[go: up one dir, main page]

CN100556071C - image processing method - Google Patents

image processing method Download PDF

Info

Publication number
CN100556071C
CN100556071C CNB2006101637652A CN200610163765A CN100556071C CN 100556071 C CN100556071 C CN 100556071C CN B2006101637652 A CNB2006101637652 A CN B2006101637652A CN 200610163765 A CN200610163765 A CN 200610163765A CN 100556071 C CN100556071 C CN 100556071C
Authority
CN
China
Prior art keywords
value
pixel
color purity
image processing
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101637652A
Other languages
Chinese (zh)
Other versions
CN101197917A (en
Inventor
李俊贤
罗新台
翁瑞兴
许景富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wintek Corp
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Priority to CNB2006101637652A priority Critical patent/CN100556071C/en
Publication of CN101197917A publication Critical patent/CN101197917A/en
Application granted granted Critical
Publication of CN100556071C publication Critical patent/CN100556071C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

一种图像处理方法,适用于增强图像的色彩饱和度。图像包括至少一像素,像素具有像素数据,而像素数据包括三个色彩的数据。图像处理方法包括:首先,计算像素的色彩纯度值,色彩纯度值是三个色彩的数据中的最大灰阶值与最小灰阶值的差值,并依据色彩纯度值得到与色彩纯度值对应的级别因子;然后,由级别因子决定像素的增艳矩阵,并依据增艳矩阵与像素数据产生调整后像素数据。

Figure 200610163765

An image processing method is used to enhance the color saturation of an image. The image includes at least one pixel, the pixel has pixel data, and the pixel data includes data of three colors. The image processing method includes: first, calculating the color purity value of the pixel, the color purity value is the difference between the maximum grayscale value and the minimum grayscale value in the data of the three colors, and obtaining a level factor corresponding to the color purity value according to the color purity value; then, determining the pixel enhancement matrix according to the level factor, and generating adjusted pixel data according to the enhancement matrix and the pixel data.

Figure 200610163765

Description

图像处理方法 image processing method

技术领域 technical field

本发明是有关于一种图像处理方法,且特别是有关于一种具色彩增艳功能的图像处理方法。The present invention relates to an image processing method, and in particular to an image processing method with a color enhancement function.

背景技术 Background technique

在第三代(third-generation,3G)通讯技术的发展下,许多运用3G多媒体的移动通讯装置,例如手机或个人数字助理(personal digital assistant,PDA)等,常被用于接收及显示数字图像数据,让使用者在操作这些移动通讯装置的同时,也能观赏数字图像的拨放。有鉴于数字图像信号来源,例如电荷耦合元件(charge couple device,CCD)或是移动电视信号的图像色彩饱和度不足,如何在前述通讯装置的显示屏幕上显示出色彩更饱和的图像已成为许多厂商发展的重点。With the development of third-generation (3G) communication technology, many mobile communication devices using 3G multimedia, such as mobile phones or personal digital assistants (PDA), are often used to receive and display digital images data, allowing users to view and play digital images while operating these mobile communication devices. In view of the lack of image color saturation of digital image signal sources, such as charge coupled devices (CCD) or mobile TV signals, how to display more saturated images on the display screens of the aforementioned communication devices has become an issue for many manufacturers. focus of development.

基于使图像效果最佳化呈现的目的,目前已有多种图像处理方法被提出用以提高图像的色彩饱和度。美国专利号第6771311号的专利案揭露了一种「自动色彩饱和度增强技术」(automatic color saturation enhancement)。此专利中,必须先求出四个预算子(predictor)再进一步计算出级别因子。由于此方法必须经过相当复杂的数学运算,当实现于驱动IC上时,需要耗费相当大的成本。Based on the purpose of optimizing the presentation of the image effect, various image processing methods have been proposed to improve the color saturation of the image. US Patent No. 6771311 discloses an "automatic color saturation enhancement technology" (automatic color saturation enhancement). In this patent, four predictors must be obtained first, and then the level factor is further calculated. Since this method must go through quite complex mathematical operations, it will cost a considerable amount of cost when implemented on a driver IC.

另外,美国专利号第6721000号的专利案揭露了一种「用于数字照相机的可适应性像素色彩增强技术」(adaptive pixel-level color enhancementfor a digital camera)。此专利是针对YUV色彩空间(colors pace)的色彩元素作处理,将U元素及V元素乘上级别因子以达到增加色彩饱和度的效果。然而,此方法在针对本来就已具有高色彩饱和度的像素做色彩增艳后,会使这些像素的灰阶值高于一般色彩呈现时的最高灰阶值(通常是255)。此种状况下,仅能以最高灰阶值表现这些像素,因而产生「图像修剪」(clipping)的现象,无法呈现这些像素原始的色彩层次,使图像失去原本较细微的信息。In addition, US Patent No. 6721000 discloses an "adaptive pixel-level color enhancement for a digital camera" (adaptive pixel-level color enhancement for a digital camera). This patent deals with the color elements of the YUV color space (colors pace), and multiplies the U element and the V element by the level factor to achieve the effect of increasing color saturation. However, this method will make the grayscale value of these pixels higher than the highest grayscale value (usually 255) in general color rendering after the color enhancement is performed on the pixels already having high color saturation. In such a situation, these pixels can only be represented with the highest grayscale value, resulting in "image clipping" (clipping), which cannot present the original color levels of these pixels, causing the image to lose its original subtle information.

在2004年的信息显示会议(society for information display,SID)中,飞利浦研究实验室(Philips research laboratories)发表了一篇名为「使用较小色域移动装置显示更逼真色彩的技术」(more realistic colors fromsmall-gamut mobile displays)的论文,提出了一个可减轻「图像修剪」现象的后处理方法。此技术针对调整后像素的灰阶值大于最大灰阶值及像素的灰阶值小于最小灰阶值(例如是0)的情况作处理,是先对整张图像同时加上某种程度的白色,使全图像的灰阶值皆大于或等于0,再以像素的最大值对图像正规化,可使全图像的灰阶值皆小于或等于255。此方法虽然不至于影响图像的色调,但会使图像的色彩饱和度下降。In the 2004 Society for Information Display (SID) conference, Philips research laboratories (Philips research laboratories) published a paper entitled "Technology for displaying more realistic colors using smaller color gamut mobile devices". colors from small-gamut mobile displays), a post-processing method that alleviates the phenomenon of "image cropping" is proposed. This technology deals with the situation where the grayscale value of the adjusted pixel is greater than the maximum grayscale value and the grayscale value of the pixel is smaller than the minimum grayscale value (for example, 0). It first adds a certain degree of white to the entire image at the same time. , so that the grayscale values of the entire image are all greater than or equal to 0, and then the image is normalized by the maximum value of the pixel, so that the grayscale values of the entire image are all less than or equal to 255. Although this method will not affect the color tone of the image, it will reduce the color saturation of the image.

发明内容 Contents of the invention

本发明是在提供一种具空间适应性的图像处理方法,是根据图像中每个像素的色彩纯度去计算出属于此像素的增艳矩阵,进而对此像素的色彩作不同程度的调整。图像中的每个像素的增艳程度不同,针对色彩纯度值较小的像素作比较大程度的色彩增艳,针对色彩纯度值较大的像素去做比较小程度的色彩增艳,不仅可有效地解决图像修剪现象,且不会改变像素原始的色调。The present invention provides a space-adaptive image processing method. According to the color purity of each pixel in the image, the color enhancement matrix belonging to the pixel is calculated, and then the color of the pixel is adjusted to different degrees. Each pixel in the image has a different degree of color enhancement. A relatively large degree of color enhancement is performed for pixels with a small color purity value, and a relatively small degree of color enhancement is performed for pixels with a large color purity value. It can effectively solve the phenomenon of image cropping without changing the original color tone of the pixels.

本发明提出一种图像处理方法,适用于增强图像的色彩饱和度。图像包括至少一像素,像素具有像素数据,而像素数据包括三个色彩的数据。图像处理方法包括:首先,计算像素的色彩纯度值,其中色彩纯度值是三个色彩的数据中的最大灰阶值与最小灰阶值的差值,并依据色彩纯度值得到与色彩纯度值对应的级别因子;然后,由级别因子决定像素的增艳矩阵,并依据增艳矩阵与像素数据产生调整后像素数据。The invention provides an image processing method, which is suitable for enhancing the color saturation of an image. The image includes at least one pixel, the pixel has pixel data, and the pixel data includes data of three colors. The image processing method includes: first, calculate the color purity value of the pixel, wherein the color purity value is the difference between the maximum gray scale value and the minimum gray scale value in the data of the three colors, and obtain the corresponding color purity value according to the color purity value The level factor; then, the level factor determines the enhancement matrix of the pixel, and generates adjusted pixel data according to the enhancement matrix and the pixel data.

为让本发明的上述特征、和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.

附图说明 Description of drawings

图1绘示乃依照本发明较佳实施例的图像处理方法的流程图。FIG. 1 shows a flowchart of an image processing method according to a preferred embodiment of the present invention.

图2绘示乃CIE标准色度图。Figure 2 shows the CIE standard chromaticity diagram.

图3A乃彩色图像一。Figure 3A is a color image one.

图3B乃图3A图像的色度坐标分布图。FIG. 3B is a distribution diagram of chromaticity coordinates of the image in FIG. 3A .

图4A乃图3A的彩色图像一经图像处理后的调整图像。FIG. 4A is an adjusted image of the color image in FIG. 3A after image processing.

图4B乃图4A图像的色度坐标分布图。FIG. 4B is a distribution diagram of chromaticity coordinates of the image in FIG. 4A.

图5A乃彩色图像二。Figure 5A is the second color image.

图5B乃图5A图像的色度坐标分布图。FIG. 5B is a distribution diagram of chromaticity coordinates of the image in FIG. 5A.

图6A乃图5A的彩色图像二经图像处理后的调整图像。FIG. 6A is an adjusted image of the color image 2 in FIG. 5A after image processing.

图6B乃图6A图像的色度坐标分布图。FIG. 6B is a distribution diagram of chromaticity coordinates of the image in FIG. 6A.

具体实施方式 Detailed ways

本发明所提出的图像处理方法是适用于增强图像的色彩饱和度,此图像包括至少一像素。此像素具有对应的像素数据,而像素数据则包括三个色彩的数据,对应于三个色彩的像素数据包括(C1,C2,C3)。三个色彩例如是红色、绿色及蓝色,则可将C1设定为红色数据的灰阶值,C2设定为绿色数据的灰阶值,而C3设定为蓝色数据的灰阶值。The image processing method proposed by the present invention is suitable for enhancing the color saturation of an image, and the image includes at least one pixel. The pixel has corresponding pixel data, and the pixel data includes data of three colors, and the pixel data corresponding to the three colors includes (C1, C2, C3). If the three colors are red, green and blue, for example, C1 can be set as the grayscale value of the red data, C2 can be set as the grayscale value of the green data, and C3 can be set as the grayscale value of the blue data.

请参照图1,其绘示乃依照本发明较佳实施例的图像处理方法的流程图。如图1所示,图像处理方法包括步骤11~13:首先,由像素数据(C1,C2,C3)去计算像素的色彩纯度值,并依据色彩纯度值得到与此色彩纯度值对应的级别因子;接着,由级别因子决定此像素的增艳矩阵,并依据此增艳矩阵与像素数据产生调整后像素数据。Please refer to FIG. 1 , which shows a flowchart of an image processing method according to a preferred embodiment of the present invention. As shown in Figure 1, the image processing method includes steps 11-13: first, calculate the color purity value of the pixel from the pixel data (C1, C2, C3), and obtain the level factor corresponding to the color purity value according to the color purity value ; Next, determine the enhancement matrix of the pixel by the level factor, and generate adjusted pixel data according to the enhancement matrix and the pixel data.

在步骤11中,是由像素的像素数据计算此像素的色彩纯度值。在此步骤中,对输入图像中每个像素的色彩数据进行分析,以藉此像素的色彩灰阶值之间的关系,估算出此像素的色彩纯度值,以像素数据(C1,C2,C3)为例,色彩纯度值可根据下列公式所获得:In step 11, the color purity value of the pixel is calculated from the pixel data of the pixel. In this step, the color data of each pixel in the input image is analyzed to estimate the color purity value of the pixel based on the relationship between the color grayscale values of the pixel, and the pixel data (C1, C2, C3 ) as an example, the color purity value can be obtained according to the following formula:

cp=max(C1,C2,C3)-min(C1,C2,C3),cp=max(C1,C2,C3)-min(C1,C2,C3),

其中,cp是色彩纯度值,max(C1,C2,C 3)是C1、C2及C3中的最大灰阶值,而min(C1,C2,C3)是C1、C2及C3中的最小灰阶值。色彩纯度值的定义为C1、C2及C3中的最大灰阶值与最小灰阶值的差值。Among them, cp is the color purity value, max(C1, C2, C 3) is the maximum gray scale value among C1, C2 and C3, and min(C1, C2, C3) is the minimum gray scale value among C1, C2 and C3 value. The color purity value is defined as the difference between the maximum gray scale value and the minimum gray scale value among C1, C2 and C3.

所计算出来的像素的色彩纯度值具有多个级别,亦即每个像素的色彩纯度值依照其大小可被区分为不同的级别,因而可进一步地决定每个像素所要增艳的程度。当所计算出的色彩纯度值越大时,代表此像素于呈现时倾向于特定色彩的比例越大。举例来说,假设某像素的像素数据是C1等于18,C2等于165,而C3等于80,则max(C1,C2,C3)为C2,而min(C1,C2,C3)为C1,因此cp等于147。前述已经定义过C1是红色数据的灰阶值,而C2是绿色数据的灰阶值,因此此像素倾向于呈现绿色的比例最大。以下继续说明此图像处理方法的步骤。The calculated color purity value of the pixel has multiple levels, that is, the color purity value of each pixel can be divided into different levels according to its size, so the degree of color enhancement of each pixel can be further determined. When the calculated color purity value is larger, it means that the proportion of the pixel tending to a specific color is larger when presented. For example, assuming that the pixel data of a certain pixel is that C1 is equal to 18, C2 is equal to 165, and C3 is equal to 80, then max(C1, C2, C3) is C2, and min(C1, C2, C3) is C1, so cp equals 147. It has been defined above that C1 is the grayscale value of red data, and C2 is the grayscale value of green data, so this pixel tends to display the largest proportion of green. The steps of this image processing method will continue to be described below.

接着,如步骤12所示,根据色彩纯度值以取得与色彩纯度值相对应的级别因子。此级别因子是用来决定像素的饱和度将被增强的程度。当像素的色彩纯度值决定了之后,按照cp值的大小可进一步地决定此像素的级别因子。假定色彩纯度值可被区分为n个级别,而级别因子的数值为s,较佳地,是使每个级别的色彩纯度值对应一个级别因子的数值。由于大部分像素的色彩纯度值不尽相同,其所该被增强的程度也不同。Next, as shown in step 12, the level factor corresponding to the color purity value is obtained according to the color purity value. This level factor is used to determine how much the saturation of the pixel will be enhanced. After the color purity value of the pixel is determined, the level factor of the pixel can be further determined according to the value of cp. Assuming that the color purity value can be divided into n levels, and the value of the level factor is s, preferably, the color purity value of each level corresponds to a value of the level factor. Since most pixels have different color purity values, the degree to which they should be enhanced is also different.

以图2做说明,其绘示乃CIE标准色度图。图2中的三角形区域T代表显示器所能显示的所有色彩的范围,标示的点P1及P2是个别对应二个不同像素,其中点P1的色彩纯度较大,具有非常明显的绿色,而点P2的色彩纯度较小,其较偏向于白色。由于点P1的像素已具有较大的色彩纯度,因此无须再大幅度的增加其色彩饱和度,此时可将P1的级别因子设定为较小值;相反地,由于点P2的像素色彩纯度小,因此可较大幅度地增加其色彩饱和度,此时可将P2的级别因子设定为较大值。Use Figure 2 as an illustration, which shows the CIE standard chromaticity diagram. The triangular area T in Figure 2 represents the range of all colors that the display can display, and the marked points P 1 and P 2 correspond to two different pixels, among which the color purity of point P 1 is relatively high, with a very obvious green color, The color purity of the point P2 is relatively small, and it is more inclined to white. Since the pixel at point P 1 already has a relatively high color purity, there is no need to increase its color saturation significantly, and the level factor of P 1 can be set to a smaller value at this time; on the contrary, because the pixel at point P 2 The color purity of the pixel is small, so its color saturation can be greatly increased. At this time, the level factor of P 2 can be set to a larger value.

取得级别因子的方法包括:提供查询表,用以根据色彩纯度值以取得级别因子。较佳地,此查询表包括多个数对(Gi,Si),数对的个数即是前述的级别数n,使i=1~n,每个数对各包括一个下限值Gi及对应的一个因子值Si。下限值Gi用以判别各像素的色彩纯度值的级别,而对应的因子值Si则用以被指定为像素的级别因子值。其中下限值Gi介于最大灰阶值(通常为255)与最小灰阶值(通常为0)之间,而因子值Si则介于0与1之间。The method for obtaining the level factor includes: providing a look-up table for obtaining the level factor according to the color purity value. Preferably, the look-up table includes a plurality of pairs (Gi, Si), the number of pairs is the aforementioned level number n, so that i=1~n, and each pair includes a lower limit value Gi and Corresponding to a factor value Si. The lower limit value Gi is used to determine the level of the color purity value of each pixel, and the corresponding factor value Si is used to be designated as the level factor value of the pixel. The lower limit value Gi is between the maximum gray scale value (usually 255) and the minimum gray scale value (usually 0), and the factor value Si is between 0 and 1.

这些数对至少包括二个数对,例如是第一数对及第二数对,第一数对包括第一下限值及对应的第一因子值,而第二数对包括第二下限值及对应的第二因子值。其中第一下限值是大于第二下限值,而第一因子值是小于第二因子值。查询表的特点在于,这些数对具有下限值递减以及对应的因子值递增的性质,亦即当下限值越大时,其对应的因子值越小,而下限值越小时,其对应的因子值越大。请参考以下的查询表I,主要将色彩纯度值区分为十三个级别(n=13):These number pairs include at least two number pairs, such as a first number pair and a second number pair. The first number pair includes the first lower limit value and the corresponding first factor value, and the second number pair includes the second lower limit. value and the corresponding second factor value. Wherein the first lower limit value is greater than the second lower limit value, and the first factor value is smaller than the second factor value. The feature of the lookup table is that these pairs have the property that the lower limit value decreases and the corresponding factor value increases, that is, the larger the lower limit value, the smaller the corresponding factor value, and the smaller the lower limit value, the corresponding The larger the factor value is. Please refer to the following lookup table I, which mainly divides the color purity value into thirteen levels (n=13):

查询表IQuery Form I

 数对(i) pair(i)   下限值(Gi) Lower limit (Gi)   因子值(Si) Factor value (Si)   1 1   178 178   0 0   2 2   162 162   0.05 0.05

  3 3   146 146   0.10 0.10   4 4   130 130   0.15 0.15   5 5   114 114   0.20 0.20   6 6   98 98   0.25 0.25   7 7   82 82   0.30 0.30   8 8   66 66   0.35 0.35   9 9   50 50   0.40 0.40   10 10   34 34   0.45 0.45   11 11   18 18   0.50 0.50   12 12   8 8   0.55 0.55   13 13   0 0   0.60 0.60

在此,同样地以像素数据(C1,C2,C3)等于(18,165,80)为例做说明。对此像素做色彩增艳的操作时,必须求出其色彩纯度,由前述的定义得到此像素色彩纯度的数值cp为147。接着,通过色彩纯度的数值cp与查询表I去判别此像素的级别因子。较佳地,是将第一下限值G1设定为最大下限值,即查询表I中的第1个数对(178,0),其步骤包括:Here, the pixel data (C1, C2, C3) is equal to (18, 165, 80) as an example for illustration. When the color enhancement operation is performed on this pixel, its color purity must be obtained, and the value cp of the color purity of this pixel is 147 according to the aforementioned definition. Then, the level factor of the pixel is judged by the value cp of the color purity and the look-up table I. Preferably, the first lower limit value G1 is set as the maximum lower limit value, i.e. the 1st number pair (178,0) in the look-up table I, and its steps include:

(a)首先,判断此色彩纯度值是否大于或等于第一下限值,当此色彩纯度值大于或等于第一下限值时,则级别因子为第一下限值对应的第一因子值;当色彩纯度值小于第一下限值时,则进入下一步骤;(a) First, judge whether the color purity value is greater than or equal to the first lower limit value. When the color purity value is greater than or equal to the first lower limit value, the level factor is the first factor value corresponding to the first lower limit value ; When the color purity value is less than the first lower limit value, then enter the next step;

(b)判断此色彩纯度值是否大于或等于下一个数对的下限值,当此色彩纯度值大于或等于下一个数对的下限值时,级别因子为此下一个数对所对应的因子值;若是此色彩纯度值仍小于下一个数对的下限值,则进入下一步骤;(b) Judging whether the color purity value is greater than or equal to the lower limit value of the next number pair, when the color purity value is greater than or equal to the lower limit value of the next number pair, the level factor is the value corresponding to the next number pair Factor value; if this color purity value is still less than the lower limit value of the next number pair, then enter the next step;

(c)继续重复步骤(b),直到得到级别因子。(c) Continue to repeat step (b) until the level factor is obtained.

举例来说,此例子的像素色彩纯度的数值cp为147,其小于第一下限值178,因此继续判断数值cp是否大于或等于下一个数对的下限值。依据查询表,下一个数对是第2个数对(162,0.05),由于数值cp仍小于162,因此继续向下一个数对(146,0.10)作判断,直到满足此色彩纯度值大于或等于下一个数对的下限值的条件为止。此例子中,当判断到第3个数对(146,0.10)时,由于147大于146,因此可将第三个数对的因子值0.10指定为此像素级别因子的数值s,即s等于0.10。For example, the value cp of the pixel color purity in this example is 147, which is smaller than the first lower limit value 178, so continue to determine whether the value cp is greater than or equal to the lower limit value of the next number pair. According to the lookup table, the next number pair is the second number pair (162, 0.05). Since the value cp is still less than 162, continue to judge the next number pair (146, 0.10) until the color purity value is greater than or until it is equal to the condition of the lower limit value of the next number pair. In this example, when the third number pair (146, 0.10) is judged, since 147 is greater than 146, the factor value 0.10 of the third number pair can be specified as the value s of this pixel level factor, that is, s is equal to 0.10 .

当决定好像素的级别因子后,如图1所示,进入步骤13,由级别因子决定像素的增艳矩阵,并依据增艳矩阵与像素数据产生调整后像素数据。根据输入的级别因子的数值s,可求出不同程度的增艳矩阵,用以增强具有不同色彩纯度的像素的饱和度。增艳矩阵的定义可以如下:After determining the level factor of the pixel, as shown in FIG. 1 , proceed to step 13, determine the enhancement matrix of the pixel by the level factor, and generate adjusted pixel data according to the enhancement matrix and pixel data. According to the value s of the input level factor, different degrees of enhancement matrices can be obtained to enhance the saturation of pixels with different color purity. The definition of the enhancement matrix can be as follows:

EE. == 11 ++ sthe s -- sthe s // 22 -- sthe s // 22 -- sthe s // 22 11 ++ sthe s -- sthe s // 22 -- sthe s // 22 -- sthe s // 22 11 ++ sthe s .. .. .. .. .. .. (( 11 ))

其中E是增艳矩阵,s是级别因子值。假定调整后像素数据是(C1’,C2’,C3’),其可通过将增艳矩阵E与每个像素的像素数据(C1,C2,C3)做矩阵相乘而得,如下所示:Where E is the enhancement matrix, and s is the level factor value. Assuming that the adjusted pixel data is (C1', C2', C3'), it can be obtained by multiplying the enhancement matrix E with the pixel data (C1, C2, C3) of each pixel, as shown below:

CC 11 ′′ CC 22 ′′ CC 33 ′′ == EE. ·&Center Dot; CC 11 CC 22 CC 33 == 11 ++ sthe s -- sthe s // 22 -- sthe s // 22 -- sthe s // 22 11 ++ sthe s -- sthe s // 22 -- sthe s // 22 -- sthe s // 22 11 ++ 22 ·&Center Dot; CC 11 CC 22 CC 33 .. .. .. .. .. .. (( 22 ))

由式子(2)可得到C1’、C2’、C3’分别为:From formula (2), C1', C2', and C3' can be obtained as:

C1’=(1+s)C1+(-s/2)C2+(-s/2)C3      ......(3.1)C1'=(1+s)C1+(-s/2)C2+(-s/2)C3 ......(3.1)

C2’=(-s/2)C1+(1+s)C2+(-s/2)C3      ......(3.2)C2'=(-s/2)C1+(1+s)C2+(-s/2)C3 ......(3.2)

C3’=(-s/2)C1+(-s/2)C2+(1+s)C3      ......(3.3)C3'=(-s/2)C1+(-s/2)C2+(1+s)C3...(3.3)

以前述原始的像素数据(C1,C2,C3)等于(18,165,80),其级别因子为0.10带入式子(3.1)、(3.2)与(3.3)之后,得到的C1’约等于8,C2’约等于177,C3’约等于79,与原始像素数据相比较后可观察到,此调整后绿色数据的灰阶值C2’加大而其它二种色彩的灰阶值C1’及C3’是降低,代表着相较于原始像素,绿色的色彩呈现比例增加。After the aforementioned original pixel data (C1, C2, C3) are equal to (18, 165, 80), and its level factor is 0.10, after entering the formulas (3.1), (3.2) and (3.3), the obtained C1' is approximately equal to 8. C2' is approximately equal to 177, and C3' is approximately equal to 79. Compared with the original pixel data, it can be observed that the gray scale value C2' of the adjusted green data increases while the gray scale values of the other two colors C1' and C3' is decreased, representing an increase in the proportion of green color compared to the original pixel.

虽然各个色彩所占的比例会经过调整,但经过此算法处理后的图像色彩仍可以维持原本色彩的色调,以下用一个例子说明。假设此像素在调整前红色、绿色及蓝色数据的色彩灰阶值的关系为C1>C2>C3,而像素原始的色调为H,像素在经由算法处理后的红色、绿色及蓝色数据的关系为C1’>C2’>C3’,而调整后的像素的色调定为H’,其中:Although the proportion of each color will be adjusted, the color of the image processed by this algorithm can still maintain the hue of the original color, as illustrated below with an example. Assuming that the relationship between the color grayscale values of the red, green and blue data of this pixel before adjustment is C1>C2>C3, and the original hue of the pixel is H, the red, green and blue data of the pixel after the algorithm processing The relationship is C1'>C2'>C3', and the hue of the adjusted pixel is set to H', where:

Figure C20061016376500093
Figure C20061016376500093

Figure C20061016376500101
Figure C20061016376500101

其中式子(4.1)、(4.2)为已知HSV色空间(colors pace)中的色调(Hue)定义关系式,再将式子(3.1)、(3.2)与(3.3)带到式子(4.2)中:Among them, the formulas (4.1), (4.2) define the relationship formulas for the hue (Hue) in the known HSV color space (colors pace), and then bring the formulas (3.1), (3.2) and (3.3) into the formula ( 4.2):

Figure C20061016376500102
Figure C20061016376500102

Figure C20061016376500103
Figure C20061016376500103

Figure C20061016376500104
Figure C20061016376500104

Figure C20061016376500105
Figure C20061016376500105

由以上计算结果可印证像素在调整前后的色调不变。From the above calculation results, it can be confirmed that the color tone of the pixel remains unchanged before and after adjustment.

如图1所示,图像处理方法还包括步骤14:根据调整后像素数据输出调整后图像。请参照图3A~3B、4A~4B,图3A乃彩色图像一,图3B乃图3A图像的色度坐标分布图,图4A乃图3A的彩色图像经图像处理后的调整图像,图4B乃图4A图像的色度坐标分布图。请观察图3B及4B,经由图像处理之后,彩色图像一的像素的各点坐标于色度分布范围中向外扩张,代表不同像素的色彩饱和度增加。As shown in FIG. 1 , the image processing method further includes step 14: outputting an adjusted image according to the adjusted pixel data. Please refer to Figures 3A-3B, 4A-4B, Figure 3A is the first color image, Figure 3B is the chromaticity coordinate distribution diagram of the image in Figure 3A, Figure 4A is the adjusted image of the color image in Figure 3A after image processing, and Figure 4B is Chromaticity coordinate distribution diagram of the image in Figure 4A. Please observe FIGS. 3B and 4B , after the image processing, the coordinates of each point of the pixel of the color image 1 expand outward in the chromaticity distribution range, which means that the color saturation of different pixels increases.

再请参照图5A~5B、6A~6B,图5A乃彩色图像二,图5B乃图5A图像的色度坐标分布图,图6A乃图5A的彩色图像二经图像处理后的调整图像,图6B乃图6A图像的色度坐标分布图。请同时观察图5B及6B,可发现在经过图像处理之后的彩色图像二的像素各点的坐标于色度分布范围中也很明显地向分布范围边界移动。由图3A~6B可证明此图像处理方法的确具有增强色彩饱和度以及色彩增艳的效果。Please refer to Fig. 5A~5B, 6A~6B again, Fig. 5A is the color image 2, Fig. 5B is the chromaticity coordinate distribution map of Fig. 5A image, Fig. 6A is the adjusted image after the image processing of Fig. 5A color image 2, Fig. 6B is a chromaticity coordinate distribution diagram of the image in FIG. 6A. Please observe FIGS. 5B and 6B at the same time. It can be found that the coordinates of each pixel point of the color image 2 after the image processing also obviously move to the boundary of the distribution range in the chromaticity distribution range. 3A-6B can prove that this image processing method does have the effect of enhancing color saturation and color enhancement.

由于此方法是以单一像素作为处理单元,不需增加额外的图像存储器(frame memory),特别适合于可携式显示装置,例如是移动通讯装置或PDA的低成本要求。Since this method uses a single pixel as a processing unit and does not require additional frame memory, it is especially suitable for the low-cost requirements of portable display devices, such as mobile communication devices or PDAs.

与美国专利号第6771311号的专利案「自动色彩饱和度增强技术」相较之下,本发明仅需针对单一像素做处理,不必同时对整张图像作分析,可大幅降低运算复杂度以有效地减少硬件实现的复杂度。Compared with the patent case "Automatic Color Saturation Enhancement Technology" of US Patent No. 6771311, the present invention only needs to process a single pixel, and does not need to analyze the entire image at the same time, which can greatly reduce the computational complexity to effectively reduce the complexity of hardware implementation.

另外,与美国专利号第6721000号的专利案「用于数字照相机的可适应性像素色彩增强技术」相较,本发明的做法是对色彩纯度较小的像素做比较大程度的色彩增艳,对色彩纯度较大的像素做比较小程度的色彩增艳,因此可减轻图像修剪(clipping)现象。In addition, compared with U.S. Patent No. 6,721,000 "Adaptive Pixel Color Enhancement Technology for Digital Cameras", the method of the present invention is to enhance the color of pixels with relatively low color purity to a greater extent. A smaller degree of color enhancement is performed on pixels with greater color purity, thereby reducing image clipping.

与飞利浦于SID2004所发表的论文「使用较小色域的移动装置显示更逼真色彩的技术」比较,本发明不必针对整张图像求最大值与最小值并执行复杂的运算即可有效增强图像的色彩饱和度,亦可减少硬件实现的复杂度。Compared with Philips' paper "A technology for displaying more realistic colors using a mobile device with a smaller color gamut" published at SID2004, the present invention does not need to calculate the maximum and minimum values for the entire image and perform complex calculations to effectively enhance the color of the image. Color saturation can also reduce the complexity of hardware implementation.

本发明上述实施例所揭露的图像处理方法,可针对图像中单一个像素作处理,以增强图像的色彩饱和度。通过先输入单一像素的像素数据以求取此像素的色彩纯度值,再根据此色彩纯度值的大小判定此像素的级别因子,而计算出属于此像素的增艳矩阵,再进而由像素数据及增艳矩阵对此像素的色彩数值作动态调整。此方式有效地解决了图像修剪的现象,并达到显示更优质色彩的目的。The image processing method disclosed in the above embodiments of the present invention can process a single pixel in the image to enhance the color saturation of the image. By first inputting the pixel data of a single pixel to obtain the color purity value of this pixel, and then judging the level factor of this pixel according to the size of the color purity value, and calculating the enhancement matrix belonging to this pixel, and then further by pixel data and The enhancement matrix dynamically adjusts the color value of this pixel. This method effectively solves the phenomenon of image trimming and achieves the purpose of displaying better colors.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视所附的权利要求范围所界定者为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (11)

1.一种图像处理方法,适用于增强图像的色彩饱和度,该图像包括至少一像素,该像素具有像素数据,该像素数据包括三个色彩的数据,该图像处理方法包括:1. An image processing method, suitable for enhancing the color saturation of an image, the image comprising at least one pixel, the pixel having pixel data, the pixel data comprising data of three colors, the image processing method comprising: (a)计算该像素的色彩纯度值,该色彩纯度值是该三个色彩的数据中的最大灰阶值与最小灰阶值的差值,并依据该色彩纯度值得到与该色彩纯度值对应的级别因子;以及(a) Calculate the color purity value of the pixel, which is the difference between the maximum grayscale value and the minimum grayscale value in the data of the three colors, and obtain the color corresponding to the color purity value according to the color purity value The level factor of ; and (b)由该级别因子决定该像素的3×3增艳矩阵,并依据该增艳矩阵与该像素数据产生调整后像素数据。(b) Determine a 3×3 enhancement matrix of the pixel according to the level factor, and generate adjusted pixel data according to the enhancement matrix and the pixel data. 2.根据权利要求1所述的图像处理方法,其中该色彩纯度值具有多个级别。2. The image processing method according to claim 1, wherein the color purity value has a plurality of levels. 3.根据权利要求1所述的图像处理方法,其中该步骤(a)还包括:3. The image processing method according to claim 1, wherein the step (a) further comprises: (a1)提供查询表,用以根据该色彩纯度值以取得该级别因子。(a1) providing a lookup table for obtaining the level factor according to the color purity value. 4.根据权利要求3所述的图像处理方法,其中该查询表包括多个数对,所述多个数对各包括下限值及对应的因子值。4. The image processing method according to claim 3, wherein the look-up table includes a plurality of number pairs, and each of the plurality of number pairs includes a lower limit value and a corresponding factor value. 5.根据权利要求4所述的图像处理方法,其中所述多个数对至少包括第一数对及第二数对,该第一数对包括第一下限值及第一因子值,该第二数对包括第二下限值及第二因子值,该第一下限值是大于该第二下限值,该第一因子值是小于该第二因子值。5. The image processing method according to claim 4, wherein said plurality of pairs comprises at least a first pair and a second pair, the first pair includes a first lower limit value and a first factor value, the The second pair includes a second lower limit value and a second factor value, the first lower limit value is greater than the second lower limit value, and the first factor value is smaller than the second factor value. 6.根据权利要求5所述的图像处理方法,其中该步骤(a1)还包括:6. The image processing method according to claim 5, wherein the step (a1) further comprises: (a11)判断该色彩纯度值是否大于或等于该第一下限值,当该色彩纯度值大于或等于该第一下限值时,该级别因子为该第一因子值。(a11) Determine whether the color purity value is greater than or equal to the first lower limit value, and when the color purity value is greater than or equal to the first lower limit value, the level factor is the first factor value. 7.根据权利要求6所述的图像处理方法,其中当该色彩纯度值小于该第一下限值时,该步骤(a1)还包括:7. The image processing method according to claim 6, wherein when the color purity value is less than the first lower limit value, the step (a1) further comprises: (a12)判断该色彩纯度值是否大于或等于下一个数对的下限值,当该色彩纯度值大于或等于该下一个数对的下限值时,该级别因子为该下一个数对的因子值;以及(a12) Judging whether the color purity value is greater than or equal to the lower limit value of the next number pair, when the color purity value is greater than or equal to the lower limit value of the next number pair, the level factor is the value of the next number pair factor values; and (a13)当该色彩纯度值小于该下一个下限值时,重复步骤(a12)至得到该级别因子。(a13) When the color purity value is less than the next lower limit value, repeat step (a12) until the level factor is obtained. 8.根据权利要求1所述的图像处理方法,其中该三个色彩分别为红色、绿色及蓝色。8. The image processing method according to claim 1, wherein the three colors are red, green and blue respectively. 9.根据权利要求1所述的图像处理方法,其中该调整后像素数据包括另三个色彩的数据,该三个色彩的灰阶值分别为C1、C2及C3,该另三个色彩的灰阶值分别为C1’、C2’及C3’,该级别因子值为s,根据该增艳矩阵:9. The image processing method according to claim 1, wherein the adjusted pixel data includes data of another three colors, the gray scale values of the three colors are respectively C1, C2 and C3, and the gray values of the other three colors are The order values are C1', C2' and C3' respectively, and the factor value of this level is s. According to the enhancement matrix: C1’=(1+s)×C1+(-s/2)×C2+(-s/2)×C3,C1'=(1+s)×C1+(-s/2)×C2+(-s/2)×C3, C2’=(-s/2)×C1+(1+s)×C2+(-s/2)×C3,以及C2'=(-s/2)*C1+(1+s)*C2+(-s/2)*C3, and C3’=(-s/2)×C1+(-s/2)×C2+(1+s)×C3。C3'=(-s/2)×C1+(-s/2)×C2+(1+s)×C3. 10.根据权利要求9所述的图像处理方法,其中该另三个色彩分别为红色、绿色及蓝色。10. The image processing method according to claim 9, wherein the other three colors are red, green and blue respectively. 11.根据权利要求1所述的图像处理方法,还包括:11. The image processing method according to claim 1, further comprising: 根据该调整后像素数据以输出调整后图像。An adjusted image is output according to the adjusted pixel data.
CNB2006101637652A 2006-12-04 2006-12-04 image processing method Expired - Fee Related CN100556071C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101637652A CN100556071C (en) 2006-12-04 2006-12-04 image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101637652A CN100556071C (en) 2006-12-04 2006-12-04 image processing method

Publications (2)

Publication Number Publication Date
CN101197917A CN101197917A (en) 2008-06-11
CN100556071C true CN100556071C (en) 2009-10-28

Family

ID=39548042

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101637652A Expired - Fee Related CN100556071C (en) 2006-12-04 2006-12-04 image processing method

Country Status (1)

Country Link
CN (1) CN100556071C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045575B (en) * 2009-10-21 2014-03-12 英属开曼群岛商恒景科技股份有限公司 Pixel color correction method and pixel color correction device
CN102752605A (en) * 2011-09-30 2012-10-24 新奥特(北京)视频技术有限公司 Method and system for regulating image/video color saturation degree
CN104732952B (en) * 2013-12-23 2017-08-11 昆山国显光电有限公司 Color displays processing method and system
CN105304062B (en) * 2015-11-18 2018-01-26 合一智能科技(深圳)有限公司 Chromaticity adjustment method and device for liquid crystal display
CN106296751A (en) * 2016-08-16 2017-01-04 中国石油化工股份有限公司 The color processing method that a kind of view-based access control model is experienced
CN108124139A (en) * 2016-11-28 2018-06-05 深圳市中兴微电子技术有限公司 A kind of pixel processing method and processing device
CN106657847B (en) * 2016-12-14 2019-08-13 广州视源电子科技股份有限公司 Image color saturation adjusting method and system
CN108364620B (en) * 2018-03-30 2019-07-12 惠科股份有限公司 Driving method of liquid crystal display device
CN113556525B (en) * 2020-04-23 2023-08-15 深圳市万普拉斯科技有限公司 Color temperature adjustment method, device, computer equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222413A (en) * 2000-12-11 2002-08-09 Eastman Kodak Co Automatic saturation emphasis
US6721000B1 (en) * 2000-02-23 2004-04-13 Neomagic Corp. Adaptive pixel-level color enhancement for a digital camera
CN1545326A (en) * 2003-11-10 2004-11-10 System and method for color saturation enhancement of video image
CN1708137A (en) * 2004-06-09 2005-12-14 三星电子株式会社 Saturation Adaptive Image Improvement Device and Method
WO2006011074A1 (en) * 2004-07-20 2006-02-02 Koninklijke Philips Electronics N.V. Maintenance of color maximum values in a color saturation controlled color image
CN1731451A (en) * 2005-08-22 2006-02-08 上海广电(集团)有限公司中央研究院 Method of image color enhancement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721000B1 (en) * 2000-02-23 2004-04-13 Neomagic Corp. Adaptive pixel-level color enhancement for a digital camera
JP2002222413A (en) * 2000-12-11 2002-08-09 Eastman Kodak Co Automatic saturation emphasis
US6771311B1 (en) * 2000-12-11 2004-08-03 Eastman Kodak Company Automatic color saturation enhancement
CN1545326A (en) * 2003-11-10 2004-11-10 System and method for color saturation enhancement of video image
CN1708137A (en) * 2004-06-09 2005-12-14 三星电子株式会社 Saturation Adaptive Image Improvement Device and Method
WO2006011074A1 (en) * 2004-07-20 2006-02-02 Koninklijke Philips Electronics N.V. Maintenance of color maximum values in a color saturation controlled color image
CN1731451A (en) * 2005-08-22 2006-02-08 上海广电(集团)有限公司中央研究院 Method of image color enhancement

Also Published As

Publication number Publication date
CN101197917A (en) 2008-06-11

Similar Documents

Publication Publication Date Title
CN100556071C (en) image processing method
US8314847B2 (en) Automatic tone mapping curve generation based on dynamically stretched image histogram distribution
JP5334402B2 (en) Display apparatus and method for improving flicker of video
JP5430068B2 (en) Display device
US8358351B2 (en) Automatic tone mapping for cameras
KR100916073B1 (en) Histogram Stretching Device and Method for Improving Image Contrast
CN100362847C (en) Image processing device, method, program and image display device
TWI399100B (en) Image processing method
CN108122546B (en) Display device and image processing method thereof
US20080101697A1 (en) Image processing method, medium, and system
CN103826113B (en) A kind of color rendition method and device
US8284271B2 (en) Chroma noise reduction for cameras
US20080240557A1 (en) Methods and apparatuses for restoring color and enhancing electronic images
US10204568B2 (en) Driving methods and driving devices of display panels
KR20160048311A (en) Method of data conversion and data converter
CN101188776A (en) Apparatus and method for color reproduction
US20200160492A1 (en) Image Adjustment Method and Device, Image Display Method and Device, Non-Transitory Storage Medium
TWI320914B (en) Weight-adjusted apparatus and method thereof
CN110349097B (en) Color enhancement method for image significance and image processing device
US9305519B2 (en) Image color adjusting method and electronic device using the same
CN101290763B (en) Method for dynamically adjusting image brightness
CN100401741C (en) Weight adjusting device and weight adjusting method
KR101279576B1 (en) Method for generating panorama image within digital image processing apparatus
CN101383975A (en) Image processing method and device and electronic device thereof
TWI327868B (en) Image processing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091028

Termination date: 20151204

EXPY Termination of patent right or utility model