CN100547349C - 光学倾斜仪 - Google Patents
光学倾斜仪 Download PDFInfo
- Publication number
- CN100547349C CN100547349C CNB038132338A CN03813233A CN100547349C CN 100547349 C CN100547349 C CN 100547349C CN B038132338 A CNB038132338 A CN B038132338A CN 03813233 A CN03813233 A CN 03813233A CN 100547349 C CN100547349 C CN 100547349C
- Authority
- CN
- China
- Prior art keywords
- medium
- camera
- interface
- tilt
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/18—Measuring inclination, e.g. by clinometers, by levels by using liquids
- G01C9/20—Measuring inclination, e.g. by clinometers, by levels by using liquids the indication being based on the inclination of the surface of a liquid relative to its container
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/02—Details
- G01C9/06—Electric or photoelectric indication or reading means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/02—Details
- G01C9/06—Electric or photoelectric indication or reading means
- G01C2009/066—Electric or photoelectric indication or reading means optical
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Glass Compositions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Optical Recording Or Reproduction (AREA)
- Surgical Instruments (AREA)
- Lasers (AREA)
Abstract
在一种光学倾斜仪中,由辐射源(2)发射辐射(S)。该辐射(S)在通过包含至少第一介质(11,13)的容纳元件(6,6’)之后,聚焦在照相机(9)上。根据第一介质(11,13)的位置,特别是液位相对于倾斜仪或者照相机(9)的位置,可推断出倾斜仪的倾斜度。使用照相机(9)记录第一介质(11,13)的位置可评测多个特征,特别是界面(14)的形状、尺度和位置。
Description
技术领域
本发明涉及根据权利要求1的前序部分所述的光学倾斜仪、根据权利要求17的前序部分所述的仪器倾斜度的测量方法以及具有这种倾斜仪的大地测量仪器。
背景技术
各种结构类型的倾斜仪很久以来就在必须考虑到仪器位置的所有领域得到应用。这特别适用于大地测量领域或者建筑业中的测量。
尽管对于高精密测量来说,具有复杂结构的各种实现方式是公知的,然而迄今缺少简单和坚固而仍具有足够精度的倾斜仪。
在US 5,392,112中说明了一种倾角测量仪,该倾角测量仪把一条光束分割成两条分光束,该两条分光束在被仪器固定表面和液面各自反射之后,在一个检测器上聚焦并在此被记录。从两条分光束的空间点的相对位置推断出仪器的倾角。
在公开文件DE 4110858中公布了一种双轴倾斜仪,该双轴倾斜仪将一个几何图形通过一台倾敏的和可偏转光束的传感器投影到一个线性阵列上。该传感器含有一种液体,该液体相对于仪器的位置使得该图形在线性阵列上的投影受到影响或发生偏转。
除了由于这种包含成像光学系统以及可选的分束器的复杂结构而产生的缺点以外,这种结构类型的倾斜仪还由于两条分光束的射束路径的所需最小长度而只能在受限程度上实现小型化。
在JP 09243359中说明了一种更简单的倾斜传感器,该倾斜传感器具有一个谜封的并填充了液体的容器。该容器的内侧具有拱形面,汞滴停留在该拱形面内。该容器和位于该容器内的液体由一个光源照射,并且光辐射由一台由四个光电二极管组成的作为简单的象限传感器的检测器记录。从由于汞滴引起的遮光的位置,可推断出传感器的倾斜度。由于这种结构,就不能利用光电二极管的由阴影投射产生的变暗的任何信息。特别是对检测器上的明暗过渡的准确位置没有进行考虑。
因此在现有技术中,虽然高精密和开发成熟的倾斜仪是公知的,但是如果不投入大量费用,这些倾斜仪的体积由于其与类属相一致的复杂性和结构而无法得以缩小。另一方面,存在简单的解决方案,然而鉴于为测定倾斜度而供使用的信息是非常有限的,因而更有可能会粗略估计倾斜度。
发明内容
本发明的目的是提供一种光学倾斜仪,该光学倾斜仪与简单的遮光测量仪器相比在得到改进的测量精度的情况下,具有一种简单结构。
另一目的是提供一种倾斜仪,该倾斜仪具有最少的机械和光学部件,并因此具有更大的坚固性和耐冲击性。
本发明的另一目的是保证大地测量仪器或建筑业所用仪器中的结构可集成性。这特别是涉及已有电子部件作为评测装置的应用。
此外,又一目的是对老化效应和环境效应例如热变化加以考虑的可能性。
这些目的是根据本发明,分别通过权利要求1和17的限定特征以及通过从属权利要求的限定特征来实现的。
本发明涉及一种光学倾斜仪。通过一个辐射源产生辐射,使用该辐射将一介质聚焦到照相机上。该介质保持在一容纳元件中。该容纳元件例如可由液体用盒或者悬摆用保持器构成。在此情况下,图像无需与光学准确图像对应。重要的是对容纳元件的透射,该容纳元件具有至少一种位于其内部或者由该容纳元件保持的第一介质。可选地,可通过图像处理来评测该介质或该介质的一部分在照相机上的图像,这样例如也可考虑和校正成像误差,例如失真。因此在此方面,应把容纳元件的透射理解为成像,在该成像中,产生至少第一介质或第一介质的一部分的可由照相机评测的图像。
所用的辐射可位于可见光谱范围内,但也可位于不可见光谱范围内,并在通常情况下,通过辐射源、照相机以及介质的技术和物理参数来确定。作为辐射源,除了各种类型的常规灯以外,还可使用发光二极管或激光器,特别是半导体激光器。根据实现形式,使用该辐射来透射该介质,或将该介质用于遮挡辐射。在照相机上形成的图像的组成部分或者至少部分介质中的要被分析的组成部分现可含有包括介质在照相机上的阴影投射在内的明暗过渡,或者两种介质之间的界面。根据更具体的布置,作为第一介质的介质被选择成与第二介质相协调,使得例如可将明暗边界识别为过渡效应或者特别显著的界面。原则上,两种效应同等有用。在选择各相时,对于介质来说,也可进行透射率或透射系数的匹配。
用于指示位置的第一介质可以是固体、液体或气体。第二介质同样可具有这些相中的一种,但原则上,此处也可使用一个抽真空区域,只要保持第一介质的可检测边界即可。以下给出各种实施例的非一些非限定性的示例:
1、作为第一介质的悬摆位于气态的第二介质内。尽管气态的介质是可透辐射的,然而悬摆是不可透辐射的或者仅受限制地透明,这样,根据作为较少量照明区而在照相机上再现的悬摆的图像,可推断出悬摆位置,并因此可推断出倾斜度。
2、把采用具有不同透射系数和密度的固体制成的两个半球相互连接成一个球,该球可旋转地安装在一个容纳元件内。
3、把作为第一介质的一种不可透辐射的液体连同作为第二介质的一种可透辐射且不可溶于该液体的气体一起封入一个用作容纳元件的容器内。为了进行评测,使用两种介质之间的明暗过渡,其中,在两种介质仅具有对所述辐射的略微不同的透辐射性的情况下,也可进行明暗过渡的评测。
4、把一种对所述辐射透明的气体和一种同样透明的液体封入一个容器内,其中,进行界面的检测。由于液体中的内聚性而在过渡区域内形成一条不是笔直而是弯曲的线。根据曲率,可确定液体位于哪一侧,从而可以不对两种介质中的一种、特别是液体进行着色。
5、把作为第一介质和第二介质的两种具有不同密度但具有相似透射系数的相互不可溶解的液体封入一个用作容纳元件的容器内。使用两种介质之间的界面的图像进行评测。
例如针对液体,提出了汞、水或硅油。为了确定第一介质的位置,不仅可使用界面的图像,而且可使用明暗过渡的图像或者两者的组合。为了实现界面的增强,可通过其他措施更容易地记录形成这种界面。例如可在界面上散布悬浮微粒,该悬浮微粒增强在该区域内的辐射吸收。而且可行的是,在界面上放置悬浮类的固体,而该固体可以是可透辐射或者不可透辐射的。
第一介质或者两种介质之间的过渡的图像被投影到照相机上,在那里被记录并被转换为电子信号。作为合适的照相机,可使用例如CCD照相机或CMOS照相机。这种照相机例如可备有Agilent公司的CMOS黑白图像传感器(CMOS-Monochrome-Bildsensor)ADCS 2120,其具有由640×480像素点组成的场。
由照相机产生的信号由一个评测单元进行分析并被针对仪器的倾斜度进行评测。为此,可使用一个独立的组件或一个独立的部件。另选地,也可使用其他仪器的可能现有部件。例如,在安装于测距仪内的倾斜仪的情况下,该评测单元的功能也可由供测距使用的电子部件一同承担。同样,作为辐射源,也可使用已供其他目的使用的源。因此在测距仪的示例中,在测距仪中可能的话供测距使用的激光的一部分可被输出耦合,并可能在散射或扩束之后,被用于介质的成像。
从两种介质之间的边界的相对和绝对位置以及形状,可推断出仪器的倾斜度。如果例如一台照相机安装在一个填充有液体的矩形容器的侧面上,则从作为液位线的液面与照相机所成的角度,可确定倾斜方向(此处例如为纵向倾斜)。如果在另一轴上发生单纯倾斜(此处例如为横向倾斜),则可根据液面高度测定倾斜度。对于液位线高度,两个轴上的组合倾斜不仅导致角度变化,而且导致位置变化。
这种成像和评测不仅可使用纯明暗过渡进行,而且可可使用界面进行。此外,界面的分析还提供其他优点。根据上述例子,此处应考虑一种具有液态和气态介质的系统,而不限制对其他实施例的适用性。
1、在一个界面的情况下,与一个纯明暗过渡的分析相反,可评测这些介质的两个过渡,即,有两条边沿可供使用。
2、上述例子的横向倾斜的变化导致界面的图像宽度的增加或减小。因此,图像宽度也可作为用于测定倾斜度的信息来考虑。特别是可实现系统的自校准,因为在光束水平导入容纳元件的情况下,界面的图像宽度在仪器的水平位置下变得最小。
3、在超过规定的倾斜极限(例如横向倾斜)的情况下,一个双界面可在一定情况下由照相机感知,该双界面由液体与容器壁的接触来限定。该界面之间的间隔,与界面的宽度相当,可用作倾斜度的大小并可被对应地进行评测。
4、在使用润湿液体作为第一介质的情况下,该液体由于粘着在容器的接触位置而升高。根据液位线的曲率,可确定液体位于容器的哪一侧。而且在横方向,液体也具有一个曲率,这样即使在横向倾斜不足的情况下,也总是能够确定界面的两条线或水平线。下线是液体的最低点,上线是液体与容纳元件的内侧的润湿边沿。在容纳元件移动之后,而且在稳态下,下线比上润湿线明显更清晰,并且更快速地稳定。在此方面,界面的检测以及因此第一介质的位置的检测不仅可根据界面的水平对准区域进行,而且可借助于界面的弯曲区域进行。
5、如果界面依赖于角度而可变形,例如通过一台具有专门弯曲成形的表面的水准仪内的气泡而可变形,则从气泡的位置和/或变形,同样可推断出倾斜度。这种变形例如可这样实现,即:形成与球面形状有偏差的拱形,例如非球面或者隧道形状的拱形。位于该拱形和液体之间的气泡便随着增加的倾斜度而变形。
通过根据本发明的照相机应用,可以对第一介质的图像的特性和特征(此处特别是边界或界面的分布和位置)进行分辨和评测。这样,使用根据本发明的方法,可对由于老化或环境影响引起的变化进行校正或消除。介质的体积变化可毫无问题地加以考虑,因为在测量纵向倾斜时,对图像中的边界或界面的分布进行检测,并可分析角度,而不依赖于绝对位置。横向倾斜可根据界面的图像宽度来测定,其中,如上所述,该过程可与自校准相结合。该自校准过程可在使用倾斜仪期间一直进行着,从而使大量的供倾斜度和宽度用的数据记录可供使用。根据这些值,可选地可使用统计或内插法来计算出最小值,并使其与水平位置相等。
然而,基于界面的图像宽度的倾斜测定的前提条件是容纳元件具有合适的容器形状,该容器形状不会引起界面的图像的液面相关变化。而该必要条件例如通过一种具有平行侧壁的容器可容易地实现。特别是,介质损耗或该介质的密度变化可按此方式进行补偿。
附图说明
下面参照附图中示意性地示出的实施例,纯粹通过示例更详细地对根据本发明的方法和根据本发明的仪器进行说明。具体来说:
图1是根据本发明的倾斜仪的第一实施例的示意性侧视图;
图2a-d是第一实施例的具有不同介质的示意性俯视图;
图3a-c是处于水平位置的倾斜仪的第一实施例以及在照相机上成像的介质表面的示意性俯视图;
图4a-c是处于纵向倾斜的倾斜仪的第一实施例以及在照相机上成像的介质表面的示意性俯视图;
图5a-e是处于水平位置的倾斜仪的第一实施例的示意性侧视图和俯视图以及在照相机上成像的介质表面的示意性侧视图和俯视图;
图6a-e是处于横向倾斜的倾斜仪的第一实施例的示意性侧视图和俯视图以及在照相机上成像的介质表面的示意性侧视图和俯视图;
图7a-d是处于水平位置的倾斜仪的第二实施例的示意性侧视图和俯视图以及在照相机上成像的介质表面的示意性俯视图;以及
图8a-e是针对容纳元件的两种不同形成表面,处于横向倾斜的倾斜仪的第二实施例的示意性侧视图以及在照相机上成像的介质表面的示意性俯视图。
具体实施方式
以下根据图中示意性示出的实施例对根据本发明的方法或者根据本发明的装置纯示例性地进行更详细的说明。
图1示意性地示出根据本发明的把所有部件集成在作为公用基座1的板上的光学倾斜仪的第一实施例的侧视图。通过辐射源2发射与基座1垂直的可见或不可见辐射S。辐射S由透镜3准直并通过第一偏转元件4和第二偏转元件5再次偏转,从而使其垂直入射在基座1上。在该入射辐射的范围内,在基座1上安装有容纳元件6,该容纳元件6具有朝基座取向的第一表面7和朝第二偏转元件取向的第二表面8。在基座1与容纳元件或其第一表面7之间具有照相机9,该照相机9与评测单元10连接。出于节省占地的原因,属于光束产生、射束路径和辐射接收的部件安装在基座1的一侧,而评测单元10安装在基座1的相反侧,然而原则上,也可选择这些部件或评测单元10的另一配置。因此,该配置具有的优点是把所有电子部件集成在一个公用基座1上,该基座1例如也可形成为印刷电路板。因此,可实现一种简单的机械不敏感结构。偏转元件4和5可形成为反射元件,例如棱镜或反射镜。然而原则上,无专用元件也能实现合适偏转,例如,通过在外壳的内侧反射来实现合适偏转,其中,该反射也可具有散射或漫射特性。也可在以下情况时放弃偏转,即:保证容纳元件6的至少部分区域由辐射源2的辐射S或照相机9照射。例如,也可通过弯曲或成角度的基座1产生辐射源2和容纳元件6或照相机9的这种合适取向。然而原则上,在放弃安装到公用基座1上的情况下,与图7和图8所示的根据本发明的第二实施例一样,也可进行部件的直接相互安装。
图2a示出倾斜仪的该第一实施例的俯视图。从辐射源2发射的辐射由透镜3准直并通过第一偏转元件4和第二偏转元件5被引导到容纳元件6上。该容纳元件安装在照相机9上。在本实施例中,辐射源2和照相机9固定在作为基座1的大致平坦的底板上。在容纳元件6内具有至少一个第一介质。图2b至图2d示出了可能布置。
图2b示出作为一种可能实施例的使用不透辐射的第一介质11部分填充容纳元件。容纳元件的剩余区域可使用第二介质12填充,其中,该第二介质也可由真空替代。在使用不透辐射的第一介质11的本实施例中,第二介质12被如此选择,以使其具有至少部分的透辐射性。通过这种布置,产生两种介质之间的明暗对比,该明暗对比可由照相机检测。
图2c示出使用透辐射的第一介质13填充容纳元件的另一实施例。而容纳元件的剩余空间可由第二介质填充,该第二介质在该例中同样是透辐射的。在两种介质之间形成界面14,该界面14在照相机上成像并可由该照相机进行分辨。例如通过施加小微粒,例如粉末,或者也可施加更大部件,例如浮子,使该界面14的可检测性得到增强。
图2d示出在倾斜仪倾斜时的容纳元件内的介质的位置变化。对以照相机为基准的该变化作了图示,该照相机相对于基座固定。该示意性示出的位置与图2a所示的倾斜仪的逆时针方向的旋转对应,并被称为纵向倾斜。图2b和图2c所示的介质位置与倾斜仪的水平位置对应,而图2d示出在所述倾斜仪的旋转时可由照相机记录的位置。通过该倾斜,透辐射的第一介质13在容纳元件的内部发生位移。所改变的位置可通过界面14的取向来识别和确定。
图3a-c再次对在倾斜仪的水平、非倾斜位置的情况下的界面的位置和识别作了概要说明。图3a中,辐射通过第二偏转元件5被引导到容纳元件6,并在通过该容纳元件的体积之后,聚焦在照相机9上。图3b示出容纳元件内的介质的可由照相机感知的图像。此处,透辐射的第一介质13在其界面仍相对于照相机水平取向。图3c示意性示出由照相机感知的图像。界面16的图像被投影在由多行和多列的像点或像素组成的检测面15上。通过单个像点的遮光可把该图像转换为信号,从该信号中推导出界面的位置或取向。与原则上同样可实现的根据如图2b所示的本发明的纯明暗过渡的识别相比,两种可透射介质之间的界面的检测提供的可能性是,在界面16的图像中评测用于位置确定的两条边沿。除了像点的纯遮光的评测以外,还可进行其他特征的考虑。因此,可通过灰度值的识别或者通过一台彩色照相机获得界面的位置的准确分辨。另外,也可对其他特征,例如由于折射或散射引起的色彩变化一同加以考虑。
在倾斜仪或者基座1的单纯纵向倾斜时的界面的位置变化在图4a-c作了示意性图示。图4a示出作为纵向倾斜的倾斜仪相对于垂直线的旋转。界面14保留在其绝对位置不变,并因此相对于重力矢量调平。然而如图4b所示,作为相对于基座1或者相对于照相机的位置,界面14的相对位置发生变化。现在,界面14是倾斜的。在检测面15上的界面16的对应图像在图4c作了示意性图示,其中,该图像现在具有相对于照相机或检测面的倾斜。
图5a-e示出在水平取向的根据本发明的倾斜仪的情况下的状态的侧视图。图5a示出倾斜仪的俯视图,而图5b中示出侧视图,该侧视图在图5a与右视图对应。图5b的该侧视图中示意性地示出倾斜仪的结构。在基座1上安装有照相机9,该照相机9间接或直接支承具有第一表面7和第二表面8的容纳元件6。在基座1的另一侧安装有评测单元10。图5c示出逆时针旋转90°之后的图5b的该侧视图的抽象表示。辐射S从左入射到容纳元件6上,该容纳元件6具有位于其内部的透辐射的第一介质13。在穿过容纳元件之后,该辐射入射到照相机9上,这样,界面14在照相机9的检测面上成像。图5d示出界面14相对于照相机的位置。图5e示出在检测面15上的界面16的关联图像。
图6a-e对一个倾斜的倾斜仪进行图示,其中,进行了绕取向垂直于前述旋转的轴的旋转。由这种旋转产生的位置被称为横向倾斜。图6a示出倾斜仪的俯视图,图6b示出倾斜仪的侧视图。在图6c中可以看出,容纳元件6内的此处示范性作为液面形成的界面14现在相对于辐射S的入射轴是倾斜的。由此看出,如图6d所示,界面14从照相机的视向展宽。如图6e所示,可以看出,界面16’在检测面上的图像现在同样展宽,从而涉及到更多的像点。界面16’的图像宽度和倾斜仪的横向倾斜相互关联,这样从该宽度可推断出倾斜度。
图7a-d示出根据本发明的倾斜仪的第二实施例,该第二实施例例如可在测锤杆或类似的大地测量仪器中使用。
图7a示意性示出这种倾斜仪的结构,其中,该倾斜仪位于水平位置。基座1’大致呈U状,并将辐射源2保持在两个翼部之间。该辐射源发射辐射S,该辐射S由透镜3准直。然后,该经校准直的辐射S被引导到容纳元件6’,该容纳元件6’间接或直接安装在照相机9上。在基座1’的与照相机9的相背的一侧安装有一个评测单元。容纳元件6具有两个表面,其中,第一表面7大致为平面,而第二表面8’具有拱形。容纳元件填充有液态介质,在该液态介质中具有作为第二介质的气泡,其中,其他气体,或者可能的话,另一种液体也可执行气泡的功能。然而另选地,根据本发明,介质的其他组合可能也是适合的。例如取代气泡,可使用油中的汞滴,这样该汞滴与气泡相反,不是漂浮在表面上而是保留在容器的底部。此外,各个具体设计尤其依赖于结构情况。因此,例如汞滴的使用需要具有拱形的第二表面8’取向沿着地面方向。
图7b示出其中省略了辐射源2的保持装置而仅示出辐射源2的倾斜仪的俯视图。该辐射源的辐射透射容纳元件6’并入射到位于其下的照相机9上,该照相机9安装在基座1’上。
图7c示出从照相机的方向看到的容纳元件里面的视图。在透辐射的第一介质13’中,根据其界面来可检测气泡17。另选地或附加地,除了界面的识别以外,还可使用气泡17的其他特征,例如,由于在透辐射的第一介质13’内经过的距离引起的透射率变化或者由于气泡的不同透射系数引起的透射率变化。在照相机的检测面15上的气泡的界面16”的图像在图7d作了示意性图示。
图8a-e示意性示出倾斜仪的横向倾斜的状态。图8a示出基座1’向右倾斜,因此该倾斜与横向倾斜对应。气泡17现已在容纳元件6’的内部向左偏移。该偏移也在图8b和图8c示出。图8b与从照相机的方向看到容纳元件上的视图对应。气泡现相对于照相机向左偏移。在检测面15上的界面16”的关联图像在图8c示出。
如果容纳元件的第二表面按其拱形如此形成,即使得气泡依赖于倾斜度而变形,则也可从图像的形状或形状变化推断出倾斜度。合适的形状例如可以是非球面的拱形,该拱形具有相对于球面或多或少增加的曲率。图8d和图8e例示出具有向外减小的曲率半径的非球面形状。随着增加的倾斜度,气泡因此获取一个越来越拉长的形状。图8d示出从照相机的方向看到容纳元件上的视图。气泡现相对于照相机向左偏移并具有拉长的形状。界面16”’在检测面15上的关联图像在图8e示出。
作了图示的实施例仅示出根据本发明的实现例,并因此应理解为不是限定性或限制性的。此外,本领域技术人员例如在使用其他射束路径或偏转元件(如棱镜、散射面或光波导、或者容纳元件和位于其内的介质的另选形式时,可推导出根据本发明的其他实施方式。特别是能够取代流体介质而使用摆动固体或者固体和流体介质的组合。
附图纯示意性地示出了检测面的像点,特别是其数量。在实际的实施例中,可用照相机的像点数量通常高很多,从而可获得位置或角度的更高分辨率。
Claims (27)
1、一种光学倾斜仪,具有:
辐射源(2),用于产生辐射(S);
至少一个第一介质(11,13),其位置是依赖于倾斜度的;
容纳元件(6,6’),用于第一介质(11,13);
照相机(9),用于记录图像(16,16’,16”,16”’)并将其转换为信号;以及
评测单元(10),用于测定倾斜度;
辐射源(2)和照相机(9)被配置成使得第一介质(11,13)的至少一部分的界面(14)的分布的图像通过所述辐射间接或直接地再现在照相机(9)上,
其特征在于,照相机(9)和评测单元(10)被形成为,使得所述图像由照相机(9)记录并且界面(14)的分布被分辨出,并且该界面(14)的分布由评测单元(10)进行评测,以测定倾斜度。
2、根据权利要求1所述的光学倾斜仪,
其特征在于,
第一介质(11,13)的大致平坦的界面(14)的至少一部分的分布的图像间接或直接地再现在照相机(9)上。
3、根据权利要求2所述的光学倾斜仪,
其特征在于,
第一介质(11,13)是液体,并且界面(14)是液位线。
4、根据权利要求3所述的光学倾斜仪,
其特征在于,
容纳元件(6,6’)被设计为半填充的圆筒盒。
5、根据权利要求2至4中的任何一项所述的光学倾斜仪,
其特征在于,
倾斜仪具有以下部分作为第二介质(12),即:
气体,
液体,或者
固体,
第二介质(12)与第一介质(11,13)的接触面限定界面(14)。
6、根据权利要求6所述的光学倾斜仪,
其特征在于,
第一介质(11,13)和第二介质(12)针对辐射(S)具有不同的透射率,所述两种介质中的一种不可透射辐射(S)。
7、根据权利要求1所述的光学倾斜仪,
其特征在于,
第一介质(11,13)是摆动固体。
8、根据权利要求1所述的光学倾斜仪,
其特征在于,
辐射源(2)具有半导体激光器或者LED。
9、根据权利要求1所述的光学倾斜仪,
其特征在于,
辐射源(2)和照相机(9)被配置成使得在第一介质(11,13)的范围内的辐射(S)与第一介质(11,13)的表面大致平行地传播。
10、根据权利要求1所述的光学倾斜仪,
其特征在于,
容纳元件(6,6’)间接或直接地安装在照相机(9)上。
11、根据权利要求1所述的光学倾斜仪,
其特征在于,
容纳元件(6,6’)具有:
第一平坦透明表面(7),以及
第二透明表面(8),
这两个表面被取向为彼此大致平行,其中,第二表面(8)是平坦的或呈拱形的。
12、根据权利要求11所述的光学倾斜仪,
其特征在于,
照相机(9)具有一个二维检测面(15),该二维检测面(15)被取向为与容纳元件(6,6”)的第一表面(7)和/或第二表面(8)相平行。
13、根据权利要求1所述的光学倾斜仪,
其特征在于,
辐射源(2)和照相机(9)安装在公用基座(1,1’)。
14、根据权利要求13所述的光学倾斜仪,
其特征在于,
辐射源(2)和照相机(9)安装在安装在印刷电路板上。
15、根据权利要求13所述的光学倾斜仪,
其特征在于,
辐射源(2)和照相机(9)被配置成使得所产生的辐射(S)与基座(1,1’)的表面相垂直地发射,并使得照相机(9)的接收装置取向为与基座(1,1’)的表面相垂直。
16、根据权利要求13或14所述的光学倾斜仪,
其特征在于,
从辐射源(2)到照相机(9)的射束路径具有至少一个偏转元件(4,5)。
17、一种大地测量仪器,具有根据权利要求1至16中的任何一项所述的光学倾斜仪。
18、根据权利要求17所述的大地测量仪器,其特征在于,所述大地测量仪器是测距仪或测锤杆。
19、一种方法,用于测量仪器的倾斜度,该仪器具有:
辐射源(2),用于产生辐射(S);
至少一个第一介质(11,13),其位置是依赖于倾斜度的;
容纳元件(6,6’),用于第一介质(11,13);
照相机(9),用于记录图像;以及
评测单元(10),用于测定仪器的倾斜度;
所述方法具有以下步骤:
利用由辐射源产生的辐射(S)在照相机(9)上产生图像,其中,该图像包含第一介质(11,13)的至少一部分的界面的分布;
由照相机(9)记录图像并将其转换为信号;以及
由评测单元(10)根据所述信号测定仪器的倾斜度,
其特征在于,所述界面(14)的分布被分辨出,并且该界面(14)的分布被评测以测定倾斜度。
20、根据权利要求19所述的方法,
其特征在于,
用于测量大地测量仪器的倾斜度。
21、根据权利要求19所述的方法,
其特征在于,
所述仪器的倾斜度是根据界面(14)的取向和形状来进行测定的。
22、根据权利要求19或20所述的方法,
其特征在于,
在产生图像时,辐射(S)与第一介质(11,13)的表面大致平行地传播。
23、根据权利要求19所述的方法,
其特征在于,
所述测定倾斜度的步骤是在考虑到以下情况下进行的:
第一介质(11,13)在图像中的角度,以及
第一介质(11,13)在图像中的绝对位置。
24、根据权利要求19所述的方法,
其特征在于,
在达到或超过可预定的倾斜值时,输出一信号。
25、根据权利要求19所述的方法,
其特征在于,
在所述测定倾斜度的步骤中,考虑到消除了由于至少第一介质(11,13)的温度效应和/或物质损耗引起的误差。
26、根据权利要求19所述的方法,
其特征在于,
在产生图像时,再现第一介质(11,13)的大致平坦的界面(14)。
27、根据权利要求26所述的方法,
其特征在于,
在所述测定仪器的倾斜度的步骤中,考虑到界面(14)的尺度、形状和/或位置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH9562002 | 2002-06-07 | ||
CH20020956/02 | 2002-06-07 | ||
CH20020956/2002 | 2002-06-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1659420A CN1659420A (zh) | 2005-08-24 |
CN100547349C true CN100547349C (zh) | 2009-10-07 |
Family
ID=29721331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038132338A Expired - Fee Related CN100547349C (zh) | 2002-06-07 | 2003-05-17 | 光学倾斜仪 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7259842B2 (zh) |
EP (1) | EP1511971B8 (zh) |
JP (1) | JP4440096B2 (zh) |
CN (1) | CN100547349C (zh) |
AT (1) | ATE464537T1 (zh) |
AU (1) | AU2003236674A1 (zh) |
DE (1) | DE50312618D1 (zh) |
WO (1) | WO2003104748A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2740489C1 (ru) * | 2020-06-29 | 2021-01-14 | Объединенный Институт Ядерных Исследований (Оияи) | Лазерный инклинометр для длительной регистрации угловых наклонов земной поверхности |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1491855A1 (de) * | 2003-06-23 | 2004-12-29 | Leica Geosystems AG | Optischer Neigungsmesser |
GB0424890D0 (en) * | 2004-01-15 | 2004-12-15 | Koninkl Philips Electronics Nv | Method for detecting an orientation of a device and device having an orientation detector |
WO2007128161A1 (en) * | 2006-04-30 | 2007-11-15 | Appro Technology Inc. | Apparatus for monitoring horizontal level |
EP2373957B1 (en) * | 2009-01-06 | 2020-04-01 | Siemens Healthcare Diagnostics Inc. | Methods for determining a liquid level in a container using imaging |
EP2423640A1 (de) | 2010-08-23 | 2012-02-29 | Hexagon Technology Center GmbH | Neigungssensor für ein Gerät und Verfahren zur Bestimmung der Neigung eines Gerätes |
US8573147B1 (en) | 2011-09-13 | 2013-11-05 | Jeffrey M. Tanner | Pipe direction and size indicator |
CN103206947B (zh) * | 2012-01-16 | 2016-09-28 | 中国科学院声学研究所 | 一种基于水准泡的倾角测量方法及其装置 |
CN107076549B (zh) * | 2015-05-29 | 2019-05-10 | 新日铁住金株式会社 | 金属体的形状检查装置和金属体的形状检查方法 |
JP6632128B2 (ja) * | 2016-01-18 | 2020-01-15 | 株式会社トプコン | 液面反射式傾斜センサにおける容器の設計方法、該容器を有する傾斜センサ、及び該容器を有する傾斜センサの生産方法 |
DE102019116833A1 (de) * | 2019-06-21 | 2020-12-24 | Albert Bauer | Libelle für eine Wasserwaage |
CN110672041A (zh) * | 2019-10-15 | 2020-01-10 | 成都飞机工业(集团)有限责任公司 | 一种基于图像测量雾锥角的实验装置 |
RU2747047C1 (ru) * | 2020-08-19 | 2021-04-23 | Объединенный Институт Ядерных Исследований (Оияи) | Лазерный инклинометр |
CN112362031B (zh) * | 2020-11-13 | 2022-08-23 | 重庆大学 | 滑坡测量用倾角传感器及其使用方法 |
CN117268326B (zh) * | 2023-09-13 | 2024-02-02 | 中国建筑第五工程局有限公司 | 一种大跨度公共建筑梁体拆模沉降检测设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3639284A1 (de) * | 1986-11-17 | 1988-05-26 | Precitronic | Sensor zur feststellung der tatsaechlichen und scheinbaren lotrichtung |
JPH01109206A (ja) * | 1987-10-21 | 1989-04-26 | Asahi Optical Co Ltd | 自動水準器 |
EP0774646B1 (de) * | 1995-11-14 | 2002-02-13 | Knestel Elektronik GmbH | Verfahren und Vorrichtung zum Vermessen der Achsen und Radstellungen von Kraftfahrzeugen |
US5794355A (en) * | 1996-06-03 | 1998-08-18 | Gateway 2000, Inc. | Rotationally actuated position sensor |
US5940172A (en) * | 1998-06-03 | 1999-08-17 | Measurement Devices Limited | Surveying apparatus |
JP3787736B2 (ja) * | 1997-10-08 | 2006-06-21 | 株式会社トプコン | 傾斜センサ |
DE19854812A1 (de) * | 1997-12-03 | 1999-08-26 | Ricklefs | Winkelmeßvorrichtung zum Erfassen von Winkelabweichungen gegenüber einer Bezugslage |
US6943339B2 (en) * | 2002-08-01 | 2005-09-13 | Vishay Infrared Components, Inc. | Tilt sensor and method of making same |
-
2003
- 2003-05-17 CN CNB038132338A patent/CN100547349C/zh not_active Expired - Fee Related
- 2003-05-17 AT AT03735412T patent/ATE464537T1/de not_active IP Right Cessation
- 2003-05-17 EP EP03735412A patent/EP1511971B8/de not_active Expired - Lifetime
- 2003-05-17 JP JP2004511773A patent/JP4440096B2/ja not_active Expired - Fee Related
- 2003-05-17 DE DE50312618T patent/DE50312618D1/de not_active Expired - Lifetime
- 2003-05-17 US US10/516,730 patent/US7259842B2/en not_active Expired - Lifetime
- 2003-05-17 AU AU2003236674A patent/AU2003236674A1/en not_active Abandoned
- 2003-05-17 WO PCT/EP2003/005206 patent/WO2003104748A1/de active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2740489C1 (ru) * | 2020-06-29 | 2021-01-14 | Объединенный Институт Ядерных Исследований (Оияи) | Лазерный инклинометр для длительной регистрации угловых наклонов земной поверхности |
Also Published As
Publication number | Publication date |
---|---|
JP2005529323A (ja) | 2005-09-29 |
CN1659420A (zh) | 2005-08-24 |
DE50312618D1 (de) | 2010-05-27 |
EP1511971B1 (de) | 2010-04-14 |
JP4440096B2 (ja) | 2010-03-24 |
EP1511971B8 (de) | 2010-09-29 |
US20050225748A1 (en) | 2005-10-13 |
EP1511971A1 (de) | 2005-03-09 |
ATE464537T1 (de) | 2010-04-15 |
WO2003104748A1 (de) | 2003-12-18 |
US7259842B2 (en) | 2007-08-21 |
AU2003236674A1 (en) | 2003-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100547349C (zh) | 光学倾斜仪 | |
ES2348902T3 (es) | Procedidmiento y sistema para la medicion de la forma de una superficie reflejante. | |
AU2011295160B2 (en) | Tilt sensor for a device and method for determining the tilt of a device | |
CN104897140B (zh) | 反射器装置及其校准方法和用途 | |
KR20160103076A (ko) | 교정 방법 및 계측 용구 | |
JP2000230807A (ja) | 平行光を利用した距離測定方法とその装置 | |
US5761818A (en) | Digital inclinometer | |
JP3673954B2 (ja) | 傾斜センサ及びこれを使用した測量機 | |
JP2005529323A5 (zh) | ||
JPWO2016129355A1 (ja) | 計測用具、校正方法、校正装置及びプログラム | |
CN100520295C (zh) | 光学测斜仪 | |
JP2008506095A (ja) | 少なくとも一部が透明な媒体の厚さを測定するための光学装置 | |
US7692777B1 (en) | Optical clinometer | |
EP0611947B1 (en) | System for measuring the characteristic attitude angles of the wheels of an automobile frame, and relative measurement means | |
JP5388105B2 (ja) | 傾斜検出器およびレーザー墨出し器 | |
CN213779007U (zh) | 高精度二维水平仪 | |
Hua et al. | Novel optical sensor for precise tilt angle measurement | |
JP2004012203A (ja) | 光学式傾斜角検出装置 | |
KR100690258B1 (ko) | 광센서와 그 액세서리의 신속한 검측법 | |
JPH0727704A (ja) | 塗面の艶測定方法及び装置 | |
Khoojinian et al. | Aligning pitch for measurements of the shape of captive bubbles | |
JPH02296185A (ja) | 視程計校正装置 | |
JPH10311725A (ja) | 傾斜角測定機器 | |
JPH0464408B2 (zh) | ||
JPH06241794A (ja) | 気泡管及びこの気泡管を用いたチルトセンサー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091007 Termination date: 20210517 |