion transfer into and out of these potentially corrosive environments. In this way, there is great flexibility in allowing other components of an electrochemical device, such as a battery cell, to be made with this configuration. Isolation of the anode from the other components of the battery or other electrochemical cell in this manner allows the use of virtually any solvent, electrolyte, and/or cathode material in conjunction with the anode. Furthermore, optimization of the electrolyte or cathode-side solvent system can be performed without compromising anode stability or performance.

有许多能从在具有活性金属(例如碱金属,例如锂)的电池阴极侧或电池组电池中的活性金属嵌入(例如锂合金或锂-离子)阳极上使用水溶液、空气和其它材料中受益的应用,水溶液包括水和水基电解质,其它材料对锂和其它活性金属有反应性,包括有机溶剂/电解质和离子液体。There are many potentials that can benefit from the use of aqueous solutions, air, and other materials on the cathode side of a battery with an active metal (e.g., an alkali metal, such as lithium) or on the anode with an active metal intercalation (e.g., lithium alloy or lithium-ion) in a battery cell. Applications, aqueous solutions include water and water-based electrolytes, other materials reactive to lithium and other active metals, including organic solvents/electrolytes and ionic liquids.

使用嵌锂电极材料如锂-碳和锂合金阳极而不是锂金属用于阳极还可提供有益的电池特性。首先,允许实现延长的电池循环寿命而没有形成可从Li表面生长到膜表面引起膜损坏的锂金属枝晶的风险。而且,在本发明的一些实施方案中,使用锂-碳和锂合金阳极代替锂金属阳极可显著提高电池安全性,因为这避免了循环过程中强反应性“海绵状”锂的形成。The use of lithium intercalation electrode materials such as lithium-carbon and lithium alloy anodes rather than lithium metal for the anode may also provide beneficial battery characteristics. First, it allows the achievement of extended battery cycle life without the risk of forming lithium metal dendrites that can grow from the Li surface to the membrane surface causing membrane damage. Moreover, in some embodiments of the present invention, the use of lithium-carbon and lithium alloy anodes instead of lithium metal anodes can significantly improve battery safety because it avoids the formation of highly reactive "sponge" lithium during cycling.

本发明描述了受保护的活性金属、合金或嵌入电极,其使非常高能量密度的锂电池成为可能,如使用以其它方式与例如锂金属起不利反应的含水电解质或其它电解质的那些。这些高能量电池对的例子有锂-空气、锂-水、锂-金属氢化物、锂-金属氧化物,和这些的锂合金和锂-离子变体。本发明的电池可在它们的电解液(阳极电解液和阴极电解液)中掺入其它组分以增强电池安全性,并可具有各种构造,包括平面状和管状/圆柱状。The present invention describes protected active metals, alloys or intercalation electrodes that enable very high energy density lithium batteries, such as those using aqueous or other electrolytes that would otherwise react adversely with, for example, lithium metal. Examples of these high energy battery pairs are lithium-air, lithium-water, lithium-metal hydride, lithium-metal oxide, and lithium alloy and lithium-ion variants of these. Batteries of the present invention may incorporate other components in their electrolytes (anolyte and catholyte) to enhance battery safety, and may have a variety of configurations, including planar and tubular/cylindrical.

非水中间层构造Non-aqueous middle layer structure

本发明的非水中间层构造设在电化学电池结构中,该结构具有阳极和在阳极第一表面上的离子导电保护构造,阳极由选自活性金属、活性金属离子、活性金属合金、活性金属合金化和活性金属嵌入材料中的材料构成。该构造由具有非水阳极电解液的活性金属离子导电隔膜层和基本不透水的离子导电层构成,隔膜层与活性金属化学相容并接触阳极,离子导电层与隔膜层和含水环境化学相容并接触隔膜层。隔膜层可包括半透膜,例如用有机阳极电解液浸渍的微孔聚合物,微孔聚合物如可从Celgard,Inc.Charlotte,North Carolina得到。The non-aqueous interlayer construction of the present invention is provided in an electrochemical cell structure having an anode and an ionically conductive protective construction on a first surface of the anode, the anode being composed of an active metal, an active metal ion, an active metal alloy, an active metal Alloyed and active metal embedded in material composition. The construction consists of an active metal ion-conducting membrane layer with a non-aqueous anolyte and a substantially water-impermeable ion-conducting layer that is chemically compatible with the active metal and contacts the anode and an ionically-conducting layer that is chemically compatible with the membrane layer and the aqueous environment and contact the membrane layer. The separator layer may comprise a semipermeable membrane such as a microporous polymer such as available from Celgard, Inc. Charlotte, North Carolina, impregnated with an organic anolyte.

本发明的保护构造结合了活性金属离子导电玻璃或玻璃-陶瓷(例如锂离子导电玻璃-陶瓷(LIC-GC))的基本不透水层,其具有高的活性金属离子导电性和对能与锂金属强烈反应的侵蚀性电解质例如含水电解质的稳定性。合适的材料为基本不透水的、离子导电的且与含水电解质或以其它方式与例如锂金属不利反应的其它电解质(阴极电解液)和/或阴极材料化学相容。这种玻璃或玻璃-陶瓷材料基本无间隙、不可溶胀且本质上是离子导电的。也就是说,它们由于它们本身的离子导电性质而不依赖于液体电解质或其它试剂的存在。它们还具有高的离子电导率,至少10-7S/cm,通常至少10-6S/cm,例如至少10- 5S/cm-10-4S/cm,并高至10-3S/cm或更高,从而多层保护结构的总离子电导率为至少10-7S/cm,并高至10-3S/cm或更高。该层的厚度优选为约0.1-1000微米,或者当该层的离子电导率为约10-7S/cm时,为约0.25-1微米,或当层的离子电导率在约10-4和约10-3S/cm之间时,为约10-1000微米,优选在1和500微米之间,更优选在10和100微米之间,例如20微米。The protective construction of the present invention incorporates a substantially water-impermeable layer of an active metal ion conducting glass or glass-ceramic, such as a lithium ion conducting glass-ceramic (LIC-GC), which has high active metal ion conductivity and a Stability of aggressive electrolytes with strong metal reactions such as aqueous electrolytes. Suitable materials are substantially water-impermeable, ionically conductive, and chemically compatible with aqueous electrolytes or other electrolytes (catholytes) and/or cathode materials that otherwise react unfavorably with, for example, lithium metal. Such glass or glass-ceramic materials are substantially gapless, non-swellable and ionically conductive in nature. That is, they do not rely on the presence of liquid electrolytes or other reagents due to their inherent ionically conductive properties. They also have a high ionic conductivity of at least 10 -7 S/cm, usually at least 10 -6 S/cm, for example at least 10 - 5 S/cm-10 -4 S/cm, and up to 10 -3 S/cm cm or higher, so that the overall ionic conductivity of the multilayer protective structure is at least 10 −7 S/cm and as high as 10 −3 S/cm or higher. The thickness of the layer is preferably about 0.1-1000 microns, or when the ionic conductivity of the layer is about 10-7 S/cm, about 0.25-1 micron, or when the ionic conductivity of the layer is between about 10-4 and about Between 10 −3 S/cm, about 10-1000 microns, preferably between 1 and 500 microns, more preferably between 10 and 100 microns, eg 20 microns.

合适的基本不透水锂离子导电层的合适例子包括玻璃态或非晶态金属离子导体,如磷基玻璃、氧化物基玻璃、磷-氧氮化物基玻璃、硫(sulpher)基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃或方硼石玻璃(如D.P.Button等在Solid State Ionics,9-10卷,第1部分,585-592(1983年12月)中描述的);陶瓷活性金属离子导体,如锂β-氧化铝、钠β-氧化铝、Li超离子导体(LISICON)、Na超离子导体(NASICON)等;或玻璃-陶瓷活性金属离子导体。具体例子包括LiPON、Li3PO4.Li2S.SiS2、Li2S.GeS2.Ga2S3、Li2O·11Al2O3、Na2O·11Al2O3、(Na,Li)1+xTi2-xAlx(PO4)3(0.6≤x≤0.9)和结晶学相关结构,Na3Zr2Si2PO12、Li3Zr2Si2PO12、Na5ZrP3O12、Na5TiP3O12、Na3Fe2P3O12、Na4NbP3O12、Li5ZrP3O12、Li5TiP3O12、Li3Fe2P3O12和Li4NbP3O12,和它们的组合,任选地被烧结或熔化。合适的陶瓷离子活性金属离子导体描述在例如Adachi等的美国专利4985317中,本文全文引入作为参考并用于各种目的。Suitable examples of suitable substantially impermeable lithium ion conducting layers include glassy or amorphous metal ion conductors such as phosphorus-based glasses, oxide-based glasses, phosphorus-oxynitride-based glasses, sulfur (sulpher)-based glasses, oxide /Sulphide-based glass, Selenide-based glass, Gallium-based glass, Germanium-based glass or Peroborite glass (such as DPButton et al. in Solid State Ionics, Volume 9-10, Part 1, 585-592 (December 1983) described in ); ceramic active metal ion conductors, such as lithium β-alumina, sodium β-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON), etc.; or glass-ceramic active metal ion conductors. Specific examples include LiPON, Li 3 PO 4 .Li 2 S.SiS 2 , Li 2 S.GeS 2 .Ga 2 S 3 , Li 2 O·11Al 2 O 3 , Na 2 O·11Al 2 O 3 , (Na, Li) 1+x Ti 2-x Al x (PO 4 ) 3 (0.6≤x≤0.9) and crystallographically related structures, Na 3 Zr 2 Si 2 PO 12 , Li 3 Zr 2 Si 2 PO 12 , Na 5 ZrP 3 O 12 , Na 5 TiP 3 O 12 , Na 3 Fe 2 P 3 O 12 , Na 4 NbP 3 O 12 , Li 5 ZrP 3 O 12 , Li 5 TiP 3 O 12 , Li 3 Fe 2 P 3 O 12 and Li 4 NbP 3 O 12 , and combinations thereof, are optionally sintered or melted. Suitable ceramic ionically active metal ion conductors are described, for example, in Adachi et al., US Patent 4,985,317, which is incorporated herein by reference in its entirety for all purposes.

用于保护构造的基本不透水层的尤其合适的玻璃-陶瓷材料为具有以下组成并包含由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2- xSiyP3-yO12构成的主晶相的锂离子导电玻璃-陶瓷:A particularly suitable glass-ceramic material for the substantially water-impermeable layer of the protective construction is one having the following composition and comprising Li 1+x (M, Al, Ga) x (Ge 1-y Ti y ) 2-x (PO 4 ) 3 and/or Li 1+x+y Q x Ti 2- x Si y P 3-y O 12 main crystal phase Li-ion conductive glass-ceramics:

Figure C20048004269700161
Figure C20048004269700161

其中Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3中X≤0.8和0≤Y≤1.0,M为选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,Li1+x+yQxTi2-xSiyP3-yO12中0<X≤0.4和0<Y≤0.6,Q为Al或Ga。通过将原料熔化成熔体、将熔体浇铸成玻璃并对玻璃进行热处理得到玻璃-陶瓷。这种材料可从日本OHARA公司得到,并进一步描述在美国专利5702995、6030909、6315881和6485622中,本文引入作为参考。Where X≤0.8 and 0≤Y≤1.0 in Li 1+x (M, Al, Ga) x (Ge 1-y Ti y ) 2-x (PO 4 ) 3 , M is selected from Nd, Sm, Eu, Elements of Gd, Tb, Dy, Ho, Er, Tm and Yb, Li 1+x+y Q x Ti 2-x Si y P 3-y O 12 in 0<X≤0.4 and 0<Y≤0.6, Q It is Al or Ga. Glass-ceramics are obtained by melting raw materials into a melt, casting the melt into glass, and heat-treating the glass. Such materials are available from OHARA Corporation of Japan and are further described in US Patent Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622, incorporated herein by reference.

这种锂离子导电基本不透水层和它们的制造技术以及在电池组电池中的结合描述在美国临时专利申请No.60/418899中,该专利于2002年10月15日提交,题目为IONICALLY CONDUCTIVE COMPOSITESFOR PROTECTION OF ANODES AND ELECTROLYTES,它的相应美国专利申请为No.10/686189(Attorney Docket No.PLUSP027),2003年10月14日提交,题目为IONICALLY CONDUCTIVE COMPOSITESFOR PROTECTION OF ACTIVE METAL ANODES,美国专利申请No.10/731771(Attorney Docket No.PLUSP027X1),2003年12月5日提交,题目为IONICALLY CONDUCTIVE COMPOSITES FORPROTECTION OF ACTIVE METAL ANODES,和美国专利申请No.10/772228(Attorney Docket No.PLUSP039),2004年2月3日提交,题目为IONICALLY CONDUCTIVE MEMBRANES FORPROTECTION OF ACTIVE METAL ANODES AND BATTERYCELLS。本文出于各种目的全文引入这些申请作为参考。Such lithium-ion conductive substantially impermeable layers and their fabrication techniques and incorporation in battery cells are described in U.S. Provisional Patent Application No. 60/418899, filed October 15, 2002, and entitled IONICALLY CONDUCTIVE COMPOSITESFOR PROTECTION OF ANODES AND ELECTROLYTES, its corresponding U.S. patent application No. 10/686189 (Attorney Docket No.PLUSP027), submitted on October 14, 2003, titled IONICALLY CONDUCTIVE COMPOSITES FOR PROTECTION OF ACTIVE METAL ANODES, U.S. patent application No. .10/731771 (Attorney Docket No.PLUSP027X1), filed December 5, 2003, entitled IONICALLY CONDUCTIVE COMPOSITES FORPROTECTION OF ACTIVE METAL ANODES, and U.S. Patent Application No. 10/772228 (Attorney Docket No.PLUSP039), 2004 Submitted on February 3, the title is IONICALLY CONDUCTIVE MEMBRANES FORPROTECTION OF ACTIVE METAL ANODES AND BATTERYCELLS. These applications are incorporated herein by reference in their entirety for all purposes.

在锂(或其它活性金属或活性金属嵌入)电池中使用这些强导电玻璃和玻璃-陶瓷时的临界限制在于它们对锂金属或电势接近锂金属电势(例如在约1伏内)的结合锂的化合物的反应性。本发明的非水电解质中间层隔离锂(例如)电极与玻璃或玻璃-陶瓷膜反应。非水中间层可具有半透膜,如Celgard微孔隔膜,来防止锂电极机械接触到玻璃或玻璃-陶瓷膜上。用带有溶剂的有机液体电解质(阳极电解液)浸渍该膜,溶剂如碳酸乙二酯(EC)、碳酸丙二酯(PC)、1,2-二甲氧基乙烷(DME)、1,3-二氧戊环(DIOX),或各种醚、甘醇二甲醚、内酯、砜、环丁砜、或它们的混合物。它可能还或替代地具有聚合物电解质、凝胶型电解质或这些的组合。重要的标准在于锂电极在非水阳极电解液中稳定,非水阳极电解液对Li+离子充分传导,锂电极不直接接触玻璃或玻璃-陶瓷膜,并且整个装置允许锂离子穿过玻璃或玻璃-陶瓷膜。A critical limitation when using these strongly conductive glasses and glass-ceramics in lithium (or other active metal or active metal intercalation) batteries is their sensitivity to lithium metal or bound lithium at potentials close to that of lithium metal (e.g., within about 1 volt). Compound reactivity. The non-aqueous electrolyte interlayer of the present invention isolates the lithium (for example) electrode from reacting with the glass or glass-ceramic membrane. The non-aqueous interlayer can have a semi-permeable membrane, such as a Celgard microporous separator, to prevent the lithium electrode from mechanically contacting the glass or glass-ceramic membrane. The membrane is impregnated with an organic liquid electrolyte (anolyte) with a solvent such as ethylene carbonate (EC), propylene carbonate (PC), 1,2-dimethoxyethane (DME), 1 , 3-dioxolane (DIOX), or various ethers, glyme, lactone, sulfone, sulfolane, or mixtures thereof. It may also or alternatively have a polymer electrolyte, a gel-type electrolyte, or a combination of these. Important criteria are that the lithium electrode is stable in the nonaqueous anolyte, that the nonaqueous anolyte is sufficiently conductive for Li+ ions, that the lithium electrode is not in direct contact with the glass or glass-ceramic membrane, and that the entire device allows lithium ions to pass through the glass or glass-ceramic membrane. Ceramic Membrane.

参考图1,图示和描述了本发明的一个具体实施方案。图1显示了电化学电池结构100的不成比例的图,电化学电池结构100具有活性金属、活性金属离子、活性金属合金化金属或活性金属嵌入材料阳极102和离子导电保护构造104。保护构造104具有在阳极102的表面上带有非水阳极电解液(有时还称为转移电解质)的活性金属离子导电隔膜层106和接触隔膜层106的基本不透水离子导电层108。隔膜层106与活性金属化学相容,基本不透水层108与隔膜层106和含水环境化学相容。结构100可任选地包括集电器110,集电器110由不会与活性金属形成合金或嵌入活性金属的合适导电金属组成。当活性金属为锂时,合适的集电器材料为铜。集电器110还可用于密封阳极与周围环境隔离以防止活性金属与周围空气或湿气的不利反应。Referring to Figure 1, a specific embodiment of the present invention is illustrated and described. 1 shows a not-to-scale view of an electrochemical cell structure 100 having an active metal, active metal ion, active metal alloying metal, or active metal intercalation material anode 102 and an ionically conductive protective construction 104 . The protective construction 104 has an active metal ion-conducting membrane layer 106 with a non-aqueous anolyte (also sometimes referred to as a transfer electrolyte) on the surface of the anode 102 and a substantially water-impermeable ion-conducting layer 108 contacting the membrane layer 106 . The membrane layer 106 is chemically compatible with the active metal, and the substantially water-impermeable layer 108 is chemically compatible with the membrane layer 106 and the aqueous environment. The structure 100 may optionally include a current collector 110 composed of a suitable conductive metal that does not alloy with or embed the active metal. When the active metal is lithium, a suitable current collector material is copper. The current collector 110 can also be used to seal the anode from the surrounding environment to prevent adverse reactions of the active metal with the surrounding air or moisture.

隔膜层106由用有机阳极电解液浸渍的半透膜构成。例如,该半透膜可为微孔聚合物,如可从Celgard,Inc得到的。有机阳极电解液可为液相或凝胶相。例如,阳极电解液可包括选自有机碳酸酯、醚、内酯、砜等中的溶剂和它们的组合,如EC、PC、DEC、DMC、EMC、1,2-DME或高级甘醇二甲醚、THF、2MeTHF、环丁砜和它们的组合。1,3-二氧戊环还可用作阳极电解液溶剂,尤其是但不必然是用于增强结合该结构的电池的安全性时,如下文进一步描述。当阳极电极液处于凝胶相时,可加入胶凝剂如聚偏氟乙烯(PVdF)化合物、六氟丙烯-亚乙烯氟化物共聚物(PVdf-HFP)、聚丙烯腈化合物、交联聚醚化合物、聚氧化烯化合物、聚氧化乙烯化合物和组合等以使溶剂形成凝胶。当然,合适的阳极电解液还包括活性金属盐,如在锂的情况下,例如LiPF6、LiBF4、LiAsF6、LiSO3CF3或LiN(SO2C2F5)2。合适的隔膜层的一个例子是溶解在碳酸丙二酯中的1M LiPF6,并浸渍在Celgard微孔聚合物膜中。The membrane layer 106 consists of a semipermeable membrane impregnated with an organic anolyte. For example, the semipermeable membrane can be a microporous polymer such as available from Celgard, Inc. The organic anolyte can be in liquid or gel phase. For example, the anolyte may include solvents selected from organic carbonates, ethers, lactones, sulfones, etc., and combinations thereof, such as EC, PC, DEC, DMC, EMC, 1,2-DME, or higher glyme ethers, THF, 2MeTHF, sulfolane, and combinations thereof. 1,3-Dioxolane can also be used as an anolyte solvent, especially, but not necessarily, to enhance the safety of batteries incorporating this structure, as described further below. When the anolyte solution is in the gel phase, a gelling agent such as polyvinylidene fluoride (PVdF) compound, hexafluoropropylene-vinylidene fluoride copolymer (PVdf-HFP), polyacrylonitrile compound, cross-linked polyether can be added Compounds, polyoxyalkylene compounds, polyoxyethylene compounds, combinations, etc., to form a gel from a solvent. Of course, suitable anolytes also include active metal salts, as in the case of lithium, for example LiPF 6 , LiBF 4 , LiAsF 6 , LiSO 3 CF 3 or LiN(SO 2 C 2 F 5 ) 2 . An example of a suitable separator layer is 1M LiPF6 dissolved in propylene carbonate and impregnated in a Celgard microporous polymer membrane.

根据本发明的保护构造有大量优点。尤其是结合了这种构造的电池结构较容易制造。在一个例子中,锂金属被简单地靠着用有机液体或凝胶电解质浸渍的微孔隔膜放置,隔膜则靠近玻璃/玻璃陶瓷活性金属离子导体。The protective construction according to the invention has numerous advantages. Especially battery structures incorporating this configuration are easier to manufacture. In one example, lithium metal is simply placed against a microporous separator impregnated with an organic liquid or gel electrolyte, which is next to a glass/glass-ceramic active metal ion conductor.

当使用玻璃-陶瓷时,实现了非水中间层的其它优点。当热处理上面引用的OHARA公司专利所描述类型的非晶态玻璃时,玻璃失透,导致玻璃-陶瓷的形成。但是,这种热处理可导致表面粗糙度的形成,这难以利用无机保护中间层如LiPON、Cu3N等的气相沉积来涂敷。液体(或凝胶)非水电解质中间层的使用能容易地通过常规液流覆盖这种粗糙表面,从而消除了对表面抛光等的需要。从这个意义上讲,可使用技术如“收缩”(Sony公司和Shott Glass所述(T.Kessler,H.Wegener,T.Togawa,M.Hayashi和T.Kakizaki,“Large MicrosheetGlass for 40-in.Class PALC Displays”,1997,FMC2-3,从Shott Glass网站:http://www.schott.com/english下载,本文引入作为参考))形成薄的玻璃层(20-100微米),并热处理这些玻璃形成玻璃-陶瓷。Additional advantages of non-aqueous interlayers are achieved when glass-ceramic is used. When heat treating amorphous glass of the type described in the OHARA Corporation patent cited above, the glass devitrifies, resulting in the formation of a glass-ceramic. However, such heat treatment can lead to the formation of surface roughness, which is difficult to coat by vapor deposition of inorganic protective interlayers such as LiPON, Cu3N , etc. The use of a liquid (or gel) non-aqueous electrolyte interlayer can easily cover such a rough surface by conventional liquid flow, thereby eliminating the need for surface polishing and the like. In this sense, techniques such as "shrinkage" (described by Sony Corporation and Shott Glass (T. Kessler, H. Wegener, T. Togawa, M. Hayashi and T. Kakizaki, "Large Microsheet Glass for 40-in. Class PALC Displays", 1997, FMC2-3, downloaded from the Shott Glass website: http://www.schott.com/english, incorporated herein by reference)) to form thin glass layers (20-100 microns), and heat treat these The glass forms a glass-ceramic.

电池组电池battery pack battery

非水中间层构造通常在电池组电池中被有效地采用。例如,图1的电化学结构100可与阴极体系120配对形成电池200,如图2所示。阴极体系120包括电子导电部件、离子导电部件和电化学活性部件。由于保护构造提供的隔离,阴极体系120可具有任何所需的组成,不受阳极或阳极电解液组成限制。特别地,阴极体系可引入在其它情况下与阳极活性金属强烈反应的组分,如含水材料,包括水、含水阴极电解液和空气,金属氢化物电极和金属氧化物电极。Non-aqueous interlayer constructions are generally employed effectively in battery cells. For example, the electrochemical structure 100 of FIG. 1 can be paired with the cathode system 120 to form a battery 200, as shown in FIG. 2 . Cathode system 120 includes electronically conductive components, ionically conductive components, and electrochemically active components. Due to the isolation provided by the protective structure, the cathode system 120 can be of any desired composition, independent of the composition of the anode or anolyte. In particular, the cathodic system may incorporate components that would otherwise be strongly reactive with the anode active metal, such as aqueous materials, including water, aqueous catholyte and air, metal hydride electrodes and metal oxide electrodes.

在一种实施方案中,Celgard隔膜将靠着薄玻璃-陶瓷的一侧放置,然后是非水液体或凝胶电解质,再是锂电极。在玻璃陶瓷膜的另一侧,可使用侵蚀性溶剂,如含水电解质。按照这种方式,可构建例如廉价的Li/水或Li/空气电池。In one embodiment, a Celgard separator will be placed against one side of the thin glass-ceramic, followed by a non-aqueous liquid or gel electrolyte, followed by a lithium electrode. On the other side of the glass-ceramic membrane, aggressive solvents such as aqueous electrolytes can be used. In this way, for example inexpensive Li/water or Li/air batteries can be constructed.

根据本发明的电池能具有非常高的容量和比能。例如,容量大于5、大于10、大于100或甚至大于500mAh/cm2的电池都是可能的。如下面的实施例进一步所述,证实了Li阳极约3.35mm厚的本发明的Li/水试验电池具有约650mAh/cm2的容量。基于这种性能,推测显示出本发明Li/空气电池的非常高的比能。例如,对于具有3.3mm厚Li阳极、叠层厚度为6mm和面积为45cm2的Li/空气电池,未封装的比能为约3400Wh/l(4100Wh/kg),封装的比能为约1000Wh/l(1200Wh/kg),假定70%封装负荷。Batteries according to the invention can have very high capacities and specific energies. For example, batteries with capacities greater than 5, greater than 10, greater than 100, or even greater than 500 mAh/ cm2 are possible. As further described in the Examples below, a Li/water test cell of the invention with a Li anode about 3.35 mm thick was demonstrated to have a capacity of about 650 mAh/ cm2 . Based on this performance, it is presumed that the Li/air battery of the present invention exhibits a very high specific energy. For example, for a Li/air battery with a 3.3 mm thick Li anode, a stack thickness of 6 mm and an area of 45 cm2 , the specific energy is about 3400 Wh/l (4100 Wh/kg) unencapsulated and about 1000 Wh/kg when encapsulated. l (1200Wh/kg), assuming 70% package load.

阴极体系Cathode system

如上所述,由于保护构造提供的隔离,根据本发明的电池组电池的阴极体系120可具有任何所需的组成,不受阳极或阳极电解液组成限制。特别地,阴极体系可引入在其它情况下与阳极活性金属强烈反应的组分,如含水材料,包括水、水溶液和空气,金属氢化物电极和金属氧化物电极。As noted above, due to the isolation provided by the protective construction, the cathode system 120 of a battery cell according to the present invention may be of any desired composition, independent of the anode or anolyte composition. In particular, the cathode system may incorporate components that would otherwise be strongly reactive with the anode active metal, such as aqueous materials, including water, aqueous solutions and air, metal hydride electrodes and metal oxide electrodes.

本发明的电池组电池可包括而不限于水、水溶液、空气电极和金属氢化物电极,如题目为ACTIVE METAL/AQUEOUSELECTROCHEMICAL CELLS AND SYSTEMS的共同待审申请No.10/772157中所述,本文全文引入作为参考并用于各种目的,以及金属氧化物电极,例如在常规锂离子电池中所使用的。The battery cells of the present invention may include, without limitation, water, aqueous solution, air electrodes, and metal hydride electrodes, as described in co-pending application Ser. For reference and for various purposes, as well as metal oxide electrodes, such as those used in conventional lithium-ion batteries.

通过本发明的保护中间层构造获得的阳极和阴极之间的有效隔离还能使阴极体系尤其是含水体系以及非水体系选择中的巨大灵活度成为可能。由于受保护阳极与阴极电解液完全分离,因而阴极电解液与阳极的相容性不再是问题,可使用对Li动力学上不稳定的溶剂和盐。The effective isolation between anode and cathode achieved by the protective interlayer configuration of the invention also enables great flexibility in the choice of cathode systems, especially aqueous systems as well as non-aqueous systems. Since the protected anode is completely separated from the catholyte, the compatibility of the catholyte with the anode is no longer an issue, and solvents and salts that are kinetically unstable to Li can be used.

对于使用水作为电化学活性阴极材料的电池,多孔电子导电支撑结构可提供阴极体系的电子导电部件。含水电解质(阴极电解液)提供Li离子传递(导电性)的离子载体和与Li结合的阴离子。电化学活性组分(水)和离子导电组分(含水阴极电解液)将被混和成单一溶液,尽管它们在概念上是电池组电池的单独元件。本发明的Li/水电池组电池的合适阴极电解液包括任何具有合适离子电导率的含水电解质。合适的电解质可为酸性,例如强酸如HCl、H2SO4、H3PO4或弱酸如乙酸/醋酸锂;碱性,例如LiOH;中性,例如海水、LiCl、LiBr、LiI;或两性,例如NH4Cl、NH4Br等。For batteries using water as the electrochemically active cathode material, the porous electronically conductive support structure can provide the electronically conductive component of the cathode system. The aqueous electrolyte (catholyte) provides the ionophore for Li ion transport (conductivity) and the anions that bind Li. The electrochemically active component (water) and the ionically conductive component (aqueous catholyte) will be mixed into a single solution, although they are conceptually separate elements of the battery cell. Suitable catholytes for Li/water battery cells of the present invention include any aqueous electrolyte with suitable ionic conductivity. Suitable electrolytes may be acidic, such as strong acids such as HCl, H2SO4 , H3PO4 or weak acids such as acetic acid/lithium acetate; basic, such as LiOH; neutral, such as seawater , LiCl, LiBr, LiI; or amphoteric, For example, NH 4 Cl, NH 4 Br, etc.

海水作为电解质的适宜性使具有非常高能量密度的用于海洋应用的电池组电池成为可能。使用前,电池结构由受保护阳极和多孔电子导电支撑结构(阴极的电子导电部件)组成。当需要时,通过将该电池浸没在能提供电化学活性和离子导电部件的海水中来完成电池。由于后一部件由环境中的海水提供,因此在它使用前不用作为电池组电池的一部分被运输(因而不需要包括在电池能量密度计算中)。这种电池被称为“开路”电池,因为不包含阴极侧上的反应产物。因此,这种电池为原电池。The suitability of seawater as an electrolyte enables battery cells with very high energy densities for marine applications. Before use, the cell structure consists of a protected anode and a porous electronically conductive support structure (the electronically conductive part of the cathode). When required, the cell is completed by submerging the cell in seawater which provides electrochemically active and ionically conductive components. Since the latter component is provided by seawater in the environment, it is not shipped as part of the battery cell (and thus does not need to be included in the battery energy density calculation) until it is used. Such cells are referred to as "open circuit" cells because no reaction products on the cathode side are contained. Therefore, this battery is a primary battery.

根据本发明,二次Li/水电池也是可能的。如上所述,这种电池被称为“闭路”电池,因为在电池的阴极侧上包含阴极侧上的反应产物,其用于在对电池施加适宜的再充电电势时通过跨过保护膜移动Li离子返回来为阳极再充电。Secondary Li/water batteries are also possible according to the invention. As noted above, such cells are referred to as "closed-circuit" cells because the reaction products on the cathode side of the cell are contained on the cathode side, which serve to move Li across the protective membrane when a suitable recharging potential is applied to the cell. The ions return to recharge the anode.

如上文说明和下文进一步所述,在本发明的另一实施方案中,涂在多孔催化电子导电载体上的离聚物减少或消除了对电化学活性材料中离子导电性的需要。As described above and further below, in another embodiment of the present invention, the ionomer coated on the porous catalytic electronically conductive support reduces or eliminates the need for ionic conductivity in the electrochemically active material.

在Li/水电池中发生的电化学反应为氧化还原反应,其中电化学活性阴极材料得到还原。在Li/水电池中,催化电子导电载体有利于氧化还原反应。如上所述,但不限制于此,在Li/水电池中,该电池反应被认为是:The electrochemical reactions occurring in Li/water batteries are redox reactions in which the electrochemically active cathode material is reduced. In Li/water batteries, catalytic electron-conducting supports facilitate redox reactions. As mentioned above, but not limited thereto, in a Li/water battery, the battery reaction is considered to be:

Li+H2O=LiOH+1/2H2 Li+H 2 O=LiOH+1/2H 2

阳极和阴极处的半电池反应被认为是:The half-cell reactions at the anode and cathode are considered to be:

阳极:Li=Li++e- Anode: Li=Li + +e -

阴极:e-+H2O=OH-+1/2H2 Cathode: e - +H 2 O=OH - +1/2H 2

因此,Li/水阴极的催化剂促进了到水的电子转移,产生氢和氢氧根离子。用于这种反应的常用廉价催化剂是镍金属;贵金属如Pt、Pd、Ru、Au等也起作用但较昂贵。Therefore, the catalyst of the Li/water cathode facilitates the electron transfer to water, generating hydrogen and hydroxide ions. A common inexpensive catalyst for this reaction is nickel metal; noble metals such as Pt, Pd, Ru, Au, etc. also work but are more expensive.

具有受保护Li阳极和含水电解质的电池也被认为在本发明的Li(或其它活性金属)/水电池的范围内,其中含水电解质由可溶解在水中的可用作活性阴极材料(电化学活性组分)的气态和/或固态氧化剂组成。使用作为比水更强的氧化剂的水溶性化合物在一些应用中与锂/水电池相比能显著增加电池能量,其中在电池放电反应中,在阴极表面处发生电化学氢析出。这种气态氧化剂的例子有O2、SO2和NO2。另外,金属亚硝酸盐尤其是NaNO2和KNO2和金属亚硫酸盐如Na2SO3和K2SO3都是比水强的氧化剂,并可容易地以大浓度溶解。可溶于水的另一类无机氧化剂为锂、钠和钾的过氧化物,以及过氧化氢H2O2Batteries with protected Li anodes and aqueous electrolytes are also contemplated within the scope of the Li (or other active metal)/water batteries of the present invention, wherein the aqueous electrolyte is composed of water-soluble materials that can be used as active cathode materials (electrochemically active Components) gaseous and/or solid oxidant composition. The use of water-soluble compounds that are stronger oxidants than water can significantly increase battery energy in some applications compared to lithium/water batteries where electrochemical hydrogen evolution occurs at the cathode surface during the battery discharge reaction. Examples of such gaseous oxidants are O2 , SO2 and NO2 . In addition, metal nitrites, especially NaNO2 and KNO2 , and metal sulfites such as Na2SO3 and K2SO3 are stronger oxidizing agents than water and can be easily dissolved in large concentrations . Another class of inorganic oxidizing agents that are soluble in water are lithium, sodium and potassium peroxides, and hydrogen peroxide H2O2 .

使用过氧化氢作为氧化剂尤其有利。在根据本发明的电池组电池中有至少两种使用过氧化氢的方法。首先,阴极表面上过氧化氢的化学分解导致氧气的产生,氧气可用作活性阴极材料。其次,或许更有效的方法,基于阴极表面上过氧化氢的直接电还原。原理上,过氧化氢可从碱性或酸性溶液被还原。对于利用酸性溶液的过氧化氢还原的电池,可获得最高的能量密度。在这种情况下,与Li/水对的E0=3.05V相比,具有Li阳极的电池产生E0=4.82V(标准条件)。但是,由于两种酸和过氧化氢对未保护Li的非常高的反应性,这种电池实际上只对于诸如根据本发明这类的受保护Li阳极才能实现。It is especially advantageous to use hydrogen peroxide as oxidizing agent. There are at least two ways of using hydrogen peroxide in a battery cell according to the invention. First, the chemical decomposition of hydrogen peroxide on the cathode surface results in the generation of oxygen, which can be used as an active cathode material. The second, and perhaps more efficient method, is based on the direct electroreduction of hydrogen peroxide on the surface of the cathode. In principle, hydrogen peroxide can be reduced from alkaline or acidic solutions. The highest energy densities are obtained for cells utilizing hydrogen peroxide reduction in acidic solutions. In this case, the cell with Li anode yielded E 0 =4.82 V (standard conditions) compared to E 0 =3.05 V for the Li/water pair. However, due to the very high reactivity of the two acids and hydrogen peroxide towards unprotected Li, such cells are practically only achievable with protected Li anodes such as those according to the present invention.

对于使用空气作为电化学活性阴极材料的电池,这些电池的空气电化学活性组分包括为电化学反应提供水的水分。电池具有与阳极电连接以允许电子转移来还原空气阴极活性材料的电子导电支撑结构。电子导电支撑结构通常是多孔的,以允许流体(空气)流动且有催化性或用催化剂处理来催化阴极活性材料的还原。具有合适离子电导率的含水电解质或离聚物也与电子导电支撑结构接触,以允许电子导电支撑结构内的离子传递来完成氧化还原反应。For cells that use air as the electrochemically active cathode material, the electrochemically active components of air for these cells include moisture that provides water for the electrochemical reaction. The battery has an electronically conductive support structure electrically connected to the anode to allow electron transfer to reduce the air cathode active material. The electronically conductive support structure is typically porous to allow fluid (air) flow and is catalytic or treated with a catalyst to catalyze the reduction of the cathode active material. An aqueous electrolyte or ionomer with suitable ionic conductivity is also in contact with the electronically conductive support structure to allow ion transport within the electronically conductive support structure to complete the redox reaction.

空气阴极体系包括电子导电部件(例如多孔电子导体)、具有至少一种含水成分的离子导电部件和作为电化学活性部件的空气。它可为任何合适的空气电极,包括在金属(例如Zn)/空气电池或低温(例如PEM)燃料电池中常用的那些。在金属/空气电池尤其是Zn/空气电池中使用的空气阴极描述在许多出处中,包括“Handbook of Batteries”(Linden和T.B.Reddy,McGraw-Hill,NY,第三版),并通常由几层组成,包括空气扩散膜、疏水Teflon层、催化剂层和金属电子导电部件/集电器,如Ni筛。催化剂层还包括可为水性和/或离聚的离子导电组分/电解质。典型的含水电解质由溶解在水中的KOH组成。典型的离聚电解质由水合(水)Li离子导电聚合物如全氟磺酸聚合物薄膜(例如du Pont NAFION)组成。空气扩散膜调节空气(氧气)流。疏水层阻止电池的电解质渗透到空气扩散膜内。该层通常包含碳和Teflon颗粒。催化剂层通常包含高表面积碳和加速氧气还原的催化剂。在大多数商业阴极中,使用金属氧化物如MnO2作为氧气还原的催化剂。替代的催化剂包括金属大环如钴酞菁,和高分散贵金属如铂和铂/钌合金。由于空气电极结构与活性金属电极化学隔离,因此空气电极的化学组成不受与阳极活性材料可能的反应性的限制。这允许使用通常会侵蚀未受保护金属电极的材料设计更高性能的空气电极。An air cathode system includes an electronically conductive component (eg, a porous electronic conductor), an ionically conductive component having at least one aqueous component, and air as the electrochemically active component. It can be any suitable air electrode, including those commonly used in metal (eg Zn)/air cells or low temperature (eg PEM) fuel cells. Air cathodes used in metal/air batteries, especially Zn/air batteries, are described in many sources, including "Handbook of Batteries" (Linden and TBReddy, McGraw-Hill, NY, 3rd ed.), and typically consist of several layers , including air diffusion membranes, hydrophobic Teflon layers, catalyst layers, and metal electronically conductive components/current collectors, such as Ni sieves. The catalyst layer also includes an ionically conductive component/electrolyte which may be aqueous and/or ionomeric. A typical aqueous electrolyte consists of KOH dissolved in water. Typical ionolytic electrolytes consist of hydrated (water) Li ion-conducting polymers such as perfluorosulfonic acid polymer membranes (eg du Pont NAFION). Air diffusion membranes regulate air (oxygen) flow. The hydrophobic layer prevents the battery's electrolyte from penetrating into the air diffusion membrane. This layer usually contains carbon and Teflon particles. The catalyst layer typically contains high surface area carbon and a catalyst that accelerates oxygen reduction. In most commercial cathodes, metal oxides such as MnO2 are used as catalysts for oxygen reduction. Alternative catalysts include metal macrocycles such as cobalt phthalocyanine, and highly dispersed noble metals such as platinum and platinum/ruthenium alloys. Since the air electrode structure is chemically isolated from the active metal electrode, the chemical composition of the air electrode is not limited by the possible reactivity with the anode active material. This allows the design of higher performance air electrodes using materials that would normally attack unprotected metal electrodes.

根据本发明的另一类型的结合了受保护阳极和阴极体系的活性金属/含水电池组电池为锂(或其它活性金属)/金属氢化物电池。例如,用本文描述的非水中间层构造保护的锂阳极可在适合作为锂/金属氢化物电池中电解质的水溶液中被放电和充电。合适的电解质提供源或质子。例子包括卤化物酸或酸式盐,包括氯化物或溴化物酸或盐例如HCl、HBr、NH4Cl或NH4Br的水溶液。Another type of active metal/aqueous battery cell incorporating a protected anode and cathode system according to the invention is a lithium (or other active metal)/metal hydride cell. For example, a lithium anode protected with the non-aqueous interlayer configuration described herein can be discharged and charged in an aqueous solution suitable as an electrolyte in a lithium/metal hydride cell. A suitable electrolyte provides the source or protons. Examples include halide acids or acid salts, including aqueous solutions of chloride or bromide acids or salts such as HCl, HBr, NH4Cl or NH4Br .

除了上述含水、空气等体系外,利用结合了常规Li-离子电池阴极和电解质的阴极体系可得到提高的性能,阴极如金属氧化物阴极(例如LixCoO2、LixNiO2、LixMn2O4和LiFePO4)和烷基碳酸酯的二元、三元或多组分混合物,或它们与作为Li金属盐(例如LiPF6、LiAsF6或LiBF4)的溶剂的醚的混合物;或Li金属电池阴极(例如元素硫或聚硫化物)和电解质,该电解质由有机碳酸酯、醚、甘醇二甲醚、内酯、砜、环丁砜和它们的组合,如EC、PC、DEC、DMC、EMC、1,2-DME、THF、2MeTHF和它们的组合构成,如例如美国专利6376123中所述,本文引入作为参考。In addition to the above systems containing water, air, etc., improved performance can be obtained by using cathode systems that combine conventional Li-ion battery cathodes and electrolytes, such as metal oxide cathodes (such as Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 and LiFePO 4 ) and binary, ternary or multicomponent mixtures of alkyl carbonates, or their mixtures with ethers as solvents for Li metal salts (such as LiPF 6 , LiAsF 6 or LiBF 4 ); or Li metal battery cathodes (e.g. elemental sulfur or polysulfides) and electrolytes consisting of organic carbonates, ethers, glymes, lactones, sulfones, sulfolanes, and combinations thereof, such as EC, PC, DEC, DMC , EMC, 1,2-DME, THF, 2MeTHF, and combinations thereof, as described, for example, in US Patent 6,376,123, incorporated herein by reference.

此外,阴极电解液溶液可只由低粘度溶剂组成,如醚,像1,2-二甲氧基乙烷(DME)、四氢呋喃(THF)、2-甲基四氢呋喃、1,3-二氧戊环(DIOX)、4-甲基二氧戊环(4-MeDIOX)或有机碳酸酯如碳酸二甲酯(DMC)、碳酸乙基甲酯(EMC)、碳酸二乙酯(DEC)或它们的混合物。另外,可使用超低粘度的酯溶剂或助溶剂如甲酸甲酯和乙酸甲酯,它们对未保护的Li有非常高的反应性。本领域的那些技术人员都知道,离子导电率和扩散速度与粘度成反比,以至于在全部其它情况等同时,当溶剂粘度降低时电池性能提高。这种阴极电解液溶剂体系的使用显著提高了电池性能,尤其是在低温下的放电和充电特性。Furthermore, the catholyte solution can consist only of low viscosity solvents such as ethers like 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,3-dioxolane Cyclo(DIOX), 4-methyldioxolane (4-MeDIOX) or organic carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) or their mixture. Alternatively, ultra-low viscosity ester solvents or co-solvents such as methyl formate and methyl acetate, which are very reactive towards unprotected Li, can be used. Those skilled in the art are aware that ionic conductivity and diffusion rate are inversely proportional to viscosity such that, all other things being equal, cell performance increases as solvent viscosity decreases. The use of this catholyte solvent system significantly improves battery performance, especially discharge and charge characteristics at low temperatures.

在本发明的阴极电解液中还可使用离子液体。离子液体为熔点在100度以下、经常甚至低于室温的有机盐。最常用的离子液体为咪唑鎓和吡啶鎓衍生物,而且膦鎓或四烷基铵化合物也是已知的。离子液体具有理想的高离子电导率、高热稳定性、无可测量的蒸汽压和不易燃性属性。代表性的离子液体有1-乙基-3-甲基咪唑鎓甲苯磺酸盐(EMIM-Ts)、1-丁基-3-甲基咪唑鎓辛基硫酸盐(BMIM-OctSO4)、1-乙基-3-甲基咪唑鎓六氟磷酸盐和1-己基-3-甲基咪唑鎓四氟硼酸盐。尽管对用于电化学应用如电容器和电池的离子液体有很大兴趣,但它们对金属锂和锂化碳是不稳定的。但是,本发明中所述的受保护锂阳极与直接化学反应隔离,因此使用离子液体的锂金属电池可作为本发明的一种实施方案。这种电池应在高温下特别稳定。Ionic liquids may also be used in the catholyte of the present invention. Ionic liquids are organic salts with melting points below 100°C, often even below room temperature. The most commonly used ionic liquids are imidazolium and pyridinium derivatives, but phosphonium or tetraalkylammonium compounds are also known. Ionic liquids have desirable properties of high ionic conductivity, high thermal stability, no measurable vapor pressure, and non-flammability. Representative ionic liquids are 1-ethyl-3-methylimidazolium tosylate (EMIM-Ts), 1-butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO4), 1- Ethyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium tetrafluoroborate. Despite great interest in ionic liquids for electrochemical applications such as capacitors and batteries, they are unstable towards metallic lithium and lithiated carbon. However, the protected lithium anode described in the present invention is isolated from the direct chemical reaction, thus lithium metal batteries using ionic liquids can be used as an embodiment of the present invention. Such batteries should be particularly stable at high temperatures.

安全性添加剂safety additives

作为安全措施,非水中间层构造可结合在与反应性电解质(例如水)接触时能导致阳极(例如锂)表面上不透水聚合物形成的凝胶/聚合剂。这种安全措施用于保护构造的基本不透水层(例如玻璃或玻璃-陶瓷膜)破裂或以其它方式损坏并允许侵蚀性阴极电解液进入和到达锂电极从而增加了Li阳极和含水阴极电解液之间强烈反应可能性的情形。As a safety measure, the non-aqueous interlayer construction may incorporate gelling/polymerizing agents that can lead to the formation of a water-impermeable polymer on the surface of the anode (eg, lithium) when in contact with a reactive electrolyte (eg, water). This safety measure serves to protect the construction's substantially impermeable layers (such as glass or glass-ceramic membranes) from cracking or otherwise becoming damaged and allowing aggressive catholyte to enter and reach the lithium electrode thereby increasing the Li anode and aqueous catholyte. Situations where strong reactions are possible.

通过在阳极电解液中提供不溶于或很少溶于水的聚合物单体例如二氧戊环(Diox)(例如数量为约5-20体积%)和在阴极电解液中提供单体用聚合引发剂例如质子酸来防止这种反应。Diox基阳极电解液可由有机碳酸酯(EC、PC、DEC、DMC、EMC)、醚(1,2-DME、THF、2MeTHF、1,3-二氧戊环和其它一些)和它们的混合物组成。包括二氧戊环作为主要溶剂(例如50-100体积%)和Li盐尤其是LiAsF6、LiBF4、LiSO3CF3、LiN(SO2C2F5)2的阳极电解液尤其有吸引力。Diox为Li表面的良好钝化剂,在Diox基电解质中已经获得Li金属的良好循环数据(参见例如美国专利5506068)。除了它与Li金属的相容性外,与上述离子盐结合的Diox形成强导电电解质。相应的含水阴极电解液包含能产生不溶于水或只少量溶于水的Diox聚合产物(聚二氧戊环)的Diox聚合引发剂。By providing insoluble or little water soluble polymer monomers such as dioxolane (Diox) in the anolyte (e.g. in an amount of about 5-20% by volume) and in the catholyte with monomers Initiators such as protic acids prevent this reaction. Diox-based anolytes can be composed of organic carbonates (EC, PC, DEC, DMC, EMC), ethers (1,2-DME, THF, 2MeTHF, 1,3-dioxolane and some others) and mixtures thereof . Anolytes comprising dioxolane as the main solvent (e.g. 50-100% by volume) and Li salts, especially LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , LiN(SO 2 C 2 F 5 ) 2 are particularly attractive . Diox is a good passivator for Li surfaces and good cycling data for Li metal have been obtained in Diox based electrolytes (see eg US Patent 5506068). In addition to its compatibility with Li metal, Diox combined with the aforementioned ionic salts forms a strongly conductive electrolyte. The corresponding aqueous catholyte comprises a Diox polymerization initiator capable of producing a Diox polymerization product (polydioxolane) which is insoluble or only slightly soluble in water.

如果膜损坏,则包含溶解的引发剂的阴极电解液与Diox基阳极电解液直接接触,并靠着Li阳极表面发生Diox的聚合。聚二氧戊环为Diox聚合的产物,具有高电阻,因而电池停止工作。另外,形成的聚二氧戊环层用作阻止Li表面和含水阴极电解液之间反应的阻挡层。Diox可被溶解在阴极电解液中的质子酸聚合。而且,水溶性的路易斯酸尤其是苯并苯甲酰(benbenzoyl)阳离子可用于此目的。If the membrane is damaged, the catholyte containing dissolved initiator is in direct contact with the Diox-based anolyte and polymerization of Diox occurs against the Li anode surface. Polydioxolane, a product of Diox polymerization, has high electrical resistance, so the battery stops working. Additionally, the formed polydioxolane layer serves as a barrier layer to prevent the reaction between the Li surface and the aqueous catholyte. Diox can be polymerized by protic acid dissolved in the catholyte. Furthermore, water-soluble Lewis acids, especially the benbenzoyl cation, can be used for this purpose.

因此,通过使用二氧戊环(Diox)基阳极电解液和包含Diox聚合引发剂的阴极电解液可实现循环能力和安全性的提高。Thus, improvements in cycleability and safety can be achieved by using a dioxolane (Diox)-based anolyte and a catholyte containing a Diox polymerization initiator.

活性金属离子和合金阳极Active Metal Ion and Alloy Anodes

本发明涉及具有如上所述的由活性金属组成的阳极的电池和其它电化学结构。优选的活性金属电极由锂(Li)组成。用于这些结构和电池的合适阳极电解液如上所述。The present invention relates to batteries and other electrochemical structures having an anode composed of an active metal as described above. A preferred active metal electrode consists of lithium (Li). Suitable anolytes for these structures and cells are described above.

本发明还涉及具有活性金属离子(例如锂-碳)或活性金属合金(例如Li-Sn)阳极的电化学结构。一些结构可最初具有不带电荷的活性金属离子嵌入材料(例如碳)或随后被活性金属或活性金属离子施以电荷的合金化金属(例如锡(Sn))。尽管本发明可适用于各种活性金属,但本文中主要结合锂作为例子来描述。The present invention also relates to electrochemical structures with active metal ion (eg lithium-carbon) or active metal alloy (eg Li-Sn) anodes. Some structures may initially have an uncharged active metal ion intercalation material (such as carbon) or an alloying metal (such as tin (Sn)) that is subsequently charged by the active metal or active metal ions. Although the present invention is applicable to various active metals, it is mainly described herein in conjunction with lithium as an example.

可使用常规Li-离子电池中常用的碳材料尤其是石油焦和中间相碳微球碳作为Li-离子含水电池组电池中的阳极材料。还可使用包括选自Ca、Mg、Sn、Ag、Zn、Bi、Al、Cd、Ga、In和Sb中的一种或几种金属、优选Al、Sn或Si的锂合金作为这种电池的阳极材料。在一种具体的实施方案中,阳极包括Li、Cu和Sn。Carbon materials commonly used in conventional Li-ion batteries, especially petroleum coke and mesocarbon microsphere carbon, can be used as anode materials in Li-ion aqueous battery cells. Lithium alloys including one or more metals selected from Ca, Mg, Sn, Ag, Zn, Bi, Al, Cd, Ga, In, and Sb, preferably Al, Sn, or Si, can also be used as the lithium alloy of this battery. anode material. In a specific embodiment, the anode includes Li, Cu and Sn.

这种结构的阳极电解液可结合支撑盐,例如,溶解在常规Li-离子电池中常用的非水溶剂如EC、PC、DEC、DMC、EMC、MA、MF的二元或三元混合物中的LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2或LiN(SO2C2F5)2。还可使用凝胶-聚合物电解质,例如包括一种上述盐、聚合物粘合剂如PVdF、PVdF-HFP共聚物、PAN或PEO、和增塑剂(溶剂)如EC、PC、DEC、DMC、EMC、THF、2MeTHF、1,2-DME及其混合物的电解液。Anolytes of this structure can incorporate supporting salts, for example, dissolved in binary or ternary mixtures of non-aqueous solvents commonly used in conventional Li-ion batteries such as EC, PC, DEC, DMC, EMC, MA, MF LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiN(CF 3 SO 2 ) 2 or LiN(SO 2 C 2 F 5 ) 2 . Gel-polymer electrolytes can also be used, for example comprising one of the salts mentioned above, a polymer binder such as PVdF, PVdF-HFP copolymer, PAN or PEO, and a plasticizer (solvent) such as EC, PC, DEC, DMC , EMC, THF, 2MeTHF, 1,2-DME and their mixture electrolyte.

对于使用这些阳极的电池,可向保护构造另一侧上的电化学结构增加合适的阴极结构。该构造使使用大量特殊阴极如空气、水、金属氢化物或金属氧化物的Li-离子型电池成为可能。对于Li-离子含水电池组电池,例如,含水阴极电解液可为碱性、酸性或中性的,并包含Li阳离子。合适的含水阴极电解液的一个例子为2M LiCl,1M HCl。For cells using these anodes, suitable cathode structures can be added to the electrochemical structures on the other side of the protective construction. This configuration enables Li-ion type batteries using a large number of special cathodes such as air, water, metal hydrides or metal oxides. For Li-ion aqueous battery cells, for example, the aqueous catholyte may be alkaline, acidic, or neutral and contain Li cations. An example of a suitable aqueous catholyte is 2M LiCl, 1M HCl.

在具有锂-碳锂合金阳极的电池的首次充电中,Li阳离子通过保护构造(包括阳极电解液)从阴极电解液传递到阳极表面,在那里如常规Li-离子电池中一样发生嵌入过程。在一种实施方案中,阳极在电池组装前在外部被化学或电化学锂化。During the first charge of a battery with a lithium-carbon lithium alloy anode, Li cations are transferred from the catholyte through the protective structure (including the anolyte) to the anode surface, where the intercalation process occurs as in conventional Li-ion batteries. In one embodiment, the anode is chemically or electrochemically lithiated externally prior to cell assembly.

电池设计battery design

根据本发明的电化学结构和电池组电池可具有任何合适的几何形状。例如,考虑本文提供的结构或电池部件的描述,通过按照容易适于本发明的已知电池组电池制造技术将结构或电池的各种部件(阳极、中间层、阴极等)的平面层堆叠获得平面几何形状。这些堆叠的层可被设计为棱柱状结构或电池。Electrochemical structures and battery cells according to the invention may have any suitable geometry. For example, considering the description provided herein of a structure or cell component obtained by stacking planar layers of the various components (anode, intermediate layer, cathode, etc.) of the structure or cell according to known battery cell fabrication techniques readily adapted to the present invention Flat geometric shapes. These stacked layers can be designed as prismatic structures or batteries.

或者,使用具有非水中间层构造的管状玻璃或玻璃-陶瓷电解质允许构建密封面积小的高表面积阳极。与密封长度随电池表面积增加的平板设计相反,管状结构利用端密封,其中可增加管的长度以提高表面积而密封面积不变。这允许构建应相应具有高功率密度的高表面积Li/水和Li/空气电池。Alternatively, the use of tubular glass or glass-ceramic electrolytes with non-aqueous interlayer configurations allows the construction of high surface area anodes with small sealing areas. In contrast to flat plate designs where the length of the seal increases with the surface area of the cell, tubular structures utilize end seals where the length of the tube can be increased to increase the surface area without changing the seal area. This allows the construction of high surface area Li/water and Li/air batteries that should have correspondingly high power densities.

本发明的非水中间层构造的使用有利于构建。开端(有密封)或闭端玻璃或玻璃-陶瓷(即基本不透水活性金属离子导电固体电解质)管部分装有如上所述的非水有机电解质(阳极电解液或转移电解液),例如一般用在锂原电池中的电解质。将被一定类型的物理隔膜(例如半透聚合物膜,如Celgard,Tonin,聚丙烯网等)包围的具有集电器的锂金属棒插入到管内。使用简单的环氧树脂密封、玻璃-金属密封或其它合适的密封物理隔离开锂和环境。The use of the non-aqueous midlayer construction of the present invention facilitates construction. Open-ended (with seals) or closed-ended glass or glass-ceramic (i.e., substantially water-impermeable active metal-ion-conducting solid electrolyte) tube sections filled with a non-aqueous organic electrolyte (anolyte or transfer electrolyte) as described above, such as for general use Electrolyte in lithium primary batteries. A lithium metal rod with a current collector surrounded by some type of physical membrane (eg semi-permeable polymer membrane such as Celgard, Tonin, polypropylene mesh, etc.) is inserted into the tube. Physically separate the lithium from the environment using a simple epoxy seal, glass-to-metal seal, or other suitable seal.

然后将受保护阳极插入到圆柱状空气电极中制造圆柱状电池,如图3A所示。或可将阳极阵列插入到棱柱状空气电极内,如图3B所示。The protected anode was then inserted into the cylindrical air electrode to fabricate a cylindrical battery, as shown in Figure 3A. Alternatively, the anode array can be inserted into a prismatic air electrode, as shown in Figure 3B.

通过用如本文上面所述的合适的含水、金属氢化物或金属氧化物阴极体系代替空气电极,还可使用这项技术构建Li/水、Li/金属氢化物或Li/金属氧化物电池。Li/water, Li/metal hydride or Li/metal oxide cells can also be constructed using this technology by replacing the air electrode with a suitable aqueous, metal hydride or metal oxide cathode system as described herein above.

除了使用锂金属棒或丝(在毛细管中)外,本发明还用于隔离开可再充电LiCx阳极和含水或其它腐蚀性环境。在这种情况下,在管状阳极中使用合适的阳极电解液(转移电解液)溶剂在锂化碳电极上形成钝化膜。这将允许使用大量特殊阴极如空气、水、金属氢化物或金属氧化物构建高表面积Li-离子型电池,例如如图3所示。In addition to the use of lithium metal rods or wires (in capillaries), the present invention is also useful for isolating rechargeable LiCx anodes from aqueous or other corrosive environments. In this case, a suitable anolyte (transfer electrolyte) solvent is used in the tubular anode to form a passive film on the lithiated carbon electrode. This will allow the construction of high-surface-area Li-ion-type batteries using a large number of specialized cathodes such as air, water, metal hydrides, or metal oxides, such as shown in Figure 3.

实施例Example

下面的实施例提供了说明根据本发明的Li金属和Li-离子含水电池组电池的有益性能的细节。提供这些实施例来例证和更清楚地说明本发明的内容,且决不打算是限制性的。The following examples provide details illustrating the beneficial properties of Li metal and Li-ion aqueous battery cells according to the present invention. These examples are provided to illustrate and more clearly explain the content of the invention and are in no way intended to be limiting.

实施例1:Li/海水电池Embodiment 1: Li/seawater battery

进行一系列试验,其中使用OHARA公司的商业离子导电玻璃-陶瓷作为分开含水阴极电解液和非水阳极电解液的膜。电池结构为Li/非水电解质/玻璃-陶瓷/含水电解质/Pt。使用Chemetall Foote公司的厚度为125微米的锂箔作为阳极。玻璃-陶瓷板的厚度在0.3-0.48mm的范围内。使用两个O形环将玻璃-陶瓷板固定到电化学电池内,使得玻璃-陶瓷板从一侧暴露于含水环境和从另一侧暴露于非水环境。在这种情况下,含水电解质包括用Aquarium Systems,Inc的35ppt的“InstantOcean”制备的人造海水。测定海水的电导率为4.5×10-2S/cm。放在玻璃-陶瓷另一侧上的微孔Celgard隔膜充满由溶解在碳酸亚丙酯中的1M LiPF6组成的非水电解质。非水电解质的装填体积为0.25ml/1cm2锂电极表面。当完成电池电路时,使用完全浸没在海水阴极电解液中的铂反电极促进氢还原。使用Ag/AgCl参比电极控制电池中Li阳极的电势。测量的值被重新计算成标准氢电极(SHE)标度的电势。观察到最接近地对应于水中Li/Li+和H2/H+之间热动力学电势差异的开路电势(OCP)为3.05伏(图4)。当电路闭合时,立即在Pt电极处观察到氢析出,其为电池中阳极和阴极电极反应的指示,2Li=2Li++2e-和2H++2e-=H2。图2中提供了放电速度为0.3mA/cm2时Li阳极溶解的电势-时间曲线。结果表明为具有稳定放电电压的工作电池。应强调,在使用直接接触海水的Li阳极的全部试验中,Li的利用率非常差,由于海水中极其高的Li腐蚀速度(超过19A/cm2),在类似于该实施例所用那些的低和中等电流密度下根本不能使用这类电池。A series of experiments were carried out in which a commercial ion-conducting glass-ceramic from OHARA Corporation was used as the membrane separating the aqueous catholyte from the non-aqueous anolyte. The battery structure is Li/non-aqueous electrolyte/glass-ceramic/aqueous electrolyte/Pt. A lithium foil with a thickness of 125 μm from Chemetall Foote was used as the anode. The thickness of the glass-ceramic plate is in the range of 0.3-0.48 mm. The glass-ceramic plate was secured within the electrochemical cell using two O-rings such that the glass-ceramic plate was exposed to the aqueous environment from one side and the non-aqueous environment from the other side. In this case, the aqueous electrolyte comprised artificial seawater prepared with 35 ppt "InstantOcean" from Aquarium Systems, Inc. The conductivity of seawater was measured to be 4.5×10 -2 S/cm. A microporous Celgard membrane placed on the other side of the glass-ceramic was filled with a non-aqueous electrolyte consisting of 1M LiPF6 dissolved in propylene carbonate. The filling volume of the non-aqueous electrolyte is 0.25ml/ 1cm2 of the lithium electrode surface. When the battery circuit is completed, hydrogen reduction is facilitated using a platinum counter electrode fully submerged in seawater catholyte. The potential of the Li anode in the cell was controlled using an Ag/AgCl reference electrode. The measured values were recalculated as potentials on the Standard Hydrogen Electrode (SHE) scale. The open circuit potential (OCP) that most closely corresponds to the thermodynamic potential difference between Li/Li + and H 2 /H + in water was observed to be 3.05 volts ( FIG. 4 ). When the circuit is closed, hydrogen evolution is immediately observed at the Pt electrode, which is an indication of the anode and cathode electrode reactions in the cell, 2Li = 2Li + +2e - and 2H + +2e - = H2 . The potential-time curves for Li anodic dissolution at a discharge rate of 0.3 mA/cm are provided in Figure 2. The results indicated a working cell with a stable discharge voltage. It should be emphasized that in all experiments using Li anodes in direct contact with seawater, Li utilization was very poor, at low This type of battery cannot be used at all at moderate current densities.

实施例2:Li/空气电池Example 2: Li/air battery

电池结构类似于前面实施例中的结构,但Pt电极完全浸没在电解质中,这种试验电池具有为商业Zn/空气电池制造的空气电极。所用的含水电解质为1M LiOH。Li阳极和非水电解质与前面实施例中所述相同。The cell structure was similar to that in the previous examples, but with the Pt electrode fully submerged in the electrolyte, this test cell had an air electrode fabricated for a commercial Zn/air cell. The aqueous electrolyte used was 1M LiOH. Li anode and non-aqueous electrolyte were the same as described in previous examples.

观察到该电池的开路电势为3.2V。图5显示了放电速度为0.3mA/cm2时的放电电压-时间曲线。电池表现出2.8-2.9V的放电电压超过14小时。该结果表明,具有分开含水阴极电解液和非水阳极电解液的固体电解质膜的Li/空气电池可获得良好性能。The open circuit potential of the cell was observed to be 3.2V. Figure 5 shows the discharge voltage-time curves when the discharge rate is 0.3 mA/cm 2 . The cells exhibited a discharge voltage of 2.8-2.9V over 14 hours. This result indicates that good performance can be obtained for Li/air cells with a solid electrolyte membrane separating the aqueous catholyte and non-aqueous anolyte.

实施例3:Li-离子电池Example 3: Li-ion battery

在这些试验中,使用OHARA公司的商业离子导电玻璃-陶瓷作为分开含水阴极电解液和非水阳极电解液的膜。电池结构为碳/非水电解质/玻璃-陶瓷板/含水电解质/Pt。使用与锂离子电池中常用的碳电极类似的包括合成石墨的在铜衬底上的商业碳电极作为阳极。玻璃-陶瓷板的厚度为0.3mm。使用两个O形环将玻璃-陶瓷板固定到电化学电池内,使得玻璃-陶瓷板从一侧暴露于含水环境和从另一侧暴露于非水环境。含水电解质包括2M LiCl和1M HCl。放置在玻璃-陶瓷另一侧上的两层微孔Celgard隔膜充满非水电解质,非水电解质包括溶解在碳酸亚乙酯和碳酸二甲酯(体积比1∶1)的混合物中的1M LiPF6。在两层Celgard隔膜之间放置锂线参比电极以便控制循环过程中碳阳极的电势。使用完全浸没在2M LiCl、1M HCl溶液中的铂网作为电池阴极。使用放置在含水电解质中的Ag/AgCl参比电极控制碳电极的电势和跨过玻璃-陶瓷板的电压降,以及循环过程中Pt阴极的电势。观察到该电池的开路电压(OCV)为大约1伏。观察到与热动力学值紧密相对应的Li参比电极和Ag/AgCl参比电极之间的电压差为3.2伏。以0.1mA/cm2为电池充电直到碳电极对Li参比电极电势达到5mV,然后使用相同的截止电势以0.05mA/cm2充电。放电速度为0.1mA/cm2,碳阳极对Li参比电极的放电截止电势为1.8V。图6中的数据表明,具有嵌碳阳极和含Li阳离子的含水电解质的电池可以可逆地工作。这是在Li离子电池中使用水溶液代替固体锂化氧化物阴极作为Li离子源用于碳阳极充电的第一个已知例子。In these experiments, a commercial ion-conducting glass-ceramic from OHARA Corporation was used as the membrane separating the aqueous catholyte from the non-aqueous anolyte. The battery structure is carbon/nonaqueous electrolyte/glass-ceramic plate/aqueous electrolyte/Pt. A commercial carbon electrode comprising synthetic graphite on a copper substrate similar to that commonly used in lithium-ion batteries was used as the anode. The thickness of the glass-ceramic plate is 0.3 mm. The glass-ceramic plate was secured within the electrochemical cell using two O-rings such that the glass-ceramic plate was exposed to the aqueous environment from one side and the non-aqueous environment from the other side. Aqueous electrolytes include 2M LiCl and 1M HCl. A two-layer microporous Celgard separator placed on the other side of the glass-ceramic was filled with a non-aqueous electrolyte consisting of 1M LiPF6 dissolved in a mixture of ethylene carbonate and dimethyl carbonate (1:1 by volume). . A lithium wire reference electrode was placed between the two Celgard separators to control the potential of the carbon anode during cycling. A platinum mesh completely submerged in a 2M LiCl, 1M HCl solution was used as the battery cathode. The potential of the carbon electrode and the voltage drop across the glass-ceramic plate, and the potential of the Pt cathode during cycling were controlled using an Ag/AgCl reference electrode placed in the aqueous electrolyte. The open circuit voltage (OCV) of the cell was observed to be approximately 1 volt. A voltage difference of 3.2 volts was observed between the Li reference electrode and the Ag/AgCl reference electrode, which closely corresponded to the thermodynamic values. The cell was charged at 0.1 mA/ cm2 until the carbon electrode potential reached 5 mV against the Li reference electrode, and then charged at 0.05 mA/ cm2 using the same cut-off potential. The discharge rate is 0.1mA/cm 2 , and the discharge cut-off potential of the carbon anode to the Li reference electrode is 1.8V. The data in Figure 6 demonstrate that cells with carbon-intercalated anodes and aqueous electrolytes containing Li cations can work reversibly. This is the first known example of using an aqueous solution instead of a solid lithiated oxide cathode as a Li ion source for carbon anode charging in a Li-ion battery.

实施例4:玻璃-陶瓷保护的厚Li阳极在含水电解质中的性能Example 4: Performance of glass-ceramic protected thick Li anodes in aqueous electrolytes

设计测试用于在含水电解质中各种Li箔厚度的试验Li/水电池。图8所示的电池包含具有Cu衬底上活性面积为2.0cm2的受保护Li箔阳极的阳极室。厚度为约3.3-3.5mm的Li电极由Li金属棒制造。制造过程包括挤出和轧制Li棒,然后利用液压机静态挤压到得到的箔到Ni网集电器的表面上。使用具有聚丙烯主体的模用于挤压操作以避免与Li箔的化学反应。使用两个O形环将厚度为约50微米的玻璃-陶瓷膜固定到电化学电池内,使得玻璃-陶瓷膜从一侧暴露于含水环境(阴极电解液)和从另一侧暴露于非水环境(阳极电解液)。阳极电解液在阳极和玻璃-陶瓷膜表面之间提供液体中间层。Design tests were performed for experimental Li/water cells of various Li foil thicknesses in aqueous electrolytes. The cell shown in Figure 8 contained an anode compartment with a protected Li foil anode with an active area of 2.0 cm on a Cu substrate. Li electrodes with a thickness of about 3.3-3.5 mm were fabricated from Li metal rods. The fabrication process includes extrusion and rolling of Li rods, followed by static extrusion of the resulting foil onto the surface of the Ni-mesh current collector using a hydraulic press. A die with a polypropylene body was used for the extrusion operation to avoid chemical reactions with the Li foil. A glass-ceramic membrane with a thickness of approximately 50 micrometers is secured within the electrochemical cell using two O-rings such that the glass-ceramic membrane is exposed from one side to the aqueous environment (catholyte) and from the other side to the non-aqueous Environment (anolyte). The anolyte provides a liquid intermediate layer between the anode and the surface of the glass-ceramic membrane.

电池充满4M NH4Cl的含水阴极电解液,这允许阴极在电池贮存和放电过程中被缓冲。放置在玻璃-陶瓷膜另一侧上的微孔Celgard隔膜充满由溶解在碳酸亚丙酯中的1M LiClO4组成的非水阳极电解液。阳极室对着水溶液被密封,从而只有保护玻璃-陶瓷膜暴露于含水环境、参比电极和金属网反电极。由硼硅酸盐玻璃制成的电池体充满100ml阴极电解液。使用Ti网反电极作为阴极以促进Li阳极溶解过程中的氢析出(水还原)。使用紧邻保护玻璃膜表面放置的Ag/AgCl参比电极控制放电过程中Li阳极的电势。测量的值被重新计算成标准氢电极(SHE)标度的电势。电池备有释放阴极处产生的氢气的排气孔。The cells were filled with an aqueous catholyte of 4M NH4Cl , which allowed the cathode to be buffered during cell storage and discharge. A microporous Celgard separator placed on the other side of the glass-ceramic membrane was filled with a non-aqueous anolyte consisting of 1 M LiClO dissolved in propylene carbonate. The anode compartment is sealed against the aqueous solution so that only the protective glass-ceramic membrane is exposed to the aqueous environment, the reference electrode and the wire mesh counter electrode. The cell body made of borosilicate glass was filled with 100 ml of catholyte. A Ti mesh counter electrode was used as the cathode to promote hydrogen evolution (water reduction) during Li anode dissolution. The potential of the Li anode during discharge was controlled using an Ag/AgCl reference electrode placed close to the surface of the protective glass film. The measured values were recalculated as potentials on the Standard Hydrogen Electrode (SHE) scale. The cell is equipped with a vent to release the hydrogen gas generated at the cathode.

图7中显示了该电池的连续放电的电势-时间曲线。电池在大约2.7-2.9V的闭路电压下表现出几乎1400小时的非常长的放电。获得的放电容量值非常大,约650mAh/cm2。沿Li阳极/含水电解质界面移去超过3.35mm的Li,没有破坏50μm厚的保护玻璃-陶瓷膜。该实验中使用的Li箔的厚度在3.35-3.40mm的范围内。放电的Li阳极的事后分析证实,在电池放电结束时全部量的Li从Ni集电器上剥离。这证明受保护Li阳极放电的库仑效率接近100%。The potential-time curves of the continuous discharge of the battery are shown in FIG. 7 . The battery exhibited a very long discharge of almost 1400 hours at a closed circuit voltage of about 2.7-2.9V. The discharge capacity value obtained is very large, about 650 mAh/cm 2 . Over 3.35 mm of Li was removed along the Li anode/aqueous electrolyte interface without damaging the 50 μm thick protective glass-ceramic membrane. The thickness of the Li foil used in this experiment was in the range of 3.35–3.40 mm. Post hoc analysis of the discharged Li anode confirmed that the full amount of Li was stripped from the Ni current collector at the end of cell discharge. This demonstrates that the Coulombic efficiency of the protected Li anode discharge is close to 100%.

使用获得的Li放电容量推测Li/空气棱柱电池的性能。在图9中,显示了具有变化的保护Li厚度的电池的比能推测和Li厚度为3.3mm的玻璃保护阳极的电池重量比能的值。该图还图示了电池构造和显示了计算用的参数。电池尺寸对应于名片的面积(约45cm2)和约6mm的厚度(包括3.3mm的Li阳极)。这产生非常大的90Wh的推测能力。可从图9看出,试验获得的玻璃-保护阳极的放电容量允许构建异常高性能特性的Li/空气电池。The performance of Li/air prismatic cells was speculated using the obtained Li discharge capacity. In Fig. 9, the specific energy predictions for cells with varying protective Li thicknesses and the values for the gravimetric specific energy of cells with a glass protective anode with a Li thickness of 3.3 mm are shown. The figure also illustrates the cell configuration and shows the parameters used for the calculations. The cell size corresponds to the area of a business card (approximately 45 cm 2 ) and a thickness of approximately 6 mm (including a 3.3 mm Li anode). This yields a very large supposed capacity of 90Wh. As can be seen from Figure 9, the experimentally obtained discharge capacity of the glass-protected anode allows the construction of Li/air cells with exceptionally high performance characteristics.

另一实施方案-Li/水电池和用于燃料电池的氢发生器Another Embodiment - Li/Water Batteries and Hydrogen Generators for Fuel Cells

使用根据本发明的活性金属电极上的保护构造允许构建上述具有可忽略腐蚀电流的活性金属/水电池。Li/水电池具有8450Wh/kg的非常高的理论能量密度。电池反应为Li+H2O=LiOH+1/2H2。尽管电池反应产生的氢一般是不再用的,但在本发明的这种实施方案中用于为环境温度燃料电池提供燃料。产生的氢可被直接输送到燃料电池或可用于为金属氢化物合金再充电以稍后用在燃料电池中。至少一个公司Millenium Cell《http://www.millenniumcell.com/news/tech.html》利用硼氢化钠与水的反应产生氢。但是,该反应需要使用催化剂,并且由NaBH4和水的化学反应产生的能量作为热遗失。The use of a protective construction on an active metal electrode according to the invention allows the construction of the above-mentioned active metal/water battery with negligible corrosion current. Li/water batteries have a very high theoretical energy density of 8450 Wh/kg. The battery reaction is Li+H 2 O=LiOH+1/2H 2 . Although the hydrogen produced by the cell reaction is generally no longer used, it is used in this embodiment of the invention to fuel an ambient temperature fuel cell. The hydrogen produced can be delivered directly to the fuel cell or can be used to recharge the metal hydride alloy for later use in the fuel cell. At least one company, Millenium Cell " http://www.millenniumcell.com/news/tech.html " utilizes the reaction of sodium borohydride with water to produce hydrogen. However, this reaction requires the use of a catalyst, and the energy generated by the chemical reaction of NaBH4 and water is lost as heat.

NaBH4+2H2O→4H2+NaBO2 NaBH 4 +2H 2 O→4H 2 +NaBO 2

当与燃料电池反应H2+O2=H2O结合时,燃料电池反应被认为是:When combined with the fuel cell reaction H 2 +O 2 =H 2 O, the fuel cell reaction is considered to be:

NaBH4+2O2→2H2O+NaBO2 NaBH 4 +2O 2 →2H 2 O+NaBO 2

可由NaBH4反应物的当量计算这种体系的能量密度(38/4=9.5克/当量)。NaBH4的重量分析容量为2820mAh/g;由于电池电压为约1,因此该体系的比能为2820Wh/kg。如果基于最终产物NaBO2计算能量密度,则能量密度较低,约1620Wh/kg。The energy density of this system can be calculated from the equivalents of NaBH4 reactant (38/4 = 9.5 grams/equivalent). The gravimetric capacity of NaBH 4 is 2820 mAh/g; since the cell voltage is about 1, the specific energy of this system is 2820 Wh/kg. If the energy density is calculated based on the final product NaBO2 , the energy density is lower, about 1620Wh/kg.

在Li/水电池的情况下,氢产生通过被认为由下面所述的电化学反应来进行:In the case of a Li/water battery, hydrogen production proceeds by the electrochemical reaction believed to be described below:

Li+H2O=LiOH+1/2H2 Li+H 2 O=LiOH+1/2H 2

在这种情况下,化学反应的能量被转化成3伏电池中的电能,然后在燃料电池中将氢转化成水,总反应被认为由下面所述:In this case, the energy of the chemical reaction is converted into electricity in the 3-volt battery, and then the hydrogen is converted into water in the fuel cell, the overall reaction is considered to be as follows:

Li+1/2H2O+1/4O2=LiOHLi+1/2H 2 O+1/4O 2 =LiOH

其中全部化学能在理论上都被转化成电能。在约3伏的电池电势下,基于锂阳极的能量密度为3830mAh/g,为11500Wh/kg(比NaBH4高4倍)。如果包括反应需要的水的重量,则能量密度为5030Wh/kg。如果能量密度基于放电产物LiOH的重量,则它为3500Wh/kg,或为NaBO2体系能量密度的两倍。这可与先前的概念相比,先前的概念中同样考虑了锂金属与水产生氢的反应。在那种情况下,能量密度被降低3倍,因为Li/H2O反应中的大部分能量作为热被损耗,并且能量密度基于实际上小于1的H2/O2对的电池电势(与Li/H2O的3相反)。在图10所示的本发明的这种实施方案中,通过Li/水电池上的负荷还可小心地控制氢的产生,Li/水电池由于保护膜而具有长的保存期限,并且离开电池的氢已经被增湿用于H2/空气燃料电池。All of the chemical energy is theoretically converted into electrical energy. At a cell potential of about 3 V, the energy density based on a lithium anode is 3830 mAh/g and 11500 Wh/kg (4 times higher than NaBH4 ). If the weight of water required for the reaction is included, the energy density is 5030Wh/kg. If the energy density is based on the weight of the discharge product LiOH, it is 3500 Wh/kg, or twice the energy density of the NaBO2 system. This is comparable to previous concepts, which also considered the reaction of lithium metal with water to produce hydrogen. In that case, the energy density is reduced by a factor of 3 because most of the energy in the Li/ H2O reaction is lost as heat, and the energy density is based on the cell potential of the H2 / O2 pair which is actually less than 1 (compared to Li/H 2 O's 3 opposite). In this embodiment of the invention shown in Figure 10, the generation of hydrogen is also carefully controlled by the load on the Li/water cell, which has a long shelf life due to the protective film, and the hydrogen leaving the cell Has been humidified for H2 /air fuel cells.

结论in conclusion

尽管为了清楚理解而较详细地描述了上述发明,但在本发明的范围内显然可实施某些变化和改进。特别地,尽管主要参照锂金属、合金或嵌入阳极描述了本发明,但阳极也可由任何活性金属尤其是其它碱金属如钠组成。应注意存在实施本发明的方法和组成的多种替代方式。因此,本发明的实施方案被认为是说明性的而不是限制性的,本发明不限于本文给出的细节。While the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the invention. In particular, although the invention has been described primarily with reference to lithium metal, alloys or intercalation anodes, the anode may consist of any active metal, especially other alkali metals such as sodium. It should be noted that there are many alternative ways of implementing the methods and compositions of the invention. Accordingly, the embodiments of the present invention are to be considered as illustrative rather than restrictive, and the invention is not limited to the details given herein.

本文引用的全部文献被出于各种目的引入作为参考。All documents cited herein are incorporated by reference for all purposes.

Claims (82)

1.一种电化学电池结构,包括:1. An electrochemical cell structure, comprising: 阳极,该阳极包括选自活性金属、活性金属离子、活性金属合金化金属和活性金属嵌入材料中的材料;和an anode comprising a material selected from the group consisting of active metals, active metal ions, active metal alloying metals, and active metal intercalation materials; and 在阳极第一表面上的离子导电保护构造,该构造包括:An ionically conductive protective construction on the first surface of the anode, the construction comprising: 包括用液相或凝胶相非水阳极电解液浸渍的半渗膜的活性金属离子导电隔膜层,该隔膜层与活性金属化学相容并接触阳极,和an active metal ion conducting membrane layer comprising a semipermeable membrane impregnated with a liquid or gel phase non-aqueous anolyte, the membrane layer being chemically compatible with the active metal and contacting the anode, and 与隔膜层和含水环境化学相容并接触隔膜层的基本不透水离子导电层,其中所述基本不透水离子导电层含有选自玻璃态或非晶态活性金属离子导体、陶瓷活性金属离子导体和玻璃-陶瓷活性金属离子导体中的材料。A substantially water impermeable ionically conductive layer chemically compatible with the membrane layer and the aqueous environment and in contact with the membrane layer, wherein said substantially water impermeable ionically conductive layer comprises an active metal ion conductor selected from a glassy or amorphous state, a ceramic active metal ion conductor, and Materials in glass-ceramic active metal ion conductors. 2.权利要求1的结构,其中半透膜为微孔聚合物。2. The structure of claim 1, wherein the semipermeable membrane is a microporous polymer. 3.权利要求2的结构,其中阳极电解液处于液相。3. The structure of claim 2, wherein the anolyte is in the liquid phase. 4.权利要求3的结构,其中阳极电解液包括选自有机碳酸酯、醚、酯、甲酸酯、内酯、砜、环丁砜及其组合中的溶剂。4. The structure of claim 3, wherein the anolyte comprises a solvent selected from the group consisting of organic carbonates, ethers, esters, formates, lactones, sulfones, sulfolanes, and combinations thereof. 5.权利要求4的结构,其中阳极电解液包括溶剂和支撑盐,其中溶剂选自EC、PC、DEC、DMC、EMC、THF、2MeTHF、1,2-DME或高级甘醇二甲醚、环丁砜、甲酸甲酯、乙酸甲酯和它们的组合,支撑盐选自LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2和LiN(SO2C2F5)25. The structure of claim 4, wherein the anolyte comprises a solvent and a supporting salt, wherein the solvent is selected from the group consisting of EC, PC, DEC, DMC, EMC, THF, 2MeTHF, 1,2-DME or higher glyme, sulfolane , methyl formate, methyl acetate and their combinations, the supporting salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiN(CF 3 SO 2 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . 6.权利要求5的结构,其中阳极电解液还包括1,3-二氧戊环。6. The structure of claim 5, wherein the anolyte further comprises 1,3-dioxolane. 7.权利要求2的结构,其中阳极电解液处于凝胶相。7. The structure of claim 2, wherein the anolyte is in a gel phase. 8.权利要求7的结构,其中阳极电解液包括胶凝剂、增塑剂和Li盐,胶凝剂选自PVdF、PVdF-HFP共聚物、PAN和PEO及它们的混合物;增塑剂选自EC、PC、DEC、DMC、EMC、THF、2MeTHF、1,2-DME和它们的混合物;Li盐选自LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2和LiN(SO2C2F5)28. The structure of claim 7, wherein the anolyte comprises a gelling agent selected from the group consisting of PVdF, PVdF-HFP copolymers, PAN and PEO and mixtures thereof, a plasticizer and a Li salt; the plasticizer being selected from the group consisting of EC, PC, DEC, DMC, EMC, THF, 2MeTHF, 1,2-DME and their mixtures; Li salt selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiN ( CF 3 SO 2 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . 9.权利要求1的结构,其中所述活性金属是碱金属。9. The structure of claim 1, wherein said active metal is an alkali metal. 10.权利要求1的结构,其中活性金属为锂或锂合金。10. The structure of claim 1, wherein the active metal is lithium or a lithium alloy. 11.权利要求10的结构,其中基本不透水离子导电层为具有以下组成并包含由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的主晶相的离子导电玻璃-陶瓷:11. The structure of claim 10, wherein the substantially water-impermeable ionically conductive layer has the following composition and comprises Li 1+x (M, Al, Ga) x (Ge 1-y Ti y ) 2-x (PO 4 ) 3 and/or Li 1+x+y Q x Ti 2-x Si y P 3-y O 12 composed of ion-conducting glass-ceramics in the main crystal phase: 组成:composition: P2O5             26-55mol% P2O5 26-55mol % SiO2             0-15mol%SiO 2 0-15mol% GeO2+TiO2        25-50mol%GeO 2 +TiO 2 25-50mol% 其中GeO2         0-50mol%Of which GeO 2 0-50mol% TiO2             0-50mol%TiO 2 0-50mol% ZrO2             0-10mol%ZrO 2 0-10mol% M2O3             0<10mol%M 2 O 3 0<10mol% Al2O3            0-15mol%Al 2 O 3 0-15mol% Ga2O3            0-15mol% Ga2O3 0-15mol % Li2O             3-25mol% Li2O 3-25mol% 其中Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3中X≤0.8和0≤Y≤1.0,M为选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,Li1+x+yQxTi2-xSiyP3-yO12中0<X≤0.4和0<Y≤0.6,Q为Al或Ga。Where X≤0.8 and 0≤Y≤1.0 in Li 1+x (M, Al, Ga) x (Ge 1-y Ti y ) 2-x (PO 4 ) 3 , M is selected from Nd, Sm, Eu, Elements of Gd, Tb, Dy, Ho, Er, Tm and Yb, Li 1+x+y Q x Ti 2-x Si y P 3-y O 12 in 0<X≤0.4 and 0<Y≤0.6, Q It is Al or Ga. 12.权利要求1的结构,其中基本不透水离子导电层具有至少10-5S/cm的离子电导率。12. The structure of claim 1, wherein the substantially water-impermeable ionically conductive layer has an ionic conductivity of at least 10-5 S/cm. 13.权利要求1的结构,其中非水电解质隔膜层具有至少10-5S/cm的离子电导率。13. The structure of claim 1, wherein the non-aqueous electrolyte separator layer has an ionic conductivity of at least 10-5 S/cm. 14.权利要求1的结构,其中阳极包括活性金属。14. The structure of claim 1, wherein the anode comprises an active metal. 15.权利要求1的结构,其中阳极包括活性金属离子。15. The structure of claim 1, wherein the anode includes active metal ions. 16.权利要求1的结构,其中阳极包括活性金属合金化金属。16. The structure of claim 1, wherein the anode comprises an active metal alloying metal. 17.权利要求16的结构,其中活性金属合金化金属选自Ca、Mg、Sn、Ag、Zn、Bi、Al、Cd、Ga、In和Sb。17. The structure of claim 16, wherein the active metal alloying metal is selected from the group consisting of Ca, Mg, Sn, Ag, Zn, Bi, Al, Cd, Ga, In and Sb. 18.权利要求1的结构,其中阳极包括活性金属嵌入材料。18. The structure of claim 1, wherein the anode comprises an active metal intercalation material. 19.权利要求18的结构,其中活性金属嵌入材料包括碳。19. The structure of claim 18, wherein the active metal intercalation material comprises carbon. 20.一种电池组电池,包括:20. A battery cell comprising: 根据前述任意一项权利要求的电化学电池结构;和An electrochemical cell structure according to any preceding claim; and 阴极结构。cathode structure. 21.权利要求20的电池,其中阴极结构包括电子导电部件、离子导电部件和电化学活性部件,其中至少一种阴极结构部件包括含水成分。21. The battery of claim 20, wherein the cathode structure comprises an electronically conductive component, an ionically conductive component, and an electrochemically active component, wherein at least one of the cathode structure components comprises an aqueous component. 22.权利要求21的电池,其中阴极结构包括含水的电化学活性部件。22. The battery of claim 21, wherein the cathode structure comprises an electrochemically active component comprising water. 23.权利要求22的电池,其中含水的电化学活性部件为水。23. The cell of claim 22, wherein the aqueous electrochemically active component is water. 24.权利要求23的电池,其中含水的电化学活性部件包括选自气态、液态和固态氧化剂及其组合的水溶性氧化剂。24. The cell of claim 23, wherein the aqueous electrochemically active component comprises a water-soluble oxidizing agent selected from the group consisting of gaseous, liquid, and solid oxidizing agents, and combinations thereof. 25.权利要求24的电池,其中水溶性气态氧化剂选自O2、SO2和NO2,水溶性固态氧化剂选自NaNO2、KNO2、Na2SO3和K2SO325. The battery of claim 24, wherein the water-soluble gaseous oxidant is selected from O2 , SO2 , and NO2 , and the water-soluble solid oxidizer is selected from NaNO2 , KNO2 , Na2SO3 , and K2SO3 . 26.权利要求24的电池,其中水溶性氧化剂为过氧化物。26. The battery of claim 24, wherein the water-soluble oxidizing agent is a peroxide. 27.权利要求26的电池,其中水溶性氧化剂为过氧化氢。27. The battery of claim 26, wherein the water-soluble oxidizing agent is hydrogen peroxide. 28.权利要求21的电池,其中离子导电部件和电化学活性部件由水基电解质构成。28. The battery of claim 21, wherein the ionically conductive member and the electrochemically active member are comprised of a water-based electrolyte. 29.权利要求28的电池,其中水基电解质选自强酸溶液、弱酸溶液、碱性溶液、中性溶液、两性溶液、过氧化物溶液和它们的组合。29. The battery of claim 28, wherein the water-based electrolyte is selected from the group consisting of strong acid solutions, weak acid solutions, alkaline solutions, neutral solutions, amphoteric solutions, peroxide solutions, and combinations thereof. 30.权利要求28的电池,其中水基电解质包括选自HCl、H2SO4、H3PO4、乙酸/乙酸锂、LiOH、海水、LiCl、LiBr、LiI、NH4Cl、NH4Br和过氧化氢的水溶液及其组合中的成员。30. The battery of claim 28 , wherein the water-based electrolyte comprises a compound selected from the group consisting of HCl, H2SO4 , H3PO4 , acetic acid/lithium acetate, LiOH, seawater, LiCl, LiBr, LiI, NH4Cl , NH4Br , and Aqueous solutions of hydrogen peroxide and members of combinations thereof. 31.权利要求30的电池,其中水基电解质为海水。31. The battery of claim 30, wherein the water-based electrolyte is seawater. 32.权利要求30的电池,其中水基电解质包括海水和过氧化氢。32. The battery of claim 30, wherein the water-based electrolyte comprises seawater and hydrogen peroxide. 33.权利要求30的电池,其中水基电解质包括酸性过氧化物溶液。33. The battery of claim 30, wherein the water-based electrolyte comprises an acidic peroxide solution. 34.权利要求30的电池,其中过氧化氢溶解在流过电池的水基电解质中。34. The battery of claim 30, wherein the hydrogen peroxide is dissolved in the water-based electrolyte flowing through the battery. 35.权利要求21的电池,其中阴极结构电子导电部件为多孔催化载体。35. The battery of claim 21, wherein the electronically conductive member of the cathode structure is a porous catalytic support. 36.权利要求35的电池,其中多孔催化电子导电载体包括镍。36. The battery of claim 35, wherein the porous catalytic electronically conductive support comprises nickel. 37.权利要求35的电池,其中用离聚物处理多孔催化电子导电载体。37. The battery of claim 35, wherein the porous catalytic electronically conductive support is treated with an ionomer. 38.权利要求22的电池,其中阴极结构电化学活性材料包括空气。38. The battery of claim 22, wherein the cathode structure electrochemically active material comprises air. 39.权利要求38的电池,其中空气包括水分。39. The battery of claim 38, wherein the air includes moisture. 40.权利要求39的电池,其中离子导电材料包括含水成分。40. The battery of claim 39, wherein the ionically conductive material comprises an aqueous composition. 41.权利要求40的电池,其中离子导电材料还包括离聚物。41. The battery of claim 40, wherein the ionically conductive material further comprises an ionomer. 42.权利要求41的电池,其中离子导电材料包括中性或酸性水基电解质。42. The battery of claim 41, wherein the ionically conductive material comprises a neutral or acidic water-based electrolyte. 43.权利要求42的电池,其中水基电解质包括LiCl。43. The battery of claim 42, wherein the water-based electrolyte comprises LiCl. 44.权利要求42的电池,其中水基电解质包括NH4Cl和HCl中的一种。44. The battery of claim 42, wherein the water-based electrolyte comprises one of NH4Cl and HCl. 45.权利要求21的电池,其中阴极结构包括空气扩散膜、疏水聚合物层、氧还原催化剂、电解质和电子导电部件/集电器。45. The battery of claim 21, wherein the cathode structure comprises an air diffusion membrane, a hydrophobic polymer layer, an oxygen reduction catalyst, an electrolyte, and an electronically conductive member/current collector. 46.权利要求45的电池,其中电子导电部件/集电器包括多孔镍材料。46. The battery of claim 45, wherein the electronically conductive member/current collector comprises a porous nickel material. 47.权利要求45的电池,还包括布置在保护膜和阴极结构之间的隔膜。47. The battery of claim 45, further comprising a separator disposed between the protective membrane and the cathode structure. 48.权利要求21的电池,其中阴极结构电化学活性部件包括金属氢化物合金。48. The cell of claim 21, wherein the electrochemically active component of the cathode structure comprises a metal hydride alloy. 49.权利要求48的电池,其中阴极结构离子导电部件包括水基电解质。49. The battery of claim 48, wherein the ionically conductive member of the cathode structure comprises a water-based electrolyte. 50.权利要求49的电池,其中水基电解质为酸性的。50. The battery of claim 49, wherein the water-based electrolyte is acidic. 51.权利要求50的电池,其中水基电解质包括卤化物酸或酸式盐。51. The battery of claim 50, wherein the water-based electrolyte comprises a halide acid or an acid salt. 52.权利要求51的电池,其中水基电解质包括氯化物或溴化物酸或酸式盐。52. The battery of claim 51, wherein the water-based electrolyte comprises a chloride or bromide acid or acid salt. 53.权利要求52的电池,其中水基电解质包括HCl、HBr、NH4Cl和NH4Br中的一种。53. The battery of claim 52, wherein the water-based electrolyte comprises one of HCl, HBr, NH4Cl , and NH4Br . 54.权利要求53的电池,其中金属氢化物合金包括AB5和AB2合金中的一种。54. The battery of claim 53, wherein the metal hydride alloy comprises one of AB 5 and AB 2 alloys. 55.权利要求20的电池,其中电池为原电池。55. The battery of claim 20, wherein the battery is a primary battery. 56.权利要求20的电池,其中电池为可再充电电池。56. The battery of claim 20, wherein the battery is a rechargeable battery. 57.权利要求20的电池,其中电池具有平板构造。57. The battery of claim 20, wherein the battery has a flat plate configuration. 58.权利要求20的电池,其中电池具有管状构造。58. The battery of claim 20, wherein the battery has a tubular configuration. 59.权利要求21的电池,其中活性金属为锂,阴极结构包括含水的离子导电部件和过渡金属氧化物电化学活性部件。59. The battery of claim 21, wherein the active metal is lithium and the cathode structure includes an aqueous ionically conductive component and a transition metal oxide electrochemically active component. 60.权利要求59的电池,其中过渡金属氧化物选自NiOOH、AgO、氧化铁、氧化铅和氧化锰。60. The battery of claim 59, wherein the transition metal oxide is selected from the group consisting of NiOOH, AgO, iron oxide, lead oxide, and manganese oxide. 61.权利要求20的电池,其中阳极电解液还包括不溶于水或少量溶于水的聚合物单体,阴极结构的阴极电解液包括单体的聚合引发剂。61. The cell of claim 20, wherein the anolyte further comprises a water-insoluble or sparingly water-soluble polymer monomer, and the catholyte of the cathode structure comprises a polymerization initiator for the monomer. 62.权利要求61的电池,其中单体为1,3-二氧戊环。62. The battery of claim 61, wherein the monomer is 1,3-dioxolane. 63.权利要求62的电池,其中聚合引发剂包括溶解在阴极电解液中的质子酸和水溶性路易斯酸中的至少一种。63. The battery of claim 62, wherein the polymerization initiator comprises at least one of a protic acid and a water-soluble Lewis acid dissolved in the catholyte. 64.权利要求63的电池,其中聚合引发剂包括苯并苯甲酰阳离子。64. The battery of claim 63, wherein the polymerization initiator comprises a benzobenzoyl cation. 65.权利要求20的电池,其中阴极结构包括离子导电部件。65. The battery of claim 20, wherein the cathode structure includes an ionically conductive member. 66.权利要求65的电池,其中离子导电部件包括非水阴极电解液。66. The battery of claim 65, wherein the ionically conductive member comprises a non-aqueous catholyte. 67.权利要求66的电池,其中阴极电解液包括选自有机液体和离子液体的材料。67. The battery of claim 66, wherein the catholyte comprises a material selected from the group consisting of organic liquids and ionic liquids. 68.权利要求67的电池,其中阴极电解液为Li盐在非质子溶剂中的溶液,非质子溶剂选自有机碳酸酯、醚、内酯、砜、酯、甲酸酯和它们的组合。68. The cell of claim 67, wherein the catholyte is a solution of a Li salt in an aprotic solvent selected from the group consisting of organic carbonates, ethers, lactones, sulfones, esters, formates, and combinations thereof. 69.权利要求68的电池,其中阴极电解液选自EC、PC、DEC、DMC、EMC、THF、2MeTHF、1,2-DME和高级甘醇二甲醚、1,3-二氧戊环、环丁砜、甲酸甲酯、乙酸甲酯和它们的组合,支撑盐选自LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2、LiN(SO2C2F5)2和它们的组合。69. The battery of claim 68, wherein the catholyte is selected from the group consisting of EC, PC, DEC, DMC, EMC, THF, 2MeTHF, 1,2-DME and higher glyme, 1,3-dioxolane, Sulfolane, methyl formate, methyl acetate and their combinations, the supporting salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiN(CF 3 SO 2 ) 2 , LiN(SO 2 C 2 F 5 ) 2 and their combinations. 70.权利要求69的电池,还包括溶解的选自锂聚硫化物、NO2、SO2、SOCl2的固态、液态或气态氧化剂。70. The battery of claim 69, further comprising a dissolved solid, liquid or gaseous oxidant selected from the group consisting of lithium polysulfide, NO2 , SO2 , SOCl2 . 71.权利要求66的电池,其中阴极电解液包括选自咪唑鎓衍生物、吡啶鎓衍生物、膦鎓化合物和四烷基铵化合物及其组合中的离子液体。71. The cell of claim 66, wherein the catholyte comprises an ionic liquid selected from the group consisting of imidazolium derivatives, pyridinium derivatives, phosphonium compounds, and tetraalkylammonium compounds, and combinations thereof. 72.权利要求71的电池,其中离子液体选自1-乙基-3-甲基咪唑鎓甲苯磺酸盐(EMIM-Ts)、1-丁基-3-甲基咪唑鎓辛基硫酸盐(BMIM-OctSO4)、1-乙基-3-甲基咪唑鎓六氟磷酸盐和1-己基-3-甲基咪唑鎓四氟硼酸盐。72. The battery of claim 71, wherein the ionic liquid is selected from the group consisting of 1-ethyl-3-methylimidazolium tosylate (EMIM-Ts), 1-butyl-3-methylimidazolium octyl sulfate ( BMIM-OctSO4), 1-ethyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium tetrafluoroborate. 73.权利要求20的电池,其中该电池具有大于10mAh/cm2的放电容量。73. The battery of claim 20, wherein the battery has a discharge capacity greater than 10 mAh/ cm2 . 74.权利要求73的电池,其中该电池具有大于100mAh/cm2的放电容量。74. The battery of claim 73, wherein the battery has a discharge capacity greater than 100 mAh/ cm2 . 75.权利要求74的电池,其中该电池具有大于500mAh/cm2的放电容量。75. The battery of claim 74, wherein the battery has a discharge capacity greater than 500 mAh/ cm2 . 76.权利要求30的电池,其中阳极为3.35mm厚的Li,该电池充满包括NH4Cl的水基电解质,并且该电池具有650mAh/cm2的放电容量。76. The battery of claim 30, wherein the anode is 3.35 mm thick Li, the battery is filled with a water-based electrolyte comprising NH4Cl , and the battery has a discharge capacity of 650 mAh/ cm2 . 77.权利要求38的电池,其中该电池具有3.3mm厚的Li阳极和45cm2的面积,未封装的比能为3400Wh/l。77. The battery of claim 38, wherein the battery has a 3.3 mm thick Li anode and an area of 45 cm2 , with an unencapsulated specific energy of 3400 Wh/l. 78.权利要求77的电池,其中该电池具有70%的封装负荷,封装的比能为1000Wh/l。78. The battery of claim 77, wherein the battery has a packaged load of 70% and a packaged specific energy of 1000 Wh/l. 79.权利要求23的电池,还包括捕获电池组电池氧化还原反应中阴极结构释放的氢的PEMH2/O2燃料电池。79. The cell of claim 23, further comprising a PEMH2 / O2 fuel cell that captures hydrogen released from the cathode structure during redox reactions of the battery cell. 80.一种制造根据权利要求20的电池组电池的方法,包括:80. A method of manufacturing a battery cell according to claim 20, comprising: 提供以下部件:The following parts are provided: 活性金属阳极;active metal anode; 阴极结构;和cathode structure; and 在阳极第一表面上的离子导电保护构造,该构造包括:An ionically conductive protective construction on the first surface of the anode, the construction comprising: 包括非水阳极电解液的活性金属离子导电隔膜层,该隔膜层与活性金属化学相容并接触阳极,和an active metal ion conducting membrane layer comprising a non-aqueous anolyte, the membrane layer being chemically compatible with the active metal and contacting the anode, and 与隔膜层和阴极结构化学相容并接触阴极结构的基本不透水离子导电层;和a substantially water-impermeable ionically conductive layer that is chemically compatible with, and in contact with, the separator layer and the cathode structure; and 装配上述部件。Assemble the above parts. 81.权利要求80的方法,其中基本不透水离子导电层为管状的。81. The method of claim 80, wherein the substantially water impermeable ionically conductive layer is tubular. 82.一种用于在结构损坏的情况下停止根据权利要求20的电化学电池的方法,包括在阳极电解液中提供不溶于水或少量溶于水的聚合物单体,在阴极电解液中提供单体的聚合引发剂。82. A method for stopping an electrochemical cell according to claim 20 in the event of structural damage, comprising providing in the anolyte a water-insoluble or slightly water-soluble polymer monomer, in the catholyte Provides a polymerization initiator for the monomer.
CN 200480042697 2004-02-06 2004-10-08 Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction Expired - Lifetime CN100568613C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54253204P 2004-02-06 2004-02-06
US60/542,532 2004-02-06
US60/548,231 2004-02-27
US10/824,944 2004-04-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2009101749187A Division CN101702444B (en) 2004-02-06 2004-10-08 Protected active metal electrode and battery cell structures with non-aqueous interplayer architecture

Publications (2)

Publication Number Publication Date
CN1938895A CN1938895A (en) 2007-03-28
CN100568613C true CN100568613C (en) 2009-12-09

Family

ID=37955232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200480042697 Expired - Lifetime CN100568613C (en) 2004-02-06 2004-10-08 Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction

Country Status (1)

Country Link
CN (1) CN100568613C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714669B (en) * 2009-05-26 2011-05-04 张新 Gel polymer lithium ion battery and preparation method thereof
US8981723B2 (en) 2009-12-24 2015-03-17 Toyota Jidosha Kabushiki Kaisha Air battery system
KR101338142B1 (en) * 2010-04-27 2013-12-06 한양대학교 산학협력단 Lithium air battery
KR101256641B1 (en) 2010-11-02 2013-04-18 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and method for thereof
CN102491266B (en) * 2011-12-13 2016-01-20 中国电子科技集团公司第十八研究所 The method of hydrogen is prepared in a kind of lithium water reaction
EP2807698B1 (en) * 2012-01-24 2018-01-10 Enovix Corporation Ionically permeable structures for energy storage devices
CN102655250B (en) * 2012-04-16 2014-09-17 广东邦普循环科技有限公司 Solid electrolyte for lithium air cells and preparation method thereof
TWI481102B (en) * 2012-12-28 2015-04-11 Ind Tech Res Inst Protected active metal electrode and device with the electrode
US9812706B2 (en) 2012-12-28 2017-11-07 Industrial Technology Research Institute Protected active metal electrode and device with the electrode
CN104716405B (en) * 2013-12-15 2017-03-15 中国科学院大连化学物理研究所 A kind of lithium-air battery structure
TWI589610B (en) 2013-12-31 2017-07-01 財團法人工業技術研究院 Polyelectrolyte and power storage device
CN106898788A (en) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 A kind of magnesium water battery
WO2018224334A1 (en) * 2017-06-09 2018-12-13 Robert Bosch Gmbh Battery cell with anode protective layer
CN107221443B (en) * 2017-07-17 2020-02-11 深圳中科瑞能实业有限公司 Sodium ion hybrid super capacitor and preparation method thereof
JP6684964B2 (en) * 2017-12-27 2020-04-22 日本碍子株式会社 LDH separator and zinc secondary battery
EP3738162A4 (en) * 2018-01-09 2022-01-05 The Regents of the University of Michigan ELECTRIC COLLECTOR LAMINATED WITH LITHIUM ION CONDUCTING FIXED ELECTROLYTE
CN108649240B (en) * 2018-05-15 2021-06-22 常州大学 a fuel cell
JP7085139B2 (en) * 2018-12-18 2022-06-16 トヨタ自動車株式会社 Electrolyte for lithium secondary battery and lithium secondary battery
CN112242564B (en) * 2019-07-16 2024-05-10 通用汽车环球科技运作有限责任公司 Solid state battery with capacitor auxiliary interlayer

Also Published As

Publication number Publication date
CN1938895A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP6141232B2 (en) Protected active metal electrode and battery cell with non-aqueous interlayer structure
US11646472B2 (en) Making lithium metal—seawater battery cells having protected lithium electrodes
CN100568613C (en) Protected active metal electrodes and battery cell structures with non-aqueous interlayer construction
US8334075B2 (en) Substantially impervious lithium super ion conducting membranes
US20060078790A1 (en) Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
JP5091482B2 (en) Aqueous active metal electrochemical cell and system
MXPA06009007A (en) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20091209

CX01 Expiry of patent term