CN100565391C - The vibration suppression control method and the device of multi-inertia resonance system - Google Patents
The vibration suppression control method and the device of multi-inertia resonance system Download PDFInfo
- Publication number
- CN100565391C CN100565391C CNB2006101000790A CN200610100079A CN100565391C CN 100565391 C CN100565391 C CN 100565391C CN B2006101000790 A CNB2006101000790 A CN B2006101000790A CN 200610100079 A CN200610100079 A CN 200610100079A CN 100565391 C CN100565391 C CN 100565391C
- Authority
- CN
- China
- Prior art keywords
- resonance
- inertia
- phase lead
- vibration suppression
- lead compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
- Feedback Control In General (AREA)
Abstract
本发明的课题为稳定多惯性共振系统的共振模式。对于一阶的共振模式,实施对两个惯性共振系统的振动控制有效的共振比控制,对于比一阶共振模式更高的高阶振动模式,使用相位超前补偿,使所有的共振极点稳定。另一方面,对于可以忽略轴扭曲反力的刚性高的负荷,仅使用外扰观测器进行相位超前补偿,进而使所有的共振极点稳定。
The object of the present invention is to stabilize the resonance modes of a multi-inertia resonance system. For the first-order resonance mode, implement resonance ratio control effective for vibration control of the two inertial resonance systems, and for higher-order vibration modes higher than the first-order resonance mode, use phase lead compensation to stabilize all resonance poles. On the other hand, for a high-rigidity load in which the shaft torsional reaction force can be ignored, phase lead compensation is performed using only the external disturbance observer, and all resonance poles are stabilized.
Description
技术领域 technical field
本发明涉及多惯性共振系统的振动抑制控制方法以及装置,尤其涉及使用于弹性机械手或者XY机器人等的电机控制装置的振动抑制控制。The present invention relates to a vibration suppression control method and device for a multi-inertia resonance system, in particular to a vibration suppression control used in a motor control device such as an elastic manipulator or an XY robot.
背景技术 Background technique
通常,在使用弹性机械手、或者滚珠丝或者同步带的XY机器人等的电机驱动系统中,如图1的例示,将电机M与负荷A,通过比刚性更优选考虑轻量化的低刚性弹性轴(在图中在滑轮之间架设的带子B)来结合而构成共振系统,存在发生轴扭曲振动等问题。Generally, in a motor drive system using an elastic manipulator, or an XY robot such as a ball wire or a timing belt, as shown in FIG. 1 , the motor M and the load A are connected through a low-rigidity elastic shaft ( In the figure, the belt B) stretched between the pulleys is combined to form a resonant system, and there is a problem that shaft torsional vibration occurs.
实际的共振系统,由于存在多个振动模式或者固有频率,因此如图2的例示,作为多惯性共振系统来模型化。在图2中,Jm为电机M的惯性,Kf1、Kf2…为,弹簧系数,Ja1、Ja2…Jan为负荷A的惯性。Since an actual resonance system has a plurality of vibration modes or natural frequencies, it is modeled as a multi-inertia resonance system as illustrated in FIG. 2 . In Figure 2, Jm is the inertia of the motor M, Kf1, Kf2... are the spring coefficients, Ja1, Ja2...Jan is the inertia of the load A.
该多惯性共振系统,由如图3所示的框图来表示。在图3中,θm表示电机M的旋转角度(电机位置)、θa表示负荷A的旋转角度(负荷位置)、T表示转矩、s表示拉普拉斯算子、下标a表示负荷、下标dis表示外扰,下标reac表示轴扭曲反力。The multi-inertia resonance system is represented by a block diagram as shown in FIG. 3 . In Fig. 3, θm represents the rotation angle of the motor M (motor position), θa represents the rotation angle of the load A (load position), T represents the torque, s represents the Laplace operator, the subscript a represents the load, and the subscript a represents the load. The subscript dis means external disturbance, and the subscript reac means shaft twisting reaction force.
对于这样的共振系统的振动抑制与外扰抑制控制,提出状态反馈控制或者H∞控制、滞后外扰观测控制、共振比控制(参考非专利文献1)等方法。For vibration suppression and disturbance suppression control of such a resonant system, methods such as state feedback control or H∞ control, hysteresis disturbance observation control, and resonance ratio control (see Non-Patent Document 1) have been proposed.
然而,状态反馈控制或者H∞控制,由于其控制系统复杂,并且计算量庞大等,因此需要高速、高性能的CPU,从而在适用于实际机器中的方面存在问题。However, state feedback control or H∞ control requires a high-speed and high-performance CPU due to its complex control system and huge amount of calculation, and thus has problems in being applicable to actual machines.
对应与此,滞后外扰观测控制与共振比控制,由比较简单的控制系统来构成,其实用性较高。Corresponding to this, the hysteresis external disturbance observation control and the resonance ratio control are composed of a relatively simple control system, and their practicability is high.
然而,在非专利文献1中所记载的非共振控制中,将系统,作为通过柔韧的驱动轴结合电机与支架的两个惯性共振系统来模型化,因此虽然对一阶共振具有优秀的效果,但是存在在实际的多惯性系统中招致高阶共振的情况等,对高阶振动的效果低的问题。However, in the non-resonant control described in
另一方面,在专利文献1中,记载在伺服(servo)系统中设有相位超前滤波器的技术,然而该技术的构成复杂,需要精密的计算而计算时间变长,从而不能通过廉价的控制装置来实现。并且设计也复杂,存在难以找到响应稳定的参数的问题。On the other hand, in
【专利文献1】特许第3381880号公报[Patent Document 1] Patent No. 3381880
【非专利文献1】结成他‘根据共振比控制的两个惯性共振系统的振动抑制控制’电学论D、113卷(平成5年)10号、1162页~1169页。[Non-Patent Document 1] Yuzuo "Vibration Suppression Control of Two Inertial Resonant Systems Controlled by Resonance Ratio" Theory of Electricity D, Vol. 113 (Heisei 5) No. 10, pp. 1162-1169.
发明内容 Contents of the invention
本发明鉴于此,其目的在于提供一种,通过简单的结构,实现不仅包含一阶共振模式,也包含比一阶共振模式更高的高阶振动模式的,所有的共振极点的稳定化。In view of this, an object of the present invention is to provide a method for stabilizing all resonance poles including not only the first-order resonance mode but also higher-order vibration modes higher than the first-order resonance mode with a simple structure.
本发明,在进行多惯性共振系统的振动抑制控制的情况下,对于一阶共振模式实施共振比控制,对于比一阶共振模式更高的高阶振动模式实施相位超前补偿,以便实现所有的共振极点的稳定化,进而解决上述课题。In the present invention, in the case of vibration suppression control of a multi-inertia resonance system, resonance ratio control is performed for the first-order resonance mode, and phase lead compensation is performed for higher-order vibration modes higher than the first-order resonance mode so as to realize all resonances Stabilization of the poles, thereby solving the above-mentioned problems.
还有,改变使用于共振比控制内的外扰观测器中的电机惯性的标称值与实际的电机惯性的值的比率,以便进行上述相位超前补偿,从而不需要另外的相位超前补偿机构。Also, the ratio of the nominal value of the motor inertia to the actual value of the motor inertia used in the disturbance observer used in the resonance ratio control is changed to perform the phase lead compensation described above, thereby eliminating the need for a separate phase lead compensation mechanism.
还有,将上述相位超前补偿的极点与零点,配置在比共振比控制的极点更内侧中,从而使相位超前补偿与共振比控制并存。In addition, the pole and zero point of the above-mentioned phase lead compensation are arranged inside the pole of the resonance ratio control, so that the phase lead compensation and the resonance ratio control coexist.
本发明,还有,对于可以忽略轴扭曲反力的刚性高的负荷,仅使用外扰观测器进行相位超前补偿,进而实现所有的共振极点的稳定化。Furthermore, in the present invention, for a high-rigidity load in which the shaft torsional reaction force can be ignored, phase lead compensation is performed using only the external disturbance observer, thereby achieving stabilization of all resonance poles.
本发明,还有提供,具备:共振比控制机构,适用于一阶共振模式;和相位超前补偿机构,适用于二阶以上的高阶振动模式为特征的多惯性共振系统的振动抑制控制装置。The present invention also provides a vibration suppression control device for a multi-inertial resonance system characterized by a resonance ratio control mechanism suitable for first-order resonance modes and a phase lead compensation mechanism suitable for higher-order vibration modes above the second order.
还有,上述共振比控制机构,由外扰观测器与轴扭曲反力推定观测器来构成。In addition, the above-mentioned resonance ratio control means is constituted by an external disturbance observer and a shaft twist reaction force estimation observer.
本发明,还有提供,对于可以忽略轴扭曲反力的刚性高的负荷,仅使用外扰观测器以便可以进行相位超前补偿为特征的多惯性共振系统的振动抑制控制装置。The present invention also provides a vibration suppression control device for a multi-inertia resonance system characterized by using only an external disturbance observer to perform phase advance compensation for a high rigidity load in which the shaft torsional reaction force can be ignored.
还有,将使用于上述外扰观测器中的电机惯性的标称值设定为大于实际的电机惯性的值,以便进行上述相位超前补偿,从而不需要另外的相位超前补偿机构。Also, the nominal value of the motor inertia used in the external disturbance observer is set to a value larger than the actual motor inertia to perform the above-mentioned phase lead compensation, thereby eliminating the need for a separate phase lead compensation mechanism.
在本发明中,进行共振比控制,加上相位超前补偿,因此对于一阶共振模式实施对两个共振系统的振动控制有效的共振比控制,对于比一阶共振模式更高的高阶振动模式使用相位超前补偿实现共振极点的稳定化,从而可以实现所有的共振极点的稳定化。In the present invention, resonance ratio control is performed, plus phase lead compensation, so resonance ratio control effective for vibration control of two resonance systems is implemented for the first-order resonance mode, and for higher-order vibration modes higher than the first-order resonance mode Stabilization of the resonance poles is achieved using phase lead compensation, so that all resonance poles can be stabilized.
在此,相位超前补偿补偿控制,例如将使用与共振比控制内的外扰观测器中的电机惯性的标称值Jmn,设定为比实际的电机惯性的值Jm较大(Jmn>Jm),从而不添加另外的相位超前补偿机构,可以实现相位超前补偿控制。Here, in the phase lead compensation control, for example, the nominal value Jmn of the motor inertia used in the disturbance observer in the resonance ratio control is set to be larger than the actual value Jm of the motor inertia (Jmn>Jm) , so that phase lead compensation control can be realized without adding another phase lead compensation mechanism.
还有,在进行基于外扰观测器的控制的情况下,可以具有振动抑制效果并且也保证鲁棒性。Also, in the case of performing control by a disturbance observer, it is possible to have a vibration suppression effect and also ensure robustness.
还有,控制系统比状态反馈控制或者H∞控制简单,运算量较少,因此不需要使用价格高的CPU等。另外,设计或者调整也容易。In addition, the control system is simpler than state feedback control or H∞ control, and the amount of calculation is less, so it is not necessary to use an expensive CPU or the like. In addition, design or adjustment are easy, too.
还有,对于可以忽略轴扭曲反力的刚性高的负荷,仅使用外扰观测器而可以进行相位超前补偿。Also, for a load with high rigidity in which the shaft torsional reaction force can be ignored, phase lead compensation can be performed using only the external disturbance observer.
附图说明 Description of drawings
图1是表示本发明的实施对象的一例的结构图。FIG. 1 is a configuration diagram showing an example of an implementation object of the present invention.
图2是表示本发明的实施对象的一例的模型图。Fig. 2 is a model diagram showing an example of an implementation object of the present invention.
图3是表示本发明的实施对象的一例的框图。FIG. 3 is a block diagram showing an example of an object of implementation of the present invention.
图4是本发明的第一实施方式的整体框图。FIG. 4 is an overall block diagram of the first embodiment of the present invention.
图5是表示使用于第一实施方式中的外扰观测器的结构的框图。FIG. 5 is a block diagram showing the configuration of a disturbance observer used in the first embodiment.
图6是通过上述外扰观测器构成的加速度控制系统的框图。Fig. 6 is a block diagram of an acceleration control system constituted by the above-mentioned external disturbance observer.
图7是表示使用于第一实施方式中的轴扭曲反力推定观测器的结构的框图。Fig. 7 is a block diagram showing the configuration of an axial twist reaction force estimation observer used in the first embodiment.
图8是表示使用于第一实施方式中的轴扭曲反力反馈的框图。Fig. 8 is a block diagram showing shaft twisting reaction force feedback used in the first embodiment.
图9是图8的等价框线图。FIG. 9 is an equivalent block diagram of FIG. 8 .
图10是表示根据使用于第一实施方式中的外扰观测器的参数变动的相位补偿的框图。FIG. 10 is a block diagram showing phase compensation according to parameter variations of the disturbance observer used in the first embodiment.
图11表示使用于第一实施方式中的多惯性共振系统的极点与零点的图。Fig. 11 shows a diagram of poles and zeros of the multi-inertial resonance system used in the first embodiment.
图12是表示在使用于第一实施方式中的两个惯性共振系统中进行相位补偿时的框线图。Fig. 12 is a block diagram showing phase compensation performed in two inertial resonance systems used in the first embodiment.
图13是表示0<α<1的比较例的相位滞后补偿时的极点与零点的配置的图。13 is a diagram showing the arrangement of poles and zeros during phase lag compensation in a comparative example of 0<α<1.
图14是表示对0<α<1的比较例的三个惯性系统中进行相位滞后补偿时的根轨迹的图。14 is a diagram showing root loci when phase lag compensation is performed for three inertial systems of a comparative example of 0<α<1.
图15是表示在将α>1的本发明的相位超前补偿时的极点与零点的配置的图。FIG. 15 is a diagram showing the arrangement of poles and zeros in the phase lead compensation of the present invention where α>1.
图16是表示在将α>1的三个惯性共振系统中进行根据本发明的相位超前补偿时的根轨迹的图。FIG. 16 is a diagram showing root loci when phase lead compensation according to the present invention is performed in three inertial resonance systems where α>1.
图17是表示第一实施方式的极点配置的图。FIG. 17 is a diagram showing a pole arrangement of the first embodiment.
图18是本发明的第二实施方式的整体框图。Fig. 18 is an overall block diagram of a second embodiment of the present invention.
图中:M-电机;A-负荷;10-外扰观测器;20-轴扭曲反力反馈器;30-相位补偿器。In the figure: M-motor; A-load; 10-external disturbance observer; 20-axis twisting reaction force feedback device; 30-phase compensator.
具体实施方式 Detailed ways
下面参照附图,详细地说明本发明的实施方式。Embodiments of the present invention will be described in detail below with reference to the drawings.
在图4中表示本发明的第一实施方式的控制装置的整体的框图(在图中将负荷作为两个惯性共振系统来表示,然而在多惯性共振系统的情况下也相同)。FIG. 4 shows an overall block diagram of the control device according to the first embodiment of the present invention (the load is shown as two inertial resonance systems in the figure, but the same applies to the case of multiple inertial resonance systems).
在本控制装置中,使用如图5所示的外扰观测器10、以及如图7所示的轴扭曲反力推定观测器20,进行共振比控制,并且进行多惯性共振系统的振动抑制控制。In this control device, the
将外扰观测器10适用于电机侧,以便可以抵消、除去作用于电机中的各种外扰的影响,可以建立图6所示的鲁棒加速度控制系统。The
即,可以将作用于电机的外扰转矩Tdism如下式表示。That is, the disturbance torque Tdism acting on the motor can be represented by the following equation.
Tdism=(Jm-Jmn)(d2θm/dt2)+(Ktn-Kt)Iaref Tdism=(Jm-Jmn)(d 2 θm/dt 2 )+(Ktn-Kt)Ia ref
+Tfric+Dm(dθm/dt)+Treac …(1)+Tfric+Dm(dθm/dt)+Treac ...(1)
其中,Iaref表示参考电流值、式右边的第一项表示惯性变动转矩、第二项表示转矩脉动(ripple)、第三项表示库仑摩擦转矩、第四项表示粘性摩擦转矩、第五项表示轴扭曲反力。Among them, Ia ref represents the reference current value, the first term on the right side of the formula represents the inertial variation torque, the second term represents the torque ripple (ripple), the third term represents the Coulomb friction torque, and the fourth term represents the viscous friction torque, The fifth term represents the shaft twisting reaction force.
作用于符合的外扰转矩Tdisa,包含在轴扭曲反力Treac中,以便向电机作用。当可以检测参考电流值Iaref与电机速度时,在式(1)中定义的外扰转矩Tdism,通过图5所示的外扰观测器10,经由一阶的低通滤波器,推定为如下式。在图5中,Icmp为用于通过补偿外扰转矩确保鲁棒性的补偿电流。The external disturbance torque Tdisa acting on the shaft is included in the shaft twisting reaction force Treac so as to act on the motor. When the reference current value Ia ref and the motor speed can be detected, the external disturbance torque Tdism defined in formula (1) is estimated as as follows. In FIG. 5 , Icmp is a compensation current for ensuring robustness by compensating for external disturbance torque.
【数1】【Number 1】
反馈该推定外扰转矩Tdism,以便可以建立对外扰具有鲁棒性的控制系统。This estimated external disturbance torque Tdism is fed back so that a control system robust to external disturbances can be established.
基于该外扰观测器10的鲁棒控制系统,成为如图6所示的加速度控制系统。可知将外扰观测增益Gdis设定为较大,以便消除外扰转矩Tdism的影响。通过上述方式,电机成为消除轴扭曲反力Treac、不受到负荷侧的影响的鲁棒控制系统。The robust control system based on the
将外扰观测器10适用于电机侧,以便抵消、除去作为唯一的负荷侧的信息的轴扭曲反力Treac,因此引起负荷侧的振动。The
因此,利用具有与外扰观测器大体上相同结构的轴扭曲反力推定观测器20,进行轴扭曲反力Treac的推定。Therefore, the axial torsion reaction force Treac is estimated using the axial torsion reaction
在式(1)的外扰转矩Tdis中,将电机惯性的标称值Jmn,作为通过加速度试验已验证(identify)的值,以便可以除去电机惯性的变动转矩的影响。还有,将库仑摩擦转矩Tfric、粘性摩擦转矩Dm(d2θm/dt2)通过匀速试验来验证,通过相抵方式,轴扭曲反力Treac,如下式推定。In the external disturbance torque Tdis in the formula (1), the nominal value Jmn of the motor inertia is taken as a value verified by the acceleration test, so that the influence of the variable torque of the motor inertia can be eliminated. Also, the Coulomb friction torque Tfric and the viscous friction torque Dm (d 2 θm/dt 2 ) are verified by a uniform velocity test, and the shaft torsional reaction force Treac is estimated by the following equation by the offset method.
Treac*=Tdism*-Tfric-Dm(dθm/dt) …(3)Treac * =Tdism * -Tfric-Dm(dθm/dt) …(3)
在图7中表示轴扭曲反力推定观测器20的框线图。Greac为,在轴扭曲反力推定观测器20中包含的一阶的低通滤波器的截止频率。FIG. 7 shows a block diagram of the shaft twist reaction
在图8中表示在将外扰观测器10适用于电机侧上以便构成加速度控制系统的控制对象中,反馈轴扭曲反力Treac的系统。Kr为轴扭曲反力Treac的反馈增益,可以任意地设定。FIG. 8 shows a system in which the shaft twisting reaction force Treac is fed back in a control object in which the
从该系统的加速度参考值(d2θm/dt2)ref开始电机位置θm为止的传递函数与从电机位置θm开始负荷位置θa为止的传递函数分别如下。The transfer function from the acceleration reference value (d 2 θm/dt 2 ) ref of this system to the motor position θm and the transfer function from the motor position θm to the load position θa are as follows.
【数2】【Number 2】
还有,电机共振频率ωm、以及负荷共振频率ωa的定义如下。In addition, the motor resonance frequency ωm and the load resonance frequency ωa are defined as follows.
【数3】【Number 3】
在此,将共振比K,在下式中定义。Here, the resonance ratio K is defined by the following formula.
负荷共振频率ωa,成为在电机侧中作为零点来作用的反共振频率。ωa,没有包含任意参数而通过控制对象来确定。还有,对电机侧的状态反馈不能进行控制。The load resonance frequency ωa is an anti-resonance frequency acting as a zero point on the motor side. ωa, does not contain any parameters but is determined by the control object. Also, the state feedback on the motor side cannot be controlled.
另一方面,ωm为电机侧的共振频率,通过轴扭曲反力反馈增益Kr来可以任意地设定。On the other hand, ωm is the resonant frequency on the motor side, and can be arbitrarily set by the shaft torsion reaction force feedback gain Kr.
利用式(6)、(7),将图8等价变换为图9的框线图。由图9可知,负荷侧共振极点ωa,只要没有通过电机侧前馈进行的零点操作,并且在电机侧中没有极点零点抵消,就与电机侧反共振零点相抵消。Using formulas (6) and (7), figure 8 is equivalently transformed into the frame diagram of figure 9 . It can be seen from Fig. 9 that the resonance pole ωa on the load side cancels the anti-resonance zero point on the motor side as long as there is no zero point operation through the motor side feedforward and there is no pole point zero point cancellation on the motor side.
共振比控制将轴扭曲反力Treac反馈,并且通过轴扭曲反力反馈增益Kr可以将共振比K任意地设定。The resonance ratio control feeds back the shaft torsion reaction force Treac, and the resonance ratio K can be set arbitrarily by the shaft torsion reaction force feedback gain Kr.
控制共振比K,相当于控制虚拟电机惯性,在共振比K较大时,即当反馈增益Kr较大的情况下,对于负荷惯性电机惯性变小,并且容易受到负荷侧的影响。另外,在相反情况下也相同。Controlling the resonance ratio K is equivalent to controlling the virtual motor inertia. When the resonance ratio K is large, that is, when the feedback gain Kr is large, the motor inertia becomes smaller for the load inertia and is easily affected by the load side. In addition, the same applies in the opposite case.
将共振比K设定为Set the resonance ratio K as
,以便对任何的两个惯性共振系统,也可以实现振动抑制、适应性优秀的增益设定。, so that for any two inertial resonance systems, vibration suppression and adaptive gain setting can also be achieved.
各个增益为如下。The respective gains are as follows.
Kr=4/Ja …(11)Kr=4/Ja …(11)
Kp=ωa2 …(12)Kp = ωa 2 ... (12)
Kv=4ωa …(13)Kv=4ωa ...(13)
在此,若施加在电机M中的外扰,仅仅由根据参数变动的外扰转矩Tdism来构成,则表示为如下式。Here, if the external disturbance applied to the motor M is composed only of the external disturbance torque Tdism that varies according to the parameters, it will be represented by the following equation.
Tdism=(Jm-Jmn)(d2θm/dt2)+(Ktn-Kt)Iaref…(14)Tdism=(Jm-Jmn)(d 2 θm/dt 2 )+(Ktn-Kt)Ia ref ...(14)
若将参数变动考虑而代入到计算中,则从电机的加速度参考值(d2θm/dt2)ref开始加速度响应值d2θm/dt2为止的传递函数,成为如下式。When parameter variation is considered and substituted into the calculation, the transfer function from the acceleration reference value (d 2 θm/dt 2 ) ref of the motor to the acceleration response value d 2 θm/dt 2 is as follows.
在此,使转矩的变动成为极小,将使用于外扰观测器10中的标称值Jmn、Ktn,设定为如下。Here, the variation in torque is minimized, and the nominal values Jmn and Ktn used in the
Jmn=αJm …(16)Jmn=αJm ... (16)
Ktn=Kt …(17)Ktn=Kt ...(17)
在以往,Jm=Jmn,即,以α=1方式控制。Conventionally, Jm=Jmn, that is, α=1 is controlled.
若将式(16)、(17)代入到式(15)中,则可得到以下式。When formula (16) and (17) are substituted into formula (15), the following formula can be obtained.
若通过框线图表示该式(18)则成为如图10。When this formula (18) is represented by a block diagram, it will be shown in FIG. 10 .
由图10可知,与对于加速度参考值(d2θm/dt2)ref,加上(s+Gdis)/{(1/α)s+Gdis}的相位补偿30,而对于外扰Tdism,使高通滤波器的截止频率成为α倍的方式等价。It can be seen from Fig. 10 that, for the acceleration reference value (d 2 θm/dt 2 ) ref , plus the
在此,here,
α<1时相位滞后补偿、外扰观测器增益减少When α<1, the phase lag compensation and the gain reduction of the external disturbance observer
α>1时相位超前补偿、外扰观测器增益增加When α>1, the phase advance compensation and the gain of the external disturbance observer increase
即,改变使用于外扰观测器10中的电机惯性的标称值Jmn与实际的电机惯性的值Jm的比α,以便可以得到改变加速度参考值的相位补偿与外扰观测器的截止频率的效果。That is, change the ratio α of the nominal value Jmn of the motor inertia used in the
接着,在多惯性共振系统中,利用根轨迹表示在改变使用于外扰观测器10中的电机惯性的标称值Jmn的情况下的振动抑制效果。Next, in the multi-inertia resonance system, the vibration suppression effect when the nominal value Jmn of the motor inertia used in the
在图11中,在复平面上图示多惯性共振系统的极点(×符号)与零点(○符号)。Re为实轴、Im为虚轴。可知,多惯性共振系统的极点与零点相互交替地并存在虚轴Im上。In FIG. 11 , the poles (* symbols) and zero points (◯ symbols) of the multi-inertial resonance system are shown on the complex plane. Re is a real axis, and Im is an imaginary axis. It can be seen that the poles and zeros of the multi-inertia resonance system alternate with each other and exist on the imaginary axis Im.
在以下的说明中,对于为了追求简单而将两个惯性共振系统作为负荷来进行相位补偿的情况,进行解释。在图12中表示在对两个惯性共振系统进行相位补偿时的框线图。在此θcmd为位置指令值(可以任意地设定)、Cp为比例控制的增益。In the following description, a case where phase compensation is performed using two inertial resonance systems as loads for simplicity will be explained. FIG. 12 shows a block diagram for phase compensation of two inertial resonance systems. Here, θcmd is the position command value (can be set arbitrarily), and Cp is the gain of proportional control.
图12的传递函数为如下。The transfer function of Fig. 12 is as follows.
【数6】【Number 6】
n(s)=Cp(s3+αGdis·s2+ωa2s+αGdis·ωa2) …(20)n(s)=Cp(s 3 +αGdis·s 2 +ωa 2 s+αGdis·ωa 2 ) …(20)
通过相位补偿器30的值,特性变化。即,相位补偿器30,在0<α<1时,成为相位滞后补偿。在这种情况下将极点与零点作为Plag、Zlag,则表示为如下。The characteristics vary by the value of the
Plag=[0,0,jωm,-jωm,-αGdis] …(23)Plag=[0, 0, jωm, -jωm, -αGdis] ... (23)
Zlag=[jωa,-jωa,Gdis] …(24)Zlag=[jωa,-jωa,Gdis] …(24)
若图示这些极点与零点则成为如图13所示。×为极点、○为零点。These poles and zeros are shown in Fig. 13 . × is a pole, and ○ is a zero.
在此,将相位滞后补偿器30的极点-αGdis与振动极点s=jωm形成的角、与反共振的零点s=jωa形成的角,分别作为θp、φp。还有将相位滞后补偿器30的零点-Gdis与振动极点s=iωm形成的角、与反共振零点s=jωa形成的角,分别作为θz、φz。Here, the angle formed by the pole -αGdis of the
在这种情况下,各个极点的出射角θid(i=1~5)与零点的入射角θia(i=1~3),计算为如下。In this case, the outgoing angle θi d (i=1-5) of each pole and the incident angle θi a (i=1-3) of the zero point are calculated as follows.
θ1d=-πθ1 d = -π
θ2d=-πθ2 d = -π
θ3d=θz-θp+(π/2) θ3d = θz-θp+(π/2)
θ4d=-{θz-θp+(π/2)}θ4 d = -{θz-θp+(π/2)}
θ1a=-Φz+φp-(π/2)θ1 a =-Φz+φp-(π/2)
θ2a=-{-Φz+Φp-(π/2)}θ2 a =-{-Φz+Φp-(π/2)}
在图14中,表示对三个惯性共振系统进行相位滞后补偿时的根轨迹。若改变比例控制增益Cp,则可以确定系统肯定向不稳定的方向运动。In FIG. 14, the root locus when the phase lag compensation is performed for the three inertial resonance systems is shown. If the proportional control gain Cp is changed, it can be determined that the system must move in an unstable direction.
一方面,相位补偿器30,在α>1的情况下,成为相位超前补偿。若将在这种情况下的极点与零点作为Plead、Zlead,则表示为如下。On the other hand, the
Plead=[0,0,jωm,-jωm,-Gdis] …(25)Plead=[0, 0, jωm, -jωm, -Gdis] ... (25)
Zlead=[jωa,-jωa,Gdis] …(26)Zlead=[jωa, -jωa, Gdis] ... (26)
若将这些极点与零点表示在图中,则成为如图15所示。When these poles and zeros are shown in the figure, it becomes as shown in FIG. 15 .
在此,将相位超前补偿器30的极点-αGdis与振动极点s=jωm形成的角、与反共振的零点s=iωa形成的角,分别作为θp、φp。还有将相位超前补偿器30的零点-Gdis与振动极点s=iωm形成的角、与反共振零点s=jωa形成的角,分别作为θz、φz。Here, the angle formed by the pole -αGdis of the
在这种情况下,各个极点的出射角θid(i=1~5)与零点的入射角θia(i=1~3),计算为如下。In this case, the outgoing angle θi d (i=1-5) of each pole and the incident angle θi a (i=1-3) of the zero point are calculated as follows.
θ1d=-πθ1 d = -π
θ2d=-πθ2 d = -π
θ3d=θz-θp+(π/2) θ3d = θz-θp+(π/2)
θ4d=-{θz-θp+(π/2)}θ4 d = -{θz-θp+(π/2)}
θ1a=-Φz+Φp-(π/2)θ1 a =-Φz+Φp-(π/2)
θ2a=-{-Φz+Φp-(π/2)}θ2 a =-{-Φz+Φp-(π/2)}
在图16中,表示在三个惯性共振系统中,在进行根据本发明的相位超前补偿时的根轨迹。若改变比例控制增益Cp,则可以确认系统肯定向稳定的方向运动。In FIG. 16, the root locus when phase lead compensation according to the present invention is performed in three inertial resonance systems is shown. If the proportional control gain Cp is changed, it can be confirmed that the system will definitely move towards a stable direction.
这些,对于高阶共振系统,也可以得到同样的结果。即,可知以进行相位超前补偿的方式,可以进行多惯性共振系统的振动抑制控制。These, for the higher order resonance system, can also obtain the same result. That is, it can be seen that the vibration suppression control of the multi-inertia resonance system can be performed by performing phase lead compensation.
在本实施方式中,以改变使用于共振比控制内的外扰观测器10中的电机惯性的标称值Jmn与实际的电机惯性的值Jm的比率α的方式,没有特别重新添加相位超前补偿器30,实现这些的相位超前补偿。In the present embodiment, the ratio α of the nominal value Jmn of the motor inertia to the actual value Jm of the motor inertia Jm used in the
为了使该相位超前补偿与共振比控制并存,需要将相位超前补偿的极点与零点,配置在比共振比控制的极点更内侧中。即,将整个控制系统的极点配置设定为如图17所示的方式,以便对于一阶振动模式,通过共振比控制没有积极地进行控制,对于比一阶振动模式更高的高阶的振动模式,由于原来的影响较小而,通过相位超前补偿可以保证稳定性。In order to make the phase lead compensation and the resonance ratio control coexist, it is necessary to arrange the pole and the zero point of the phase lead compensation inside the pole of the resonance ratio control. That is, the pole configuration of the entire control system is set as shown in FIG. 17 so that the first-order vibration mode is not actively controlled by the resonance ratio control, and the higher-order vibration than the first-order vibration mode mode, due to the small influence of the original, the stability can be guaranteed by phase lead compensation.
还有,在第一实施方式中,将电机与负荷通过柔韧的驱动轴结合,轴扭曲成为问题的刚性较低的控制系统作为对象,然而在负荷与轴的刚性较高而不需要轴扭曲补偿的情况下,如图18所示的第二实施方式,可以省略反力推定观测器,仅仅通过外绕观测器10来构成相位超前补偿控制。Also, in the first embodiment, the motor and the load are connected through a flexible drive shaft, and the control system with low rigidity where shaft twist is a problem is targeted. However, when the rigidity of the load and shaft is high, no shaft twist compensation is required. In the case of , as in the second embodiment shown in FIG. 18 , the reaction force estimation observer can be omitted, and the phase advance compensation control can be constituted only by the outer orbiting
在该第二实施方式中,也通过相位超前补偿效果,与第一实施方式相同可以实现共振极点的稳定化。Also in this second embodiment, the resonance pole can be stabilized similarly to the first embodiment due to the phase advance compensation effect.
还有,在上述实施方式中,在速度运算部中使用P(比例)控制,然而速度运算的控制种类不限定于此,也可以使用PI(比例积分)控制、PD(比例微分)控制、PID(比例积分微分)控制等。还有,可以代替使用轴扭曲反力推定观测器,而使用线性编码器等,测定负荷侧的位置的方法。实施对象,也不限定于弹性机械手或者XY机器人。In addition, in the above-mentioned embodiment, P (proportional) control is used in the speed calculation part, but the control type of the speed calculation is not limited to this, and PI (proportional-integral) control, PD (proportional-derivative) control, PID control, etc. may also be used. (proportional integral differential) control, etc. In addition, instead of using the shaft torsion reaction force estimation observer, a linear encoder or the like may be used to measure the position on the load side. The implementation objects are not limited to elastic manipulators or XY robots.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005192670 | 2005-06-30 | ||
JP2005192670 | 2005-06-30 | ||
JP2006017215 | 2006-01-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1892518A CN1892518A (en) | 2007-01-10 |
CN100565391C true CN100565391C (en) | 2009-12-02 |
Family
ID=37597447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101000790A Expired - Fee Related CN100565391C (en) | 2005-06-30 | 2006-06-28 | The vibration suppression control method and the device of multi-inertia resonance system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100565391C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104589359A (en) * | 2014-12-25 | 2015-05-06 | 中国矿业大学 | Method for controlling vibration of flexible manipulator based on vibration observer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009089774A (en) * | 2007-10-04 | 2009-04-30 | Juki Corp | Sewing machine XY axis motor controller |
CN109445274B (en) * | 2018-10-25 | 2021-08-27 | 清华大学深圳研究生院 | Flexible space manipulator vibration control method and system |
-
2006
- 2006-06-28 CN CNB2006101000790A patent/CN100565391C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104589359A (en) * | 2014-12-25 | 2015-05-06 | 中国矿业大学 | Method for controlling vibration of flexible manipulator based on vibration observer |
CN104589359B (en) * | 2014-12-25 | 2016-01-27 | 中国矿业大学 | A kind of Vibrations of A Flexible Robot Arm control method based on Vibration device |
Also Published As
Publication number | Publication date |
---|---|
CN1892518A (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4879173B2 (en) | Electric motor control device | |
JP6604157B2 (en) | Resonance suppression controller in multi-inertia resonance system | |
JP4148189B2 (en) | Control device for flexible joint robot arm | |
JP2005301508A (en) | Control unit | |
JP6043231B2 (en) | Electric motor control device | |
JP4892000B2 (en) | System to cancel motor and joint controller dynamics | |
JP4860277B2 (en) | Vibration suppression control method and apparatus for multi-inertia resonance system | |
CN103916068A (en) | Motor Controlling Device, Motor Controlling Method And Machinery System | |
JP3900219B2 (en) | Electric motor speed control device and gain setting method for the same | |
CN100565391C (en) | The vibration suppression control method and the device of multi-inertia resonance system | |
JP5989694B2 (en) | Control device, control method, and control program | |
JP5129965B2 (en) | Method and apparatus for controlling motor of sewing machine spindle | |
CN108873686B (en) | A kind of control method for series elastic driver | |
JP5084232B2 (en) | Synchronous anti-vibration control device for positioning device | |
KR20000048977A (en) | Method and control structure for controlling moments in numerically controlled elastic (and therefore oscillation-capable) multiple mass systems | |
JP3611147B2 (en) | Multi-axis robot controller | |
JP5411687B2 (en) | Robot control device | |
CN113767565B (en) | Motor control system, motor control method, and program | |
JPH09305239A (en) | Backlash damping control method | |
JP6237039B2 (en) | Robot control apparatus and robot control method | |
JP7277260B2 (en) | Motor control device and industrial machine for suppressing vibration | |
JP5329203B2 (en) | Vibration suppression control device for positioning control device | |
JP5129966B2 (en) | XY axis motor control method and apparatus for XY automatic feed stitching machine | |
JP4653635B2 (en) | Filter device and feedback control device using the same | |
Lacaze et al. | Active vibration control of a cable-driven parallel robot using active rods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091202 Termination date: 20130628 |