CN100554908C - Simulation intelligent flexible space sailboard structural vibration active control test platform and method - Google Patents
Simulation intelligent flexible space sailboard structural vibration active control test platform and method Download PDFInfo
- Publication number
- CN100554908C CN100554908C CNB2007100405173A CN200710040517A CN100554908C CN 100554908 C CN100554908 C CN 100554908C CN B2007100405173 A CNB2007100405173 A CN B2007100405173A CN 200710040517 A CN200710040517 A CN 200710040517A CN 100554908 C CN100554908 C CN 100554908C
- Authority
- CN
- China
- Prior art keywords
- control
- piezoelectric
- adagio
- vibration
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明涉及一种模拟智能柔性太空帆板结构振动主动控制试验平台和方法。本发明的试验平台包括一套机械夹持装置、一块振动柔板、一台信号发生器、一块高性能DSP板卡、一台示波器、一台计算机、一台显示器、激振器、多台电荷放大器、多台低通滤波器、多台压电功率放大器、压电片传感网络和压电片驱动网络。本发明以压电陶瓷元件作为传感器网络和驱动器网络的本体材料,以DSP测控单元作为信号检测、算法运行和输出控制信号的核心,以PC机作为试验的控制平台和观测界面,提供了一种基于模拟压电智能太空柔性结构振动主动控制研究的试验平台和试验方法。
The invention relates to an active control test platform and method for simulating intelligent flexible space sailboard structure vibration. The test platform of the present invention includes a set of mechanical clamping devices, a flexible vibration board, a signal generator, a high-performance DSP board, an oscilloscope, a computer, a display, an exciter, multiple electric amplifier, multiple low-pass filters, multiple piezo power amplifiers, piezo sensing network, and piezo drive network. The present invention uses the piezoelectric ceramic element as the body material of the sensor network and the driver network, uses the DSP measurement and control unit as the core of signal detection, algorithm operation and output control signal, and uses the PC as the test control platform and observation interface to provide a The test platform and test method for the active control of vibration of space flexible structures based on simulated piezoelectric intelligence.
Description
技术领域 technical field
本发明涉及一种模拟智能柔性太空帆板结构振动主动控制试验平台和方法,特别针对一种基于DSP测控核心的压电智能材料柔板结构振动主动控制试验平台和方法。The invention relates to an active control test platform and method for simulating intelligent flexible space sailboard structure vibration, in particular to a piezoelectric intelligent material flexible board structure vibration active control test platform and method based on DSP measurement and control core.
背景技术 Background technique
航天飞行器的太阳能帆板通常以大型悬臂梁结构形式存在于太空环境中,并具有低刚度、小阻尼、固有频率较低和低阶模态密集等特征。由于太空环境恶劣,宇宙风、粒子流的影响,以及航天器本身的机动等动作,极易引发航天器的太阳能帆板结构产生持续振动。如果不采取有效的抑振措施,其大幅度的振动响应将延续很长时间,不仅影响到柔性结构本身的工作性能,而且通过与航天器主体的耦合作用,进而可产生影响航天器的姿态稳定和定向精度问题;长期和强烈的振动还将造成结构疲劳破坏,导致系统性能下降甚至失效,直接威胁航天结构的安全,这在实际的航天器运行中已有例证。因此,研究大型柔性航天结构的振动控制问题,历来是航空航天技术发展中的一个重要领域和难点课题,美国国家研究理事会在《新世纪的太空技术》报告中,就将“在失重条件下使各种柔性结构、天线和望远镜保持稳定”列为影响太空探索的六大关键技术之一。The solar panels of aerospace vehicles usually exist in the space environment in the form of large cantilever beam structures, and have the characteristics of low stiffness, small damping, low natural frequency and dense low-order modes. Due to the harsh space environment, the influence of cosmic wind, particle flow, and the maneuvering of the spacecraft itself, it is very easy to cause continuous vibration of the solar panel structure of the spacecraft. If effective anti-vibration measures are not taken, its large-scale vibration response will last for a long time, which will not only affect the working performance of the flexible structure itself, but also affect the attitude stability of the spacecraft through coupling with the main body of the spacecraft. And orientation accuracy problems; long-term and strong vibration will also cause structural fatigue damage, leading to system performance degradation or even failure, directly threatening the safety of aerospace structures, which has been exemplified in actual spacecraft operations. Therefore, the research on vibration control of large flexible aerospace structures has always been an important field and a difficult topic in the development of aerospace technology. In the report "Space Technology in the New Century", the National Research Council of the United States will Stabilizing various flexible structures, antennas and telescopes" is listed as one of the six key technologies affecting space exploration.
针对航天系统的性能要求和空间结构的振动特点,当前以智能材料结构概念实现振动主动控制,由于技术的高难度和重要的应用价值,获得了国内外相关领域科研人员的广泛重视和热点研究。但是尽管主动减振智能结构研究在不断深入,但在理论研究和工程实用方面还远未成熟,尚有诸多问题亟待探索和解决。对于大型航天结构,由于结构的复杂性和大变形非线性效应的存在,建立其精确的数学模型是不可能的,同时空间柔性结构在轨运行期间的物理特性变化和载荷特性渐变,不仅对控制器提出了鲁棒性要求,而且自适应调整和在线学习问题也必须予以妥善解决。在此情况下,近年来开始探索采用模态控制、极点配置、最优控制方法、鲁棒控制、自适应控制、智能控制和神经网络控制进行此类系统的控制器设计,并已在理论和实验方面取得了一些有意义的成果。但总体而言,这些方法仅获得了初步的实现,发展并不成熟,应用也各有其局限性,因此还有待于进一步的深入探索和研究。In view of the performance requirements of aerospace systems and the vibration characteristics of space structures, the concept of intelligent material structure is currently used to realize active vibration control. Due to the high technical difficulty and important application value, it has received extensive attention and hot research from researchers in related fields at home and abroad. However, although the research on active vibration-reducing intelligent structures is deepening, it is still far from mature in terms of theoretical research and engineering practice, and there are still many problems to be explored and resolved. For large aerospace structures, it is impossible to establish an accurate mathematical model due to the complexity of the structure and the existence of large deformation nonlinear effects. Robustness requirements are put forward by the controller, and the problems of adaptive adjustment and online learning must also be properly solved. In this case, in recent years, the controller design of such systems has been explored using modal control, pole configuration, optimal control method, robust control, adaptive control, intelligent control and neural network control, and has been studied in theory and Some meaningful results have been obtained in the experiment. But generally speaking, these methods have only achieved preliminary realization, their development is immature, and their applications have their own limitations, so further exploration and research are still needed.
发明内容 Contents of the invention
本发明的目的在于提供一种模拟智能柔性太空帆板结构振动主动控制试验平台和方法,可以对压电柔板智能结构振动主动控制提供科学的理论分析和实验验证实现手段,并为探索理论方法的进一步实际工程应用提供技术实现支撑。The purpose of the present invention is to provide a test platform and method for simulating the active control of vibration of intelligent flexible space sailboard structure, which can provide scientific theoretical analysis and experimental verification means for the active control of piezoelectric flexible board intelligent structure vibration, and provide a basis for exploring theoretical methods Provide technical support for further practical engineering applications.
为达到上述目的,本发明的构思是:To achieve the above object, design of the present invention is:
结合主动减振智能结构研究现状和发展趋势,从柔性智能结构的构成分析,当前压电材料PZT/PVDF的研究应用可以认为是最具代表性的成果。压电材料用作传感器时,对温度变化敏感性低、高应变灵敏度和低噪声是其主要特点;用作驱动器时,具有低功耗、电操作、频带宽和力由自身内部产生的特点,因此非常适合航空航天结构振动监测与控制的需要。针对不断深入研究基于压电智能结构内涵的太空柔性帆板结构振动主动控制问题,在试验结构模型的设计与测控系统开发的基础上构建合理有效的试验平台。Combining the research status and development trend of active vibration-reducing intelligent structures, and analyzing the composition of flexible intelligent structures, the current research and application of piezoelectric materials PZT/PVDF can be considered as the most representative achievements. When piezoelectric materials are used as sensors, their main characteristics are low sensitivity to temperature changes, high strain sensitivity and low noise; when used as drivers, they have the characteristics of low power consumption, electrical operation, frequency bandwidth and force generated internally by themselves. Therefore, it is very suitable for the vibration monitoring and control of aerospace structures. Aiming at the continuous in-depth research on the active control of space flexible sailboard structure vibration based on the connotation of piezoelectric intelligent structure, a reasonable and effective test platform is built on the basis of the design of the test structure model and the development of the measurement and control system.
该平台以压电陶瓷元件作为传感器网络和驱动器网络植入于帆板结构表面,以DSP测控单元作为采集检测信号、控制算法实现与输出控制信号的核心,以PC机以及所开发的软件环境作为试验操作人员的观测平台。The platform uses piezoelectric ceramic elements as the sensor network and driver network to be implanted on the surface of the sailboard structure, uses the DSP measurement and control unit as the core of collecting detection signals, implementing control algorithms and outputting control signals, and uses the PC and the developed software environment as the core. Observation platform for test operators.
根据上述的发明构思,本发明采用下述技术方案:According to above-mentioned inventive design, the present invention adopts following technical scheme:
一种模拟智能柔性太空帆板结构振动主动控制试验平台,包括一套机械夹持装置、一块智能压电模型结构柔板、一台信号发生器、一块DSP测控板卡、一台示波器、一台计算机,以及激振器、一组电荷放大器、一组低通滤波器、一组压电功率放大器、压电传感网络和压电驱动网络。其特征在于压电传感网络和压电驱动网络均以网络格局贴片方式分布在智能压电模型结构柔板表面,该柔板以悬臂梁姿态夹持在机械夹持装置上,信号发生器输出激励信号到激振器,通过激振器对智能压电模型柔板结构的激励作用使柔板产生相应的振动响应,压电传感网络检测到结构振动响应信号,经过电荷放大器和低通滤波器的调理,输出到以PCI接口连接到计算机的DSP测控板卡,其后依据所开发的DSP控制算法和上位机传递下来的控制策略运算产生控制信号,经由功率放大器驱动放大控制信号,输出到植入智能压电模型结构柔板的压电驱动网络,从而产生控制作用于受控结构,实现智能压电模型柔板结构振动响应的实时自适应抵消,以达到主动消除或降低结构振动响应的目的。试验平台在进行测控的同时,还可将传感信号、控制信号、控制参数和整体性能参数传递到上位机,实现实时显示和存储等功能。An active control test platform for simulating intelligent flexible space sailboard structure vibration, including a set of mechanical clamping devices, an intelligent piezoelectric model structure flexible board, a signal generator, a DSP measurement and control board, an oscilloscope, a A computer, along with an exciter, a set of charge amplifiers, a set of low-pass filters, a set of piezoelectric power amplifiers, a piezoelectric sensing network, and a piezoelectric drive network. It is characterized in that both the piezoelectric sensing network and the piezoelectric driving network are distributed on the surface of the flexible plate of the intelligent piezoelectric model structure in the form of a network patch, and the flexible plate is clamped on the mechanical clamping device in the attitude of a cantilever beam, and the signal generator The excitation signal is output to the exciter, and the excitation of the flexible plate structure of the intelligent piezoelectric model by the exciter causes the flexible plate to generate a corresponding vibration response. The piezoelectric sensor network detects the structural vibration response signal, and passes through the charge amplifier and low-pass The conditioning of the filter is output to the DSP measurement and control board connected to the computer through the PCI interface, and then the control signal is generated according to the developed DSP control algorithm and the control strategy transmitted by the host computer, and the control signal is amplified by the power amplifier and output Implanted into the piezoelectric drive network of the flexible plate of the intelligent piezoelectric model structure, thereby generating a control effect on the controlled structure, realizing real-time adaptive offsetting of the vibration response of the flexible plate structure of the intelligent piezoelectric model, so as to actively eliminate or reduce the structural vibration response the goal of. While performing measurement and control, the test platform can also transmit sensing signals, control signals, control parameters and overall performance parameters to the host computer to realize real-time display and storage functions.
上述的机械夹持装置为钢架结构,其特征在于稳定、安全、可调性好,与智能压电模型柔板结构结合成一个整体,可以将柔板本体的振动响应针对钢架结构、激振器、支持平台和其他设备的振动耦合,降低到可以忽略不计的程度;另外固定在钢架结构上的激振器位置可调,并且可以同时采用多个激振器对柔板结构施加振动激励,从而可以获得结构的多模态振动特性并进行多模态振动主动控制试验。The above-mentioned mechanical clamping device is a steel frame structure, which is characterized by stability, safety, and good adjustability. It is integrated with the flexible plate structure of the intelligent piezoelectric model, and the vibration response of the flexible plate body can be aimed at the steel frame structure, excitation The vibration coupling of the vibrator, support platform and other equipment can be reduced to a negligible level; in addition, the position of the vibrator fixed on the steel frame structure can be adjusted, and multiple vibrators can be used to apply vibration to the flex plate structure at the same time Excitation, so that the multi-mode vibration characteristics of the structure can be obtained and the multi-mode vibration active control test can be carried out.
上述的模拟太空帆板结构为环氧树脂材料柔性板,其特征在于所述柔板结构表面粘贴多个压电传感器构建成为压电传感网络,粘贴多个压电驱动器构建成为压电驱动网络,压电传感网络和压电驱动网络的布置是在对柔板结构模态特性分析的基础上进行的,布置策略满足结构应变感测较明显,传感/驱动效果敏感,并尽量减少对柔板原有模态的影响,同时适用于多种控制策略的试验要求。The above-mentioned simulated space sailboard structure is a flexible board made of epoxy resin, which is characterized in that a plurality of piezoelectric sensors are pasted on the surface of the flexible board structure to form a piezoelectric sensor network, and a plurality of piezoelectric drivers are pasted to form a piezoelectric drive network. , the layout of the piezoelectric sensing network and the piezoelectric driving network is carried out on the basis of the analysis of the modal characteristics of the flex plate structure. The influence of the original mode of the flexible plate is applicable to the test requirements of various control strategies.
一种智能柔性太空帆板结构振动主动控制试验方法,采用上述仪器设备和试验平台进行试验,其特征在于试验的操作步骤如下:An intelligent flexible space sailboard structural vibration active control test method, using the above-mentioned equipment and test platform for testing, is characterized in that the operating steps of the test are as follows:
(1)采用模态分析方法对柔板结构进行振动特性分析,获得结构较低频范围的各阶固有振动频率,并采用激振器扫频方法修订各阶结构固有振动频率;(1) Use the modal analysis method to analyze the vibration characteristics of the flexible plate structure, obtain the natural vibration frequencies of each order in the lower frequency range of the structure, and use the exciter frequency sweep method to revise the natural vibration frequencies of each order of the structure;
(2)根据控制算法编写程序下载到DSP测控板卡,并对上位机软件平台进行参数设置,编译调试成功后准备开始控制;(2) Write the program according to the control algorithm and download it to the DSP measurement and control board, and set the parameters of the upper computer software platform, and prepare to start the control after the compilation and debugging are successful;
(3)参照步骤(1)获得的结构固有频率,启动激振源信号发生器,并设置激振信号的频率和幅值;(3) Start the excitation source signal generator with reference to the structural natural frequency obtained in step (1), and set the frequency and amplitude of the excitation signal;
(4)调整激振器的位置,启动激振器,对智能压电模型结构柔板进行激振;(4) Adjust the position of the exciter, start the exciter, and excite the flexible plate of the intelligent piezoelectric model structure;
(5)开启电荷放大器、低通滤波器、示波器,获取与调理结构振动响应信号;(5) Turn on the charge amplifier, low-pass filter, and oscilloscope to obtain and adjust the structural vibration response signal;
(6)开启连接压电驱动网络的压电功率放大器;(6) Turn on the piezoelectric power amplifier connected to the piezoelectric drive network;
(7)根据设定的控制算法设置上位机操作平台控制命令,并启动控制;(7) Set the upper computer operation platform control command according to the set control algorithm, and start the control;
(8)从示波器和上位机界面观测结构振动控制效果。(8) Observe the structural vibration control effect from the oscilloscope and the host computer interface.
上述的步骤(4)中应注意以下两点:The following two points should be noted in the above step (4):
①激振器传动杆作用位置靠近悬臂柔板的固定端,并且在柔板的中心线上;① The action position of the drive rod of the exciter is close to the fixed end of the cantilever flexible plate and on the center line of the flexible plate;
②在启动激振器时,输出幅值从小开始逐渐缓慢增大,过快调整幅值有可能对柔板试验结构以及压电传感和驱动网络造成损害。② When starting the vibrator, the output amplitude gradually increases slowly from a small value, and adjusting the amplitude too quickly may cause damage to the flexible board test structure and the piezoelectric sensing and driving network.
本发明与现有技术相比较具有如下突出实质性特点和显著优点:Compared with the prior art, the present invention has the following prominent substantive features and significant advantages:
(1)压电传感网络和压电驱动网络根据最佳控制效果目标进行网络优化布置,便于根据更改算法的需要重新选择配组传感网络和驱动网络,方便进行优化配置的实验。(1) The piezoelectric sensor network and the piezoelectric drive network are optimally arranged according to the goal of the best control effect, which is convenient for reselecting the matching sensor network and drive network according to the need to change the algorithm, and convenient for the experiment of optimal configuration.
(2)激振器X-Y-Z方向可调,便于模拟实际太阳能帆板遭受振动激扰位置的真实状况。(2) The X-Y-Z direction of the exciter is adjustable, which is convenient for simulating the real situation where the actual solar panel is subjected to vibration excitation.
(3)考虑到系统耦合因素,采用稳定紧固方式将系统结合成一个可方便拆卸的整体,即使柔板结构产生较为激烈振动状况并与系统整体结构耦合,也能被限制在可容忍的范围内。(3) Considering the coupling factors of the system, a stable fastening method is used to combine the system into a whole that can be easily disassembled. Even if the flex plate structure generates relatively severe vibration and is coupled with the overall structure of the system, it can be limited to a tolerable range Inside.
(4)基于DSP测控核心的高速测控系统,满足了多输入/多输出控制方式和受控结构系统模型的在线实时辨识要求,可以在保证控制跟踪能力的情况下,解决计算量和信息量较大的问题。(4) The high-speed measurement and control system based on the DSP measurement and control core meets the online real-time identification requirements of the multi-input/multi-output control mode and the controlled structure system model, and can solve the problem of relatively large amount of calculation and information while ensuring the ability of control tracking. Big question.
(5)针对试验平台硬件系统所开发的上位机测控软件环境,已经具备了硬件驱动、DMA通讯、波形显示、数据存储等诸多功能;试验过程中可方便地根据控制需要,通过少量参数设置既可设计完成控制方案。(5) The upper computer measurement and control software environment developed for the hardware system of the test platform already has many functions such as hardware drive, DMA communication, waveform display, and data storage; The control scheme can be designed and completed.
(6)基于DSP测控核心的测控系统,虽然基于不同的控制算法需要开发相应的测控程序,但保证系统工作完整性的基本程序,如测控板卡驱动、AD转换、DA转换、DMA传输,以及信号滤波与数据分析功能,均已实现程序模块化,确保了试验平台软件环境的可靠性和可移植性。(6) For the measurement and control system based on the DSP measurement and control core, although corresponding measurement and control programs need to be developed based on different control algorithms, the basic procedures to ensure the integrity of the system work, such as measurement and control board driver, AD conversion, DA conversion, DMA transmission, and The signal filtering and data analysis functions have realized program modularization, which ensures the reliability and portability of the test platform software environment.
附图说明 Description of drawings
图1是本发明一个优选实施实例的试验装置结构示意图。Fig. 1 is a schematic structural diagram of a test device of a preferred embodiment of the present invention.
图2是图1示优选实例中压电传感网络和压电驱动网络分布示意图。Fig. 2 is a schematic diagram of the distribution of the piezoelectric sensing network and the piezoelectric driving network in the preferred example shown in Fig. 1 .
图3是图1示优选实例中钢架结构实验平台示意图。Fig. 3 is a schematic diagram of the steel frame structure experiment platform in the preferred example shown in Fig. 1 .
图4是图1示优选实例试验装置整体实物照片图Fig. 4 is that Fig. 1 shows the overall physical photogram of preferred example test device
图5是图1示优选实例中上位机程序流程图。Fig. 5 is a flow chart of the upper computer program in the preferred example shown in Fig. 1 .
图6是图1示优选实例中下位机程序流程图。Fig. 6 is a flow chart of the lower computer program in the preferred example shown in Fig. 1 .
图7是图1示优选实例中系统振动控制性能时间历程图。Fig. 7 is a time course diagram of the vibration control performance of the system in the preferred example shown in Fig. 1 .
具体实施方式 Detailed ways
本发明的一个优选实施实例结合附图说明如下:A preferred implementation example of the present invention is described as follows in conjunction with accompanying drawing:
参见图1,本模拟智能柔性太空帆板结构振动主动控制试验平台,包括一个环氧树脂柔板①、一套压电驱动网络②、一套压电传感网络③、一台激振器④(型号:JZK-10生产单位:江苏联能电子有限公司)、一套机械夹持装置⑤、压电驱动功率放大器⑥(型号:APEX-PA95生产单位:上海大学自动化系)、电荷放大器⑦(型号:YE5852A生产单位:江苏联能电子有限公司)、低通滤波器⑧(型号:YE3760A生产单位:江苏联能电子有限公司)、示波器⑨、一块高性能DSP板卡⑩(型号:SEED-VC33ps生产单位:合众达电子公司)、一台计算机(11)、一台信号发生器(12)(型号:Angilent-A808生产单位:安捷伦仪器有限公司)。装置整体照片图参见图4。Refer to Figure 1, the simulated intelligent flexible space sailboard structural vibration active control test platform, including an epoxy resin
本实例的模拟智能柔性太空帆板结构振动主动控制试验方法,采用上述的试验平台进行试验,试验的操作步骤如下:The active control test method for the simulated intelligent flexible space sailboard structure vibration in this example uses the above-mentioned test platform for the test. The operation steps of the test are as follows:
(1)选用尺寸为1500mm×400mm×1.5mm(分别为长、宽、高)的环氧树脂板作为模拟柔性太空帆板模型结构①,该结构在固定段根部位置分别切除两个底、高尺寸分别约为60mm*160mm的三角形,然后将结构根部固定在试验台角铁支架上。(1) An epoxy resin plate with a size of 1500mm×400mm×1.5mm (length, width and height) is selected as the simulated flexible space
(2)将激振器④固定在机械夹持装置⑤上,保证传动杆自由端的振动位置在距离柔板①根部15cm-30cm、柔板①中心线处,然后用螺丝将该自由端紧固到柔板①。(2) Fix the
(3)采用有限元分析软件ANSYS对柔板①进行建模分析,获得柔板①的较低频范围各阶固有频率、各阶模态振形和最大应变受力区域等结构振动模态特性,并采用信号发生器⑨扫频的方法检验并调整上述特性数据。(3) The finite element analysis software ANSYS is used to model and analyze the
(4)根据检测/抑制最大结构应变的要求,采用AB胶水将压电传感网络③和压电驱动网络②对位粘贴在柔板结构①的双面表面。(4) According to the requirements of detecting/suppressing the maximum structural strain, AB glue is used to paste the
(5)再次采用信号发生器⑨扫频的方法检验并调整柔板①的各阶振动特性数据。(5) Use the frequency sweep method of the signal generator ⑨ again to check and adjust the vibration characteristic data of each order of the
(6)根据上述步骤(5)获得的结构振动响应特性数据,按照检测/抑制某几个较低阶模态最大应变的要求,选择传感网络③和驱动网络②的一部分构成优化的传感网络③和驱动网络②。(6) According to the structural vibration response characteristic data obtained in the above step (5), according to the requirements of detecting/suppressing the maximum strain of certain lower-order modes, select a part of the
(7)在原有上位机/下位机程序的基础上,选用自适应滤波最小均方控制算法,由DSP测控板卡⑩和计算机(11)对采用的控制算法进行参数设置。(7) On the basis of the original upper computer/lower computer program, the adaptive filter least mean square control algorithm is selected, and the parameters of the adopted control algorithm are set by the DSP measurement and
(8)启动激振器④,开启电荷放大器⑦、低通滤波器⑧、示波器⑨、功率放大器⑥,结构模型被激励并处于待控状态。(8) Start the
(9)依据自适应滤波最小均方控制算法实施计算机(11)操作平台发出控制命令。(10)从示波器⑨和计算机(11)界面观测结构振动响应控制效果,并基于软件环境平台保存试验数据。(9) Implementation of the computer based on the adaptive filter least mean square control algorithm (11) The operating platform issues control commands. (10) Observe the structural vibration response control effect from the oscilloscope ⑨ and the computer (11) interface, and save the test data based on the software environment platform.
(11)重复步骤(6)、(7)、(8)、(9)、(10),反复调整控制算法以获得良好的控制效果。(11) Repeat steps (6), (7), (8), (9), and (10) to repeatedly adjust the control algorithm to obtain a good control effect.
步骤(1)中,本优选实例的模拟柔性太空帆板模型结构①选用环氧树脂板,如图2中①所示,这种聚合物具有较好的强度,静态时能够保持较好的面形特征,粘贴压电材料后长期静止悬挂不易发生形变,在施加振动激励后能产生较好的振动形态,接近实际太阳能帆板在空天环境下的振动特性。In step (1), the simulated flexible space
本优选实例中的压电传感器网络③和压电驱动器网络②均采用AB胶水包裹粘贴,使得压电材料既有很好的感知/驱动能力,又避免了触碰高压控制信号的危险,如图2中②、③所示。The
本优选实例中的试验台机械夹持装置⑤具有X-Y-Z三个方向的自由度,X方向可变位移±2cm,Y方向可变位移±10cm,Z方向可变位移±3cm,装置底部采用尺寸为60cm*60cm*1.8cm的钢结构平板,各个部件采用紧固螺丝连接。如图3中a、b所示。The test bench
本优选实例中的步骤(7),DSP测控板卡⑩程序的流程图如图5所示,其中板卡驱动、AD/DA转换、DMA传输、信号滤波与数据分析程序均基于C和ASM语言模块化编制,模块接口标准,调用方便,可靠性与可移植性强。控制策略采用自适应滤波最小均方控制算法,依控制器结构方式的不同又分为两种控制方式,即基于有限冲激响应滤波控制器的最小均方算法,以及基于无限冲激响应滤波控制器的最小均方算法,均以模块函数形式写入DSP测控板卡⑩中;计算机(11)的程序流程图如图6中a,b,c,d所示,提供了用户观察、设置命令、数据保存、数据分析和比较等功能。如此两种控制算法均可在该振动主动控制试验平台上顺利运行,并获得控制速度、衰减幅度、跟随性、复现性、适用条件等控制性能指标的观测与比较;系统的整体振动控制衰减历程参见图7。Step (7) in this preferred example, the flow chart of the DSP measurement and
图6中a是计算机(11)系统总体流程图。Among Fig. 6, a is the general flowchart of the computer (11) system.
图6中b是计算机(11)中硬件操作线程流程图。B among Fig. 6 is the hardware operating thread flowchart in the computer (11).
图6中c是计算机(11)关闭控制功能的流程图。C among Fig. 6 is the flowchart of computer (11) closing control function.
图6中d是计算机(11)退出程序的流程图。D among Fig. 6 is the flowchart of computer (11) quitting program.
本优选实例中的步骤(10)保存的数据格式为.txt文件格式,是一个可以载入到多种分析软件中进行数据分析的通用格式,为进一步的数据分析在功能上提供了方便性和快捷性。本优选实例中可采用Matlab分析软件对所保存的实验数据进行了离线分析,显示了理想的数据特性和控制功能。The data format preserved in step (10) in this preferred example is a .txt file format, which is a general format that can be loaded into a variety of analysis software for data analysis, providing convenience and functionality for further data analysis quickness. In this preferred example, Matlab analysis software can be used to analyze the saved experimental data offline, which shows ideal data characteristics and control functions.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100405173A CN100554908C (en) | 2007-05-11 | 2007-05-11 | Simulation intelligent flexible space sailboard structural vibration active control test platform and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100405173A CN100554908C (en) | 2007-05-11 | 2007-05-11 | Simulation intelligent flexible space sailboard structural vibration active control test platform and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101055219A CN101055219A (en) | 2007-10-17 |
CN100554908C true CN100554908C (en) | 2009-10-28 |
Family
ID=38795167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100405173A Expired - Fee Related CN100554908C (en) | 2007-05-11 | 2007-05-11 | Simulation intelligent flexible space sailboard structural vibration active control test platform and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100554908C (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101614622B (en) * | 2009-07-28 | 2012-05-30 | 北京航空航天大学 | A Gravity Unloading Mechanism for Solar Panel Ground Experiment |
CN102072796B (en) * | 2010-12-18 | 2012-09-05 | 上海交通大学 | Solar battery array dynamic-measurement system |
CN102384832B (en) * | 2011-09-28 | 2013-11-13 | 华南理工大学 | Vibration measurement device of hinged flexible board structure with rotary center and control method thereof |
CN102818688B (en) * | 2012-08-27 | 2015-05-20 | 中国矿业大学 | Loading device and method of vibration test of imitating flexible member |
CN102880049B (en) * | 2012-10-15 | 2015-04-22 | 北京控制工程研究所 | Adaptive vibrating control method based on sailboard flexible deformation measurement |
CN102998074A (en) * | 2012-12-12 | 2013-03-27 | 中国矿业大学 | Device and method for testing vibration performance of basic translation flexible beam |
CN103048107A (en) * | 2012-12-27 | 2013-04-17 | 苏州长菱测试技术有限公司 | Whole-body vibration testing system and method for ultra-large structural member |
CN103699068B (en) * | 2013-12-06 | 2017-05-03 | 上海卫星工程研究所 | Wireless communication node system for monitoring vibration of solar array of satellite |
CN103926840B (en) * | 2014-05-05 | 2016-10-26 | 上海新跃仪表厂 | A kind of method of active suppression solar array flexible vibration |
CN104363548B (en) * | 2014-09-10 | 2017-11-24 | 北京航空航天大学 | A kind of piezoelectricity network method for improving plate and shell structure sound insulation property |
CN104238365A (en) * | 2014-09-25 | 2014-12-24 | 河海大学常州校区 | Cantilever beam vibration control method on basis of self-adaption neural network control |
CN104568354A (en) * | 2015-01-22 | 2015-04-29 | 华南理工大学 | Flexible hinged plate vibration measurement device based on ultrasonic sensors |
CN105372031A (en) * | 2015-11-20 | 2016-03-02 | 中国航空工业集团公司上海航空测控技术研究所 | PXI development platform-based aviation vibration table test system |
CN106394945B (en) * | 2016-10-20 | 2017-05-03 | 哈尔滨工业大学 | Solar wing flexibility simulator |
CN106527292B (en) * | 2016-12-26 | 2023-07-28 | 中国工程物理研究院总体工程研究所 | Control method and control device of multi-piezoelectric ceramic vibration exciter parallel combination system |
CN107719705B (en) * | 2017-09-26 | 2020-03-24 | 北京航空航天大学 | Method for inhibiting vibration of satellite solar sailboard by using solid micro-thruster array |
CN108181066A (en) * | 2017-12-22 | 2018-06-19 | 广电计量检测(北京)有限公司 | The design method of airborne glass vibration test fixture |
CN109000783B (en) * | 2018-09-30 | 2023-09-26 | 华南理工大学 | Non-contact vibration detection device and method for solar sail structure |
CN110542527B (en) * | 2019-09-25 | 2023-11-17 | 华南理工大学 | Vibration detection device and method for space multi-solar panel unfolding structure |
CN110887561A (en) * | 2019-12-12 | 2020-03-17 | 景德镇陶瓷大学 | A rotating machinery vibration signal acquisition system |
CN112179596B (en) * | 2020-09-25 | 2022-07-29 | 中国直升机设计研究所 | Durability test method and device for vibration active control actuator |
CN112444365B (en) * | 2020-11-30 | 2023-08-29 | 哈尔滨工业大学 | Satellite solar wing substrate unfolding low-frequency mode testing method |
CN113650811B (en) * | 2021-07-22 | 2024-02-06 | 中国人民解放军国防科技大学 | Method for removing dust from solar sailboard of Mars detector |
CN113295359B (en) * | 2021-07-28 | 2022-02-22 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Simulation test device for inhibiting ejector supporting plate vibration and vibration inhibition method |
CN113494558B (en) * | 2021-07-28 | 2023-05-02 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Method for inhibiting flow-induced vibration of supporting plate of gas ejector |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666107A (en) * | 1984-02-23 | 1987-05-19 | Fairchild Industries, Inc. | Deployable space panel structure |
-
2007
- 2007-05-11 CN CNB2007100405173A patent/CN100554908C/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666107A (en) * | 1984-02-23 | 1987-05-19 | Fairchild Industries, Inc. | Deployable space panel structure |
Non-Patent Citations (1)
Title |
---|
减振降噪智能结构的研究. 陈仁文等.测控技术,第17卷第6期. 1998 * |
Also Published As
Publication number | Publication date |
---|---|
CN101055219A (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100554908C (en) | Simulation intelligent flexible space sailboard structural vibration active control test platform and method | |
CN100547509C (en) | Vibration control device and control method for flexible cantilever plate based on acceleration sensor | |
CN103399570B (en) | A kind of virtual space aircraft wall panel structure flutter/vibration control apparatus and method | |
CN102169328B (en) | Active control test platform and method for vibration of near space aircraft model | |
CN101249897A (en) | Active control device and method for space sailboard bending and torsional modal vibration simulation | |
CN104006110B (en) | Rotate flexible, hinged vibration of beam measuring and controlling and method | |
CN104589359B (en) | A kind of Vibrations of A Flexible Robot Arm control method based on Vibration device | |
CN106314832A (en) | Device for measuring and controlling coupled vibrations of multi-flexibility cantilever beam based on single-axis air flotation table and method thereof | |
CN101318561A (en) | Device and method for torsional vibration control of simulated space sailboard based on angular rate gyroscope | |
CN101963786A (en) | Photostrictive driver based vibration wireless driving control device and method | |
CN102353513B (en) | Pneumatic test system of deformable aircraft | |
CN111504585A (en) | Blisk multi-load vibration experiment device and method | |
CN103528782A (en) | Thin-walled structure part vibration test device and method based on piezoelectric ceramic vibration exciter | |
CN101126916A (en) | Multi-channel online identification method for controlled model of intelligent flexible structure with active vibration reduction | |
CN104565191A (en) | Double-intelligent flexible beam device based on driving and oscillating of planetary reducer | |
CN104406756B (en) | Simulated engine blade working environment mono-/bis-sound wave exciting test system and method | |
CN101382806B (en) | Device and method for controlling bending and torsional low-frequency modal vibration of simulated space sailboard | |
CN100586798C (en) | Device and method for suppressing vibration of flexible structures based on jet actuator | |
CN113295359A (en) | Simulation test device for inhibiting ejector supporting plate vibration and vibration inhibition method | |
CN212846514U (en) | Flexible mechanical arm control device based on elastic base of reciprocating vibration chain body | |
CN206068197U (en) | Many flexible cantilever beam coupled vibrations measure and control devices based on single-axle air bearing table | |
CN102929132B (en) | Based on the vibration noncontact Active Control Method of multi-disc combination drive configuration | |
CN106625777A (en) | Active vibration controller of flexible mechanical arm | |
CN104407547B (en) | A kind of general waveform playback control method and control device | |
CN108427445B (en) | A kind of semi-active control aystem and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091028 Termination date: 20120511 |