CN100550588C - Power circuit, power control circuit and power control method - Google Patents
Power circuit, power control circuit and power control method Download PDFInfo
- Publication number
- CN100550588C CN100550588C CNB2007101643677A CN200710164367A CN100550588C CN 100550588 C CN100550588 C CN 100550588C CN B2007101643677 A CNB2007101643677 A CN B2007101643677A CN 200710164367 A CN200710164367 A CN 200710164367A CN 100550588 C CN100550588 C CN 100550588C
- Authority
- CN
- China
- Prior art keywords
- voltage
- output
- pin
- predetermined value
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电源电路、电源控制电路,和电源控制方法。The invention relates to a power supply circuit, a power supply control circuit, and a power supply control method.
背景技术 Background technique
近来,存储卡广泛用作便携式电子设备(数码相机、移动电话等)的数据记录介质。存储卡的工作电压根据安装在存储卡上的非易失性存储器(快闪存储器等)的工作电压而确定。例如,存在带有3.3V工作电压的非易失性存储器和带有1.8V工作电压的非易失性存储器。因此,也存在带有3.3V工作电压的存储卡和带有1.8V工作电压的存储卡。Recently, memory cards are widely used as data recording media for portable electronic devices (digital cameras, mobile phones, etc.). The operating voltage of the memory card is determined according to the operating voltage of the nonvolatile memory (flash memory, etc.) mounted on the memory card. For example, there are non-volatile memories with an operating voltage of 3.3V and non-volatile memories with an operating voltage of 1.8V. Therefore, there are also memory cards with an operating voltage of 3.3V and memory cards with an operating voltage of 1.8V.
为了使存储卡的工作电压与内部非易失性存储器的工作电压无关,需要在存储卡上安装DC-DC变换器。除非易失性存储器之外,存储卡还必须安装用来控制非易失性存储器的逻辑电路。然而,根据非易失性存储器的工作电压在存储卡上安装两种逻辑电路(用于3.3V的逻辑电路和用于1.8V的逻辑电路)是低效的,而且在考虑到随着构成逻辑电路的半导体器件的尺寸减小其电压被固定的事实时,在存储卡上只安装用于1.8V的逻辑电路是理想的。然而,需要在存储卡上安装用于逻辑电路的DC-DC变换器和用于非易失性存储器的DC-DC变换器。顺便说一下,在第Hei 7-21791号日本未审查专利申请、第Hei 9-154275号日本未审查专利申请、第Hei 9-294368号日本未审查专利申请等中公开了关于DC-DC变换器的技术。In order to make the working voltage of the memory card irrelevant to the working voltage of the internal non-volatile memory, a DC-DC converter needs to be installed on the memory card. In addition to volatile memory, memory cards must also be equipped with logic circuits for controlling nonvolatile memory. However, it is inefficient to mount two kinds of logic circuits (a logic circuit for 3.3V and a logic circuit for 1.8V) on a memory card according to the operating voltage of a nonvolatile memory, and it is inefficient when considering When the size of the semiconductor device of the circuit is reduced by the fact that its voltage is fixed, it is ideal to mount only logic circuits for 1.8V on the memory card. However, a DC-DC converter for a logic circuit and a DC-DC converter for a nonvolatile memory need to be mounted on the memory card. Incidentally, Japanese Unexamined Patent Application No. Hei 7-21791, Japanese Unexamined Patent Application No. Hei 9-154275, Japanese Unexamined Patent Application No. Hei 9-294368, etc. disclose about DC-DC converters. Technology.
通过在存储器上安装DC-DC变换器来实现存储卡的工作电压与内部非易失性存储器的工作电压无关,这是可能的,然而,只在存储卡上简单地安装两个或更多DC-DC变换器是非常低效的。另外,由于存储卡被插入到处于被激活状态的电子设备/从处于被激活状态的电子设备中移除存储卡,所以当升压DC-DC变换器产生存储卡内部所需的电压时,出现的问题是,当存储卡被插入到电子装备中时输入电压直接流向(flow throughto)输出端,从而引起涌入电流。此外,如果不考虑非易失性存储器的电源电压和逻辑电路的电源电压的上升时序,则可能存在由构成非易失性存储器或逻辑电路的半导体器件的闩锁效应(latch-up)而导致烧毁的风险。It is possible to realize that the operating voltage of the memory card is independent of the operating voltage of the internal non-volatile memory by installing a DC-DC converter on the memory, however, simply installing two or more DCs on the memory card - DC converters are very inefficient. In addition, since the memory card is inserted into/removed from the electronic device in the activated state, when the step-up DC-DC converter generates the voltage required inside the memory card, The problem is that when the memory card is inserted into the electronic equipment, the input voltage flows through to the output terminal, causing an inrush current. In addition, if the rising timing of the power supply voltage of the nonvolatile memory and the power supply voltage of the logic circuit is not taken into account, there may be a latch-up caused by a semiconductor device constituting the nonvolatile memory or the logic circuit. Risk of burning.
发明内容 Contents of the invention
本发明的一个目的在于,实现在确保效率和安全的同时使得存储卡的工作电压与内部非易失性存储器的工作电压无关。An object of the present invention is to make the working voltage of the memory card independent of the working voltage of the internal non-volatile memory while ensuring efficiency and safety.
在本发明的一方面中,电源电路被构造成包括输入管脚、第一输出管脚、第二输出管脚、DC-DC变换器、第一旁路开关电路、第二旁路开关电路、启动控制电路和输出斜率控制电路。例如,利用半导体器件来构造电源电路。输入管脚接收第一预定值的电压或小于第一预定值的第二预定值的电压。对于第一输出管脚,需要第一或第二预定值的电压输出。对于第二输出管脚,需要第二预定值的电压输出。例如,电源电路被安装在存储卡上,该存储卡具有非易失性存储器和控制非易失性存储器的存储器控制电路。第一输出管脚的电压被用作非易失性存储器的电源电压,且第二输出管脚的电压被用作存储器控制电路的电源电压。In an aspect of the present invention, the power supply circuit is configured to include an input pin, a first output pin, a second output pin, a DC-DC converter, a first bypass switch circuit, a second bypass switch circuit, The start control circuit and the output slope control circuit. For example, a power supply circuit is constructed using a semiconductor device. The input pin receives a voltage of a first predetermined value or a voltage of a second predetermined value less than the first predetermined value. For the first output pin, a voltage output of the first or second predetermined value is required. For the second output pin, a voltage output of a second predetermined value is required. For example, a power supply circuit is mounted on a memory card having a nonvolatile memory and a memory control circuit that controls the nonvolatile memory. The voltage of the first output pin is used as the power supply voltage of the nonvolatile memory, and the voltage of the second output pin is used as the power supply voltage of the memory control circuit.
根据输入管脚的电压值和第一输出管脚所需的电压值的组合,DC-DC变换器以降压模式或升压模式从输入管脚的电压产生输出电压,并且将该输出电压输出到第一和第二输出管脚中的至少一个。当电压没有从DC-DC变换器输出到第一输出管脚时,第一旁路开关电路导通以将输入管脚的电压输出到第一输出管脚。当电压没有从DC-DC变换器输出到第二输出管脚时,第二旁路开关电路导通以将输入管脚的电压输出到第二输出管脚。According to the combination of the voltage value of the input pin and the voltage value required by the first output pin, the DC-DC converter generates an output voltage from the voltage of the input pin in buck mode or boost mode, and outputs the output voltage to at least one of the first and second output pins. When the voltage is not output from the DC-DC converter to the first output pin, the first bypass switch circuit is turned on to output the voltage of the input pin to the first output pin. When the voltage is not output from the DC-DC converter to the second output pin, the second bypass switch circuit is turned on to output the voltage of the input pin to the second output pin.
在从DC-DC变换器被起动直到DC-DC变换器的输出电压变成与输入管脚的电压相等的期间,启动控制电路使得DC-DC变换器以降压模式工作,而与输入管脚的电压值和第一输出管脚所需的电压值的组合无关。当第一旁路开关电路导通时,输出斜率控制电路使第一旁路开关电路的输出电压的上升斜率与DC-DC变换器的输出电压的上升斜率同步,并且当第二旁路开关电路导通时,输出斜率控制电路使第二旁路开关电路的输出电压的上升斜率与DC-DC变换器的输出电压的上升斜率同步。During the period from when the DC-DC converter is started until the output voltage of the DC-DC converter becomes equal to the voltage of the input pin, the start-up control circuit makes the DC-DC converter operate in step-down mode, while the voltage of the input pin The combination of the voltage value and the desired voltage value of the first output pin is independent. When the first bypass switch circuit is turned on, the output slope control circuit synchronizes the rising slope of the output voltage of the first bypass switch circuit with the rising slope of the output voltage of the DC-DC converter, and when the second bypass switch circuit When turned on, the output slope control circuit synchronizes the rising slope of the output voltage of the second bypass switch circuit with the rising slope of the output voltage of the DC-DC converter.
例如,当输入管脚的电压值为第一预定值并且第一输出管脚所需的电压值为第一预定值时,DC-DC变换器电路以降压模式从输入管脚的电压产生第二预定值的输出电压,并将该输出电压输出到第二输出管脚。当输入管脚的电压值为第一预定值并且第一输出管脚所需的电压值为第二预定值时,启动控制电路以降压模式从输入管脚的电压产生第二预定值的输出电压,并将该输出电压输出到第一和第二输出管脚。当输入管脚的电压值为第二预定值并且第一输出管脚所需的电压值为第一预定值时,启动控制电路以升压模式从输入管脚的电压产生第一预定值的输出电压,并将该输出电压输出到第一输出管脚。当输入管脚的电压值为第二预定值并且第一输出管脚所需的电压值为第二预定值时,启动控制电路以升压模式从输入管脚的电压产生第二预定值的输出电压,并将该输出电压输出到第一和第二输出管脚。For example, when the voltage value of the input pin is a first predetermined value and the required voltage value of the first output pin is the first predetermined value, the DC-DC converter circuit generates a second voltage from the voltage of the input pin in step-down mode. an output voltage of a predetermined value, and output the output voltage to the second output pin. When the voltage value of the input pin is a first predetermined value and the required voltage value of the first output pin is a second predetermined value, the start-up control circuit generates an output voltage of a second predetermined value from the voltage of the input pin in a step-down mode , and output the output voltage to the first and second output pins. When the voltage value of the input pin is a second predetermined value and the voltage value required by the first output pin is a first predetermined value, the start-up control circuit generates an output of the first predetermined value from the voltage of the input pin in boost mode voltage, and output the output voltage to the first output pin. When the voltage value of the input pin is a second predetermined value and the required voltage value of the first output pin is a second predetermined value, the start-up control circuit generates an output of the second predetermined value from the voltage of the input pin in boost mode voltage, and output the output voltage to the first and second output pins.
优选地,输出斜率控制电路被构造成包括第一导通电阻控制电路和第二导通电阻控制电路。当第一旁路开关电路导通时,第一导通电阻控制电路检测跟随第一输出管脚电压的电压与第二输出管脚的电压之间的电压差,并且根据检测结果来控制第一旁路开关电路的导通电阻。当第二旁路开关电路导通时,第二导通电阻控制电路检测第二输出管脚的电压与跟随第一输出管脚电压的电压之间的电压差,并且根据检测结果来控制第二旁路开关电路的导通电阻。Preferably, the output slope control circuit is configured to include a first on-resistance control circuit and a second on-resistance control circuit. When the first bypass switch circuit is turned on, the first on-resistance control circuit detects the voltage difference between the voltage following the voltage of the first output pin and the voltage of the second output pin, and controls the first output pin according to the detection result. On-resistance of the bypass switch circuit. When the second bypass switch circuit is turned on, the second on-resistance control circuit detects the voltage difference between the voltage of the second output pin and the voltage following the voltage of the first output pin, and controls the second output pin according to the detection result. On-resistance of the bypass switch circuit.
在如上所述的本发明的一方面中,通过使DC-DC变换器、第一和第二旁路开关电路根据输入电压的电压值和第一输出管脚所需的电压值的组合工作而可以在非易失性存储器和存储器控制电路之间共享DC-DC变换器,并因此减少DC-DC变换器的数量。另外,可以通过提供启动控制电路来可靠地防止当DC-DC变换器工作在升压模式时的涌入电流。此外,可以通过提供输出斜率控制电路使第一和第二旁路开关电路与DC-DC变换器相结合地工作来实现第一输出管脚的电压和第二输出管脚的电压的同时激活。因此,可以避免由构成非易失性存储器或存储器控制电路的半导体器件的闩锁效应引起的烧毁的风险。以这种方式,可以在确保效率和安全的同时实现存储卡的工作电压与内部非易失性存储器的工作电压无关。In an aspect of the present invention as described above, by operating the DC-DC converter, the first and the second bypass switch circuits according to the combination of the voltage value of the input voltage and the voltage value required by the first output pin The DC-DC converter can be shared between the non-volatile memory and the memory control circuit, thus reducing the number of DC-DC converters. In addition, the inrush current when the DC-DC converter operates in boost mode can be reliably prevented by providing a start-up control circuit. Furthermore, simultaneous activation of the voltage at the first output pin and the voltage at the second output pin can be achieved by providing an output slope control circuit to operate the first and second bypass switch circuits in conjunction with the DC-DC converter. Therefore, the risk of burnout caused by the latch-up effect of the semiconductor device constituting the nonvolatile memory or the memory control circuit can be avoided. In this way, it is possible to realize that the operating voltage of the memory card is independent of the operating voltage of the internal non-volatile memory while ensuring efficiency and safety.
附图说明 Description of drawings
通过结合附图阅读下面的详细描述,本发明的特性、原理和用途将变得更加明显,附图中相同的元件用相同的标号表示,其中:By reading the following detailed description in conjunction with the accompanying drawings, the characteristics, principles and uses of the present invention will become more apparent. In the accompanying drawings, the same elements are denoted by the same reference numerals, wherein:
图1是示出本发明的实施例的示意图;Figure 1 is a schematic diagram illustrating an embodiment of the present invention;
图2是示出电源电路的构造的示意图;2 is a schematic diagram showing the configuration of a power supply circuit;
图3是示出译码器的工作的示意图;Fig. 3 is a schematic diagram illustrating the operation of a decoder;
图4是示出电源电路的工作(第一模式)的示意图;4 is a schematic diagram showing the operation (first mode) of the power supply circuit;
图5是示出降压PWM比较器和升压PWM比较器的工作(第一模式)的示意图;5 is a schematic diagram illustrating the operation (first mode) of a buck PWM comparator and a boost PWM comparator;
图6是示出第二输出电压的上升特性(第一模式)的示意图;FIG. 6 is a schematic diagram showing a rising characteristic (first mode) of a second output voltage;
图7是示出电源电路的工作(第二模式)的示意图;7 is a schematic diagram showing the operation (second mode) of the power supply circuit;
图8是示出电源电路的工作(第三模式)的示意图;8 is a schematic diagram showing the operation (third mode) of the power supply circuit;
图9是示出降压PWM比较器和升压PWM比较器的工作(第三模式)的示意图;9 is a schematic diagram illustrating the operation (third mode) of a buck PWM comparator and a boost PWM comparator;
图10是示出第一输出电压的上升特性(第三模式,没有软启动控制)的示意图;FIG. 10 is a schematic diagram showing the rising characteristic of the first output voltage (third mode, no soft-start control);
图11是示出在DC-DC变换器的启动时降压PWM比较器和升压PWM比较器的工作(第三模式)的示意图;11 is a schematic diagram showing the operation (third mode) of a buck PWM comparator and a boost PWM comparator at startup of the DC-DC converter;
图12是示出第一输出电压的上升特性(第三模式,带有软启动控制)的示意图;Fig. 12 is a schematic diagram showing the rising characteristic of the first output voltage (third mode, with soft-start control);
图13是示出电源电路的工作(第四模式)的示意图;13 is a schematic diagram showing the operation (fourth mode) of the power supply circuit;
图14是示出译码器的构造的示意图;Fig. 14 is a schematic diagram showing the construction of a decoder;
图15是示出输出斜率控制电路的构造的示意图;和15 is a schematic diagram showing the configuration of an output slope control circuit; and
图16是示出第一和第二输出电压如何被同时激活的示意图。Fig. 16 is a schematic diagram showing how the first and second output voltages are simultaneously activated.
具体实施方式 Detailed ways
下面将参照附图描述本发明的实施例。图1示出了本发明的实施例。本发明被应用于其上的存储卡1被构造成包括电源电路2、非易失性存储器3、和存储卡控制电路4。例如,电源电路2、非易失性存储器3、和存储卡控制电路4由单独的半导体器件构成,并在印刷电路板上被相互连接。电源电路2从输入电压Vi(3.3V或1.8V)产生第一输出电压Vo1(3.3V或1.8V)和第二输出电压Vo2(1.8V)。非易失性存储器3利用电源电路2的第一输出电压Vo1作为电源电压。存储卡控制电路4利用电源电路2的第二输出电压Vo2作为电源电压。然而,在存储卡控制电路4中,外部接口电路4a(向外部发送地址信号和数据信号/从外部接收地址信号和数据信号的电路)利用输入电压Vi作为电源电压,且存储器接口电路4b(向非易失性存储器3发送地址信号和数据信号/从非易失性存储器3接收地址信号和数据信号的电路)利用电源电路2的第一输出电压Vo1作为电源电压。Embodiments of the present invention will be described below with reference to the accompanying drawings. Figure 1 shows an embodiment of the invention. A
图2示出了电源电路2的构造。电源电路2被构造成包括第一旁路开关电路T6、第二旁路开关电路T7、第一滤波电容器(smoothingcapacitor)C1、第二滤波电容器C2、和DC-DC变换器CNV。第一旁路开关电路T6被提供以便输出输入电压Vi(电源电路2的输入管脚IN的电压)作为第一输出电压Vo1(电源电路2的第一输出管脚OUT1的电压),且第一旁路开关电路T6由n型晶体管构成。第一旁路开关电路T6的输入管脚被连接到电源电路2的第一输出管脚OUT1。第一旁路开关电路T6的控制管脚接收控制信号D6,该控制信号D6由DC-DC变换器CNV中的控制电路CTL的译码器DEC提供。FIG. 2 shows the configuration of the
第二旁路开关电路T7被提供以便输出输入电压Vi作为第二输出电压Vo2(电源电路2的第二输出管脚OUT2的电压),且第二旁路开关电路T7由p型晶体管构成。第二旁路开关电路T7的输入管脚被连接到电源电路2的输入管脚IN。第二旁路开关电路T7的输出管脚被连接到电源电路2的第二输出管脚OUT2。第二旁路开关电路T7的控制管脚接收控制信号D7,该控制信号D7由DC-DC变换器CNV中的控制电路CTL的译码器DEC提供。第一滤波电容器C1被提供以便对第一输出电压Vo1滤波并被连接在电源电路2的第一输出管脚OUT1与地线之间。第二滤波电容器C2被提供以便对第二输出电压Vo2滤波并被连接在电源电路2的第二输出管脚OUT2与地线之间。The second bypass switch circuit T7 is provided so as to output the input voltage Vi as the second output voltage Vo2 (the voltage of the second output pin OUT2 of the power supply circuit 2 ), and the second bypass switch circuit T7 is composed of p-type transistors. The input pin of the second bypass switch circuit T7 is connected to the input pin IN of the
DC-DC变换器CNV根据输入电压Vi的电压值和非易失性存储器3的工作电压的电压值(第一输出电压Vo1的电压值)的组合而作为降压型DC-DC变换器或升压型DC-DC变换器工作。DC-DC变换器CNV被构造成包括降压主开关晶体管T1、降压同步整流器电路T2、扼流线圈L1、升压主开关晶体管T3、升压同步整流器电路T4和T5、软启动电容器CS、开关电路SWM、和控制电路CTL。The DC-DC converter CNV operates as a step-down DC-DC converter or a step-up DC-DC converter according to a combination of the voltage value of the input voltage Vi and the voltage value of the operating voltage of the nonvolatile memory 3 (the voltage value of the first output voltage Vo1). Compression type DC-DC converter works. The DC-DC converter CNV is constructed to include a step-down main switching transistor T1, a step-down synchronous rectifier circuit T2, a choke coil L1, a step-up main switching transistor T3, step-up synchronous rectifier circuits T4 and T5, a soft-start capacitor CS, A switch circuit SWM, and a control circuit CTL.
降压主开关晶体管T1由n型晶体管构成。降压主开关晶体管T1的输入管脚被连接到电源电路2的输入管脚IN。降压主开关晶体管T1的输出管脚被连接到扼流线圈L1的一个管脚。降压主开关晶体管T1的控制管脚接收由控制电路CTL的译码器DEC提供的控制信号D1。降压同步整流器电路T2由n型晶体管构成。降压同步整流器电路T2的输入管脚被连接到地线。降压同步整流器电路T2的输出管脚被连接到扼流线圈L1的一个管脚。降压同步整流器电路T2的控制管脚接收由控制电路CTL的译码器DEC提供的控制信号D2。The step-down main switching transistor T1 is composed of an n-type transistor. The input pin of the step-down main switching transistor T1 is connected to the input pin IN of the
升压主开关晶体管T3由n型晶体管构成。升压主开关晶体管T3的输入管脚被连接到扼流线圈L1的另一个管脚。升压主开关晶体管T3的输出管脚被连接到地线。升压主开关晶体管T3的控制管脚接收由控制电路CTL的译码器DEC提供的控制信号D3。升压同步整流器电路T4由n型晶体管构成。升压同步整流器电路T4的输入管脚被连接到扼流线圈L1的另一个管脚。升压同步整流器电路T4的输出管脚被连接到电源电路2的第一输出管脚OUT1。升压同步整流器电路T4的控制管脚接收由控制电路CTL的译码器DEC提供的控制信号D4。升压同步整流器电路T5由n型晶体管构成。升压同步整流器电路T5的输入管脚被连接到扼流线圈L1的另一个管脚。升压同步整流器电路T5的输出管脚被连接到电源电路2的第二输出管脚OUT2。升压同步整流器电路T5的控制管脚接收由控制电路CTL的译码器DEC提供的控制信号D5。The boost main switching transistor T3 is composed of an n-type transistor. The input pin of the boost main switching transistor T3 is connected to the other pin of the choke coil L1. The output pin of the boost main switching transistor T3 is connected to ground. The control pin of the boost main switching transistor T3 receives the control signal D3 provided by the decoder DEC of the control circuit CTL. The step-up synchronous rectifier circuit T4 is composed of n-type transistors. The input pin of the step-up synchronous rectifier circuit T4 is connected to the other pin of the choke coil L1. The output pin of the step-up synchronous rectifier circuit T4 is connected to the first output pin OUT1 of the
软启动电容器CS的一个管脚被连接到控制电路CTL中的误差放大器ERA1的第一和第二同相输入管脚之中的第二同相输入管脚。软启动电容器CS的另一个管脚被连接到地线。随着DC-DC变换器CNV的启动,软启动电容器CS通过恒流电路(未示出)逐渐被充电,并且,随着DC-DC变换器CNV的终止,通过放电电阻器(未示出)逐渐被放电。One pin of the soft-start capacitor CS is connected to a second non-inverting input pin among first and second non-inverting input pins of the error amplifier ERA1 in the control circuit CTL. The other leg of the soft-start capacitor CS is connected to ground. With the startup of the DC-DC converter CNV, the soft-start capacitor CS is gradually charged through a constant current circuit (not shown), and, with the termination of the DC-DC converter CNV, through a discharge resistor (not shown) gradually being discharged.
开关电路SWM被提供以便产生存储器电压请求信号MEM,该信号指明需要3.3V和1.8V中的哪一个作为非易失性存储器3的工作电压。当3.3V被请求作为非易失性存储器3的工作电压时,开关电路SWM进入截止状态以便将存储器电压请求信号MEM设置为高电平。当1.8V被请求作为非易失性存储器3的工作电压时,开关电路SWM进入导通状态以便将存储器电压请求信号MEM设置为低电平。A switch circuit SWM is provided to generate a memory voltage request signal MEM indicating which of 3.3V and 1.8V is required as the operating voltage of the
控制电路CTL被构造成包括电阻器R1至R6、开关电路SW1和SW2、电压发生器E1至E4、误差放大器ERA1、三角波振荡器OSC、降压PWM比较器PWM1、升压PWM比较器PWM2、和译码器DEC。电阻器R1的一个管脚被连接到电源电路2的第一输出管脚OUT1。电阻器R1的另一个管脚被连接到电阻器R2的一个管脚。电阻器R2的另一个管脚被连接到地线。电阻器R3的一个管脚被连接到电源电路2的第二输出管脚OUT2。电阻器R3的另一个管脚被连接到电阻器R4的一个管脚。电阻器R4的另一个管脚被连接到地线。电压发生器E1产生参考电压Ve1。电压发生器E2产生参考电压Ve2。The control circuit CTL is configured to include resistors R1 to R6, switch circuits SW1 and SW2, voltage generators E1 to E4, error amplifier ERA1, triangle wave oscillator OSC, step-down PWM comparator PWM1, step-up PWM comparator PWM2, and Decoder DEC. One pin of the resistor R1 is connected to the first output pin OUT1 of the
当由译码器DEC提供的控制信号SWD1指示高电平时,开关电路SW1将电阻器R1和R2的连接节点连接到误差放大器ERA1的反相输入管脚,并且当控制信号SWD1指示低电平时,开关电路SW1将电阻器R3和R4的连接节点连接到误差放大器ERA1的反相输入管脚。当由译码器DEC提供的控制信号SWD2指示高电平时,开关电路SW2将电压发生器E1的输出管脚连接到误差放大器ERA1的第一同相输入管脚,并且当控制信号SWD2指示低电平时,开关电路SW2将电压发生器E2的输出管脚连接到误差放大器ERA1的第一同相输入管脚。When the control signal SWD1 provided by the decoder DEC indicates a high level, the switch circuit SW1 connects the connection node of the resistors R1 and R2 to the inverting input pin of the error amplifier ERA1, and when the control signal SWD1 indicates a low level, The switch circuit SW1 connects the connection node of the resistors R3 and R4 to the inverting input pin of the error amplifier ERA1. When the control signal SWD2 provided by the decoder DEC indicates a high level, the switch circuit SW2 connects the output pin of the voltage generator E1 to the first non-inverting input pin of the error amplifier ERA1, and when the control signal SWD2 indicates a low level Normally, the switch circuit SW2 connects the output pin of the voltage generator E2 to the first non-inverting input pin of the error amplifier ERA1.
误差放大器ERA1在反相输入管脚处接收通过开关电路SW1提供的电压,在第一同相输入管脚处接收通过开关电路SW2提供的电压,以及在第二同相输入管脚处接收通过软启动电容器CS提供的电压。通过放大反相输入管脚的电压与第一同相输入管脚电压和第二同相输入管脚电压中的较低者之间的电压差,误差放大器ERA1产生输出信号DF1。三角波振荡器OSC产生具有预定周期的三角波信号TW。通过从误差放大器ERA1的输出信号DF1的电压减去偏置电压Ve3,电压发生器E3产生输出信号DF2。顺便说一下,偏置电压Ve3被设置为与三角波振荡器OSC提供的三角波信号TW的波高值相同的电压值。The error amplifier ERA1 receives at the inverting input pin the voltage supplied through the switching circuit SW1, at the first non-inverting input pin the voltage supplied through the switching circuit SW2, and at the second non-inverting input pin through the soft-start capacitor CS provides the voltage. The error amplifier ERA1 generates an output signal DF1 by amplifying the voltage difference between the voltage at the inverting input pin and the lower of the voltage at the first non-inverting input pin and the voltage at the second non-inverting input pin. The triangular wave oscillator OSC generates a triangular wave signal TW having a predetermined period. The voltage generator E3 generates the output signal DF2 by subtracting the bias voltage Ve3 from the voltage of the output signal DF1 of the error amplifier ERA1. Incidentally, the bias voltage Ve3 is set to the same voltage value as the wave height value of the triangular wave signal TW supplied from the triangular wave oscillator OSC.
降压PWM比较器PWM1在反相输入管脚处接收误差放大器ERA1的输出信号DF1,在同相输入管脚处接收三角波振荡器OSC提供的三角波信号TW。当误差放大器ERA1的输出信号DF1的电压高于三角波信号TW的电压时,降压PWM比较器PWM1把输出信号Q1设置为高电平并把输出信号/Q1设置为低电平。当误差放大器ERA1的输出信号DF1的电压低于三角波信号TW的电压时,降压PWM比较器PWM1把输出信号Q1设置为低电平并把输出信号/Q1设置为高电平。The step-down PWM comparator PWM1 receives the output signal DF1 of the error amplifier ERA1 at the inverting input pin, and receives the triangular wave signal TW provided by the triangular wave oscillator OSC at the non-inverting input pin. When the voltage of the output signal DF1 of the error amplifier ERA1 is higher than the voltage of the triangular wave signal TW, the step-down PWM comparator PWM1 sets the output signal Q1 to a high level and the output signal /Q1 to a low level. When the voltage of the output signal DF1 of the error amplifier ERA1 is lower than the voltage of the triangular wave signal TW, the step-down PWM comparator PWM1 sets the output signal Q1 to a low level and the output signal /Q1 to a high level.
升压PWM比较器PWM2在反相输入管脚处接收电压生成器E3的输出信号DF2,在同相输入管脚处接收三角波振荡器OSC提供的三角波信号TW。当电压生成器E3的输出信号DF2的电压高于三角波信号TW的电压时,升压PWM比较器PWM2把输出信号Q2设置为高电平并把输出信号/Q2设置为低电平。当电压生成器E3的输出信号DF2的电压低于三角波信号TW的电压时,升压PWM比较器PWM2把输出信号Q2设置为低电平并把输出信号/Q2设置为高电平。The boost PWM comparator PWM2 receives the output signal DF2 of the voltage generator E3 at the inverting input pin, and receives the triangular wave signal TW provided by the triangular wave oscillator OSC at the non-inverting input pin. When the voltage of the output signal DF2 of the voltage generator E3 is higher than the voltage of the triangular wave signal TW, the boost PWM comparator PWM2 sets the output signal Q2 to a high level and the output signal /Q2 to a low level. When the voltage of the output signal DF2 of the voltage generator E3 is lower than the voltage of the triangular wave signal TW, the boost PWM comparator PWM2 sets the output signal Q2 to low level and the output signal /Q2 to high level.
电阻器R5的一个管脚被连接到电源电路2的输入管脚IN。电阻器R5的另一个管脚被连接到电阻器R6的一个管脚。电阻器R6的另一个管脚被连接到地线。电压发生器E4产生参考电压Ve4。电压比较器CMP被提供以便确定输入电压Vi是3.3V还是1.8V。电压比较器CMP在反相输入管脚处接收电阻器R5和R6的连接节点的电压(输入电压Vi被电阻器R5和R6分压的电压),在同相输入管脚处接收电压发生器E4提供的参考电压Ve4。当电阻器R5和R6的连接节点的电压高于参考电压Ve4时,电压比较器CMP把输出信号JDG设置为高电平,而当电阻器R5和R6的连接节点的电压低于参考电压Ve4时,则把输出信号JDG设置为低电平。译码器DEC基于电压比较器CMP的输出信号JDG、存储器电压请求信号MEM、降压PWM比较器PWM1的输出信号Q1和/Q1、以及升压PWM比较器PWM2的输出信号Q2和/Q2产生控制信号SWD1、SWD2、和D1至D7。One pin of the resistor R5 is connected to the input pin IN of the
图3示出了译码器DEC的工作。当电压比较器CMP的输出信号JDG被设置为高电平且由开关电路SWM产生的存储器电压请求信号MEM被设置为高电平时(当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),译码器DEC把控制信号D6和D7设置为高电平而把控制信号SWD1、SWD2、和D4设置为低电平。另外,译码器DEC输出升压PWM比较器PWM2的输出信号Q2和/Q2作为控制信号D3和D5,并输出降压PWM比较器PWM1的输出信号Q1和/Q1作为控制信号D1和D2。Figure 3 shows the operation of the decoder DEC. When the output signal JDG of the voltage comparator CMP is set to a high level and the memory voltage request signal MEM generated by the switch circuit SWM is set to a high level (when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the non- The operating voltage of the volatile memory 3), the decoder DEC sets the control signals D6 and D7 to a high level and sets the control signals SWD1, SWD2, and D4 to a low level. In addition, the decoder DEC outputs output signals Q2 and /Q2 of the step-up PWM comparator PWM2 as control signals D3 and D5, and outputs output signals Q1 and /Q1 of the step-down PWM comparator PWM1 as control signals D1 and D2.
当电压比较器CMP的输出信号JDG被设置为高电平且由开关电路SWM产生的存储器电压请求信号MEM被设置为低电平时(当3.3V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时),译码器DEC把控制信号SWD2和D6设置为低电平而把控制信号SWD1、D7设置为高电平。另外,译码器DEC输出升压PWM比较器PWM2的输出信号Q2作为控制信号D3,并输出升压PWM比较器PWM2的输出信号/Q2作为控制信号D4和D5,并输出降压PWM比较器PWM1的输出信号Q1和/Q1作为控制信号D1和D2。When the output signal JDG of the voltage comparator CMP is set to high level and the memory voltage request signal MEM generated by the switch circuit SWM is set to low level (when 3.3V is supplied as input voltage Vi and 1.8V is requested as non- The operating voltage of the volatile memory 3), the decoder DEC sets the control signals SWD2 and D6 to a low level and sets the control signals SWD1 and D7 to a high level. In addition, the decoder DEC outputs the output signal Q2 of the boost PWM comparator PWM2 as the control signal D3, and outputs the output signal /Q2 of the boost PWM comparator PWM2 as the control signals D4 and D5, and outputs the output signal of the step-down PWM comparator PWM1 The output signals Q1 and /Q1 are used as control signals D1 and D2.
当电压比较器CMP的输出信号JDG被设置为低电平且由开关电路SWM产生的存储器电压请求信号MEM被设置为高电平时(当1.8V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时),译码器DEC把控制信号D5、D6和D7设置为低电平而把控制信号SWD1、SWD2设置为高电平。另外,译码器DEC输出升压PWM比较器PWM2的输出信号Q2和/Q2作为控制信号D3和D4而输出降压PWM比较器PWM1的输出信号Q1和/Q1作为控制信号D1和D2。When the output signal JDG of the voltage comparator CMP is set to low level and the memory voltage request signal MEM generated by the switch circuit SWM is set to high level (when 1.8V is supplied as input voltage Vi and 1.8V is requested as non- The operating voltage of the volatile memory 3), the decoder DEC sets the control signals D5, D6 and D7 to low level and sets the control signals SWD1, SWD2 to high level. In addition, the decoder DEC outputs the output signals Q2 and /Q2 of the step-up PWM comparator PWM2 as control signals D3 and D4, and outputs the output signals Q1 and /Q1 of the step-down PWM comparator PWM1 as control signals D1 and D2.
当电压比较器CMP的输出信号JDG被设置为低电平且由开关电路SWM产生的存储器电压请求信号MEM被设置为低电平时(当1.8V被提供作为输入电压Vi且非易失性存储器3的工作电压需要为1.8V时),译码器DEC把控制信号SWD2和D6设置为低电平而把控制信号SWD1和D7设置为高电平。另外,译码器DEC输出升压PWM比较器PWM2的输出信号Q2作为控制信号D3并输出升压PWM比较器PWM2的输出信号/Q2作为控制信号D4和D5,并输出降压PWM比较器PWM1的输出信号Q1和/Q1作为控制信号D1和D2。When the output signal JDG of the voltage comparator CMP is set to low level and the memory voltage request signal MEM generated by the switch circuit SWM is set to low level (when 1.8V is supplied as the input voltage Vi and the
这里,将分成四种情况来分别描述电源电路2的工作:(第一模式),3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压;(第二模式),3.3V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压;(第三模式),1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压;(第四模式),1.8V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压。Here, the operation of the
图4示出了电源电路2的工作(第一模式)。当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,控制信号D4被设置为低电平且控制信号D6被设置为高电平。由于这个原因,升压同步整流器电路T4总是处于截止状态而第一旁路开关电路T6总是处于导通状态。因此,输入电压Vi被输出作为第一输出电压Vo1。另外,控制信号D7被固定在高电平。由于这个原因,第二旁路开关电路T7总是处于截止状态。FIG. 4 shows the operation of the power supply circuit 2 (first mode). When 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
控制信号SWD1和SWD2被设置为低电平。因此,开关电路SW1把电阻器R3和R4的连接节点连接到误差放大器ERA1的反相输入管脚,且开关电路SW2把电压发生器E2的输出管脚连接到误差放大器ERA1的第一同相输入管脚。由于在DC-DC变换器CNV工作期间软启动电容器CS被恒流电路充电,所以,在误差放大器ERA1处,第二同相输入管脚的电压高于第一同相输入管脚的电压。因此,在DC-DC变换器CNV工作期间,误差放大器ERA1通过放大第二输出电压Vo2的由电阻器R3和R4分压的电压与参考电压Ve2之间的电压差来产生输出信号DF1。The control signals SWD1 and SWD2 are set to low level. Therefore, the switch circuit SW1 connects the connection node of the resistors R3 and R4 to the inverting input pin of the error amplifier ERA1, and the switch circuit SW2 connects the output pin of the voltage generator E2 to the first non-inverting input of the error amplifier ERA1 pins. Since the soft-start capacitor CS is charged by the constant current circuit during the operation of the DC-DC converter CNV, at the error amplifier ERA1, the voltage of the second non-inverting input pin is higher than the voltage of the first non-inverting input pin. Therefore, the error amplifier ERA1 generates the output signal DF1 by amplifying the voltage difference between the second output voltage Vo2 divided by the resistors R3 and R4 and the reference voltage Ve2 during the operation of the DC-DC converter CNV.
当误差放大器ERA1的输出信号DF1的电压高于由三角波振荡器OSC提供的三角波信号TW时,降压PWM比较器PWM1把输出信号/Q1设置为低电平而把输出信号Q1设置为高电平;当误差放大器ERA1的输出信号DF1的电压低于三角波信号TW时,把输出信号/Q1设置为高电平而把输出信号Q1设置为低电平。降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2。When the voltage of the output signal DF1 of the error amplifier ERA1 is higher than the triangular wave signal TW provided by the triangular wave oscillator OSC, the step-down PWM comparator PWM1 sets the output signal /Q1 to a low level and the output signal Q1 to a high level ; When the voltage of the output signal DF1 of the error amplifier ERA1 is lower than the triangular wave signal TW, the output signal /Q1 is set to a high level and the output signal Q1 is set to a low level. Output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2.
当电压发生器E3的输出信号DF2的电压(通过将误差放大器ERA1的输出电压DF1减去偏置电压Ve3而得到的电压)高于由三角波振荡器OSC提供的三角波信号TW的电压时,升压PWM比较器PWM2把输出信号/Q2设置为低电平并把输出信号Q2设置为高电平;当电压发生器E3的输出信号DF2的电压低于三角波信号TW的电压时,升压PWM比较器PWM2把输出信号/Q2设置为高电平并把输出信号Q2设置为低电平。升压PWM比较器PWM2的输出信号Q2和/Q2被作为控制信号D3和D5输出。When the voltage of the output signal DF2 of the voltage generator E3 (the voltage obtained by subtracting the offset voltage Ve3 from the output voltage DF1 of the error amplifier ERA1) is higher than the voltage of the triangular wave signal TW supplied by the triangular wave oscillator OSC, the boost The PWM comparator PWM2 sets the output signal /Q2 to a low level and sets the output signal Q2 to a high level; when the voltage of the output signal DF2 of the voltage generator E3 is lower than the voltage of the triangular wave signal TW, the boost PWM comparator PWM2 sets the output signal /Q2 high and sets the output signal Q2 low. The output signals Q2 and /Q2 of the step-up PWM comparator PWM2 are output as control signals D3 and D5.
图5示出了降压PWM比较器PWM1和升压PWM比较器PWM2的工作(第一模式)。当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,由于在升压PWM比较器PWM2处反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)总是低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压),所以输出信号Q2总是被设置为低电平且输出信号/Q2总是被设置为高电平(0%占空比状态)。由于升压PWM比较器PWM2的输出信号Q2被输出作为控制信号D3,所以升压主开关晶体管T3总是处于截止状态。另外,由于升压PWM比较器PWM2的输出信号/Q2被输出作为控制信号D5,所以升压同步整流器电路T5总是处于导通状态。FIG. 5 shows the operation of buck PWM comparator PWM1 and boost PWM comparator PWM2 (first mode). When 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
另一方面,在降压PWM比较器PWM1处,当反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)高于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q1被设置为高电平,且输出信号/Q1被设置为低电平。由于降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2,所以当误差放大器ERA1的输出信号DF1的电压高于三角波信号TW的电压时,降压主开关晶体管T1进入导通状态,且降压同步整流器电路T2进入截止状态。On the other hand, at the step-down PWM comparator PWM1, when the voltage of the inverting input pin (the voltage of the output signal DF1 of the error amplifier ERA1) is higher than the voltage of the non-inverting input pin (the triangular wave signal provided by the triangular wave oscillator OSC TW voltage), the output signal Q1 is set to high level, and the output signal /Q1 is set to low level. Since the output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2, when the voltage of the output signal DF1 of the error amplifier ERA1 is higher than the voltage of the triangular wave signal TW, the step-down main switching transistor T1 enters The step-down synchronous rectifier circuit T2 enters the cut-off state.
在降压PWM比较器PWM1处,当反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q1被设置为低电平,且输出信号/Q1被设置为高电平。由于降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2,所以当误差放大器ERA1的输出信号DF1的电压低于三角波信号TW的电压时,降压主开关晶体管T1进入截止状态,且降压同步整流器电路T2进入导通状态。At the step-down PWM comparator PWM1, when the voltage of the inverting input pin (the voltage of the output signal DF1 of the error amplifier ERA1) is lower than the voltage of the non-inverting input pin (the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC) , the output signal Q1 is set to a low level, and the output signal /Q1 is set to a high level. Since the output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2, when the voltage of the output signal DF1 of the error amplifier ERA1 is lower than the voltage of the triangular wave signal TW, the step-down main switching transistor T1 enters The off state, and the step-down synchronous rectifier circuit T2 enters the on state.
当降压主开关晶体管T1进入导通状态时,降压同步整流器电路T2进入截止状态,且电流通过扼流线圈L1从输入侧被提供到负载。由于扼流线圈L1的两端被加上输入电压Vi与第二输出电压Vo2之间的电压差,所以流过扼流线圈L1的电流随时间流逝而增加,而且被提供给负载的电流也随时间流逝而增加。另外,随着电流流过扼流线圈L1,能量在扼流线圈L1中积聚。于是,当降压主开关晶体管T1进入截止状态时,降压同步整流器电路T2进入导通状态且积聚在扼流线圈L1中的能量得以释放。与此同时,第二输出电压Vo2通过由使用输入电压Vi、降压主开关晶体管T1的导通时间段Ton、和降压主开关晶体管T1的截止时间段Toff的表达式(1)表示。When the step-down main switching transistor T1 enters the on state, the step-down synchronous rectifier circuit T2 enters the off state, and current is supplied from the input side to the load through the choke coil L1. Since the voltage difference between the input voltage Vi and the second output voltage Vo2 is applied to both ends of the choke coil L1, the current flowing through the choke coil L1 increases with the lapse of time, and the current supplied to the load also increases with the lapse of time. increases with the passage of time. In addition, as current flows through the choke coil L1, energy is accumulated in the choke coil L1. Then, when the step-down main switching transistor T1 enters an off state, the step-down synchronous rectifier circuit T2 enters an on state and the energy accumulated in the choke coil L1 is released. Meanwhile, the second output voltage Vo2 is expressed by Expression (1) using the input voltage Vi, the on-period Ton of the step-down main switching transistor T1 , and the off-period Toff of the step-down main switching transistor T1 .
Vo2={Ton/(Ton+Toff)}×Vi…(1)Vo2={Ton/(Ton+Toff)}×Vi...(1)
另外,在降压主开关晶体管T1的导通期间,流过扼流线圈L1的电流从输入侧流向输出侧,并且在降压主开关晶体管T1的截止期间,通过降压同步整流器电路T2提供该电流。因此,平均输入电流Ii由使用输出电流Io、降压主开关晶体管T1的导通时间段Ton、和降压主开关晶体管T1的截止时间段Toff的表达式(2)表示。In addition, the current flowing through the choke coil L1 flows from the input side to the output side during the on period of the step-down main switching transistor T1, and is supplied by the step-down synchronous rectifier circuit T2 during the off period of the step-down main switching transistor T1. current. Therefore, the average input current Ii is expressed by Expression (2) using the output current Io, the on-period Ton of the step-down main switching transistor T1, and the off-period Toff of the step-down main switching transistor T1.
Ii={Ton/(Ton+Toff)}×Io…(2)Ii={Ton/(Ton+Toff)}×Io...(2)
因此,当第二输出电压Vo2由于输入电压Vi的变化而变化时,可以通过检测第二输出电压Vo2的变化以控制降压主开关晶体管T1的导通时间段和截止时间段的比来保持第二输出电压Vo2不变。相似地,当第二输出电压Vo2由于负载变化而变化时,也可以通过检测第二输出电压Vo2的变化以控制降压主开关晶体管T1的导通时间段和截止时间段的比来保持第二输出电压Vo2不变。以这种方式,在PWM控制系统的DC-DC变换器CNV中,可以通过控制降压主开关晶体管T1的导通时间段和截止时间段的比来控制第二输出电压Vo2。Therefore, when the second output voltage Vo2 varies due to the variation of the input voltage Vi, it is possible to maintain the second output voltage Vo2 by detecting the variation of the second output voltage Vo2 to control the ratio of the on-time period and the off-time period of the step-down main switching transistor T1. Second, the output voltage Vo2 remains unchanged. Similarly, when the second output voltage Vo2 changes due to load changes, the second output voltage can also be maintained by detecting the change of the second output voltage Vo2 to control the ratio of the on-time period to the off-time period of the step-down main switching transistor T1. The output voltage Vo2 does not change. In this way, in the DC-DC converter CNV of the PWM control system, the second output voltage Vo2 can be controlled by controlling the ratio of the on-time period and the off-time period of the step-down main switching transistor T1.
顺便说一句,在DC-DC变换器CNV启动时,第二输出电压Vo2为0V,因此,输入电压Vi与第二输出电压Vo2之间的电压差变为最大,而且如果假设,在误差放大器ERA1处,第一同相输入管脚的电压低于第二同相输入管脚的电压,则误差放大器ERA1的输出信号DF1的电压也变为最大。在这种情况下,降压PWM比较器的输出信号Q1的脉冲宽度(高电平时间段)变为最大且降压主开关晶体管T1的导通时间段变为最大。另外,通过使用输入电压Vi、第二输出电压Vo2、扼流线圈L1的电感L、和降压主开关晶体管T1的导通时间段Ton的表达式(3)来表示流过扼流线圈L1的最大电流Ipeak。Incidentally, at the start of the DC-DC converter CNV, the second output voltage Vo2 is 0V, therefore, the voltage difference between the input voltage Vi and the second output voltage Vo2 becomes maximum, and if it is assumed that, in the error amplifier ERA1 , the voltage of the first non-inverting input pin is lower than the voltage of the second non-inverting input pin, and the voltage of the output signal DF1 of the error amplifier ERA1 also becomes the maximum. In this case, the pulse width (high level period) of the output signal Q1 of the step-down PWM comparator becomes maximum and the conduction period of the step-down main switching transistor T1 becomes maximum. In addition, the energy flowing through the choke coil L1 is expressed by expression (3) using the input voltage Vi, the second output voltage Vo2, the inductance L of the choke coil L1, and the on-time period Ton of the step-down main switching transistor T1. Maximum current Ipeak.
Ipeak={(Vi-Vo2)/L}×Ton......(3)Ipeak={(Vi-Vo2)/L}×Ton...(3)
在DC-DC变换器CNV启动时,第二输出电压Vo2为0V,因此,加在扼流线圈L1上的电压变为最大,且降压主开关晶体管T1的导通时间段变为最大。因而,众所周知,在扼流线圈L1和降压主开关晶体管T1中出现过量的涌入电流。这个的发生是因为DC-DC变换器CNV试图将第二输出电压Vo2从0V突变到额定值(1.8V)。When the DC-DC converter CNV starts up, the second output voltage Vo2 is 0V, therefore, the voltage applied to the choke coil L1 becomes maximum, and the conduction period of the step-down main switching transistor T1 becomes maximum. Thus, it is known that an excessive inrush current occurs in the choke coil L1 and the step-down main switching transistor T1. This happens because the DC-DC converter CNV tries to abruptly change the second output voltage Vo2 from 0V to the nominal value (1.8V).
然而,在DC-DC变换器CNV启动时,软启动电容器CS由恒流电路逐渐充电,从而,由软启动电容器CS产生的电压(误差放大器ERA1的第二同相输入管脚的电压)从0V开始逐渐上升。因此,在DC-DC变换器CNV启动时,通过放大第二输出电压Vo2被电阻器R3和R4分压的电压与由软启动电容器CS产生的电压之间的电压差,误差放大器ERA1产生输出信号DF1。在DC-DC变换器CNV启动时,由于第二输出电压Vo2为0V,所以误差放大器ERA1的输出信号DF1的电压变为最小且降压PWM比较器PWM1的输出信号Q1的脉冲宽度也变为最小。因此,降压主开关晶体管T1的导通时间段变为最小且防止了涌入电流。However, when the DC-DC converter CNV starts up, the soft-start capacitor CS is gradually charged by the constant current circuit, so that the voltage generated by the soft-start capacitor CS (the voltage of the second non-inverting input pin of the error amplifier ERA1) starts from 0V Gradually rise. Therefore, at the start of the DC-DC converter CNV, the error amplifier ERA1 generates an output signal by amplifying the voltage difference between the voltage of the second output voltage Vo2 divided by the resistors R3 and R4 and the voltage generated by the soft-start capacitor CS DF1. When the DC-DC converter CNV starts, since the second output voltage Vo2 is 0V, the voltage of the output signal DF1 of the error amplifier ERA1 becomes minimum and the pulse width of the output signal Q1 of the step-down PWM comparator PWM1 also becomes minimum . Therefore, the turn-on period of the step-down main switching transistor T1 becomes minimum and inrush current is prevented.
另外,由软启动电容器CS产生的电压是限定第二输出电压Vo2并且以预定上升斜率逐渐上升的电压。因此,第二输出电压Vo2也与其成比例地上升。从而,第二输出电压Vo2的上升斜率被软启动电容器CS产生的电压的上升斜率限定。当软启动电容器CS产生的电压上升并变得高于参考电压Ve2时,通过放大第二输出电压Vo2被电阻器R3和R4分压的电压与参考电压Ve2之间的电压差,误差放大器ERA1产生输出电压DF1。因此,在软启动电容器CS产生的电压达到参考电压Ve2之后,第二输出电压Vo2被参考电压Ve2限定。顺便说一下,在DC-DC变换器CNV的终止时刻,软启动电容器CS通过放电电阻器被逐渐放电且软启动电容器CS产生的电压逐渐下降,因此,可以逐渐减小第二输出电压Vo2。In addition, the voltage generated by the soft start capacitor CS is a voltage that defines the second output voltage Vo2 and gradually rises with a predetermined rising slope. Therefore, the second output voltage Vo2 also rises in proportion thereto. Thus, the rising slope of the second output voltage Vo2 is limited by the rising slope of the voltage generated by the soft-start capacitor CS. When the voltage generated by the soft start capacitor CS rises and becomes higher than the reference voltage Ve2, by amplifying the voltage difference between the second output voltage Vo2 divided by the resistors R3 and R4 and the reference voltage Ve2, the error amplifier ERA1 generates output voltage DF1. Therefore, after the voltage generated by the soft start capacitor CS reaches the reference voltage Ve2, the second output voltage Vo2 is limited by the reference voltage Ve2. By the way, at the termination moment of the DC-DC converter CNV, the soft start capacitor CS is gradually discharged through the discharge resistor and the voltage generated by the soft start capacitor CS gradually drops, and thus, the second output voltage Vo2 can be gradually reduced.
图6示出了第二输出电压Vo2的上升特性(第一模式)。在t1时刻,当DC-DC变换器CNV被启动时,软启动电容器CS通过恒流电路被逐渐充电。由于这个原因,软启动电容器CS产生的电压随时间流逝而上升。随之,第二输出电压Vo2也随着时间流逝而上升。在t2时刻,当软启动电容器CS产生的电压达到参考电压Ve2时,此后,第二输出电压Vo2被参考电压Ve2控制以保持不变。FIG. 6 shows the rising characteristic of the second output voltage Vo2 (first mode). At time t1, when the DC-DC converter CNV is started, the soft-start capacitor CS is gradually charged through the constant current circuit. For this reason, the voltage generated by the soft-start capacitor CS rises with the lapse of time. Accordingly, the second output voltage Vo2 also rises as time elapses. At time t2, when the voltage generated by the soft-start capacitor CS reaches the reference voltage Ve2, thereafter, the second output voltage Vo2 is controlled by the reference voltage Ve2 to remain constant.
图7示出了电源电路2的工作(第二模式)。当3.3V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时,控制信号D6被设置为低电平。由于这个原因,第一旁路开关电路T6总是处于截止状态。另外,控制信号SWD1被设置为高电平。由于这个原因,开关电路SW1将电阻器R1和R2的连接节点连接到误差放大器ERA1的反相输入管脚。升压PWM比较器PWM2的输出信号/Q2不但被输出作为控制信号D5而且还输出作为控制信号D4。因为除此之外的工作都和电源电路2的第一模式中的工作相同,所以这里将省略重复的描述。FIG. 7 shows the operation of the power supply circuit 2 (second mode). When 3.3V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the
图8示出了电源电路2的工作(第三模式)。当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,控制信号D5和D7被设置为低电平。由于这个原因,升压同步整流器电路T5总是处于截止状态且第二旁路开关T7总是处于导通状态。因此,输入电压Vi被输出作为第一输出电压Vo2。另外,控制信号D6被设置为低电平。由于此,第一旁路开关电路T6总是处于截止状态。FIG. 8 shows the operation of the power supply circuit 2 (third mode). When 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
控制信号SWD1和SWD2被设置为高电平。因此,开关电路SW1把电阻器R1和R2的连接节点连接到误差放大器ERA1的反相输入管脚,且开关电路SW2把电压发生器E1的输出管脚连接到误差放大器ERA1的第一同相输入管脚。因为在DC-DC变换器CNV工作期间软启动电容器CS被恒流电路充电,所以,在误差放大器ERA1处,第二同相输入管脚的电压高于第一同相输入管脚的电压。因此,误差放大器ERA1通过放大第一输出电压Vo1被电阻器R1和R2分压的电压与参考电压Ve1之间的电压差来产生输出信号DF1。The control signals SWD1 and SWD2 are set to high level. Therefore, the switch circuit SW1 connects the connection node of the resistors R1 and R2 to the inverting input pin of the error amplifier ERA1, and the switch circuit SW2 connects the output pin of the voltage generator E1 to the first non-inverting input of the error amplifier ERA1 pins. Since the soft-start capacitor CS is charged by the constant current circuit during the operation of the DC-DC converter CNV, at the error amplifier ERA1, the voltage of the second non-inverting input pin is higher than the voltage of the first non-inverting input pin. Accordingly, the error amplifier ERA1 generates the output signal DF1 by amplifying the voltage difference between the first output voltage Vo1 divided by the resistors R1 and R2 and the reference voltage Ve1.
当误差放大器ERA1的输出信号DF1的电压高于由三角波振荡器OSC提供的三角波信号TW时,降压PWM比较器PWM1把输出信号/Q1设置为低电平而把输出信号Q1设置为高电平;当误差放大器ERA1的输出信号DF1低于三角波信号TW的电压时,则把输出信号/Q1设置为高电平而把输出信号Q1设置为低电平。降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2。When the voltage of the output signal DF1 of the error amplifier ERA1 is higher than the triangular wave signal TW provided by the triangular wave oscillator OSC, the step-down PWM comparator PWM1 sets the output signal /Q1 to a low level and the output signal Q1 to a high level ; When the output signal DF1 of the error amplifier ERA1 is lower than the voltage of the triangular wave signal TW, the output signal /Q1 is set to a high level and the output signal Q1 is set to a low level. Output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2.
当电压发生器E3的输出信号DF2的电压(通过将误差放大器ERA1的输出信号DF1的电压减去偏置电压Ve3而得到的电压)高于由三角波振荡器OSC提供的三角波信号TW时,升压PWM比较器PWM2把输出信号/Q2设置为低电平并把输出信号Q2设置为高电平;当电压发生器E3的输出信号DF2的电压低于由三角波振荡器OSC提供的三角波信号TW的电压时,升压PWM比较器PWM2把输出信号/Q2设置为高电平并把输出信号Q2设置为低电平。升压PWM比较器PWM2的输出信号Q2和/Q2被输出作为控制信号D3和D4。When the voltage of the output signal DF2 of the voltage generator E3 (the voltage obtained by subtracting the offset voltage Ve3 from the voltage of the output signal DF1 of the error amplifier ERA1) is higher than the triangular wave signal TW supplied by the triangular wave oscillator OSC, the boost The PWM comparator PWM2 sets the output signal /Q2 to a low level and sets the output signal Q2 to a high level; when the voltage of the output signal DF2 of the voltage generator E3 is lower than the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC , the boost PWM comparator PWM2 sets the output signal /Q2 to a high level and sets the output signal Q2 to a low level. Output signals Q2 and /Q2 of the step-up PWM comparator PWM2 are output as control signals D3 and D4.
图9示出了降压PWM比较器PWM1和升压PWM比较器PWM2的工作(第三模式)。当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,由于在降压PWM比较器PWM1处反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)总是高于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压),所以输出信号Q1总是被设置为高电平且输出信号/Q1总是被设置为低电平(100%占空比状态)。由于降压PWM比较器PWM1的输出信号Q1被输出作为控制信号D1,所以降压主开关晶体管T1总是处于导通状态。另外,由于降压PWM比较器PWM1的输出信号/Q1被输出作为控制信号D2,所以降压同步整流器电路T2总是处于截止状态。FIG. 9 shows the operation of buck PWM comparator PWM1 and boost PWM comparator PWM2 (third mode). When 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
另一方面,在升压PWM比较器PWM2处,当反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)高于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q2被设置为高电平,且输出信号/Q2被设置为低电平。由于升压PWM比较器PWM2的输出信号Q2和/Q2被输出作为控制信号D3和D4,所以当电压发生器E3的输出信号DF2的电压高于三角波信号TW的电压时,升压主开关晶体管T3进入导通状态,且升压同步整流器电路T4进入截止状态。On the other hand, at the step-up PWM comparator PWM2, when the voltage of the inverting input pin (the voltage of the output signal DF2 of the voltage generator E3) is higher than the voltage of the non-inverting input pin (the triangular wave provided by the triangular wave oscillator OSC When the voltage of the signal TW), the output signal Q2 is set to a high level, and the output signal /Q2 is set to a low level. Since the output signals Q2 and /Q2 of the boost PWM comparator PWM2 are output as control signals D3 and D4, when the voltage of the output signal DF2 of the voltage generator E3 is higher than the voltage of the triangular wave signal TW, the boost main switching transistor T3 enters the conduction state, and the step-up synchronous rectifier circuit T4 enters the cut-off state.
在升压PWM比较器PWM2处,当反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q2被设置为低电平,且输出信号/Q2被设置为高电平。由于升压PWM比较器PWM2的输出信号Q2和/Q2被输出作为控制信号D3和D4,所以当电压发生器E3的输出信号DF2的电压低于三角波信号TW的电压时,升压主开关晶体管T3进入截止状态,且升压同步整流器电路T4进入导通状态。At the step-up PWM comparator PWM2, when the voltage of the inverting input pin (the voltage of the output signal DF2 of the voltage generator E3) is lower than the voltage of the non-inverting input pin (the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC ), the output signal Q2 is set to low level, and the output signal /Q2 is set to high level. Since the output signals Q2 and /Q2 of the boost PWM comparator PWM2 are output as control signals D3 and D4, when the voltage of the output signal DF2 of the voltage generator E3 is lower than the voltage of the triangular wave signal TW, the boost main switching transistor T3 enters the cut-off state, and the step-up synchronous rectifier circuit T4 enters the conduction state.
当升压主开关晶体管T3进入导通状态时,升压同步整流器电路T4进入截止状态,且电流从输入侧被提供给扼流线圈L1。因为扼流线圈L1的两端被加上输入电压Vi,所以流过扼流线圈L1的电流随时间流逝而增加,且被提供给负载的电流也随时间流逝而增加。另外,随着电流流过扼流线圈L1,能量在扼流线圈L1中积聚。于是,当升压主开关晶体管T3进入截止状态时,升压同步整流器电路T4进入导通状态且积聚在扼流线圈L1中的能量得以释放。When the boost main switching transistor T3 enters the on state, the boost synchronous rectifier circuit T4 enters the off state, and current is supplied from the input side to the choke coil L1. Since the input voltage Vi is applied to both ends of the choke coil L1, the current flowing through the choke coil L1 increases with the lapse of time, and the current supplied to the load also increases with the lapse of time. In addition, as current flows through the choke coil L1, energy is accumulated in the choke coil L1. Then, when the boost main switching transistor T3 enters the OFF state, the boost synchronous rectifier circuit T4 enters the ON state and the energy accumulated in the choke coil L1 is discharged.
在升压主开关晶体管T3导通期间,流过扼流线圈L1的电流IL由使用输入电压Vi、扼流线圈L1的电感L、和升压主开关晶体管T3的导通时间段Ton的表达式(4)表示,并随时间流逝而增加。During the conduction period of the boost main switching transistor T3, the current IL flowing through the choke coil L1 is given by the expression using the input voltage Vi, the inductance L of the choke coil L1, and the conduction period Ton of the boost main switching transistor T3 (4) Expressed and increased over time.
IL=(Vi/L)×Ton......(4)IL=(Vi/L)×Ton...(4)
此外,在升压主开关晶体管T3截止期间,流过扼流线圈L1的电流IL由使用输入电压Vi、第一输出电压Vo1、扼流线圈L1的电感L、和升压主开关晶体管T3的截止时间段Toff的表达式(5)表示,并随时间流逝而减小。In addition, during the turn-off period of the boost main switching transistor T3, the current IL flowing through the choke coil L1 is controlled by using the input voltage Vi, the first output voltage Vo1, the inductance L of the choke coil L1, and the turn-off of the boost main switching transistor T3. The expression (5) of the time period Toff is expressed, and decreases with the lapse of time.
IL={(Vo1-Vi)/L}×Toff......(5)IL={(Vo1-Vi)/L}×Toff...(5)
因为表达式(4)中的电流IL与表示式(5)中的电流IL相等,所以第一输出电压Vo1由使用输入电压Vi、升压主开关晶体管T3的导通时间段Ton、和升压主开关晶体管T3的截止时间段Toff的表达式(6)表示。Since the current IL in the expression (4) is equal to the current IL in the expression (5), the first output voltage Vo1 is boosted by using the input voltage Vi, the conduction period Ton of the step-up main switching transistor T3, and Expression (6) of the off-period Toff of the main switching transistor T3 is expressed.
Vo1={(Ton+Toff)/Toff)×Vi......(6)Vo1={(Ton+Toff)/Toff)×Vi...(6)
因此,当第一输出电压Vo1由于输入电压Vi的变化而变化时,可以通过检测第一输出电压Vo1的变化以控制升压主开关晶体管T3的导通时间段和截止时间段的比来保持第一输出电压Vo1不变。相似地,当第一输出电压Vo1由于负载变化而变化时,也可以通过检测第一输出电压Vo1的变化以控制升压主开关晶体管T3的导通时间段和截止时间段的比来保持第一输出电压Vo1不变。以这种方式,在PWM控制系统的DC-DC变换器CNV中,可以通过控制升压主开关晶体管T3的导通时间段和截止时间段的比来控制第一输出电压Vo1。Therefore, when the first output voltage Vo1 varies due to the variation of the input voltage Vi, it is possible to maintain the first output voltage Vo1 by detecting the variation of the first output voltage Vo1 to control the ratio of the on-time period and the off-time period of the boost main switching transistor T3. - The output voltage Vo1 remains unchanged. Similarly, when the first output voltage Vo1 changes due to load changes, the first output voltage can also be maintained by controlling the ratio of the on-time period to the off-time period of the boost main switching transistor T3 by detecting the change in the first output voltage Vo1. The output voltage Vo1 does not change. In this way, in the DC-DC converter CNV of the PWM control system, the first output voltage Vo1 can be controlled by controlling the ratio of the on-time period and the off-time period of the boost main switching transistor T3.
顺便说一句,当DC-DC变换器CNV被启动时,如果假设在误差放大器ERA1处第一同相输入管脚的电压低于第二同相输入管脚的电压,则电源电路2的输入管脚IN和第一输出管脚OUT1通过升压同步整流器电路T4相连接,那么,输入电压Vi流过作为第一输出电压Vo1,并且出现过量涌入电流。此外,由于输入电压Vi流过作为第一输出电压Vo1,所以第一输出电压Vo1的上升特性将与图10所示的上升特性相似。因此,控制在预定时间将第一输出电压Vo1从0V升高到额定值(3.3V)是不可能的。Incidentally, when the DC-DC converter CNV is activated, if it is assumed that the voltage of the first non-inverting input pin at the error amplifier ERA1 is lower than the voltage of the second non-inverting input pin, the input pin of the
然而,因为由软启动电容器CS产生的电压被提供给误差放大器ERA1的第二同相输入管脚,所以DC-DC变换器CNV作为降压型DC-DC变换器启动,这将在后面描述,并且当第一输出电压Vo1变为与输入电压Vi相等时,转换为升压型DC-DC变换器。因此,可以防止涌入电流并可以控制第一输出电压Vo1的上升斜率。However, since the voltage generated by the soft-start capacitor CS is supplied to the second non-inverting input pin of the error amplifier ERA1, the DC-DC converter CNV starts up as a step-down DC-DC converter, which will be described later, and When the first output voltage Vo1 becomes equal to the input voltage Vi, it converts into a step-up DC-DC converter. Therefore, the inrush current can be prevented and the rising slope of the first output voltage Vo1 can be controlled.
图11示出了在DC-DC变换器CNV启动时降压PWM比较器PWM1和升压PWM比较器PWM2的工作(第三模式)。在DC-DC变换器CNV启动时,软启动电容器CS被恒流电路逐渐充电,从而,由软启动电容器CS产生的电压(误差放大器ERA1的第二同相输入管脚的电压)从0V逐渐上升。因此,在DC-DC变换器CNV启动时,通过放大第一输出电压Vo1被电阻器R1和R2分压的电压与软启动电容器CS产生的电压之间的电压差,误差放大器ERA1产生输出信号DF1。FIG. 11 shows the operation of the buck PWM comparator PWM1 and the boost PWM comparator PWM2 when the DC-DC converter CNV is started (third mode). When the DC-DC converter CNV starts up, the soft-start capacitor CS is gradually charged by the constant current circuit, so that the voltage generated by the soft-start capacitor CS (the voltage of the second non-inverting input pin of the error amplifier ERA1) gradually rises from 0V. Therefore, at the start of the DC-DC converter CNV, the error amplifier ERA1 generates the output signal DF1 by amplifying the voltage difference between the voltage of the first output voltage Vo1 divided by the resistors R1 and R2 and the voltage generated by the soft-start capacitor CS .
此时,因为在升压PWM比较器PWM2处反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)总是低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压),所以输出信号Q2总是被设置为低电平且输出信号/Q2总是被设置为高电平(0%占空比状态)。由于升压PWM比较器PWM2的输出信号Q2被输出作为控制信号D3,所以升压主开关晶体管T3总是处于截止状态。另外,由于升压PWM比较器PWM2的输出信号/Q2被输出作为控制信号D5,所以升压同步整流器电路T5总是处于导通状态。At this time, because the voltage of the inverting input pin of the step-up PWM comparator PWM2 (the voltage of the output signal DF2 of the voltage generator E3) is always lower than the voltage of the non-inverting input pin (the triangular wave provided by the triangular wave oscillator OSC The voltage of the signal TW), so the output signal Q2 is always set to low level and the output signal /Q2 is always set to high level (0% duty cycle state). Since the output signal Q2 of the boost PWM comparator PWM2 is output as the control signal D3, the boost main switching transistor T3 is always in an off state. In addition, since the output signal /Q2 of the boost PWM comparator PWM2 is output as the control signal D5, the boost synchronous rectifier circuit T5 is always on.
另一方面,在降压PWM比较器PWM1处,当反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)高于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q1被设置为高电平,且输出信号/Q1被设置为低电平。由于降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2,所以当误差放大器ERA1的输出信号DF1的电压高于三角波信号TW的电压时,降压主开关晶体管T1进入导通状态,且降压同步整流器电路T2进入截止状态。On the other hand, at the step-down PWM comparator PWM1, when the voltage of the inverting input pin (the voltage of the output signal DF1 of the error amplifier ERA1) is higher than the voltage of the non-inverting input pin (the triangular wave signal provided by the triangular wave oscillator OSC TW voltage), the output signal Q1 is set to high level, and the output signal /Q1 is set to low level. Since the output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2, when the voltage of the output signal DF1 of the error amplifier ERA1 is higher than the voltage of the triangular wave signal TW, the step-down main switching transistor T1 enters The step-down synchronous rectifier circuit T2 enters the cut-off state.
在降压PWM比较器PWM1处,当反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q1被设置为低电平,且输出信号/Q1被设置为高电平。由于降压PWM比较器PWM1的输出信号Q1和/Q1被输出作为控制信号D1和D2,所以当误差放大器ERA1的输出信号DF1的电压低于三角波信号TW的电压时,降压主开关晶体管T1进入截止状态,且降压同步整流器电路T2进入导通状态。At the step-down PWM comparator PWM1, when the voltage of the inverting input pin (the voltage of the output signal DF1 of the error amplifier ERA1) is lower than the voltage of the non-inverting input pin (the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC) , the output signal Q1 is set to a low level, and the output signal /Q1 is set to a high level. Since the output signals Q1 and /Q1 of the step-down PWM comparator PWM1 are output as control signals D1 and D2, when the voltage of the output signal DF1 of the error amplifier ERA1 is lower than the voltage of the triangular wave signal TW, the step-down main switching transistor T1 enters The off state, and the step-down synchronous rectifier circuit T2 enters the on state.
在DC-DC变换器CNV启动时,第一输出电压Vo1为0V,因而误差放大器ERA1的输出信号DF1的电压变为最小,且降压PWM比较器PWM1的输出信号Q1的脉冲宽度也变为最小。因此,降压主开关晶体管T1的导通时间段变为最小且涌入电流得以防止。另外,软启动电容器CS产生的电压是限定第一输出电压Vo1并且随预定上升斜率逐渐上升的电压。因此,第一输出电压Vo1也与其成比例地上升。从而,第一输出电压Vo1的上升斜率被软启动电容器CS产生的电压的上升斜率限定。When the DC-DC converter CNV starts, the first output voltage Vo1 is 0V, so the voltage of the output signal DF1 of the error amplifier ERA1 becomes the minimum, and the pulse width of the output signal Q1 of the step-down PWM comparator PWM1 also becomes the minimum . Therefore, the turn-on period of the step-down main switching transistor T1 becomes minimum and inrush current is prevented. In addition, the voltage generated by the soft start capacitor CS is a voltage that defines the first output voltage Vo1 and gradually rises with a predetermined rising slope. Therefore, the first output voltage Vo1 also increases in proportion thereto. Thus, the rising slope of the first output voltage Vo1 is limited by the rising slope of the voltage generated by the soft-start capacitor CS.
当软启动电容器CS产生的电压变得高于第一输出电压Vo1与输入电压Vi相等的电压时,误差放大器ERA1的输出电压DF1的电压变得高于三角波信号TW的电压。因为降压PWM比较器PWM1处反相输入管脚的电压(误差放大器ERA1的输出信号DF1的电压)总是高于被提供给同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压),所以输出信号Q1总是被设置为高电平且输出信号/Q1总是被设置为低电平(100%占空比状态)。由于降压PWM比较器PWM1的输出信号Q1被输出作为控制信号D1,所以降压主开关晶体管T1总是处于导通状态。另外,由于降压PWM比较器PWM1的输出信号/Q1被输出作为控制信号D2,所以降压同步整流器电路T2总是处于截止状态。When the voltage generated by the soft start capacitor CS becomes higher than the voltage at which the first output voltage Vo1 is equal to the input voltage Vi, the voltage of the output voltage DF1 of the error amplifier ERA1 becomes higher than that of the triangular wave signal TW. Because the voltage at the inverting input pin of the step-down PWM comparator PWM1 (the voltage of the output signal DF1 of the error amplifier ERA1) is always higher than the voltage supplied to the non-inverting input pin (the triangular wave signal TW provided by the triangular wave oscillator OSC voltage), so the output signal Q1 is always set to high level and the output signal /Q1 is always set to low level (100% duty cycle state). Since the output signal Q1 of the step-down PWM comparator PWM1 is output as the control signal D1, the step-down main switching transistor T1 is always in an on state. In addition, since the output signal /Q1 of the step-down PWM comparator PWM1 is output as the control signal D2, the step-down synchronous rectifier circuit T2 is always in an off state.
另一方面,当软启动电容器CS产生的电压变得高于第一输出电压Vo1与输入电压Vi相等处的电压时,电压发生器E3的输出信号DF2的电压(通过从误差放大器ERA1的输出信号DF1的电压减去偏置电压Ve3而得到的电压)达到与三角波信号TW相交。在升压PWM比较器PWM2处,当反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)高于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q2被设置为高电平,且输出信号/Q2被设置为低电平。由于升压PWM比较器PWM2的输出信号Q2和/Q2被输出作为控制信号D3和D4,所以当电压发生器E3的输出信号DF2的电压高于三角波信号TW的电压时,升压主开关晶体管T3进入导通状态,且升压同步整流器电路T4进入截止状态。On the other hand, when the voltage generated by the soft-start capacitor CS becomes higher than the voltage at which the first output voltage Vo1 is equal to the input voltage Vi, the voltage of the output signal DF2 of the voltage generator E3 (by the output signal from the error amplifier ERA1 The voltage obtained by subtracting the bias voltage Ve3 from the voltage of DF1 intersects with the triangular wave signal TW. At the step-up PWM comparator PWM2, when the voltage of the inverting input pin (the voltage of the output signal DF2 of the voltage generator E3) is higher than the voltage of the non-inverting input pin (the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC ), the output signal Q2 is set to a high level, and the output signal /Q2 is set to a low level. Since the output signals Q2 and /Q2 of the boost PWM comparator PWM2 are output as control signals D3 and D4, when the voltage of the output signal DF2 of the voltage generator E3 is higher than the voltage of the triangular wave signal TW, the boost main switching transistor T3 enters the conduction state, and the step-up synchronous rectifier circuit T4 enters the cut-off state.
在升压PWM比较器PWM2处,当反相输入管脚的电压(电压发生器E3的输出信号DF2的电压)低于同相输入管脚的电压(由三角波振荡器OSC提供的三角波信号TW的电压)时,输出信号Q2被设置为低电平,且输出信号/Q2被设置为高电平。由于升压PWM比较器PWM2的输出信号Q2和/Q2被输出作为控制信号D3和D4,所以当电压发生器E3的输出信号DF2的电压低于三角波信号TW的电压时,升压主开关晶体管T3进入截止状态,且升压同步整流器电路T4进入导通状态。At the step-up PWM comparator PWM2, when the voltage of the inverting input pin (the voltage of the output signal DF2 of the voltage generator E3) is lower than the voltage of the non-inverting input pin (the voltage of the triangular wave signal TW provided by the triangular wave oscillator OSC ), the output signal Q2 is set to low level, and the output signal /Q2 is set to high level. Since the output signals Q2 and /Q2 of the boost PWM comparator PWM2 are output as control signals D3 and D4, when the voltage of the output signal DF2 of the voltage generator E3 is lower than the voltage of the triangular wave signal TW, the boost main switching transistor T3 enters the cut-off state, and the step-up synchronous rectifier circuit T4 enters the conduction state.
当软启动电容器CS产生的电压上升并变得高于参考电压Ve1时,通过放大第一输出电压Vo1被电阻器R1和R2分压的电压与参考电压Ve1之间的电压差,误差放大器ERA1产生输出电压DF1。因此,在软启动电容器CS产生的电压已经达到参考电压Ve1时,第一输出电压Vo1被参考电压Ve1限定。顺便说一下,在DC-DC变换器CNV的终止时刻,软启动电容器CS通过放电电阻器被逐渐放电并且软启动电容器CS产生的电压逐渐下降,因而可以逐渐减小第一输出电压Vo1。When the voltage generated by the soft-start capacitor CS rises and becomes higher than the reference voltage Ve1, the error amplifier ERA1 generates output voltage DF1. Therefore, when the voltage generated by the soft start capacitor CS has reached the reference voltage Ve1, the first output voltage Vo1 is limited by the reference voltage Ve1. By the way, at the termination moment of the DC-DC converter CNV, the soft start capacitor CS is gradually discharged through the discharge resistor and the voltage generated by the soft start capacitor CS gradually drops, so that the first output voltage Vo1 can be gradually reduced.
图12示出了第一输出电压Vo1的上升特性(第三模式)。在t1时刻,当DC-DC变换器CNV被启动时,软启动电容器CS通过恒流电路被逐渐充电。由于此,由软启动电容器CS提供的电压随时间流逝而上升。随之,第一输出电压Vo1也随时间流逝而上升。在此期间,DC-DC变换器CNV作为降压型DC-DC变换器工作。FIG. 12 shows the rising characteristic of the first output voltage Vo1 (third mode). At time t1, when the DC-DC converter CNV is started, the soft-start capacitor CS is gradually charged through the constant current circuit. Due to this, the voltage provided by the soft-start capacitor CS rises with the lapse of time. Accordingly, the first output voltage Vo1 also increases with time. During this period, the DC-DC converter CNV works as a step-down DC-DC converter.
在t2时刻,当软启动电容器CS产生的电压变得高于第一输出电压Vo1与输入电压Vi相等处的电压时,DC-DC变换器CNV从降压型DC-DC变换器转换为升压型DC-DC变换器。第一输出电压Vo1继续随着软启动电容器CS产生的电压上升而上升。在t3时刻,当软启动电容器CS产生的电压已经达到参考电压Ve1时,此后,第一输出电压Vo1被参考电压Ve1控制以保持不变。At time t2, when the voltage generated by the soft-start capacitor CS becomes higher than the voltage at which the first output voltage Vo1 is equal to the input voltage Vi, the DC-DC converter CNV switches from a step-down DC-DC converter to a boost type DC-DC converter. The first output voltage Vo1 continues to rise as the voltage generated by the soft-start capacitor CS rises. At time t3, when the voltage generated by the soft-start capacitor CS has reached the reference voltage Ve1, thereafter, the first output voltage Vo1 is controlled by the reference voltage Ve1 to remain unchanged.
图13示出了电源电路2的工作(第四模式)。当1.8V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时,控制信号D7被固定为高电平。由于此,第二旁路开关电路T7总是处于截止状态。另外,控制信号SWD2被固定为低电平。因此,开关电路SW2将电压发生器E2的输出管脚连接到误差放大器ERA1的第一同相输入管脚。升压PWM比较器PWM2的输出信号/Q2不但被输出作为控制信号D4而且还输出作为控制信号D5。由于除此之外工作都和电源电路2的第三模式中的工作相同,所以这里将省略重复的描述。FIG. 13 shows the operation of the power supply circuit 2 (fourth mode). When 1.8V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the
图14示出了译码器DEC的构造。译码器DEC被构造成包括电阻器R7、门电路G1至G5、和输出斜率控制电路SC,以便实现图3中所示的工作。电阻器R7的一个管脚被连接到逻辑电路的电源电压Vh的供电线(输入电压Vi的电压由电荷泵电路等来升高)。电阻器R7的另一个管脚通过存储器电压请求信号MEM的信号线被连接到开关电路SWM(图2)。因此,当开关电路SWM为截止状态时,存储器电压请求信号MEM被设置为高电平,而当开关电路SWM为导通状态时,存储器电压请求信号MEM被设置为低电平。Fig. 14 shows the construction of the decoder DEC. The decoder DEC is constructed to include a resistor R7, gate circuits G1 to G5, and an output slope control circuit SC in order to realize the operation shown in FIG. 3 . One pin of the resistor R7 is connected to a power supply line of the power supply voltage Vh of the logic circuit (the voltage of the input voltage Vi is boosted by a charge pump circuit or the like). The other pin of the resistor R7 is connected to the switch circuit SWM (FIG. 2) through the signal line of the memory voltage request signal MEM. Therefore, when the switch circuit SWM is in the off state, the memory voltage request signal MEM is set to a high level, and when the switch circuit SWM is in an on state, the memory voltage request signal MEM is set to a low level.
当电压比较器CMP的输出信号JDG被设置为高电平且存储器电压请求信号MEM被设置为高电平时(当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),门电路G1把控制信号SWD1设置为低电平。在其它情况下,门电路G1把控制信号SWD1设置为高电平。When the output signal JDG of the voltage comparator CMP is set to a high level and the memory voltage request signal MEM is set to a high level (when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the input voltage of the
当电压比较器CMP的输出信号JDG被设置为低电平且存储器电压请求信号MEM被设置为高电平时(当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),门电路G2把控制信号SWD2设置为高电平。在其它情况下,门电路G2把控制信号SWD2设置为低电平。When the output signal JDG of the voltage comparator CMP is set to low level and the memory voltage request signal MEM is set to high level (when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the input voltage of the
当门电路G1的输出信号被设置为低电平时(当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),门电路G3把控制信号D4设置为低电平。当门电路G1的输出信号被设置为高电平时,门电路G3输出升压PWM比较器PWM2的输出信号/Q2作为控制信号D4。When the output signal of the gate circuit G1 is set to low level (when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory 3), the gate circuit G3 sets the control signal D4 to low level. When the output signal of the gate circuit G1 is set to a high level, the gate circuit G3 outputs the output signal /Q2 of the boost PWM comparator PWM2 as the control signal D4.
当电压比较器CMP的输出信号JDG被设置为低电平且存储器电压请求信号MEM被设置为高电平时(当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),门电路G4把输出信号设置为低电平。在其它情况下,门电路G4把输出信号设置为高电平。When the output signal JDG of the voltage comparator CMP is set to low level and the memory voltage request signal MEM is set to high level (when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the input voltage of the
当门电路G4的输出信号被设置为低电平时(当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时),门电路G5把控制信号D5设置为低电平。当门电路G4的输出信号被设置为高电平时,门电路G5输出升压PWM比较器PWM2的输出信号/Q2作为控制信号D5。When the output signal of the gate circuit G4 is set to low level (when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory 3), the gate circuit G5 sets the control signal D5 to low level. When the output signal of the gate circuit G4 is set to a high level, the gate circuit G5 outputs the output signal /Q2 of the boost PWM comparator PWM2 as the control signal D5.
当门电路G1的输出信号(控制信号SWD1)被设置为低电平时(当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器的工作电压时),输出斜率控制电路SC把控制信号D6设置为高电平。顺便说一下,正如之后将利用图15所描述的,当门电路G1的输出信号被设置为低电平时,输出斜率电路SC控制控制信号D6的电压以便实现第一输出电压Vo1和第二输出电压Vo2的同时激活。当门电路G1的输出信号被设置为高电平时,输出斜率控制电路SC将控制信号D6设置为低电平。When the output signal (control signal SWD1) of the gate circuit G1 is set to low level (when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory), the output slope control circuit SC Set the control signal D6 to a high level. Incidentally, as will be described later using FIG. 15, when the output signal of the gate circuit G1 is set to low level, the output slope circuit SC controls the voltage of the control signal D6 so as to realize the first output voltage Vo1 and the second output voltage Simultaneous activation of Vo2. When the output signal of the gate circuit G1 is set to a high level, the output slope control circuit SC sets the control signal D6 to a low level.
当门电路G2的输出信号(控制信号SWD2)被设置为高电平时(当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器的工作电压时),输出斜率控制电路SC把控制信号D7设置为低电平。顺便说一下,正如之后将利用图15所描述的,当门电路G2的输出信号被设置为高电平时,输出斜率电路SC控制控制信号D7的电压以便实现第一输出电压Vo1和第二输出电压Vo2的同时激活。当门电路G2的输出信号被设置为低电平时,输出斜率控制电路SC将控制信号D7设置为高电平。When the output signal (control signal SWD2) of the gate circuit G2 is set to high level (when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory), the output slope control circuit SC Set the control signal D7 to low level. Incidentally, as will be described later using FIG. 15, when the output signal of the gate circuit G2 is set to a high level, the output slope circuit SC controls the voltage of the control signal D7 so as to realize the first output voltage Vo1 and the second output voltage Simultaneous activation of Vo2. When the output signal of the gate circuit G2 is set to a low level, the output slope control circuit SC sets the control signal D7 to a high level.
图15示出了输出斜率控制电路SC的构造。图16示出了第一输出电压Vo1和第二输出电压Vo2的同时激活。输出斜率控制电路SC被构造成包括电阻器R11至R15、开关电路SW11和SW12、误差放大器ERA11和ERA12、和晶体管T11至T13。电阻器R11的一个管脚被连接到电源电路2的第一输出管脚OUT1。电阻器R11的另一个管脚被连接到电阻器R12的一个管脚。电阻器R12的另一个管脚被连接到地线。FIG. 15 shows the configuration of the output slope control circuit SC. Fig. 16 shows the simultaneous activation of the first output voltage Vo1 and the second output voltage Vo2. The output slope control circuit SC is configured to include resistors R11 to R15, switch circuits SW11 and SW12, error amplifiers ERA11 and ERA12, and transistors T11 to T13. One pin of the resistor R11 is connected to the first output pin OUT1 of the
当门电路G1的输出信号(控制信号SWD1)被设置为低电平时(3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压),开关电路SW11把电源电路2的第二输出管脚OUT2连接到误差放大器ERA11的同相输入管脚。当门电路G1的输出信号被设置为高电平时,开关电路SW11把地线连接到误差放大器ERA11的同相输入管脚。When the output signal (control signal SWD1) of the gate circuit G1 is set to low level (3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory 3), the switch circuit SW11 turns the power supply circuit The second output pin OUT2 of 2 is connected to the non-inverting input pin of the error amplifier ERA11. When the output signal of the gate circuit G1 is set to a high level, the switch circuit SW11 connects the ground line to the non-inverting input pin of the error amplifier ERA11.
误差放大器ERA11在反相输入管脚处接收电阻器R11和R12的连接节点的电压(第一输出电压Vo1被电阻器R11和R12分压的电压),并接收通过开关电路SW11提供的电压。通过放大电阻器R11和R12的连接节点的电压与通过开关电路SW11提供的电压之间的电压差,误差放大器ERA11产生输出信号。电阻器R13和晶体管T11(n型晶体管)被串联连接在用于逻辑电路的电源电压Vh的供电线与地线之间。晶体管T11的控制管脚接收误差放大器ERA11的输出信号。晶体管T12(p型晶体管)和电阻器R14被串联连接在用于逻辑电路的电源电压Vh的供电线与地线之间。晶体管T12的控制管脚被连接到电阻器R13与晶体管T11的连接节点。晶体管T12与电阻器R14的连接节点被连接到第一旁路开关电路T6的控制管脚。换言之,在晶体管T12与电阻器R14的连接节点处产生的信号被作为控制信号D6提供给第一旁路开关电路T6的控制管脚。The error amplifier ERA11 receives the voltage of the connection node of the resistors R11 and R12 (a voltage in which the first output voltage Vo1 is divided by the resistors R11 and R12 ) at an inverting input pin, and receives a voltage supplied through the switch circuit SW11 . The error amplifier ERA11 generates an output signal by amplifying the voltage difference between the voltage of the connection node of the resistors R11 and R12 and the voltage supplied through the switch circuit SW11. The resistor R13 and the transistor T11 (n-type transistor) are connected in series between the power supply line for the power supply voltage Vh of the logic circuit and the ground line. The control pin of the transistor T11 receives the output signal of the error amplifier ERA11. The transistor T12 (p-type transistor) and the resistor R14 are connected in series between the power supply line for the power supply voltage Vh of the logic circuit and the ground line. The control pin of the transistor T12 is connected to the connection node of the resistor R13 and the transistor T11. The connection node of the transistor T12 and the resistor R14 is connected to the control pin of the first bypass switch circuit T6. In other words, the signal generated at the connection node of the transistor T12 and the resistor R14 is supplied as the control signal D6 to the control pin of the first bypass switch circuit T6.
当门电路G2的输出信号(控制信号SWD2)被设置为高电平时(1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压),开关电路SW12把电阻器R11和R12的连接节点连接到误差放大器ERA12的同相输入管脚。当门电路G2的输出信号被设置为低电平时,开关电路SW12把地线连接到误差放大器ERA12的同相输入管脚。When the output signal (control signal SWD2) of the gate circuit G2 is set to high level (1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the nonvolatile memory 3), the switch circuit SW12 turns the resistor The connection node of R11 and R12 is connected to the non-inverting input pin of the error amplifier ERA12. When the output signal of the gate circuit G2 is set to a low level, the switch circuit SW12 connects the ground line to the non-inverting input pin of the error amplifier ERA12.
误差放大器ERA12在反相输入管脚处接收第二输出电压Vo2并在同相输入管脚处接收经由开关电路SW12提供的电压。通过放大第二输出电压Vo2与经由开关电路SW12提供的电压之间的电压差,误差放大器ERA12产生输出信号。电阻器R15和晶体管T13(n型晶体管)被串联连接在电源电路2的输入管脚IN与地线之间。晶体管T13的控制管脚接收误差放大器ERA12的输出信号。电阻器R15与晶体管T13的连接节点被连接到第二旁路开关电路T7的控制管脚。换言之,在电阻器R15与晶体管T13的连接节点处产生的信号被作为控制信号D7提供给第二旁路开关电路T7的控制管脚.The error amplifier ERA12 receives the second output voltage Vo2 at the inverting input pin and receives the voltage provided via the switch circuit SW12 at the non-inverting input pin. The error amplifier ERA12 generates an output signal by amplifying the voltage difference between the second output voltage Vo2 and the voltage supplied via the switch circuit SW12. The resistor R15 and the transistor T13 (n-type transistor) are connected in series between the input pin IN of the
在具有上述构造的输出斜率控制电路SC中,当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,第二输出电压Vo2通过开关电路SW11被提供给误差放大器ERA11的同相输入管脚。因此,通过放大第一输出电压Vo1被电阻器R11和R12分压的电压与第二输出电压Vo2之间的电压差,误差放大器ERA11产生输出信号。In the output slope control circuit SC having the above configuration, when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
当第二输出电压Vo2(误差放大器ERA11的同相输入管脚的电压)不变时,如果第一输出电压Vo1被电阻器R11和R12分压的电压(误差放大器ERA11的反相输入管脚的电压)变得低于第二输出电压Vo2时,误差放大器ERA11的输出信号的电压上升,因而,电阻器R13与晶体管T11的连接节点的电压下降,结果,晶体管T12与电阻器R14的连接节点的电压(控制信号D6的电压)上升。当控制信号D6的电压上升时,由于第一旁路开关电路T6的导通电阻变小,所以第一输出电压Vo1上升。When the second output voltage Vo2 (the voltage of the non-inverting input pin of the error amplifier ERA11) does not change, if the voltage of the first output voltage Vo1 divided by the resistors R11 and R12 (the voltage of the inverting input pin of the error amplifier ERA11 ) becomes lower than the second output voltage Vo2, the voltage of the output signal of the error amplifier ERA11 rises, therefore, the voltage of the connection node of the resistor R13 and the transistor T11 drops, and as a result, the voltage of the connection node of the transistor T12 and the resistor R14 (The voltage of the control signal D6) rises. When the voltage of the control signal D6 rises, since the on-resistance of the first bypass switch circuit T6 becomes smaller, the first output voltage Vo1 rises.
当第一输出电压Vo1上升从而第一输出电压Vo1被电阻器R11和R12分压的电压接近第二输出电压Vo2时,误差放大器ERA11的输出信号的电压下降,因而电阻器R13和晶体管T11的连接节点的电压上升,结果,晶体管T12与电阻器R14的连接节点的电压(控制信号D6的电压)下降。当控制信号D6的电压下降时,由于第一旁路开关电路T6的导通电阻变大,所以第一输出电压Vo1下降。When the first output voltage Vo1 rises so that the voltage of the first output voltage Vo1 divided by the resistors R11 and R12 approaches the second output voltage Vo2, the voltage of the output signal of the error amplifier ERA11 drops, and thus the connection of the resistor R13 and the transistor T11 The voltage at the node rises, and as a result, the voltage at the node connecting the transistor T12 and the resistor R14 (the voltage of the control signal D6 ) falls. When the voltage of the control signal D6 drops, the first output voltage Vo1 drops because the on-resistance of the first bypass switch circuit T6 becomes larger.
另外,当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,地线电压(0V)被通过开关电路SW12提供给误差放大器ERA12的同相输入管脚。在误差放大器ERA12中,当同相输入管脚的电压被设置为0V时,输出信号的电压被设置为0V,而与反相输入管脚的电压无关。因此,控制信号D7通过由电阻器R15和晶体管T13构成的驱动电路被设置为高电平,且第二旁路开关电路T7进入截止状态。In addition, when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
以这种方式,当3.3V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,第一旁路开关电路T6起线性调压器(linearregulator)的作用,以使得第一输出电压Vo1相对于第二输出电压Vo2(误差放大器ERA11的同相输入管脚的电压)不变。因此,当第二输出电压Vo2在DC-DC变换器CNV启动时逐渐上升时,误差放大器ERA11的同相输入管脚的电压上升,因而第一输出电压Vo1也上升。结果,如图16所示,第一输出电压Vo1和第二输出电压Vo2的同时激活得以实现。In this way, when 3.3V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,地线电压(0V)被通过开关电路SW11提供给误差放大器ERA11的同相输入管脚。在误差放大器ERA11中,当同相输入管脚的电压被设置为0V时,输出信号的电压被设置为0V而与反相输入管脚的电压无关。因此,控制信号D6通过由电阻器R13和电阻器R14以及晶体管T11和T12构成的驱动电路被设置为低电平,且第二旁路开关电路T6进入截止状态。When 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
另外,当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,电阻器R11和R12的连接节点的电压(第一输出电压Vo1被电阻器R11和R12分压的电压)通过开关电路SW12被提供给误差放大器ERA12的同相输入管脚。因此,通过放大第二输出电压Vo2与第一输出电压Vo1被R11和R12分压的电压之间的电压差,误差放大器ERA12产生输出信号。Also, when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
当第一输出电压Vo1被电阻器R11和R12分压的电压(误差放大器ERA12的同相输入管脚的电压)不变时,如果第二输出电压Vo2(误差放大器ERA12的反相输入管脚的电压)变得低于第一输出电压Vo1被电阻器R11和R12分压的电压时,误差放大器ERA12的输出信号的电压上升,因而,电阻器R15与晶体管T13的连接节点的电压(控制信号D7的电压)下降。当控制信号D7的电压下降时,第二旁路开关电路T7的导通电阻变小,因此,第二输出电压Vo2上升。When the first output voltage Vo1 is divided by the resistors R11 and R12 (the voltage of the non-inverting input pin of the error amplifier ERA12) does not change, if the second output voltage Vo2 (the voltage of the inverting input pin of the error amplifier ERA12 ) becomes lower than the voltage at which the first output voltage Vo1 is divided by the resistors R11 and R12, the voltage of the output signal of the error amplifier ERA12 rises, and therefore, the voltage of the connection node between the resistor R15 and the transistor T13 (the voltage of the control signal D7 voltage) drops. When the voltage of the control signal D7 decreases, the on-resistance of the second bypass switch circuit T7 decreases, and thus the second output voltage Vo2 increases.
当第二输出电压Vo2上升从而第二输出电压Vo2接近第一输出电压Vo1被电阻器R11和R12分压的电压时,误差放大器ERA12的输出信号的电压下降,因而电阻器R15和晶体管T13的连接节点的电压(控制信号D7的电压)上升。当控制信号D7的电压上升时,由于第二旁路开关电路T7的导通电阻变大,所以第二输出电压Vo2下降。When the second output voltage Vo2 rises so that the second output voltage Vo2 approaches the voltage at which the first output voltage Vo1 is divided by the resistors R11 and R12, the voltage of the output signal of the error amplifier ERA12 drops, so that the connection of the resistor R15 and the transistor T13 The voltage of the node (the voltage of the control signal D7) rises. When the voltage of the control signal D7 increases, the second output voltage Vo2 decreases because the on-resistance of the second bypass switch circuit T7 increases.
以这种方式,当1.8V被提供作为输入电压Vi且3.3V被请求作为非易失性存储器3的工作电压时,第二旁路开关电路T7起线性调压器的作用,以使得第二输出电压Vo2相对于第一输出电压Vo1被电阻器R11和R12分压的电压(误差放大器ERA12的同相输入管脚的电压)不变。因此,当第一输出电压Vo1在DC-DC变换器CNV启动时逐渐上升时,误差放大器ERA12的同相输入管脚的电压上升,因而,第二输出电压Vo2也上升。结果,如图16所示,第一输出电压Vo1和第二输出电压Vo2的同时激活得以实现。In this way, when 1.8V is supplied as the input voltage Vi and 3.3V is requested as the operating voltage of the
在上述本发明的实施例中,可以通过使DC-DC变换器CNV、第一旁路开关电路T6、和第二旁路开关电路T7根据输入电压Vi的电压值和第一输出管脚OUT1所需的电压值(非易失性存储器3的工作电压的电压值)的组合工作而在非易失性存储器3和存储卡控制电路4之间共享DC-DC变换器CNV,并从而减少DC-DC变换器的数量。In the above-mentioned embodiment of the present invention, the DC-DC converter CNV, the first bypass switch circuit T6, and the second bypass switch circuit T7 can be configured according to the voltage value of the input voltage Vi and the voltage value of the first output pin OUT1. The DC-DC converter CNV is shared between the
另外,当DC-DC变换器CNV作为升压型DC-DC变换器工作时,可以通过使DC-DC变换器CNV,在从DC-DC变换器CNV被启动时起直到DC-DC变换器CNV的输出电压(第一输出电压Vo1)变为与输入电压Vi相等时为止的过程中,作为降压型DC-DC变换器,而与输入电压Vi的电压值与第一输出管脚OUT1所需的电压值的组合无关,来可靠地防止涌入电流,并且,使得可以控制从0V到3.3V的第一输出电压Vo1的上升斜率。此外,可以通过使第一旁路开关电路T6和第二旁路开关电路T7与DC-DC变换器CNV结合工作来实现第一输出管脚的电压Vo1和第二输出管脚的电压Vo2的同时激活。因此,可以避免由构成非易失性存储器3或存储卡控制电路4的半导体器件的闩锁效应引起的烧毁风险,所述非易失性存储器3使用第一输出电压Vo1作为电源电压,所述存储卡控制电路4使用第二输出电压Vo2作为电源电压。以这种方式,可以在确保效率和安全的同时实现存储卡1的工作电压与内部非易失性存储器3的工作电压无关。In addition, when the DC-DC converter CNV is operated as a step-up DC-DC converter, by making the DC-DC converter CNV, from when the DC-DC converter CNV is activated until the DC-DC converter CNV In the process until the output voltage (the first output voltage Vo1) becomes equal to the input voltage Vi, as a step-down DC-DC converter, the voltage value of the input voltage Vi and the first output pin OUT1 require Combinations of voltage values are irrelevant to reliably prevent inrush current, and make it possible to control the rising slope of the first output voltage Vo1 from 0V to 3.3V. In addition, the simultaneous operation of the voltage Vo1 of the first output pin and the voltage Vo2 of the second output pin can be achieved by combining the first bypass switch circuit T6 and the second bypass switch circuit T7 with the DC-DC converter CNV. activation. Therefore, the risk of burnout caused by the latch-up effect of the semiconductor device constituting the
顺便说一下,在上述本发明的实施例中,描述了示例,其中,开关电路SW1把电阻器R1和R2的连接节点连接到误差放大器ERA1的反相输入管脚,其中考虑了如下情况,即,当3.3V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时(第二模式),第一输出电压Vo1(非易失性存储器3的电源电压)的变化变得大于第二输出电压Vo2(存储卡控制电路4的电源电压)的变化,然而,本发明不限于该实施例。对于开关电路SW1,当3.3V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压并且如果第一输出电压Vo1的变化与第二输出电压Vo2的变化的差值微小时,也可以把电阻器R3和R4的连接节点连接到误差放大器ERA1的反相输入管脚。Incidentally, in the embodiment of the present invention described above, an example was described in which the switch circuit SW1 connected the connection node of the resistors R1 and R2 to the inverting input pin of the error amplifier ERA1, in which the following case was considered, that , when 3.3V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the nonvolatile memory 3 (second mode), the change of the first output voltage Vo1 (the power supply voltage of the nonvolatile memory 3) becomes larger than the change in the second output voltage Vo2 (power supply voltage of the memory card control circuit 4), however, the present invention is not limited to this embodiment. For the switch circuit SW1, when 3.3V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the
相似地,在上述本发明的实施例中,描述了示例,其中,开关电路SW1把电阻器R1和R2的连接节点连接到误差放大器ERA1的反相输入管脚,其中考虑了如下情况,即,当1.8V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压时(第四模式),第一输出电压Vo1(非易失性存储器3的电源电压)的变化变得大于第二输出电压Vo2(存储卡控制电路4的电源电压)的变化,然而,本发明不限于该实施例。对于开关电路SW1,当1.8V被提供作为输入电压Vi且1.8V被请求作为非易失性存储器3的工作电压并且如果第一输出电压Vo1的变化与第二输出电压Vo2的变化的差值微小时,也可以把电阻器R3和R4的连接节点连接到误差放大器ERA1的反相输入管脚。Similarly, in the embodiment of the present invention described above, an example was described in which the switch circuit SW1 connects the connection node of the resistors R1 and R2 to the inverting input pin of the error amplifier ERA1, in which the following case is considered, that is, When 1.8V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the nonvolatile memory 3 (fourth mode), the variation of the first output voltage Vo1 (power supply voltage of the nonvolatile memory 3) becomes However, the present invention is not limited to this embodiment. For the switch circuit SW1, when 1.8V is supplied as the input voltage Vi and 1.8V is requested as the operating voltage of the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006294392 | 2006-10-30 | ||
JP2006294392A JP4888056B2 (en) | 2006-10-30 | 2006-10-30 | Power supply circuit, power supply control circuit, and power supply control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101202508A CN101202508A (en) | 2008-06-18 |
CN100550588C true CN100550588C (en) | 2009-10-14 |
Family
ID=39329344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101643677A Active CN100550588C (en) | 2006-10-30 | 2007-10-30 | Power circuit, power control circuit and power control method |
Country Status (5)
Country | Link |
---|---|
US (1) | US7683598B2 (en) |
JP (1) | JP4888056B2 (en) |
KR (1) | KR100932723B1 (en) |
CN (1) | CN100550588C (en) |
TW (1) | TWI340319B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4600583B2 (en) * | 2008-09-10 | 2010-12-15 | 東芝ライテック株式会社 | Power supply device and light fixture having dimming function |
US20100185879A1 (en) * | 2009-01-22 | 2010-07-22 | Shaver Charles N | Load balancing power supplies |
CN102005919B (en) * | 2009-09-02 | 2014-03-12 | 瑞萨集成电路设计(北京)有限公司 | Boost DC-DC (Direct Current-Direct Current) converter and method |
JP5604856B2 (en) * | 2009-11-18 | 2014-10-15 | 富士通株式会社 | Control device, control method, and control program |
US8508208B2 (en) * | 2010-07-02 | 2013-08-13 | Fairchild Semiconductor Corporation | Buck-boost regulator with converter bypass function |
JP2012090387A (en) * | 2010-10-18 | 2012-05-10 | Panasonic Corp | DC-DC converter |
JP5865028B2 (en) * | 2011-11-17 | 2016-02-17 | ルネサスエレクトロニクス株式会社 | DC-DC converter |
EP2621068B1 (en) * | 2012-01-27 | 2018-08-22 | Dialog Semiconductor GmbH | Bypass control in a DC-to-DC converter |
US20130249520A1 (en) * | 2012-03-23 | 2013-09-26 | Fairchild Semiconductor Corporation | Boost regulator with timing controlled inductor bypass |
CN102780949B (en) * | 2012-06-13 | 2013-08-21 | 天地融科技股份有限公司 | Method and device for automatically identifying MAC (Media Access Control) pin and ground pin of audio interface |
US10039002B2 (en) | 2013-11-04 | 2018-07-31 | Microsoft Technology Licensing, Llc | Shared Wi-Fi usage |
JP2015106370A (en) * | 2013-12-02 | 2015-06-08 | 株式会社東芝 | Semiconductor storage device |
KR20170002327A (en) * | 2015-06-29 | 2017-01-06 | 페어차일드코리아반도체 주식회사 | Input voltage detecting circuit and power supply device comprising the same |
US10122258B2 (en) | 2016-01-29 | 2018-11-06 | Mediatek Inc. | DC-DC converter with pull-up or pull-down current and associated control method |
US9866119B2 (en) | 2016-01-29 | 2018-01-09 | Mediatek Inc. | DC-DC converter with pull-up and pull-down currents based on inductor current |
WO2018068330A1 (en) * | 2016-10-14 | 2018-04-19 | 华为技术有限公司 | Rectification circuit and rectifier |
TWI612528B (en) * | 2016-12-02 | 2018-01-21 | 矽統科技股份有限公司 | Sensing device |
JP6956553B2 (en) * | 2017-07-21 | 2021-11-02 | 新電元工業株式会社 | Power supply and control method of power supply |
JP2023031078A (en) * | 2021-08-24 | 2023-03-08 | キオクシア株式会社 | Memory system and control method |
CN117293938A (en) * | 2022-06-17 | 2023-12-26 | 上海韦尔半导体股份有限公司 | power supply system |
EP4297262A1 (en) * | 2022-06-21 | 2023-12-27 | Airbus S.A.S. | Multi-functional solid state switching circuit |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0721791A (en) | 1993-03-16 | 1995-01-24 | Toshiba Corp | Semiconductor memory and memory card and power supply driving system for eeprom |
US5479090A (en) * | 1993-11-24 | 1995-12-26 | Raytheon Company | Power converter having optimal dynamic operation |
JP3405871B2 (en) | 1995-11-28 | 2003-05-12 | 富士通株式会社 | DC-DC conversion control circuit and DC-DC converter |
JPH09294368A (en) | 1996-04-25 | 1997-11-11 | Canon Inc | Power supply circuit |
EP1171946B1 (en) * | 1999-03-23 | 2006-08-30 | Advanced Energy Industries, Inc. | High frequency switch-mode dc powered computer system |
US6462962B1 (en) * | 2000-09-08 | 2002-10-08 | Slobodan Cuk | Lossless switching DC-to-DC converter |
JP4137528B2 (en) * | 2002-06-13 | 2008-08-20 | セイコーインスツル株式会社 | Power conversion circuit |
JP2004129333A (en) | 2002-09-30 | 2004-04-22 | Seiko Epson Corp | Power supply circuit and voltage generation circuit |
US6912139B2 (en) * | 2002-11-14 | 2005-06-28 | Fyre Storm, Inc. | Multi-channel control methods for switched power converters |
WO2005013455A1 (en) * | 2003-08-05 | 2005-02-10 | Matsushita Electric Industrial Co., Ltd. | Direct-current power supply and battery-powered electronic apparatus equipped with the power supply |
JP4652726B2 (en) | 2004-06-11 | 2011-03-16 | 富士通セミコンダクター株式会社 | DC-DC converter control circuit, DC-DC converter and electronic apparatus |
JP2006006004A (en) | 2004-06-16 | 2006-01-05 | Ricoh Co Ltd | Buck-boost dc-dc converter |
JP2006050888A (en) | 2004-07-02 | 2006-02-16 | Rohm Co Ltd | Power supply device, power amplifier using same, and portable telephone terminal |
US7595624B2 (en) * | 2005-11-30 | 2009-09-29 | Texas Instruments Incorporated | Slope compensation for switching regulator |
-
2006
- 2006-10-30 JP JP2006294392A patent/JP4888056B2/en active Active
-
2007
- 2007-10-11 TW TW096137981A patent/TWI340319B/en not_active IP Right Cessation
- 2007-10-25 US US11/976,507 patent/US7683598B2/en active Active
- 2007-10-26 KR KR1020070108565A patent/KR100932723B1/en not_active Expired - Fee Related
- 2007-10-30 CN CNB2007101643677A patent/CN100550588C/en active Active
Also Published As
Publication number | Publication date |
---|---|
US7683598B2 (en) | 2010-03-23 |
KR100932723B1 (en) | 2009-12-21 |
JP2008113499A (en) | 2008-05-15 |
KR20080039258A (en) | 2008-05-07 |
CN101202508A (en) | 2008-06-18 |
JP4888056B2 (en) | 2012-02-29 |
US20080100274A1 (en) | 2008-05-01 |
TW200830092A (en) | 2008-07-16 |
TWI340319B (en) | 2011-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100550588C (en) | Power circuit, power control circuit and power control method | |
JP4762722B2 (en) | Power supply device and electronic apparatus equipped with the same | |
KR100630855B1 (en) | Circuit and method for controlling dc-dc converter | |
CN101018013B (en) | Current-controlled dc-dc converter, control circuit and control method for the same | |
JP4926625B2 (en) | Switching regulator and semiconductor device having the switching regulator | |
JP5504685B2 (en) | Switching regulator and operation control method thereof | |
JP5174390B2 (en) | Power supply device and electronic apparatus equipped with the same | |
US8044642B2 (en) | Power supply device capable of stably supplying output voltage with increased responsiveness | |
US9401642B2 (en) | Switching power-supply device | |
JP5951358B2 (en) | Charging control circuit and charging circuit | |
US7579817B2 (en) | Constant-voltage circuit capable of reducing time required for starting, semiconductor apparatus including constant-voltage circuit, and control method of constant-voltage circuit | |
JP2006109535A (en) | DC-DC converter control circuit and control method thereof | |
US9270177B1 (en) | Switching power-supply device | |
JP5157603B2 (en) | Boost DC-DC converter and power source driving semiconductor integrated circuit | |
CN102891598A (en) | Step-up dc-dc converter | |
JPWO2006006257A1 (en) | DC-DC converter | |
JP5937442B2 (en) | DC-DC converter | |
JP2010004691A (en) | Flashing power supply device | |
CN115001271A (en) | Converter and method for starting switch power supply | |
JP2007185066A (en) | Power supply device and electronic apparatus equipped with the same | |
TWI339323B (en) | Feedback and comparison apparatus and dc-dc voltage converter | |
EP3127228B1 (en) | Dc/dc converter and method of driving dc/dc converter | |
JP4983275B2 (en) | DC / DC converter | |
KR100819851B1 (en) | DC / DC step-up converter and control method thereof. | |
JP2004007997A (en) | DC-DC conversion control circuit and DC-DC converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: FUJITSU MICROELECTRONICS CO., LTD. Free format text: FORMER OWNER: FUJITSU LIMITED Effective date: 20081024 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20081024 Address after: Tokyo, Japan, Japan Applicant after: Fujitsu Microelectronics Ltd. Address before: Kanagawa Applicant before: Fujitsu Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: FUJITSU SEMICONDUCTORS CO., LTD Free format text: FORMER NAME: FUJITSU MICROELECTRON CO., LTD. |
|
CP03 | Change of name, title or address |
Address after: Kanagawa Patentee after: Fujitsu Semiconductor Co., Ltd. Address before: Tokyo, Japan, Japan Patentee before: Fujitsu Microelectronics Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: SPANSION LLC N. D. GES D. STAATES Free format text: FORMER OWNER: FUJITSU SEMICONDUCTOR CO., LTD. Effective date: 20140106 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20140106 Address after: American California Patentee after: Spansion LLC N. D. Ges D. Staates Address before: Kanagawa Patentee before: Fujitsu Semiconductor Co., Ltd. |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160408 Address after: American California Patentee after: Cypress Semiconductor Corp. Address before: American California Patentee before: Spansion LLC N. D. Ges D. Staates |