[go: up one dir, main page]

CN100545771C - vehicle control device - Google Patents

vehicle control device Download PDF

Info

Publication number
CN100545771C
CN100545771C CN 200510062960 CN200510062960A CN100545771C CN 100545771 C CN100545771 C CN 100545771C CN 200510062960 CN200510062960 CN 200510062960 CN 200510062960 A CN200510062960 A CN 200510062960A CN 100545771 C CN100545771 C CN 100545771C
Authority
CN
China
Prior art keywords
vehicle
control
node
actuator
operation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200510062960
Other languages
Chinese (zh)
Other versions
CN1722030A (en
Inventor
吉村健太郎
樱井康平
金川信康
守田雄一朗
高桥义明
黑泽宪一
箕轮利道
星野雅俊
中塚康弘
岛村光太郎
恒冨邦彦
佐佐木昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1722030A publication Critical patent/CN1722030A/en
Application granted granted Critical
Publication of CN100545771C publication Critical patent/CN100545771C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/6286

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆控制装置,以网络连接取入表示车辆的状态量、驾驶员的操作量的传感器信号的传感器控制器、和基于传感器控制器取入的传感器信号而生成控制目标值的指令控制器、和从上述指令控制器接收控制目标值而使控制车辆用的执行元件动作的执行元件控制器;上述执行元件控制器,具有在于指令控制器生成的控制目标值产生异常的时候、基于该执行元件控制器接收到的网络上的上述传感器控制器的传感器值来生成控制目标值的控制目标值生成装置,通过由上述控制目标生成装置生成的控制目标值来控制执行元件。该车辆控制装置,使各个控制器的冗长度不提高到需要以上,通过在系统整体防备错误,以简单的ECU构成、低成本、确保高可靠性和实时性和扩展性的。

Figure 200510062960

A vehicle control device comprising a sensor controller that takes in a sensor signal representing a state quantity of a vehicle and a driver's operation amount through a network connection, and an instruction controller that generates a control target value based on the sensor signal taken in by the sensor controller, and an actuator controller that receives a control target value from the instruction controller to operate an actuator for controlling the vehicle; The controller generates a control target value generating means for generating a control target value from the sensor value of the sensor controller on the network received by the controller, and controls the actuator by the control target value generated by the control target generating means. In this vehicle control device, the redundancy of each controller is not increased more than necessary, and by preventing errors in the entire system, high reliability, real-time performance, and expandability are ensured with a simple ECU configuration and low cost.

Figure 200510062960

Description

车辆控制装置 vehicle control device

技术领域 technical field

本发明涉及控制车辆的行驶状态的车辆控制装置(车辆控制系统),尤其涉及一种通过电子控制进行汽车等的车辆的原动机的驱动、操舵、制动的车辆控制装置。The present invention relates to a vehicle control device (vehicle control system) for controlling the running state of a vehicle, and more particularly to a vehicle control device for driving, steering, and braking a prime mover of a vehicle such as an automobile by electronic control.

背景技术 Background technique

以往作为车辆控制装置,有通过构成一个主机的电子控制装置、集中控制涉及制动力及驱动力及操舵角的控制装置的运转控制装置(例如,专利文献1)。Conventionally, as a vehicle control device, there is an operation control device that collectively controls control devices related to braking force, driving force, and steering angle by an electronic control device constituting one host (for example, Patent Document 1).

近年,以提高汽车的驾驶舒适性及安全性为目标,不是机械的结合,而是通过电子控制将驾驶员的加速、转向(steering)、制动等的操作反应到车辆的驱动力、操舵力、制动力发生机构上的车辆控制装置的开发变得极为活跃。对这样的车辆控制装置,为了不失去涉及车辆的驱动、操舵、制动的功能,要求有高的可靠性。In recent years, with the goal of improving the driving comfort and safety of automobiles, it is not a mechanical combination, but an electronic control that reflects the driver's acceleration, steering, braking, etc. to the driving force and steering force of the vehicle. , The development of the vehicle control device on the braking force generating mechanism has become extremely active. Such a vehicle control device is required to have high reliability so as not to lose functions related to driving, steering, and braking of the vehicle.

以往,将由机械的机构实现的控制置转换成电器的机构来进行。在航空器控制中Fly-by-Wire、在汽车控制中X-by-Wire是其很好的例子。在这些用途中,以往,对于故障准备有机械的备份机构,但随着机械机构消失,就需要电器机构的高可靠性。Conventionally, control by a mechanical mechanism is converted into an electrical mechanism. Fly-by-Wire in aircraft control and X-by-Wire in car control are good examples. In these applications, conventionally, a mechanical backup mechanism has been prepared for failure, but as the mechanical mechanism disappears, high reliability of the electrical mechanism is required.

即使在电控制汽车的X-by-Wire(XBW系统)中,要求电控制转向器的Steer-by-Wire和电控制制动器的Brake-by-Wire不产生误动作而进行可靠的动作,并要求有高可靠性。特别是Steer-by-Wire,由于不存在在故障时保证安全(fail-safe)的转向位置,则更加要求高可靠性。Even in the X-by-Wire (XBW system) of electronically controlled vehicles, the Steer-by-Wire of the electronically controlled steering gear and the Brake-by-Wire of the electronically controlled brake are required to perform reliable operation without malfunctioning, and require have high reliability. In particular, Steer-by-Wire requires high reliability because there is no fail-safe steering position at the time of failure.

另外,多认为作为X-by-Wire的优点是通过由电子控制综合地控制转向、制动而提高车辆稳定性的所谓车辆稳定控制,由此可提高汽车安全性的主动安全性(例如,专利文献3)。In addition, it is widely believed that the advantage of X-by-Wire is the so-called vehicle stability control that improves vehicle stability by comprehensively controlling steering and braking through electronic control, thereby improving the active safety of automobile safety (for example, patent Document 3).

另外,作为高可靠的车辆控制装置的以往例,有通过二重化具有ABS(AntiLock Brake System)、TCS(Transmission Controlled System)等功能的主控制器来提高可靠性的例子(例如,非专利文献1),和通过即使发生错误也能继续正常动作地构成前轮制动的控制模块(故障运行)、在发生错误的时候停止该功能地构成后轮制动的控制模块(故障无反应)而达到高可靠性的例子(例如,专利文献2)。In addition, as a conventional example of a highly reliable vehicle control device, there is an example of improving reliability by duplicating a main controller having functions such as ABS (AntiLock Brake System) and TCS (Transmission Controlled System) (for example, Non-Patent Document 1) , and by constituting the control module of the front wheel brake that can continue to operate normally even if an error occurs (failure operation), and the control module of the rear wheel brake that stops this function when an error occurs (fault non-response) to achieve high An example of reliability (for example, Patent Document 2).

例如,作为车辆控制装置的一种,有将驾驶员对制动踏板等的操纵装置的操作量变换成电信号、并将此通过CAN(Control Area Network)等的通信装置传输到制动机构所具有的控制计算机中进行电子控制的车辆控制装置。For example, as a kind of vehicle control device, there is an electric signal that converts the operation amount of the driver's operating device such as the brake pedal into an electrical signal, and transmits this to the braking mechanism through a communication device such as CAN (Control Area Network). A vehicle control device that is electronically controlled in a control computer.

[专利文献1]特开2003-263235号公报[Patent Document 1] JP-A-2003-263235

[专利文献2]特开2002-347602号公报[Patent Document 2] JP-A-2002-347602

[专利文献3]特开平10-291489号公报[Patent Document 3] JP-A-10-291489

[非专利文献1]D&M日经机械工程等主办的第1次「X-by-Wire」研讨会资料的3~6页,幻灯片12的左下图。[Non-Patent Document 1] The bottom left picture of slide 12 on pages 3-6 of the 1st "X-by-Wire" seminar materials hosted by D&M Nikkei Mechanical Engineering, etc.

这样的车辆控制装置,一般作为X-by-Wire系统而被知晓,与由以往的机械的机构及液压机构传输的方式比较,被认为可以实现使用计算机而带来的高度的行驶综合控制和车辆重量的轻量化及提高设计自由度。Such a vehicle control device is generally known as an X-by-Wire system, and compared with conventional mechanical and hydraulic mechanisms, it is considered that it can achieve a high degree of comprehensive driving control and vehicle control brought by the use of computers. Reduced weight and improved design freedom.

在以往的车辆控制装置中具有如下的问题,即,将监视驾驶员的操作量和车辆的状态的传感器输入到构成1个主机的电子控制装置(主ECU)中,综合控制作为车辆控制用的执行元件的内燃机控制装置及制动器控制装置及转向器控制装置,由此,在主ECU发生故障时,因不能进行所有的操纵,则为了确保安全性,应该特别提高主ECU的可靠性。In the conventional vehicle control device, there is a problem that the sensor for monitoring the driver's operation amount and the state of the vehicle is input to the electronic control unit (main ECU) constituting one master, and the integrated control is used as the vehicle control device. The internal combustion engine control device, the brake control device, and the steering control device of the actuator, so that when the main ECU fails, since all operations cannot be performed, the reliability of the main ECU should be particularly improved in order to ensure safety.

在这里,使主ECU多重化可确保可靠性的手法是已知的,但要求高度处理的主ECU多重化,就有提高成本的课题。Here, it is known that reliability can be ensured by multiplying main ECUs, but there is a problem of increasing costs by multiplying main ECUs that require high-level processing.

在以往型控制体系结构中,由内燃机、转向器、制动器的分系统构成车辆整体。这是由于,如加速器和内燃机、方向盘和转向器、制动踏板和制动器那样,操作装置和执行元件1对1地对应。In the conventional control system structure, the subsystems of the internal combustion engine, steering gear, and brake constitute the whole vehicle. This is due to the 1-to-1 association of the actuating device with the actuator, like the accelerator with the internal combustion engine, the steering wheel with the steering gear, the brake pedal with the brakes.

现在实用化的XBW系统,作为如上所述的以往型控制体系结构的延长而进行设计的情况较多。即,按Drive-by-Wire、Steer-by-Wire和Brake-by-Wire的功能构成分系统,通过这些分系统间的协调实现车辆运动控制。The XBW systems that are currently in practical use are often designed as extensions of the conventional control architecture described above. That is, the subsystems are formed according to the functions of Drive-by-Wire, Steer-by-Wire and Brake-by-Wire, and the vehicle motion control is realized through the coordination among these subsystems.

在研讨这些以往技术(以往型控制体系结构)的问题时可知,为了确保要求车辆控制装置的可靠性、实时性、扩展性,就有成本变得非常高的课题。以下出示了以往技术的问题。When the problems of these conventional technologies (conventional control architecture) are considered, it can be seen that in order to ensure the reliability, real-time performance, and expandability required of the vehicle control device, there is a problem that the cost becomes very high. The problems of the prior art are shown below.

在车辆综合车辆控制装置中,需要高可靠性。即,必须确保即使控制器及传感器·执行元件万一发生故障时,车辆也能安全行驶。In a vehicle integrated vehicle control device, high reliability is required. That is, it is necessary to ensure that the vehicle can run safely even if the controller and the sensor/actuator malfunction.

在以往技术中,由于按每个分系统进行功能开发,则需要每个分系统的故障运行性(在有故障时可进行操作性)。即,在以往技术中,存在按每个分系统、根据传感器(方向盘、踏板等)来控制执行元件(转向器、制动器等)的ECU。In the conventional technology, since the function development is performed for each subsystem, the failure operability (operability in the event of a failure) of each subsystem is required. That is, in the prior art, there is an ECU that controls actuators (steering, brakes, etc.) based on sensors (steering, pedals, etc.) for each subsystem.

由于ECU集中地控制传感器·执行元件,所以为了使系统整体具有故障运行性,需要使每个分系统的ECU具有故障运行性。为了使ECU具有故障运行性,需要进行多重化等,则带来产品成本的上升。Since the ECU centrally controls the sensors and actuators, in order to make the whole system fail-operable, it is necessary to make the ECU of each sub-system have fail-operability. In order to make the ECU fail-operable, it is necessary to perform multiplexing, etc., which leads to an increase in product cost.

为了以低成本实现高可靠性系统,在使每个分系统具有ECU、在使该ECU具有故障运行性的以往构成中很难实现。In order to realize a high-reliability system at low cost, it has been difficult to realize in the conventional configuration that each subsystem has an ECU and the ECU has fault operability.

对此,本发明者们考虑了将ECU所具有的控制功能分离为车辆综合控制、执行元件控制、传感器控制,在按各功能给予充分必要的可靠性的基础上,对于执行元件控制功能,即使在车辆综合控制功能异常时,也能够给予基于传感器信息可控制的自律的备用功能,只要能做到这一点,就能有效地实现对高可靠低成本系统。In view of this, the present inventors considered separating the control functions of the ECU into vehicle integrated control, actuator control, and sensor control, and provided sufficient and necessary reliability for each function. For the actuator control function, even When the comprehensive control function of the vehicle is abnormal, it can also provide an autonomous backup function that can be controlled based on sensor information. As long as this can be achieved, a high-reliability and low-cost system can be effectively realized.

另外,在车辆控制装置中,满足严密的时间限制的硬实时处理是基本的。即需要将乘员的操纵及路面状况的变化在限制时间内反映到控制中,在以往技术中,由于按每个分系统进行功能开发,所以在分系统内的实时性确保是比较容易的。In addition, in vehicle control devices, hard real-time processing satisfying strict time constraints is essential. That is, it is necessary to reflect the changes of the occupant's manipulation and road surface conditions in the control within a limited time. In the conventional technology, since the function development is carried out for each subsystem, it is relatively easy to ensure real-time performance in the subsystem.

但是,例如如侧滑姿势的控制,在综合多个执行元件的控制的时候,很难确保实时性。即,由于从一个传感器得到的信息,要传输制动器、转向器、内燃机等多个分系统的车辆控制功能,所以很难保证对于控制所需要的“死线”内的动作。However, it is difficult to ensure real-time performance when combining the control of multiple actuators, such as the control of the sideslip posture. That is, since the information obtained from one sensor is transmitted to the vehicle control functions of multiple sub-systems such as brakes, steering gear, and internal combustion engine, it is difficult to ensure the actions within the "dead line" required for control.

进而,由于数据传输延迟,对于确保在各分系统中同时参照数据也是困难的。因此,为了在以往技术中实现车辆运动控制的高度的协调,要增加系统和分系统的适应、调整的工时,会增大开发成本。Furthermore, due to the delay in data transmission, it is also difficult to ensure simultaneous reference of data in each subsystem. Therefore, in order to achieve a high degree of coordination of vehicle motion control in the conventional technology, it is necessary to increase man-hours for adaptation and adjustment of the system and subsystems, which increases the development cost.

在以往的构成中很难实现为了以低成本实现实时综合控制、将车辆控制逻辑模块和设备驱动程序分散到各ECU中并在ECU间在取得协调。In the conventional configuration, it is difficult to achieve real-time integrated control at low cost, and to distribute vehicle control logic modules and device drivers to each ECU and to achieve coordination among ECUs.

对此,本发明者们考虑到将控制功能分成车辆综合控制ECU和设备(执行元件、传感器)控制器,只要能够分别自律地动作并共用数据,就能有效地实现实时综合控制。In view of this, the present inventors consider dividing the control function into the vehicle comprehensive control ECU and the equipment (actuator, sensor) controller, as long as each can operate autonomously and share data, real-time comprehensive control can be effectively realized.

另外,在新型车的开发中,为了削减开发成本,使用共同平台开发多车种的方法是一般所采用的。因此,需要能够容易实施每个车种的功能增加及部件的变更。但是,在以往技术中,由于由分系统水准的ECU来实现功能,所以难以实现传感器·执行元件水准的标准化。In addition, in the development of new vehicles, in order to reduce development costs, the method of developing multiple models using a common platform is generally adopted. Therefore, it is necessary to be able to easily implement the addition of functions and the modification of components for each vehicle type. However, in the conventional technology, since the functions are realized by ECUs at the system level, it is difficult to standardize the sensor and actuator levels.

即,作为ECU具有的控制逻辑模块,存在有逻辑、抽象的控制应用程序和实际控制传感器·执行元件的设备驱动部分的两方。That is, as the control logic module included in the ECU, there are both a logical and abstract control application program and a device driver part that actually controls sensors and actuators.

虽然也有设备驱动标准化的动作,但无论如何都是接口方面的标准化,在实时性及ECU的资源等的方面,与控制应用程序紧密相关。There is also a movement to standardize device drivers, but in any case, it is the standardization of the interface, and it is closely related to the control application program in terms of real-time performance and ECU resources.

因此,如有传感器·执行元件的追加、变更,则会发生在分系统水准上的控制任务等的设计更改,就有带来开发成本的上升的问题。Therefore, if there is an addition or change of sensors and actuators, design changes such as control tasks at the sub-system level will occur, and there is a problem of bringing about an increase in development costs.

为了实现扩展性高的系统,在以可自律动作的形式而具有控制器的基础上,需要在分散车辆控制装置内设置假想的共有存储器。对此,本发明者们考虑到各传感器·执行元件使用状态信息·控制目标值等的高维接口、在共有存储器中进行传播,同时,自律地取得、控制各传感器·执行元件需要的数据是有效的。In order to realize a highly expandable system, it is necessary to provide a virtual shared memory in the distributed vehicle control device in addition to having a controller capable of autonomous operation. In this regard, the inventors considered that each sensor/actuator uses a high-dimensional interface such as state information and control target value, propagates it in a shared memory, and at the same time, autonomously acquires and controls the data necessary for each sensor/actuator. Effective.

面向具有高可靠性的车辆控制装置的实用化的课题,是不要大幅地增加成本并实现高可靠性,但以往技术,将主控制器或控制组件的一部分、通过冗长化等复杂的硬件构成来实现故障运行,在成本方面还不能认为是最佳的系统构成。The problem for the practical use of a highly reliable vehicle control device is to achieve high reliability without greatly increasing the cost. However, in the conventional technology, a main controller or a part of the control unit is constructed by complicated hardware such as redundancy. It cannot be considered as the optimal system configuration in terms of cost to realize failure operation.

另外,在上述以往技术中,即使在驾驶员超过车辆的界限进行操作的时候也用电子修正制动操作等,能够避开车辆的滑动、自转等而将事故防止于未然。In addition, in the above-mentioned conventional technology, even when the driver operates beyond the limit of the vehicle, the brake operation is electronically corrected, so that slipping, rotation, etc. of the vehicle can be avoided, and accidents can be prevented before they occur.

但是,由于从制动踏板及各种传感器的信息到各车轮的制动器,由电子控制单元(ECU)集中控制,所以在电子控制单元(ECU)发生故障时,由于不操作制动器,所以对电子控制单元(ECU)要求高可靠性,对于控制装置的可靠性更需要进一步给予考虑。However, since information from the brake pedal and various sensors to the brakes of each wheel is centrally controlled by the electronic control unit (ECU), when the electronic control unit (ECU) fails, the brakes are not operated, so the electronic control The unit (ECU) requires high reliability, and further consideration needs to be given to the reliability of the control device.

发明内容 Contents of the invention

本发明鉴于上述问题,其目的在于提供一种通过不将各个控制器的冗长度提高到需要以上、以系统整体防备错误的方式来实现以简单的ECU构成、低成本而确保高可靠性和实时性以及扩展性的车辆控制装置。In view of the above problems, an object of the present invention is to provide a method for ensuring high reliability and real-time operation with a simple ECU configuration and low cost by preventing errors in the entire system without increasing the redundancy of each controller more than necessary. Sexuality and scalability of the vehicle control device.

本发明的车辆控制装置,传感器从属计算机(传感器控制器)向同一网络上输出传感器值,主计算机(指令控制器)接收上述传感器值并基于传感器值计算控制目标值,在向上述网络上输出的同时,执行元件从属计算机(执行元件控制器)接收上述控制目标值,并控制执行元件;在上述执行元件从属计算机不能正确接收上述控制目标值的时候,上述执行元件从属计算机,接收上述传感器从属计算机输出到上述同一网络上的上述传感器值并基于该传感器值来运算控制目标值,控制执行元件。In the vehicle control device of the present invention, the sensor slave computer (sensor controller) outputs sensor values to the same network, and the master computer (command controller) receives the sensor values and calculates a control target value based on the sensor values, and outputs the sensor values to the network. At the same time, the actuator slave computer (executor controller) receives the control target value and controls the actuator; when the actuator slave computer cannot correctly receive the control target value, the actuator slave computer receives the sensor slave computer The control target value is calculated based on the sensor value output to the same network, and the actuator is controlled.

有关本发明的车辆控制装置,由基于驾驶员的要求信号和车辆状态信号来运算操作量指令值的操作量生成节点、基于从该操作量生成节点给出的操作量指定值来控制执行元件的执行元件驱动节点构成,进行车辆的驱动、操舵、制动,上述各节点,具有故障检测功能、在通过该故障检测功能检测到节点内的故障的时候,对该节点外部,不涉及通知该节点处于故障状态以外的作用,当在任意节点上发生故障的时候,基于从处于该故障状态的某节点给出的故障检测通知,通过在该节点以外的正常的节点中进行切换控制,继续作为系统整体的正常动作。According to the vehicle control device of the present invention, the operation amount generation node that calculates the operation amount command value based on the driver's request signal and the vehicle state signal controls the actuator based on the operation amount designation value given from the operation amount generation node. The actuator drives the nodes to drive, steer, and brake the vehicle. Each of the above-mentioned nodes has a fault detection function. When a fault is detected in the node through the fault detection function, it does not involve notifying the node to the outside of the node. For functions other than the failure state, when a failure occurs on any node, based on the failure detection notification given from a node in the failure state, it continues to function as a system by performing switching control in a normal node other than the node. Overall normal movement.

检测上述驾驶员的要求的传感器,连接到通信网络上,在检测到该传感器内的故障的时候,对该节点外部,不涉及通知该节点处于故障状态以外的作用。The sensor that detects the above-mentioned driver's request is connected to the communication network, and when a fault is detected in the sensor, it does not involve the action of notifying the node that it is in a state other than a fault to the outside of the node.

传感器,具体地由多个传感器部件、将该多个传感器部件的输出变换成数字值的A/D变换器、多个A/D变换值的一致检测功能、滤波功能、和通信接口构成。The sensor is specifically composed of a plurality of sensor components, an A/D converter for converting the outputs of the plurality of sensor components into digital values, a coincidence detection function for a plurality of A/D converted values, a filter function, and a communication interface.

上述操作量生成节点,在接收到从处于故障状态的节点给出的故障检测通知的时候,通过对应于故障处的切换控制,稳定地保持车辆的行驶状态。The operation amount generating node described above, when receiving a failure detection notification given from a node in a failure state, stably maintains the running state of the vehicle by switching control corresponding to the failure.

上述执行元件驱动节点,具有在不能接收从上述操作量生成节点给出的操作量指令值的时候、基于检测上述驾驶员的要求的传感器的信号而生成操作量指令值的功能,在不能接收从上述操作量生成节点给出的操作量指令值的时候,通过从通常控制切换到实现该功能的控制而稳定地保持车辆的行驶状态。The actuator drive node has a function of generating an operation amount command value based on the signal of the sensor detecting the driver's request when the operation amount command value given from the operation amount generating node cannot be received. When the above operation amount generation node gives the operation amount command value, the running state of the vehicle is stably maintained by switching from the normal control to the control for realizing this function.

检测驾驶员的要求的传感器、操作量生成节点、和执行元件驱动节点被连接到同一通信网络上。该通信网络由主总线和备用总线构成,在主总线上,连接检测驾驶员的要求的全部传感器、操作量生成节点和执行元件驱动节点,在备用总线上,连接检测驾驶员的要求的传感器的一部分、和执行元件驱动节点的一部分,在主总线有故障时,执行元件驱动节点稳定地保持车辆的行驶状态。A sensor detecting a driver's request, an operation variable generating node, and an actuator driving node are connected to the same communication network. This communication network is composed of a main bus and a backup bus. The main bus is connected with all the sensors detecting the driver's request, the operation amount generation node and the actuator drive node, and the backup bus is connected with the sensors for detecting the driver's request. A part, and a part of the actuator drive node, when the main bus fails, the actuator drive node keeps the running state of the vehicle stably.

更具体地,在本发明的车辆控制装置中,检测上述驾驶员的要求的传感器,是测定转向器的旋转角度的操舵角传感器、测定制动踏板的踏入量的制动踏板位置传感器、和测定加速踏板的踏入量的加速踏板位置传感器,操作量生成节点,是根据检测上述驾驶员的要求的传感器的信号解释驾驶员的意图并与检测车辆状态的传感器信号一起综合地控制车辆运动的车辆运动综合控制器、和综合地控制车辆的驱动系统的驱动系统综合控制器,执行元件驱动节点,是控制发生操舵力的转向器执行元件的转向器执行元件驱动控制器、和控制生成制动力的制动器执行元件的制动器执行元件驱动控制器、和控制对阻尼力进行调整的悬架执行元件的悬架执行元件驱动控制器,这些节点被连接到同一通信网络上。另外,检测车辆的外界状态的雷达或照相机,也可以连接到上述通信网络上。More specifically, in the vehicle control device of the present invention, the sensor for detecting the above-mentioned driver's request is a steering angle sensor for measuring the rotation angle of the steering gear, a brake pedal position sensor for measuring the depression amount of the brake pedal, and The accelerator pedal position sensor that measures the amount of depression of the accelerator pedal, and the operation amount generation node interpret the driver's intention based on the signal of the sensor that detects the above-mentioned driver's request, and control the vehicle motion comprehensively together with the sensor signal that detects the vehicle state The vehicle motion integrated controller, and the drive system integrated controller that comprehensively controls the driving system of the vehicle, the actuator drive node, the steering actuator actuator drive controller that controls the steering actuator that generates the steering force, and the control that generates the braking force A brake actuator drive controller for the brake actuators and a suspension actuator drive controller for controlling the suspension actuators that adjust the damping force are connected to the same communication network. In addition, a radar or a camera for detecting the external state of the vehicle may also be connected to the above-mentioned communication network.

进而,上述加速踏板位置传感器,在连接到上述通信网络上的同时,从上述驱动系统综合控制控制器接收转矩指令值,基于此也可以直接连接到控制内燃机的发动机控制控制器上。Furthermore, the accelerator pedal position sensor may receive a torque command value from the drive system integrated control controller while being connected to the communication network, and may be directly connected to an engine control controller for controlling an internal combustion engine based on this.

在这样的车辆控制装置中,在没有机械地结合制动踏板和制动力发生机构的时候,至少使制动踏板位置传感器在单一故障时也继续正常动作。In such a vehicle control device, when the brake pedal and the brake force generating mechanism are not mechanically connected, at least the brake pedal position sensor continues to operate normally even in the event of a single failure.

在没有机械地结合转向器和操舵力发生机构的时候,至少使操舵角传感器和转向器执行元件驱动控制器在单一故障时也继续正常动作,并且,使转向器执行元件冗长化。When the steering gear and the steering force generating mechanism are not mechanically combined, at least the steering angle sensor and the steering gear actuator drive controller continue to operate normally even in the event of a single failure, and the steering gear actuator becomes redundant.

其特征为,各个转向器执行元件发生的力,与在机械地结合转向器和操舵力发生机构的系统使用的转向器执行元件发生的力比较要小。It is characterized in that the force generated by each steering gear actuator is smaller than the force generated by the steering gear actuator used in the system that mechanically combines the steering gear and the steering force generating mechanism.

另外,上述转向器执行元件驱动控制器,在检测出节点内的故障的时候,向该节点外部,不涉及通知该节点处于故障状态以外的作用并使驱动节点冗长化,该驱动节点分别独立地驱动上述冗长化了的转向器执行元件。In addition, when the above-mentioned steering gear actuator drive controller detects a fault in a node, it does not involve the function of notifying the node that the node is in a fault state and making the drive nodes redundant, and the drive nodes are independently Drive the aforementioned redundant steering gear actuators.

在没有有关制动器、转向器的备份机构的车辆控制装置中,上述制动踏板位置传感器和操舵角传感器,是将由多个传感器部件、将该多个传感器部件的输出变换成数字值的A/D变换器、多个A/D变换值的一致检验功能、滤波功能、和通信接口构成的故障无反应的传感器实行冗长化的传感器,或是由至少三个传感器部件、将该多个传感器部件的输出变换成数字值的A/D变换器、多个A/D变换值的多数判定功能、滤波功能、和通信接口构成的故障运行的传感器。In a vehicle control device without a backup mechanism for brakes and steering gears, the above-mentioned brake pedal position sensor and steering angle sensor are A/D devices that convert the outputs of the multiple sensor components into digital values. Converter, a plurality of A/D conversion value consistency check function, filter function, and communication interface constitute a sensor that does not respond to a failure to implement a redundant sensor, or is composed of at least three sensor components, the plurality of sensor components It is a fault-operated sensor composed of an A/D converter that converts the output into a digital value, a majority judgment function for multiple A/D conversion values, a filter function, and a communication interface.

本发明的车辆控制装置,具有操作量生成节点和修正量生成节点和执行元件驱动节点,在执行元件驱动节点上,在修正量生成节点正常的时候,对由操作量生成节点给出的操作量施加从修正量生成节点给出的修正量、以作为控制目标值来控制执行元件,在修正量生成节点异常的时候,将由操作量生成节点给出的操作量作为控制目标值来控制执行元件。The vehicle control device of the present invention has an operation amount generating node, a correction amount generating node, and an actuator driving node. On the actuator driving node, when the correction amount generating node is normal, the operation amount given by the operating amount generating node is The actuator is controlled by applying the correction amount given from the correction amount generation node as the control target value, and when the correction amount generation node is abnormal, the actuator is controlled using the operation amount given by the operation amount generation node as the control target value.

其结果,即使是在修正量生成节点发生故障的时候,也不进行修正,但是基于操作量能够控制执行元件。As a result, even when the correction amount generation node fails, the correction is not performed, but the actuator can be controlled based on the operation amount.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来控制执行元件的多个执行元件驱动装置、和连接多个执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有基于自己的动作状态和其它的执行元件驱动装置的动作状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: a plurality of actuator driving devices for controlling the actuators based on the driver's request or the state of the vehicle; and a communication device for connecting the plurality of actuator driving devices to control the driving and steering of the vehicle. . At least one of the brakes, the actuator drive device has a control method selection device for selecting a control method of the actuator based on its own operating state and the operating state of other actuator drive devices.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来控制执行元件的多个执行元件驱动装置、和连接多个执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有检测自己的故障并通过通信装置对其它的执行元件驱动装置通知故障发生的故障检测装置、和基于自己的故障状态和其它的执行元件驱动装置的故障状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: a plurality of actuator driving devices for controlling the actuators based on the driver's request or the state of the vehicle; and a communication device for connecting the plurality of actuator driving devices to control the driving and steering of the vehicle. 1. At least one of the brakes, the actuator drive device, has a fault detection device that detects its own fault and notifies other actuator drive devices of the failure through a communication device, and based on its own fault state and other actuator drive devices. A control method selection device that selects the control method of the actuator according to the fault state.

另外,本发明的车辆控制装置是,具有:基于驾驶员的要求或车辆状态来控制执行元件的多个执行元件驱动装置、和连接多个执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有基于通过通信装置从其它执行元件驱动装置接收的短信息的接收状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention is provided with: a plurality of actuator driving devices for controlling the actuators based on the driver's request or the state of the vehicle; At least one of steering and braking, the actuator drive device has a control method selection device for selecting a control method of the actuator based on the reception state of the short message received from the other actuator drive device through the communication device.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来控制执行元件的多个执行元件驱动装置、和连接多个执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有通过通信装置将通知动作状态用的短信息发送给上述其它的执行元件驱动装置并基于是否从其它的执行元件驱动装置接收到上述短信息来选择执行元件控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: a plurality of actuator driving devices for controlling the actuators based on the driver's request or the state of the vehicle; and a communication device for connecting the plurality of actuator driving devices to control the driving and steering of the vehicle. , At least one of the brakes, the actuator drive device, has the function of sending a short message for notifying the action state to the other actuator drive device through the communication device and selecting based on whether the above short message is received from the other actuator drive device. A control method selection device for a control method of an actuator.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来运算操作量指令值的至少1个操作量生成装置、和基于从操作量生成装置给出的操作量指令值来控制执行元件的多个执行元件驱动装置、和连接操作量生成装置和执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有基于自己的动作状态、和其它的执行元件驱动装置的动作状态、和操作量生成装置的动作状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: at least one operation amount generation device that calculates an operation amount command value based on a driver's request or a vehicle state; A plurality of actuator drive devices for actuators, and a communication device that connects the operation amount generation device and the actuator drive device, and controls at least one of driving, steering, and braking of the vehicle, and the actuator drive device has an action state based on itself , and the operating state of the other actuator driving device, and the operating state of the operation amount generating device to select the control method selection device for the control method of the actuator.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来运算操作量指令值的至少1个操作量生成装置、和基于从操作量生成装置给出的操作量指令值来控制执行元件的多个执行元件驱动装置、和连接操作量生成装置和上述执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,操作量生成装置,具有检测自己的故障并通过通信装置对上述执行元件驱动装置或操作量生成装置通知故障发生的故障检测装置,执行元件驱动装置,具有检测自己的故障、基于通过通信装置对其它的执行元件驱动装置或操作量生成装置通知故障发生的故障检测装置、自己的故障状态、其它的执行元件驱动装置的故障状态、和操作量生成装置的故障发生状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: at least one operation amount generation device that calculates an operation amount command value based on a driver's request or a vehicle state; A plurality of actuator drive devices for actuators, and a communication device that connects the operation amount generation device and the above actuator drive device, and controls at least one of driving, steering, and braking of the vehicle, and the operation amount generation device has a function of detecting its own failure And through the communication device, the failure detection device notifies the above-mentioned actuator driving device or the operation amount generating device of the occurrence of the failure. A control method selection device that selects a control method for the actuator by notifying the fault detection device of the occurrence of the fault, the fault state of itself, the fault state of other actuator drive devices, and the fault occurrence state of the manipulated variable generating device.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来运算操作量指令值的至少1个操作量生成装置、和基于从操作量生成装置给出的操作量指令值来控制执行元件的多个执行元件驱动装置、和连接操作量生成装置和上述执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有基于从其它执行元件驱动装置或操作量生成装置给出的短信息的接收状态来选择执行元件的控制方法的控制方法选择装置。In addition, the vehicle control device of the present invention has: at least one operation amount generation device that calculates an operation amount command value based on a driver's request or a vehicle state; A plurality of actuator drive devices for actuators, and a communication device that connects the operation amount generation device and the above-mentioned actuator drive device, and controls at least one of driving, steering, and braking of the vehicle, and the actuator drive device has The control method selection device that selects the control method of the executive component based on the receiving status of the short message given by the component driving device or the operation amount generating device.

另外,本发明的车辆控制装置,具有:基于驾驶员的要求或车辆状态来运算操作量指令值的至少1个操作量生成装置、和基于从操作量生成装置给出的操作量指令值来控制执行元件的多个执行元件驱动装置、和连接操作量生成装置和上述执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,操作量生成装置,通过通信装置将操作量指令值发送到每个执行元件驱动装置上;执行元件驱动装置,当接收到操作量指令值时,通过上述通信装置将应答短信息送到操作量生成装置或其它的执行元件驱动装置中,执行元件驱动装置,具有控制方法选择装置,该控制方法选择装置,基于是否接收到从操作量生成装置给出的操作量指令值或从其它的执行元件驱动装置给出的应答短信息来选择执行元件的控制方法。In addition, the vehicle control device of the present invention has: at least one operation amount generation device that calculates an operation amount command value based on a driver's request or a vehicle state; A plurality of actuator drive devices for actuators, and a communication device that connects the operation amount generation device with the above actuator drive device, and controls at least one of driving, steering, and braking of the vehicle, and the operation amount generation device communicates the operation through the communication device The command value of the actuator is sent to each actuator drive device; the actuator drive device, when receiving the command value of the operation variable, sends the response short message to the operation variable generating device or other actuator drive devices through the above communication device, The actuator driving device has a control method selection device, and the control method selection device selects and executes the control method based on whether an operation variable command value given from the operation variable generating device or a response short message given from another actuator drive device is received. The control method of the component.

另外,本发明的车辆控制装置,具有:检测驾驶员的要求或车辆状态的传感器装置、和基于从传感器装置给出的信息来运算操作量指令值的至少1个操作量生成装置、和基于从操作量生成装置给出的操作量指令值或从上述传感器给出的信息来控制执行元件的多个执行元件驱动装置、和连接传感器装置和操作量生成装置和执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有控制方法选择装置,该控制方法选择装置,基于自己的动作状态和其它的执行元件驱动装置的动作状态、和操作量生成装置的故障的动作状态,选择使用从操作量生成装置给出的操作量指令值的控制方法、使用从传感器给出的信息的控制方法、使执行元件为规定的状态的控制方法中任意一种方法。In addition, the vehicle control device of the present invention has: a sensor device for detecting a driver's request or a vehicle state; at least one operation amount generating device for calculating an operation amount command value based on information given from the sensor device; a plurality of actuator driving means for controlling the actuators from an operation amount command value given by the operation amount generating means or information given from the above-mentioned sensor, and a communication means connecting the sensor means with the operation amount generating means and the actuator driving means, and Controlling at least one of the driving, steering, and braking of the vehicle, the actuator drive device has a control method selection device, and the control method selection device is based on its own action state and the action state of other actuator drive devices. For the operating state of the device's failure, select any one of the control method using the operation amount command value given from the operation amount generating device, the control method using information given from the sensor, and the control method that makes the actuator a predetermined state. method.

另外,本发明的车辆控制装置,具有:检测驾驶员的要求或车辆状态的传感器装置、基于从传感器装置给出的信息来运算操作量指令值的至少1个操作量生成装置、基于从操作量生成装置给出的操作量指令值或从上述传感器给出的信息来控制执行元件的多个执行元件驱动装置、和连接传感器装置和操作量生成装置和执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,操作量生成装置,检具有测自己的故障并通过通信装置对执行元件驱动装置或操作量生成装置通知故障发生的故障检测装置,执行元件驱动装置,具有控制方法选择装置,该控制方法选择装置,基于检测自己的故障并通过通信装置对其它的执行元件驱动装置或操作量生成装置通知故障发生的故障检测装置、自己的故障状态、其它的执行元件驱动装置的故障状态、和操作量生成装置的故障的发生状态,选择使用从操作量生成装置给出的操作量指令值的控制方法、使用从传感器给出的信息的控制方法、使执行元件为规定的状态的控制方法中任意一种方法。In addition, the vehicle control device of the present invention has: a sensor device for detecting a driver's request or a vehicle state; at least one operation amount generating device for calculating an operation amount command value based on information given from the sensor device; A plurality of actuator driving devices that control the actuators by generating an operation amount command value from the device or information from the above-mentioned sensors, and a communication device that connects the sensor device with the operation amount generating device and the actuator drive device, and controls the vehicle At least one of driving, steering, and braking, the operation variable generation device, the fault detection device that detects its own fault and notifies the actuator drive device or the operation variable generation device through the communication device of the failure detection device, the actuator drive device, has A control method selection device, the control method selection device is based on detecting its own fault and notifying other actuator drive devices or operation variable generation devices of the fault detection device, its own fault state, and other actuator drive devices through the communication device. The failure state of the device and the occurrence state of the failure of the manipulated variable generating device, select the control method using the manipulated variable command value given from the manipulated variable generating device, the control method using the information given from the sensor, and make the actuator a predetermined value. Any one of the state control methods.

另外,本发明的车辆控制装置,具有:检测驾驶员的要求或车辆状态的传感器装置、基于从传感器装置给出的信息来运算操作量指令值的至少1个操作量生成装置、基于从操作量生成装置给出的操作量指令值或从传感器给出的信息来控制执行元件的多个执行元件驱动装置、和连接传感器装置和上述操作量生成装置和执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,执行元件驱动装置,具有控制方法选择装置,该控制方法选择装置,基于从其它的执行元件驱动装置或操作量生成装置给出的短信息的接收状态,选择使用从操作量生成装置给出的操作量指令值的控制方法、使用从传感器给出的信息的控制方法、使执行元件为规定的状态的控制方法中任意一种方法。In addition, the vehicle control device of the present invention has: a sensor device for detecting a driver's request or a vehicle state; at least one operation amount generating device for calculating an operation amount command value based on information given from the sensor device; A plurality of actuator driving devices that control the actuators by generating an operation amount command value given by the device or information given from the sensor, and a communication device that connects the sensor device and the above-mentioned operation amount generating device and the actuator drive device, and controls the vehicle At least one of driving, steering, and braking, the actuator driving device has a control method selection device, and the control method selection device is based on the reception status of the short message given from the other actuator driving device or the operation amount generating device, Any one of the control method using the manipulated variable command value given from the manipulated variable generator, the control method using information given from the sensor, and the control method of setting the actuator in a predetermined state is selected.

另外,本发明的车辆控制装置,具有:检测驾驶员的要求或车辆状态的传感器装置、基于从传感器装置给出的信息来运算操作量指令值的至少1个操作量生成装置、基于从操作量生成装置给出的操作量指令值或从传感器给出的信息来控制执行元件的多个执行元件驱动装置、和连接传感器装置和上述操作量生成装置和执行元件驱动装置的通信装置,并控制车辆的驱动、操舵、制动的至少一个,操作量生成装置,通过通信装置将操作量指令值发送到每个执行元件驱动装置上;执行元件驱动装置,当接收到操作量指令值时,通过通信装置将应答短信息送到操作量生成装置或上述其它的执行元件驱动装置中,执行元件驱动装置,具有控制方法选择装置,该控制方法选择装置,基于是否接收到从操作量生成装置给出的操作量指令值或从其它的执行元件驱动装置给出的应答短信息,选择使用从操作量生成装置给出的操作量指令值的控制方法、使用从传感器给出的信息的控制方法、使执行元件为规定的状态的控制方法中任意一种方法。In addition, the vehicle control device of the present invention has: a sensor device for detecting a driver's request or a vehicle state; at least one operation amount generating device for calculating an operation amount command value based on information given from the sensor device; A plurality of actuator driving devices that control the actuators by generating an operation amount command value given by the device or information given from the sensor, and a communication device that connects the sensor device and the above-mentioned operation amount generating device and the actuator drive device, and controls the vehicle At least one of driving, steering, and braking, the operating variable generating device sends the operating variable command value to each actuator driving device through the communication device; the actuator driving device, when receiving the operating variable command value, communicates The device sends the response short message to the operation variable generating device or the above-mentioned other actuator driving devices. The actuator driving device has a control method selection device. Manipulation command value or response short message given from other actuator drive devices, select the control method using the manipulating command value given from the manipulating quantity generating device, the control method using the information given from the sensor, and make the execution Any one of the control methods for the element to be in a specified state.

另外,本发明的车辆控制装置,在进行车辆的驱动、操舵、制动,具有下述构成,分散配置:检测驾驶员的要求并输出信号的节点、基于该要求信号来运算操作量指令值并进行信号输出的操作量生成节点、和基于从该操作量生成节点给出的操作量指令值来控制执行元件的执行元件驱动节点;上述各节点,设置有储存各信号输出的数据接收表,并具有判定其内容、对其它节点的故障检测功能。In addition, the vehicle control device according to the present invention has a structure in which the vehicle is driven, steered, and braked, and is arranged in a distributed manner: a node that detects a driver's request and outputs a signal, calculates an operation amount command value based on the request signal, and An operation amount generation node that performs signal output, and an actuator drive node that controls the actuator based on an operation amount command value given from the operation amount generation node; each of the above-mentioned nodes is provided with a data receiving table that stores each signal output, and It has the functions of judging its content and detecting faults of other nodes.

另外,本发明的车辆控制装置,在数据接收表中包含表示短信息的时刻的信息,在时刻的延迟比预先制定的值大的时候,判断为发送处或其通信路没有正常工作、或者已返回到正常状态。In addition, the vehicle control device of the present invention includes information indicating the time of the short message in the data receiving table, and when the delay of the time is greater than a predetermined value, it is judged that the sending place or its communication path is not working normally, or has Return to normal state.

另外,本发明的车辆控制装置,在数据接收表中包含故障投票部,并具有根据预先制定的算法来特定故障节点或恢复到正常状态的节点的功能。由此,能够判定节点的故障发生和恢复,能够安全地继续车辆控制。In addition, the vehicle control device of the present invention includes a failure voting unit in the data reception table, and has a function of specifying a failure node or a node returning to a normal state based on a predetermined algorithm. Thereby, it is possible to determine the failure occurrence and recovery of a node, and to continue vehicle control safely.

另外,本发明的车辆控制装置是,通过将其它节点的故障诊断信息作为故障投票而输出,并共有各节点的故障判定状况。由此,由于各节点的故障判定一致,所以能够安全地继续车辆控制。In addition, the vehicle control device of the present invention outputs the fault diagnosis information of other nodes as a fault vote, and shares the fault judgment status of each node. As a result, since the failure judgments of the respective nodes agree, vehicle control can be continued safely.

(发明效果)(invention effect)

本发明的车辆控制装置,即使不能够控制操作量生成装置或任意的执行元件驱动装置,也能通过其它的执行元件驱动装置安全地继续车辆控制。由此,不必将每个控制器的冗长度提高到所需要以上,以简单的ECU构成、低成本就能够确保高可靠性和实时性以及扩展性。The vehicle control device of the present invention can safely continue vehicle control through other actuator drive devices even if it cannot control the operation amount generating device or any actuator drive device. Therefore, it is not necessary to increase the redundancy of each controller more than necessary, and it is possible to ensure high reliability, real-time performance, and expandability with a simple ECU configuration and low cost.

附图说明 Description of drawings

图1是表示本发明的车辆控制装置的实施例1的基本的构成的方块图。FIG. 1 is a block diagram showing a basic configuration of Embodiment 1 of a vehicle control device according to the present invention.

图2(a)、(b)是分别表示实施例1的车辆控制装置中的通信数据流程的具体例的数据流程图。2( a ) and ( b ) are data flow diagrams each showing a specific example of the flow of communication data in the vehicle control device of the first embodiment.

图3是应用实施例1的车辆控制装置的车辆的概要图。3 is a schematic diagram of a vehicle to which the vehicle control device of the first embodiment is applied.

图4是实施例1的车辆控制装置的车辆运动综合控制ECU的控制方块图。4 is a control block diagram of a vehicle motion integrated control ECU of the vehicle control device of Embodiment 1. FIG.

图5是表示车辆运动状态的说明图。Fig. 5 is an explanatory diagram showing the state of motion of the vehicle.

图6是表示由车辆运动综合控制ECU的车辆状态推定部进行的车辆状态推定处理流程的流程图。6 is a flowchart showing the flow of vehicle state estimation processing performed by the vehicle state estimation unit of the vehicle motion integrated control ECU.

图7是表示由车辆运动综合控制ECU的目标状态运算部进行的目标状态运算处理流程的流程图。7 is a flowchart showing the flow of target state calculation processing performed by the target state calculation unit of the vehicle motion integrated control ECU.

图8是表示车体操作矢量·操作力矩的说明图。FIG. 8 is an explanatory diagram showing vehicle body manipulation vectors and manipulation torques.

图9是表示由车辆运动综合控制ECU的操作量运算部进行的操作量运算处理流程的流程图。9 is a flowchart showing the flow of operation amount calculation processing performed by the operation amount calculation unit of the vehicle motion integrated control ECU.

图10是表示车体操作的轮胎矢量的说明图。Fig. 10 is an explanatory diagram showing tire vectors for vehicle body manipulation.

图11(a)、(b)是表示操作量分配处理的概要图。11( a ), ( b ) are schematic diagrams showing operation amount allocation processing.

图12是根据实施例1的车辆控制装置的DBW系统的综合控制ECU的控制方块图。12 is a control block diagram of an integrated control ECU of the DBW system of the vehicle control device according to Embodiment 1. FIG.

图13是表示面向应用本发明的车辆控制装置的下一代车辆综合车辆控制装置、自律分散控制平台(实施例2)的方块图。Fig. 13 is a block diagram showing a next-generation integrated vehicle control device for a vehicle to which the vehicle control device of the present invention is applied, an autonomous decentralized control platform (Embodiment 2).

图14(a)、(b)是表示自律分散控制平台的数据区的概要的方块图。14(a), (b) are block diagrams showing the outline of the data area of the autonomous distributed control platform.

图15是表示分散控制平台的自律的动作的概要的方块图,是车辆运动状态量的概要图。15 is a block diagram showing the outline of the autonomous operation of the distributed control platform, and is a schematic diagram of vehicle motion state quantities.

图16是表示自律的监视概要的方块图。Fig. 16 is a block diagram showing an outline of autonomous monitoring.

图17是表示执行元件节点动作流程的图。Fig. 17 is a diagram showing an operation flow of an actuator node.

图18(a)、(b)是表示XBW车辆控制装置的构成例的方块图。18( a ), ( b ) are block diagrams showing configuration examples of the XBW vehicle control device.

图19是表示本发明的车辆控制装置的实施例2的基本构成的方块图。Fig. 19 is a block diagram showing the basic configuration of Embodiment 2 of the vehicle control device of the present invention.

图20是表示操作量生成节点功能的方块图。Fig. 20 is a block diagram showing the function of an operation amount generating node.

图21是表示执行元件驱动节点的功能的方块图。Fig. 21 is a block diagram showing the functions of an actuator driver node.

图22是表示应用本发明的车辆控制装置的实施例3的车辆的概要图。Fig. 22 is a schematic diagram showing a vehicle according to Embodiment 3 of the vehicle control device of the present invention.

图23是表示在TDM通信中的节点的故障检测方法的说明图。Fig. 23 is an explanatory diagram showing a node failure detection method in TDM communication.

图24是表示无故障反应的传感器节点的功能构成图。Fig. 24 is a diagram showing the functional configuration of a sensor node responding to no failure.

图25是表示无故障反应的传感器节点的硬件构成图。FIG. 25 is a diagram showing a hardware configuration of a sensor node that responds without failure.

图26是表示应用本发明的车辆控制装置的实施例4的车辆的概要图。Fig. 26 is a schematic diagram showing a vehicle according to a fourth embodiment of the vehicle control device of the present invention.

图27是表示应用本发明的车辆控制装置的实施例5的车辆的概要图。Fig. 27 is a schematic diagram showing a vehicle according to Embodiment 5 of the vehicle control device of the present invention.

图28是表示应用本发明的车辆控制装置的实施例6的车辆的概要图。Fig. 28 is a schematic diagram showing a vehicle according to a sixth embodiment of the vehicle control device of the present invention.

图29是表示应用本发明的车辆控制装置的实施例7的车辆的概要图。Fig. 29 is a schematic diagram showing a vehicle according to a seventh embodiment of the vehicle control device of the present invention.

图30是表示执行元件驱动节点构成的方块图。Fig. 30 is a block diagram showing the configuration of an actuator drive node.

图31是表示使操作量生成节点、修正量生成节点冗长化的实施例的方块图。Fig. 31 is a block diagram showing an example of making the operation amount generating node and the correction amount generating node redundant.

图32是表示具有多个功能、比较功能的执行元件驱动节点的实施例的方块图。Fig. 32 is a block diagram showing an example of an actuator drive node having a plurality of functions and comparison functions.

图33是表示在故障时作除变动作的执行元件驱动节点的实施例的方块图。Fig. 33 is a block diagram showing an embodiment of an actuator drive node that performs a devariation operation at the time of failure.

图34是表示故障时的除变动作的时间图。Fig. 34 is a timing chart showing the devariation operation at the time of failure.

图35是表示各节点连接到同一通信路的实施例的方块图。Fig. 35 is a block diagram showing an embodiment in which nodes are connected to the same communication path.

图36是表示传送同一通信路的信息流程的图。Fig. 36 is a diagram showing the flow of information transmitted through the same communication channel.

图37是表示在Steer-by-Wire系统中应用本实施例的具体例的方块图。Fig. 37 is a block diagram showing a specific example of applying this embodiment to a Steer-by-Wire system.

图38是表示在Brake-by-Wire中应用本实施例的具体例的方块图。Fig. 38 is a block diagram showing a specific example of applying this embodiment to Brake-by-Wire.

图39是表示在综合Steer-by-Wire和Brake-by-Wire的综合系统中应用本实施例的具体例的方块图。Fig. 39 is a block diagram showing a specific example of applying this embodiment to an integrated system integrating Steer-by-Wire and Brake-by-Wire.

图40是表示本发明的车辆控制装置的实施例8的基本构成的方块图。Fig. 40 is a block diagram showing the basic configuration of Embodiment 8 of the vehicle control device of the present invention.

图41是表示本发明的车辆控制装置的实施例8的变形例的方块图。Fig. 41 is a block diagram showing a modified example of the eighth embodiment of the vehicle control device of the present invention.

图42是表示本发明的车辆控制装置的实施例8的另一个变形例的方块图。Fig. 42 is a block diagram showing another modified example of the eighth embodiment of the vehicle control device of the present invention.

图43是表示操作量生成节点功能的方块图。Fig. 43 is a block diagram showing the function of an operation amount generation node.

图44是表示执行元件驱动节点功能的方块图。Fig. 44 is a block diagram showing the function of an actuator driver node.

图45是表示执行元件驱动节点动作的时间图。Fig. 45 is a time chart showing the operation of the actuator drive node.

图46是表示控制程序选择处理的流程图。Fig. 46 is a flowchart showing control program selection processing.

图47(a)、(b)是分别表示控制程序选择表的例子的说明图。47(a) and (b) are explanatory diagrams each showing an example of a control program selection table.

图48是表示制动控制的开始时期的操作量生成节点和执行元件驱动节点动作的时间图。Fig. 48 is a time chart showing the operations of the operation amount generating node and the actuator driving node at the start time of brake control.

图49是表示在制动控制中的操作量生成节点和执行元件驱动节点的动作的时间图。Fig. 49 is a timing chart showing the operations of the operation amount generating node and the actuator driving node in brake control.

图50是表示选择执行制动控制的车轮的处理流程图。Fig. 50 is a flowchart showing a process for selecting a wheel for braking control.

图51(a)、(b)是分别表示制动车轮选择表的例子的说明图。51( a ) and ( b ) are explanatory diagrams each showing an example of a brake wheel selection table.

图52是表示在制动控制开始时期、左后轮的执行元件驱动节点或执行元件发生故障时的操作量生成节点和执行元件驱动节点的动作的时间图。52 is a time chart showing operations of the operation amount generating node and the actuator driving node when the actuator driving node of the left rear wheel or the actuator fails at the brake control start time.

图53是表示在制动控制中左后轮的执行元件驱动节点或执行元件发生故障时的操作量生成节点和执行元件驱动节点的动作的时间图。53 is a time chart showing operations of the operation amount generating node and the actuator driving node when the actuator driving node of the left rear wheel or the actuator fails during braking control.

图54是表示在制动控制中一时发生故障的左后轮的执行元件驱动节点或执行元件恢复时的操作量生成节点和执行元件驱动节点的动作的时间图。54 is a time chart showing the operation of the actuator drive node of the left rear wheel which temporarily failed during brake control, or the operation amount generating node and the actuator drive node when the actuator is restored.

图55是表示在制动控制中操作量生成节点发生故障时的执行元件驱动节点的动作的时间图。Fig. 55 is a time chart showing the operation of the actuator driving node when the operation amount generating node fails during braking control.

图56是表示在制动控制中一时发生故障的操作量生成节点恢复时的操作量生成节点和执行元件驱动节点的动作的时间图。Fig. 56 is a time chart showing operations of the operation amount generation node and the actuator drive node when the operation amount generation node which failed temporarily during braking control is restored.

图57是表示在制动控制中操作量生成节点和左后轮的执行元件驱动节点或执行元件发生故障时的执行元件驱动节点的动作的时间图。57 is a time chart showing the operation of the operation amount generation node and the actuator drive node of the left rear wheel or the actuator drive node when the actuator fails during brake control.

图58是表示本发明的车辆控制装置的实施例8的其他变形例的方块图。Fig. 58 is a block diagram showing another modified example of the eighth embodiment of the vehicle control device of the present invention.

图59是表示本发明的车辆控制装置的实施例9的方块图。Fig. 59 is a block diagram showing a ninth embodiment of the vehicle control device of the present invention.

图60是表示数据接收表的具体例的图。Fig. 60 is a diagram showing a specific example of a data reception table.

图61是表示其它节点的故障诊断处理的流程图。Fig. 61 is a flowchart showing failure diagnosis processing of other nodes.

图62是表示本发明的车辆控制装置的其它的实施例的方块图。Fig. 62 is a block diagram showing another embodiment of the vehicle control device of the present invention.

图中:1-主计算机,1A-主功能,2-传感器从属计算机,2A-传感器处理功能,3-执行元件从属计算机,3A-执行元件控制功能,3B-简易主功能,4-传感器,5-执行元件,10-车辆运动综合控制装置,11-操舵量控制装置,12-制动力控制装置,13-驱动力控制装置,20-DBW系统综合控制ECU,21-内燃机控制ECU,22-变速器控制ECU,23-电动马达控制ECU,24-蓄电池控制ECU,25-HMI·ECU,30-车辆运动综合控制ECU,31-舵角指示装置,32-减速指示装置,33-加速指示装置,35-控制系统网关,36-车体系统网关,41、41A-转向传感器(操舵角传感器),42、42A-制动踏板位置传感器,43-加速踏板位置传感器,44-毫米波雷达/照相机,50-车辆,51-转向盘,52-制动踏板,53-加速踏板,54-VGR机构,60A、60B-传感器部件,61A、61B-A/D变换器,62-一致效验功能,63-滤波功能,64-通信控制器,65A、65B-通信驱动器,71-前轮操舵机构,72R、72L-前轮,73-前轮制动机构,74-后轮操舵机构,75R、75L-后轮,76-后轮制动机构,77-前轮悬架机构,78-后轮悬架机构,81、81A-SBW·VGR驱动器ECU,811-简易控制逻辑部,82-SBW驱动器ECU,83A~83D-BBW驱动器ECU,831-简易控制逻辑部,84A~84D-EAS驱动器ECU,85-气囊ECU,100-操作量生成节点,101-车辆状态推定部,102-目标状态运算部,103-车体操作矢量操作力矩运算部,104-操作量运算部,105-车辆参数记忆部,110-SBW驱动器ECU,120-操作量指令值,201-车辆状态信号,210-故障检测功能,210A~210D-故障检测功能,220-控制程序选择功能,230-故障检测通知,300-执行元件驱动节点,320-控制器,400-执行元件,500、550-传感器,600-网络,610-操作量生成节点,611-耐故障功能,612、612a~c-操作量,614、624-时隙,615-转向柱,616-制动踏板,620-修正量生成节点,621-故障检测功能,622、622a、622b-修正量,623-故障检测结果,625-加速传感器·偏航率传感器,630、630-0~4-执行元件驱动节点,631-比较器,632-控制器,633-多数判定功能,634-切换器,635-控制器,636-增益可变器,637-斜坡发生器,640-执行元件,641、641-0-操舵装置,642-1~4-制动器,650、651、652-通信路,9100-数据接收表,3000-1-传感器控制器,3000-2-方向盘角度传感器,3001-1-传感器控制器,3001-2-制动踏板位置传感器,3002-1-执行元件控制器,3002-2-操舵控制马达,3003-1-执行元件控制器,3003-2-电动制动钳,3010-1-综合控制器A,3010-2-综合控制器B,A10、A100-控制器节点,A11-处理程序,A12-时间条件,A13-自监视器,A20-传感器节点,A21-处理程序,A22-时间条件,A23-自监视器,A30-执行元件节点,A31-处理程序,A32-时间条件,A33-自监视器,A200-制动踏板传感器节点,A210-雷达节点,A300-前轮制动器执行元件节点,A310-右前轮制动器执行元件节点,A320-左前轮制动器执行元件节点,A400-节点,A410-在正常状态的动作,A411-功能停止处理,A430-自监视功能,AA30-执行元件,AA300-左前轮制动器执行元件,AA301-左后轮制动器执行元件,AA310-右前轮制动器执行元件,AA320-左前轮制动器执行元件,B10-车辆运动总体控制节点,B101-通信驱动器,B102-车辆运动观测器,B103-驾驶员意图把握部,B20-制动踏板节点,B201-通信驱动器,B202-滤波修正处理部件,B203-A/D变换器,B204-数据标准化部,B30-制动器执行元件节点,B301-通信驱动器,B302-制动钳控制部,B303-A/D变换器,B304-预驱动器,B305-自律分散控制功能,D1、D2、D3B-数据流程,D11-操舵量目标值,D12-制动力目标值,D13-驱动力目标值,D31-舵角指示装置操作量,D32-减速指示装置操作量,D33-加速指示装置操作量,D3000-方向盘角度信息,D3001-制动踏板踏入量信息,D3010-1-目标舵角,D3010-2-目标制动力,DA10-控制器数据,DA20-传感器数据,DA100-右前轮目标制动力,DA101-左前轮目标制动力,DA200-制动踏板状态量,DA210-车间距离,DF10、DF20、DF30-数据区,N1-网络,N11-通信总线,N1A-控制系统网络(主总线),N1B-控制系统备份网络(备份总线),N2-DBW系统副网络,N3-总网络,N3000-车内网络,M1、M1A、M1B、M2、M3A~M3D、M4A~M 4D、M5、M6-电动马达,SA20-传感器,SA200-制动踏板,SA210-雷达。In the figure: 1-main computer, 1A-main function, 2-sensor slave computer, 2A-sensor processing function, 3-actuator slave computer, 3A-executive element control function, 3B-simple main function, 4-sensor, 5 -Executive components, 10-Comprehensive vehicle motion control device, 11-Steering control device, 12-Braking force control device, 13-Drive force control device, 20-DBW system comprehensive control ECU, 21-Internal combustion engine control ECU, 22-Transmission Control ECU, 23-Electric motor control ECU, 24-Battery control ECU, 25-HMI·ECU, 30-Vehicle motion integrated control ECU, 31-Rudder angle indicating device, 32-Deceleration indicating device, 33-Acceleration indicating device, 35 -Control system gateway, 36-Car body system gateway, 41, 41A-Steering sensor (steering angle sensor), 42, 42A-Brake pedal position sensor, 43-Accelerator pedal position sensor, 44-Millimeter wave radar/camera, 50 -vehicle, 51-steering wheel, 52-brake pedal, 53-accelerator pedal, 54-VGR mechanism, 60A, 60B-sensor components, 61A, 61B-A/D converter, 62-consistent verification function, 63-filter Function, 64-communication controller, 65A, 65B-communication driver, 71-front wheel steering mechanism, 72R, 72L-front wheel, 73-front wheel brake mechanism, 74-rear wheel steering mechanism, 75R, 75L-rear wheel , 76-Rear wheel brake mechanism, 77-Front wheel suspension mechanism, 78-Rear wheel suspension mechanism, 81, 81A-SBW·VGR driver ECU, 811-Simple control logic department, 82-SBW driver ECU, 83A~ 83D-BBW driver ECU, 831-simple control logic unit, 84A~84D-EAS driver ECU, 85-airbag ECU, 100-operated amount generation node, 101-vehicle state estimation unit, 102-target state calculation unit, 103-vehicle Body operation vector operation torque calculation unit, 104-operation amount calculation unit, 105-vehicle parameter storage unit, 110-SBW driver ECU, 120-operation value command value, 201-vehicle status signal, 210-fault detection function, 210A~210D -Fault detection function, 220-Control program selection function, 230-Fault detection notification, 300-Actuator drive node, 320-Controller, 400-Actuator, 500, 550-Sensor, 600-Network, 610-Operator generation Node, 611-failure tolerance function, 612, 612a~c-operating amount, 614, 624-time slot, 615-steering column, 616-brake pedal, 620-correction amount generation node, 621-failure detection function, 622, 622a , 622b-correction amount, 623-fault detection result, 625-acceleration sensor, yaw rate sensor, 630, 630-0~4-actuator drive node, 6 31-comparator, 632-controller, 633-majority decision function, 634-switcher, 635-controller, 636-gain variable, 637-slope generator, 640-executive element, 641, 641-0- Steering gear, 642-1~4-brake, 650, 651, 652-communication circuit, 9100-data receiving table, 3000-1-sensor controller, 3000-2-steering wheel angle sensor, 3001-1-sensor controller, 3001-2-Brake pedal position sensor, 3002-1-Actuator controller, 3002-2-Steering control motor, 3003-1-Actuator controller, 3003-2-Electric brake caliper, 3010-1-Comprehensive Controller A, 3010-2-Comprehensive Controller B, A10, A100-Controller Node, A11-Handler, A12-Time Condition, A13-Self Monitor, A20-Sensor Node, A21-Handler, A22-Time Condition, A23-Self Monitor, A30-Actuator Node, A31-Handler, A32-Time Condition, A33-Self Monitor, A200-Brake Pedal Sensor Node, A210-Radar Node, A300-Front Brake Actuator Node, A310-right front wheel brake actuator node, A320-left front wheel brake actuator node, A400-node, A410-action in normal state, A411-function stop processing, A430-self-monitoring function, AA30-actuator , AA300-left front wheel brake actuator, AA301-left rear wheel brake actuator, AA310-right front wheel brake actuator, AA320-left front wheel brake actuator, B10-vehicle movement overall control node, B101-communication driver, B102-Vehicle motion observer, B103-Driver's intention grasping part, B20-Brake pedal node, B201-Communication driver, B202-Filter correction processing part, B203-A/D converter, B204-Data standardization part, B30- Brake actuator node, B301-communication driver, B302-brake caliper control unit, B303-A/D converter, B304-pre-driver, B305-autonomous decentralized control function, D1, D2, D3B-data flow, D11-steering Volume target value, D12-braking force target value, D13-driving force target value, D31-rudder angle indicating device operating value, D32-deceleration indicating device operating value, D33-acceleration indicating device operating value, D3000-steering wheel angle information, D3001 -Brake pedal stepping amount information, D3010-1-target rudder angle, D3010-2-target braking force, DA10-controller data, DA20-sensor data, DA100-right front wheel target braking force, DA101-left front wheel Target braking force, DA200-brake pedal state quantity, DA210-inter-vehicle distance, D F10, DF20, DF30-data area, N1-network, N11-communication bus, N1A-control system network (main bus), N1B-control system backup network (backup bus), N2-DBW system secondary network, N3-general network , N3000-in-vehicle network, M1, M1A, M1B, M2, M3A~M3D, M4A~M4D, M5, M6-electric motor, SA20-sensor, SA200-brake pedal, SA210-radar.

具体实施方式 Detailed ways

(实施例1)(Example 1)

首先,对本发明的车辆控制装置的基本构成参照图1进行说明。First, the basic configuration of the vehicle control device of the present invention will be described with reference to FIG. 1 .

车辆控制装置,具有主计算机(指令控制器)1,和传感器从属计算机(传感器控制器)2,和执行元件从属计算机(执行元件控制器)3,这些部分,通过有线式、无线式、总线型、网格型、星型、环型等网络N1在双方向可以进行数据通信地连接。The vehicle control device has a main computer (command controller) 1, a sensor slave computer (sensor controller) 2, and an actuator slave computer (actuator controller) 3. These parts are wired, wireless, and bus-type , mesh, star, and ring network N1 can be connected in two directions for data communication.

主计算机1是运算控制目标值的指令控制器,具有主控制功能(主控制装置)1A。The host computer 1 is an instruction controller for calculating a control target value, and has a main control function (main control device) 1A.

在传感器装置从属计算机2上连接观测(计测)控制对象的状态用的传感器4。传感器从属计算机2具有处理由传感器4给出的传感器信号的传感器处理功能(传感器处理装置)2A。A sensor 4 for observing (measuring) the state of a control object is connected to the sensor device slave computer 2 . The sensor slave computer 2 has a sensor processing function (sensor processing means) 2A for processing sensor signals supplied by the sensor 4 .

在执行元件从属计算机3上连接作用于控制对象用的执行元件5。执行元件从属计算机3是用于控制执行元件5的从属计算机,其具有基于由主计算机1给出的控制目标值控制执行元件5的执行元件控制功能(执行元件控制装置)3A,和对控制目标值进行运算的简易主功能(控制目标值生成装置)3B。The actuator slave computer 3 is connected with the actuator 5 for the control object. The actuator slave computer 3 is a slave computer for controlling the actuator 5, has an actuator control function (actuator control means) 3A for controlling the actuator 5 based on a control target value given by the host computer 1, and controls the control target The simple main function (control target value generation device) 3B that calculates the value.

在网络N1上,存在控制目标值的数据流D1、和传感器计测值的数据流D2。On the network N1, a data stream D1 of control target values and a data stream D2 of sensor measurement values exist.

传感器计测值的数据流D2是传感器从属计算机2输出的传感器值的数据流,主计算机1的主控制功能1A和执行元件从属计算机3的简易主功能3B的双方接收传感器从属计算机2输出的传感器值。The data stream D2 of sensor measured values is a data stream of sensor values output from the sensor slave computer 2, and both the master control function 1A of the master computer 1 and the simple master function 3B of the actuator slave computer 3 receive the sensor output from the sensor slave computer 2. value.

控制目标值的数据流D1是主计算机1输出的控制目标值的数据流,执行元件从属计算机3的执行元件控制功能3A接收主计算机1输出的控制目标值。The data stream D1 of the control target value is the data stream of the control target value output by the host computer 1 , and the actuator control function 3A of the actuator slave computer 3 receives the control target value output by the host computer 1 .

在通常动作时,执行元件从属计算机3,基于执行元件控制功能3A从由数据流D1接收的主计算机1给出的控制目标值来控制执行元件5。During normal operation, the actuator slave computer 3 controls the actuator 5 based on the control target value given by the actuator control function 3A from the host computer 1 received by the data stream D1.

但是,在数据流D1产生异常的时候,执行元件从属计算机3基于简易主功能3B运算的控制目标值来控制执行元件5。即,简易主功能3B,基于由数据流D2得到的传感器计测值来运算控制目标值,执行元件控制功能3A,基于由执行元件从属计算机3内的数据流D3B得到的简易主功能3B的运算结果的控制目标值来控制执行元件5。However, when an abnormality occurs in the data stream D1, the actuator slave computer 3 controls the actuator 5 based on the control target value calculated by the simple master function 3B. That is, the simple main function 3B calculates the control target value based on the sensor measurement value obtained from the data stream D2, and the actuator control function 3A calculates the simple main function 3B based on the data stream D3B in the actuator slave computer 3. The resulting control target value is used to control the actuator 5.

通过采取上述的构成,万一陷于不能使用主计算机1的主控制功能1A的状态,但基于简易主功能3B的运算结果,可进行执行元件控制,可以反映驾驶员的操作或车辆的状态变化,可实现可靠性高的车辆控制装置。By adopting the above-mentioned structure, even if the main control function 1A of the host computer 1 cannot be used, the actuator control can be performed based on the calculation result of the simple main function 3B, and the driver's operation or the state change of the vehicle can be reflected. A highly reliable vehicle control device can be realized.

另外,在图1中,将主计算机1作为一个计算机表示,但也可以分开主控制功能并装在多个计算机中。In addition, in FIG. 1, the host computer 1 is shown as one computer, but the host control function may be divided and installed in a plurality of computers.

对图1所示的车辆控制装置中的通信流的具体例参照图2(a)、(b)进行说明。A specific example of the communication flow in the vehicle control device shown in FIG. 1 will be described with reference to FIGS. 2( a ) and ( b ).

作为主计算机,具有综合地控制车辆整体的运动的车辆运动综合装置10。As a host computer, there is a vehicle motion integrating device 10 that comprehensively controls the motion of the entire vehicle.

作为传感器从属计算机,具有,由驾驶员操作的舵角指示装置(操舵角传感系统)31、减速指示装置(制动踏板踏入量传感器系统)32、和加速指示装置(加速踏板踏入量传感器系统)33。As the sensor slave computer, it has a steering angle indicating device (steering angle sensor system) 31 operated by the driver, a deceleration indicating device (brake pedal depression amount sensor system) 32, and an acceleration indicating device (accelerator pedal depression amount sensor system). sensor system)33.

作为执行元件从属计算机,具有控制车辆的操舵角的操舵量控制装置11、控制车辆的制动力的制动力控制装置12、和控制车辆的驱动力的驱动力控制装置13。The actuator slave computer includes a steering amount control device 11 for controlling the steering angle of the vehicle, a braking force control device 12 for controlling the braking force of the vehicle, and a driving force control device 13 for controlling the driving force of the vehicle.

舵角指示装置31、减速指示装置32、加速指示装置33、操舵量控制装置11、制动力控制装置12、驱动力控制装置13、和车辆运动综合控制装置10,通过通信总线N11相互连接。Rudder angle indicating device 31 , deceleration indicating device 32 , acceleration indicating device 33 , steering amount control device 11 , braking force control device 12 , driving force control device 13 , and vehicle motion integrated control device 10 are connected to each other through communication bus N11.

图2(a)表示车辆运动综合控制装置10正常动作时的数据流。FIG. 2( a ) shows the data flow when the vehicle motion integrated control device 10 operates normally.

在该数据流中,符号D31是驾驶员的舵角指示装置31的操作量,通过舵角指示装置31变换成电信号,输出到通信总线N11中。In this data stream, the symbol D31 is the operation amount of the driver's steering angle indicating device 31 , which is converted into an electrical signal by the steering angle indicating device 31 and output to the communication bus N11 .

符号D32是由驾驶员进行的减速指示装置32的操作量,通过减速指示装置32变换成电信号,并输出到通信总线N11中。Symbol D32 is an operation amount of the deceleration instructing device 32 by the driver, which is converted into an electrical signal by the deceleration instructing device 32 and output to the communication bus N11.

符号D33是由驾驶员进行的加速指示装置33的操作量,通过由加速指示装置33变换成电信号,并输出到通信总线N11中。The symbol D33 is the operation amount of the accelerator pointing device 33 by the driver, which is converted into an electric signal by the accelerator pointing device 33 and output to the communication bus N11.

车辆运动综合控制装置10从通信总线N11接收舵角指示装置操作量D31、减速指示装置操作量D32、加速指示装置操作量D33,并进行综合地控制车辆的运动用的运算。The vehicle motion integrated control device 10 receives the steering angle indicating device operation amount D31, the deceleration indicating device operation amount D32, and the acceleration indicating device operation amount D33 from the communication bus N11, and performs calculations for comprehensively controlling the motion of the vehicle.

其后,车辆运动综合控制装置10,作为给予用于控制车辆的控制装置的目标值,将操舵量目标值D11、和制动力目标值D12、和驱动力目标值D13输出到通信总线N11中。Thereafter, the vehicle motion integrated control device 10 outputs the steering amount target value D11, the braking force target value D12, and the driving force target value D13 to the communication bus N11 as target values given to the control device for controlling the vehicle.

操舵力控制装置11,从通信总线N11接收操舵量目标值D11,为实现操舵量目标值而控制操舵器等的操舵装置。The steering force control device 11 receives the steering amount target value D11 from the communication bus N11, and controls a steering device such as a steering gear to realize the steering amount target value.

制动力控制装置12,从通信总线N11接收制动力目标值D12,为实现制动力目标值而控制电动制动器等制动装置。The braking force control device 12 receives the braking force target value D12 from the communication bus N11, and controls braking devices such as electric brakes to realize the braking force target value.

驱动力控制装置13,从通信总线N11接收驱动力目标值D13,为实现驱动力目标值而控制内燃机、变速器、电动马达等驱动力源、动力传动系统。The driving force control device 13 receives the driving force target value D13 from the communication bus N11, and controls a driving force source such as an internal combustion engine, a transmission, an electric motor, and a power transmission system to realize the driving force target value.

图2(b)表示在车辆运动综合控制装置10中产生错误时的数据流。FIG. 2( b ) shows the flow of data when an error occurs in the vehicle motion integrated control device 10 .

在车辆运动综合控制装置10发生故障时,操舵量目标值D11和制动力目标值D12和驱动力目标值D13不向通信总线N11输出。但是,需要按驾驶员的意图控制车辆。When the vehicle motion integrated control device 10 fails, the steering amount target value D11, the braking force target value D12, and the driving force target value D13 are not output to the communication bus N11. However, the vehicle needs to be controlled according to the driver's intention.

在这里,操舵力控制装置11判断在车辆运动综合控制装置10中产生了错误时,从通信总线N11接收舵角指示装置操作量D31,基于舵角指示装置操作量D31控制转向器等操舵装置。Here, when the steering force control device 11 determines that an error has occurred in the vehicle motion integrated control device 10, it receives the steering angle indicating device operation amount D31 from the communication bus N11, and controls steering devices such as a steering gear based on the steering angle indicating device operating amount D31.

制动力控制装置12,在判断出车辆运动综合控制装置10中产生了错误时,从通信总线N11接收减速指示装置操作量D32,基于减速指示装置操作量D32来控制电动制动器等制动装置。When the braking force control device 12 determines that an error has occurred in the vehicle motion integrated control device 10, it receives the deceleration pointing device operation amount D32 from the communication bus N11, and controls braking devices such as electric brakes based on the deceleration pointing device operation amount D32.

驱动力控制装置13,在判断出车辆运动综合控制装置10中产生了错误时,从通信总线N11接收加速指示装置操作量D33,基于加速指示装置操作量D33来控制内燃机、变速器、电动马达等驱动力源。The driving force control device 13, when it is judged that an error has occurred in the vehicle motion integrated control device 10, receives the acceleration indicating device operation amount D33 from the communication bus N11, and controls the driving of the internal combustion engine, transmission, electric motor, etc. based on the acceleration indicating device operation amount D33. power source.

对于在车辆运动综合控制装置10中产生错误,向通信总线N11的数据输出使用没有一定时间等事项,并在数据接收侧进行判断。另外,也可以在车辆运动综合控制装置10自身发生错误时,将其意思作为短信息输出。The occurrence of an error in the vehicle motion integrated control device 10 and the fact that the data output to the communication bus N11 has not been used for a certain period of time are judged on the data receiving side. In addition, when an error occurs in the vehicle motion integrated control device 10 itself, the meaning thereof may be output as a short message.

接着,对应用本发明的车辆控制装置的车辆(汽车)的一个实施例参照图3进行说明。Next, an example of a vehicle (automobile) to which the vehicle control device of the present invention is applied will be described with reference to FIG. 3 .

控制系统网络N1A相当于本发明的通信线,被用于涉及车辆运动控制的数据的通信。控制系统备用网络N1B也相当于本发明的通信线,作为在因碰撞事故等带来的断线等的不可抗力而在控制系统网络N1A中发生障碍时的预备装置来使用。The control system network N1A corresponds to the communication line of the present invention, and is used for communication of data related to vehicle motion control. The control system backup network N1B also corresponds to the communication line of the present invention, and is used as a backup device when a failure occurs in the control system network N1A due to force majeure such as disconnection due to a collision accident or the like.

转向传感器41相当于舵角指示装置31。转向传感器41计测驾驶员操作的转向盘51的操作量(操舵角),进行滤波等信号处理,将转向盘操作量作为电信号输出到控制系统网络N1A和控制系统备用网络N1B中。The steering sensor 41 corresponds to the steering angle indicating device 31 . The steering sensor 41 measures the operation amount (steering angle) of the steering wheel 51 operated by the driver, performs signal processing such as filtering, and outputs the steering wheel operation amount as an electric signal to the control system network N1A and the control system backup network N1B.

另外,转向盘51,即使机械的机构也与前轮操舵机构71连接,即使在因不可抗力而使控制系统网络N1A或转向传感器41或SBW·VGR驱动器ECU(Electronic Control Unit)81发生障碍的时候,也能够控制车辆50的前轮72R、72L的操舵角。In addition, the steering wheel 51 is connected to the front wheel steering mechanism 71 even if it is a mechanical mechanism. Even if the control system network N1A, the steering sensor 41, or the SBW·VGR driver ECU (Electronic Control Unit) 81 fails due to force majeure, It is also possible to control the steering angle of the front wheels 72R, 72L of the vehicle 50 .

制动踏板位置传感器42相当于减速指示装置22。制动踏板位置传感器42计测驾驶员操作的制动踏板52的操作量,并进行滤波等信号处理,将制动踏板操作量作为电信号输出到控制系统网络N1A和控制系统备用网络N1B中。The brake pedal position sensor 42 corresponds to the deceleration indicating device 22 . The brake pedal position sensor 42 measures the operation amount of the brake pedal 52 operated by the driver, performs signal processing such as filtering, and outputs the brake pedal operation amount as an electric signal to the control system network N1A and the control system backup network N1B.

另外,制动踏板52,即使是油压系统也可与前轮制动器73连接,即使在由不可抗力而使控制系统网络N1A或制动踏板位置传感器52或BBW驱动器ECU83A、83B等发生障碍的时候,也能够控制车辆50的制动力。In addition, the brake pedal 52 can also be connected to the front wheel brake 73 even if it is a hydraulic system. It is also possible to control the braking force of the vehicle 50 .

加速踏板位置传感器43相当于加速度指示装置33。加速踏板位置传感器43计测驾驶员操作的加速踏板53的操作量,并进行滤波等信号处理,将加速踏板操作量作为电信号输出到控制系统网络N1A中。The accelerator pedal position sensor 43 corresponds to the acceleration indicating device 33 . The accelerator pedal position sensor 43 measures the operation amount of the accelerator pedal 53 operated by the driver, performs signal processing such as filtering, and outputs the accelerator pedal operation amount as an electric signal to the control system network N1A.

另外,加速踏板位置传感器43,即使是另外的通信线也可与内燃机控制ECU21连接,即使在由不可抗力而使控制系统网络N1A或DBW系统综合控制ECU20发生障碍的时候,也能够控制车辆50的内燃机。In addition, the accelerator pedal position sensor 43 can be connected to the internal combustion engine control ECU 21 even if it is another communication line, and even when the control system network N1A or the DBW system comprehensive control ECU 20 is hindered by force majeure, the internal combustion engine of the vehicle 50 can be controlled. .

毫米波雷达/照相机44检测前方和后方的其它车的行驶状态、进行行驶中的车线的白线识别等,而被用于车辆50的外部状态的识别。毫米波雷达/照相机44识别外部状态,例如通过信号处理进行与在前方行驶的车辆的相对角度、相对距离、相对速度等运算,并作为电信号输出到控制系统网络N1A中。The millimeter-wave radar/camera 44 is used to recognize the external state of the vehicle 50 by detecting the driving state of other vehicles ahead and behind, recognizing the white line of the driving lane, and the like. The millimeter-wave radar/camera 44 recognizes the external state, for example, calculates the relative angle, relative distance, and relative speed with the vehicle driving ahead through signal processing, and outputs it as an electrical signal to the control system network N1A.

转向传感器41、制动踏板位置传感器42、加速踏板位置传感器43、毫米波雷达/照相机44相当于传感器从属计算机。The steering sensor 41, the brake pedal position sensor 42, the accelerator pedal position sensor 43, and the millimeter wave radar/camera 44 correspond to the sensor slave computer.

车辆运动综合控制ECU30是主计算机,相当于上述的车辆运动综合控制装置10。车辆运动综合控制ECU30,输入向控制系统网络N1A上输出的、由驾驶员进行的操作量或车辆的行驶状态、车辆综合控制ECU30具有的传感器计测值,综合地管理车辆50的运动,将驱动力控制装置、制动力控制装置、操舵量控制装置、悬架控制装置、安全装置控制装置等控制目标值输出到控制系统网络N1A中。The integrated vehicle motion control ECU 30 is a host computer and corresponds to the above-mentioned integrated vehicle motion control device 10 . The comprehensive vehicle motion control ECU 30 inputs the operation amount by the driver, the running state of the vehicle, and the sensor measurement value of the vehicle comprehensive control ECU 30 to be output on the control system network N1A, comprehensively manages the motion of the vehicle 50, and drives Control target values of the force control device, braking force control device, steering amount control device, suspension control device, safety device control device, etc. are output to the control system network N1A.

车辆运动综合控制ECU30也具有综合系统网络N3和控制系统网络N1A之间的网关(gate way)功能。Vehicle motion integrated control ECU 30 also has a gateway function between integrated system network N3 and control system network N1A.

作为执行元件从属计算机,有SBW·VGR驱动器ECU81、BBW驱动器ECU83A~83D、EAS驱动器ECU84A~84D、气囊ECU85。As the actuator slave computers, there are SBW·VGR driver ECU81, BBW driver ECU83A to 83D, EAS driver ECU84A to 84D, and airbag ECU85.

SBW·VGR(Steer-By-Wire·Variable Gear Ratio)驱动器ECU81,相当于舵角控制装置,通过控制电动马达M1由前轮操舵机构71控制前轮72R、72L的舵角,通过控制电动马达M5控制已知的操舵装置可变传动比(VGR)机构54。SBW·VGR (Steer-By-Wire·Variable Gear Ratio) driver ECU81 is equivalent to the rudder angle control device. By controlling the electric motor M1, the front wheel steering mechanism 71 controls the rudder angle of the front wheels 72R and 72L. By controlling the electric motor M5 A known steering gear variable gear ratio (VGR) mechanism 54 is controlled.

SBW驱动器ECU82也相当于舵角控制装置,通过控制电动马达M2由后轮操舵机构74控制后轮75R、75L的舵角。The SBW driver ECU 82 also corresponds to a rudder angle control device, and controls the rudder angles of the rear wheels 75R, 75L by the rear wheel steering mechanism 74 by controlling the electric motor M2.

BBW(Brake By-Wire)驱动器ECU83A、83B、83C、83D分别相当于制动力控制装置。BBW (Brake By-Wire) driver ECU83A, 83B, 83C, 83D are respectively equivalent to the braking force control device.

BBW驱动器ECU83A,通过控制电动马达M3A来控制泵P的油压,由前轮制动机构73控制发生在右前轮72R上的制动力。The BBW driver ECU 83A controls the oil pressure of the pump P by controlling the electric motor M3A, and controls the braking force applied to the right front wheel 72R by the front wheel brake mechanism 73 .

BBW驱动器ECU83B,通过控制电动马达M3B来控制泵P的油压,控制发生在左前轮上的制动力。The BBW driver ECU83B controls the oil pressure of the pump P by controlling the electric motor M3B, and controls the braking force on the left front wheel.

BBW驱动器ECU83C,通过控制电动马达M3C来控制泵P的油压,由前轮制动机构73、后轮制动机构76控制发生在右后轮75R上的制动力。The BBW driver ECU 83C controls the oil pressure of the pump P by controlling the electric motor M3C, and controls the braking force generated on the right rear wheel 75R by the front wheel brake mechanism 73 and the rear wheel brake mechanism 76 .

BBW驱动器ECU13D,通过控制电动马达M3D来控制泵P的油压,由后轮制动机构76控制发生在左后轮75L上的制动力。The BBW driver ECU 13D controls the oil pressure of the pump P by controlling the electric motor M3D, and controls the braking force applied to the left rear wheel 75L by the rear wheel brake mechanism 76 .

EAS(Electric Active Suspension)驱动器ECU84A、84B、84C、84D,分别相当于悬架控制装置,控制在车辆50上具有的悬架机构77、78。EAS (Electric Active Suspension) driver ECUs 84A, 84B, 84C, and 84D correspond to suspension control devices, respectively, and control the suspension mechanisms 77 and 78 provided on the vehicle 50 .

EAS驱动器ECU84A,通过控制电动马达M4A来控制在右前轮72R上具有的前轮悬架机构77的悬架长、弹簧常数、衰减常数等。The EAS driver ECU 84A controls the suspension length, spring constant, damping constant, etc. of the front wheel suspension mechanism 77 provided on the right front wheel 72R by controlling the electric motor M4A.

EAS驱动器ECU84B,通过控制电动马达M4B来控制在左前轮72L上具有的前轮悬架机构77的悬架长、弹簧常数、衰减常数等。The EAS driver ECU 84B controls the suspension length, spring constant, damping constant, etc. of the front wheel suspension mechanism 77 provided on the left front wheel 72L by controlling the electric motor M4B.

EAS驱动器ECU84C,通过控制电动马达M4C来控制在右后轮75R上具有的后轮悬架机构78的悬架长、弹簧常数、衰减常数等。The EAS driver ECU 84C controls the suspension length, spring constant, damping constant, etc. of the rear wheel suspension mechanism 78 provided on the right rear wheel 75R by controlling the electric motor M4C.

EAS驱动器ECU84D,通过控制电动马达M4D来控制在左后轮75R上具有的前轮悬架机构78的悬架长、弹簧常数、衰减常数等。The EAS driver ECU 84D controls the suspension length, spring constant, damping constant, etc. of the front wheel suspension mechanism 78 provided on the left rear wheel 75R by controlling the electric motor M4D.

这样,由车辆运动综合控制ECU30,通过控制EAS驱动器ECU84A~84D,可在减速时提高前轮悬架机构77的弹簧常数,防止车辆50向前方向倾斜,在旋转时提高外侧的悬架弹簧常数以防止横转,在上坡时缩短前轮悬架长以延长后轮悬架长,能够减少车体的倾斜。In this way, the vehicle motion comprehensive control ECU 30 can increase the spring constant of the front wheel suspension mechanism 77 during deceleration by controlling the EAS driver ECUs 84A to 84D to prevent the vehicle 50 from tilting in the forward direction, and increase the suspension spring constant of the outer side during rotation. In order to prevent lateral rotation, shorten the length of the front wheel suspension and extend the length of the rear wheel suspension when going uphill, which can reduce the tilt of the car body.

气囊ECU85相当于安全装置控制装置,对气囊等的乘员保护装置进行控制。The airbag ECU 85 corresponds to a safety device control device, and controls occupant protection devices such as airbags.

DBW(Drive-By-Wire)系统综合控制ECU20相当于驱动力控制装置。DBW系统综合控制ECU20,综合地控制涉及由DBW系统子网络N2连接的内燃机控制ECU21、变速器控制ECU22、电动马达控制ECU23、蓄电池控制ECU24等车辆50的驱动控制等装置。The DBW (Drive-By-Wire) system integrated control ECU 20 is equivalent to a driving force control device. The DBW system comprehensive control ECU20 comprehensively controls the drive control and other devices related to the vehicle 50 such as the internal combustion engine control ECU21, the transmission control ECU22, the electric motor control ECU23, and the battery control ECU24 connected by the DBW system sub-network N2.

通过取这样的构成,仅从车辆运动综合控制ECU30将最终的驱动力指示给DBW系统综合控制ECU20即可,能够不依赖于涉及实际的驱动控制的装置的构成而指示目标值,可以简单地构成控制装置。With such a configuration, it is only necessary to instruct the DBW system integrated control ECU 20 of the final drive force from the vehicle motion integrated control ECU 30 , and the target value can be indicated without depending on the configuration of the device related to the actual drive control, and a simple configuration can be achieved. control device.

内燃机控制ECU21是用于控制未图示的内燃机的ECU,从DBW系统综合控制ECU20接收内燃机轴转矩或内燃机旋转数等目标值,为实现目标值而控制内燃机。The internal combustion engine control ECU 21 is an ECU for controlling an internal combustion engine (not shown), receives target values such as engine shaft torque and engine speed from the DBW system integrated control ECU 20 , and controls the internal combustion engine to achieve the target values.

变速器控制ECU22是用于控制未图示的变速器的ECU,从DBW系统综合控制ECU20接收变速档等目标值,为实现目标值而控制变速器。The transmission control ECU 22 is an ECU for controlling an unillustrated transmission, receives target values such as a gear position from the DBW system integrated control ECU 20 , and controls the transmission to achieve the target values.

电动马达控制ECU23是用于控制未图示的驱动力发生用电动马达的ECU,从DBW系统综合控制ECU20接收输出转矩或旋转数等目标值,为实现目标值而控制内燃机。另外,也作为由电动马达再生带来的负方向的驱动力发生源而动作。The electric motor control ECU 23 is an ECU for controlling an unillustrated driving force generating electric motor, receives target values such as output torque and rotation speed from the DBW system integrated control ECU 20 , and controls the internal combustion engine to achieve the target values. In addition, it also operates as a driving force generating source in the negative direction by regeneration of the electric motor.

蓄电池控制ECU24是用于控制未图示的蓄电池的ECU,控制蓄电池的充电状态等。The battery control ECU 24 is an ECU for controlling a battery not shown, and controls the state of charge of the battery and the like.

信息系统网关35是用于连接未图示的移动电话等无线通信装置、GPS、汽车卫星定位仪等的信息系统网络(本领域技术人员公知的MOST等)、和综合网络N3的网关。The information system gateway 35 is a gateway for connecting an information system network (MOST, etc. known to those skilled in the art) such as a wireless communication device such as a mobile phone (not shown), GPS, and car locator, to the integrated network N3.

以信息系统网络和控制系统网络N1A通过网关功能的连接,可将控制系统网络N1A从信息系统网络逻辑地分离,能够比较简单地构成容易满足对实时性等控制系统网络N1A特有的要求的构成。By connecting the information system network and the control system network N1A through the gateway function, the control system network N1A can be logically separated from the information system network, and a relatively simple configuration can easily meet the specific requirements of the control system network N1A such as real-time performance.

车体系统网关36是用于连接未图示的门锁、动力窗等的车体系统网络和综合网络N3的网关。以车体系统网络和控制系统网络N1A通过网关功能的连接,可将控制系统网络N1A从车体系统网络逻辑地分离,能够比较简单地构成容易满足对实时性等控制系统网络N1A特有的要求的构成。The vehicle body system gateway 36 is a gateway for connecting a vehicle body system network (not shown), such as door locks and power windows, to the integrated network N3. By connecting the vehicle body system network and the control system network N1A through the gateway function, the control system network N1A can be logically separated from the vehicle body system network, and it is relatively simple to form a system that can easily meet the specific requirements of the control system network N1A such as real-time performance. constitute.

下面,对车辆运动综合控制ECU30进行的处理使用图4进行说明。图4表示车辆运动综合控制ECU30正常动作时的数据流。Next, the processing performed by the vehicle motion integrated control ECU 30 will be described with reference to FIG. 4 . FIG. 4 shows the flow of data when the vehicle motion integrated control ECU 30 operates normally.

车辆运动综合控制ECU30,具有车辆状态推定部101、目标状态运算部102、车体操作矢量操作力矩运算部103、操作量运算部104、车辆参数记忆部105,并且输入转向传感器41、制动踏板位置传感器42、加速踏板位置传感器43、毫米波雷达/照相机44、在图3未图示的车轮速传感器、车体加速度传感器、角加速度传感器等的传感器S的各传感器信号。The vehicle motion integrated control ECU 30 has a vehicle state estimation unit 101, a target state calculation unit 102, a vehicle body operation vector operation torque calculation unit 103, an operation amount calculation unit 104, and a vehicle parameter storage unit 105, and inputs the steering sensor 41, the brake pedal Sensor signals of position sensor 42 , accelerator pedal position sensor 43 , millimeter wave radar/camera 44 , and sensors S not shown in FIG. 3 , such as a wheel speed sensor, a vehicle body acceleration sensor, and an angular acceleration sensor.

车辆状态推定部101,使用传感器信号推定车辆的现在的状态。The vehicle state estimation unit 101 estimates the current state of the vehicle using sensor signals.

目标状态运算部102,计算由车辆状态推定部101推定、使用车辆的行驶状态和传感器信号由控制应该实现的车辆的目标状态、即车辆应该取得的目标运动状态。The target state calculating unit 102 calculates the target state of the vehicle estimated by the vehicle state estimating unit 101 and controlled using the vehicle's running state and sensor signals, that is, the target motion state to be achieved by the vehicle.

车体操作矢量操作力矩运算部103,基于由车辆状态推定部101推定、车辆的现在状态和由目标状态运算部102计算的目标状态的差异,计算通过控制在车体发生的并进方向的力矢量和旋转方向的力矩矢量。The vehicle body operation vector operation moment calculating unit 103 calculates the force vector in the direction of the vehicle body by controlling the vehicle body based on the difference between the current state of the vehicle estimated by the vehicle state estimating unit 101 and the target state calculated by the target state calculating unit 102 and torque vector in the direction of rotation.

操作量运算部104,基于由车体操作矢量操作力矩运算部103计算的力矢量和力矩矢量,计算由BBW驱动器ECU83A~83D、DBW系统综合控制ECU20、SBW·VGR驱动器ECU81、SBW驱动器ECU82、EAS驱动器ECU84A~84D、气囊ECU85等控制用执行元件应该实现的目标操作量。The operation amount calculation unit 104 calculates the BBW driver ECU83A-83D, DBW system integrated control ECU20, SBW·VGR driver ECU81, SBW driver ECU82, EAS based on the force vector and moment vector calculated by the vehicle body operation vector operation torque calculation unit 103. The target operation amount to be realized by control actuators such as the driver ECU84A to 84D and the airbag ECU85.

在车辆参数记忆部105中,储存有车体的动力学常数(例如质量、旋转惯性、重心位置等)、控制执行元件的规格参数(例如各执行元件的时间常数、制动器的最大制动力、转向器的最大舵角等)等车辆参数,这些车辆参数,以由车辆状态推定部101、目标状态运算部102、车体操作矢量操作力矩运算部103、操作量运算部104的运算处理来参照。In the vehicle parameter storage unit 105, the dynamic constants of the vehicle body (such as mass, rotational inertia, center of gravity position, etc.), the specification parameters of the control actuators (such as the time constant of each actuator, the maximum braking force of the brake, the steering wheel, etc.) are stored. These vehicle parameters are referred to by the calculation processing of the vehicle state estimation unit 101, the target state calculation unit 102, the vehicle body operation vector manipulation torque calculation unit 103, and the operation amount calculation unit 104.

另外,在图4中,从操作运算部104向各驱动器ECU的输出,用一根线作了记述,但这不是仅表示一个值的线,而是表示一组的控制量的线。例如,对于BBW驱动器ECU83A~83D,也可以指示按各车轮的独立的制动力。In addition, in FIG. 4, the output from the operation calculating part 104 to each driver ECU is described by one line, but this is not a line showing only one value, but a line showing a set of control quantities. For example, the BBW driver ECUs 83A to 83D may instruct the independent braking force for each wheel.

车辆运动综合控制ECU30,通过由车辆状态推定部101、目标状态运算部102、车体操作矢量操作力矩运算部103、操作运算部104构成,具有能够综合地管理控制车辆的运动的效果。The vehicle motion integrated control ECU 30 is composed of a vehicle state estimation unit 101 , a target state calculation unit 102 , a vehicle body manipulation vector operation torque calculation unit 103 , and an operation calculation unit 104 , and has the effect of being able to comprehensively manage and control the motion of the vehicle.

另外,通过将车辆状态推定部101分离,具有下述效果,例如,在具有同一平板式的车辆中,即使在仅使动力传动系从内燃机变更成混合型的时候等,在变更车辆的控制执行元件的构成的时候,可以再利用运算车辆的力学特性的部分,提高控制装置的开发效率。In addition, by separating the vehicle state estimation unit 101, there is an effect that, for example, in a vehicle having the same flat type, even when only the power train is changed from an internal combustion engine to a hybrid type, etc., it is possible to change the control execution of the vehicle. In the configuration of the components, the part that calculates the mechanical characteristics of the vehicle can be reused to improve the development efficiency of the control device.

另外,通过将目标状态运算部102分离,具有下述效果,即使在反映驾驶员的个性、根据在周边行驶的车辆或道路状态变更目标值的极限的时候,但只变更目标状态运算部102即可,可提高控制装置的开发效率。In addition, by separating the target state calculation unit 102, there is an effect that only the target state calculation unit 102 is changed, that is, even when the limit of the target value is changed according to the driver's individuality or the surrounding vehicles or road conditions. Yes, the development efficiency of the control device can be improved.

另外,通过将车体操作矢量操作力矩运算部103和操作运算部104设为独立的构成,可进行与车辆具有的控制装置的构成独立的、对车体的操作量的计算。In addition, by configuring the vehicle body manipulation vector manipulation torque calculation unit 103 and the manipulation calculation unit 104 as independent configurations, calculation of the manipulation amount on the vehicle body can be performed independently of the configuration of the control device included in the vehicle.

例如,即使从混合型汽车向轮毂电动马达型汽车改变结构,但只要在车体操作矢量操作力矩运算部103运算同样发生的力、力矩矢量即可,只要变更操作量运算部104即可。因此,可提高车辆控制装置的开发效率。For example, even if the structure is changed from a hybrid vehicle to an in-wheel electric motor vehicle, it is only necessary to calculate the same force and moment vector in the vehicle body operation vector operation torque calculation unit 103 and to change the operation amount calculation unit 104 . Therefore, the development efficiency of the vehicle control device can be improved.

下面,对由车辆状态推定部101计算的车辆的现在状态和由目标状态运算部102计算的车辆的目标状态、参照图5进行说明。Next, the current state of the vehicle calculated by the vehicle state estimating unit 101 and the target state of the vehicle calculated by the target state calculating unit 102 will be described with reference to FIG. 5 .

作为车辆的现在状态和目标状态,表示在将车辆50的车体部分假定为刚体时的刚体运动的状态量1X。作为状态量1X,例如是指被固定在车辆50的车体重心的3维(X-Y-Z)局部坐标系1G中的位移(x、y、z)、旋转角(θx、θy、θz)、速度(dx/dt、dy/dt、dz/dt)、角速度(dθx/dt、dθy/dt、dθz/dt)。As the current state and the target state of the vehicle, the state quantity 1X of rigid body motion when the body portion of the vehicle 50 is assumed to be a rigid body is shown. The state quantity 1X refers to, for example, displacement (x, y, z), rotation angle (θx, θy, θz), velocity ( dx/dt, dy/dt, dz/dt), angular velocity (dθx/dt, dθy/dt, dθz/dt).

由于在刚体力学中状态量1X的各成分相互连成,所以具有通过确定状态量1X能够进行更加精密的控制、能够进行乘员舒适性和稳定性高的控制的效果。Since the components of the state quantity 1X are connected to each other in rigid body mechanics, there is an effect that more precise control can be performed by determining the state quantity 1X, and control with high occupant comfort and stability can be performed.

对由车辆状态推定部101进行的车辆状态推定处理流程,参照图6进行说明。The flow of the vehicle state estimation process performed by the vehicle state estimation unit 101 will be described with reference to FIG. 6 .

首先,在步骤S1011中,推定固定在车辆上的局部坐标系1G中的运动状态。First, in step S1011, the motion state in the local coordinate system 1G fixed to the vehicle is estimated.

接着,在步骤S1012中,推定固定在例如日本桥等特定的地点的固定坐标系中的运动状态。Next, in step S1012, the motion state in a fixed coordinate system fixed at a specific point such as Nihonbashi is estimated.

接着,在步骤S1013中,推定车辆行驶的周边的状况。Next, in step S1013, the state of the periphery where the vehicle is traveling is estimated.

接着,在步骤S1014中,基于传感器S的计测值、BBW驱动器ECU83A~83D、DBW系统综合控制ECU20、SBW·VGR驱动器ECU81、SBW驱动器ECU82、EAS驱动器ECU84A~84D、气囊ECU85等的控制用执行元件的自我故障诊断结果,推定更新车辆的故障状态。Next, in step S1014, based on the measured value of the sensor S, the BBW driver ECUs 83A to 83D, the DBW system integrated control ECU 20, the SBW·VGR driver ECU 81, the SBW driver ECU 82, the EAS driver ECUs 84A to 84D, the airbag ECU 85, and the like are executed for control. The self-diagnosis results of the components presumably update the fault status of the vehicle.

对由目标状态运算部102的目标状态运算处理流程,参照图7进行说明。The flow of the target state calculation process by the target state calculation unit 102 will be described with reference to FIG. 7 .

首先,在步骤S1021中,基于转向传感器41、制动踏板位置传感器42、加速踏板位置传感器43的操作量、和现在的车辆状态,推定驾驶员意图的车辆状态。First, in step S1021 , the vehicle state intended by the driver is estimated based on the operation amounts of the steering sensor 41 , the brake pedal position sensor 42 , the accelerator pedal position sensor 43 , and the current vehicle state.

接着,在步骤S1022中,基于车辆的周边的状况、车辆控制装置的性能、机器的故障的状态、法规制度等,运算车辆的极限。例如在制动装置一部分发生故障的时候,在以正常动作的制动装置的能力能够安全制动的范围限制最高速度。Next, in step S1022 , the limit of the vehicle is calculated based on the surrounding conditions of the vehicle, the performance of the vehicle control device, the failure state of equipment, laws and regulations, and the like. For example, when a part of the braking device fails, the maximum speed is limited within the range where the brakes can be safely braked by the capability of the normally operating braking device.

并且,在步骤S1023中,在不超过车辆状态的极限的范围,按驾驶员意图决定车辆50的目标状态量。Then, in step S1023, the target state quantity of the vehicle 50 is determined according to the driver's intention within a range not exceeding the limit of the vehicle state.

图8表示由车体操作矢量操作力矩运算部103运算的操作力、力矩矢量。FIG. 8 shows the operation force and moment vector calculated by the vehicle body operation vector operation torque calculation unit 103 .

如图8所示,操作力矢量F(Fx、Fy、Fz)和操作力矩矢量τ(τx、τy、τz),在固定于车体上的局部坐标系上进行运算。因此,具有能够容易变换到在被固定在车辆上的控制装置的操作量的效果。As shown in FIG. 8, the operation force vector F (Fx, Fy, Fz) and the operation moment vector τ (τx, τy, τz) are calculated on a local coordinate system fixed to the vehicle body. Therefore, there is an effect that it is possible to easily switch to the operation amount of the control device fixed to the vehicle.

对操作运算部104的操作量运算处理流程参照图9进行说明。The flow of the operation amount calculation processing by the operation calculation unit 104 will be described with reference to FIG. 9 .

操作运算部104,输入由车体操作矢量操作力矩运算部103运算的车体操作力矢量F、力矩矢量τ,并运算实际的控制装置以怎样的控制量为目标值。The operation calculation unit 104 receives the vehicle body operation force vector F and the moment vector τ calculated by the vehicle body operation vector operation torque calculation unit 103 , and calculates which control amount the actual control device uses as a target value.

首先,在步骤S1041中,将车体操作力矢量F、力矩矢量τ向各发生在安装于车辆50上的轮胎上的轮胎力进行分配。其后,运算对轮胎矢量的、在实际的控制装置中的控制量目标值。First, in step S1041 , the vehicle body operation force vector F and the moment vector τ are distributed to the tire forces that occur on the tires mounted on the vehicle 50 . Thereafter, a control amount target value for the tire vector in an actual control device is calculated.

通过将制动力、驱动力、旋转力(由操舵发生的轮胎横力)作为车辆控制中的目标值使用,可以综合地控制车辆整体的运动。By using braking force, driving force, and rotational force (tire lateral force generated by steering) as target values in vehicle control, the movement of the entire vehicle can be comprehensively controlled.

在图10中,表示在步骤S1041运算的轮胎矢量。FIG. 10 shows the tire vector calculated in step S1041.

FFR是通过控制而发生在前轮的轮胎矢量。FFL是通过控制而发生在左前轮的轮胎矢量。FRR是通过控制而发生在右后轮的轮胎矢量。FRL是通过控制而发生在左后轮的轮胎矢量。轮胎矢量分别作为固定在车体50上的局部坐标系1G中的成分来确定。FFR is the tire vectoring that occurs at the front wheels through control. FFL is the tire vector that occurs at the left front wheel through control. FRR is the tire vector that occurs at the right rear wheel through control. FRL is the tire vector that occurs at the left rear wheel through control. The tire vectors are respectively determined as components in the local coordinate system 1G fixed to the vehicle body 50 .

通过将轮胎矢量作为局部坐标形状的成分来确定,有容易向固定在车体50上的轮胎驱动轴及转向装置的操作量的变换的效果。By determining the tire vector as a component of the local coordinate shape, there is an effect that the conversion of the operation amount to the tire drive shaft and the steering device fixed to the vehicle body 50 is facilitated.

在步骤S1042中,进行操作量的分配处理。操作量的分配处理实际上对应于控制车辆的执行元件的构成来进行。In step S1042, distribution processing of the operation amount is performed. The allocation process of the operation amount is actually performed corresponding to the configuration of the actuators that control the vehicle.

图11(a)、(b)表示操作量分配处理的详细情况。11( a ), ( b ) show the details of the operation amount distribution processing.

图11(a)表示车辆50具有内燃机驱动、混合型内燃机驱动的动力驱动系时的操作量分配处理(步骤S1042a)。该操作量分配处理,输入轮胎矢量,并输出作为在SBW·VGR驱动器ECU81、SBW驱动器ECU82的目标值的操舵量,作为在BBW驱动器ECU83A~83D中的目标值的制动器制动转矩、作为在DBW系统综合控制ECU20中的目标值的动力驱动转矩。FIG. 11( a ) shows the operation amount distribution process (step S1042 a ) when the vehicle 50 has an internal combustion engine drive or a hybrid internal combustion engine drive powertrain. In this operation amount distribution process, the tire vector is input, and the steering amount as the target value in the SBW·VGR driver ECU81 and the SBW driver ECU82 is output, the brake braking torque as the target value in the BBW driver ECU83A to 83D, and the brake torque as the target value in the The DBW system comprehensively controls the power drive torque of the target value in the ECU 20 .

图11(b)表示车辆50具有公知的轮毂电动马达型的动力驱动系时的操作量分配处理(步骤S1042b)。操作量分配处理,输出作为在SBW·VGR驱动器ECU81、SBW驱动器ECU82中的目标值的操舵量、作为在未图示的由轮毂电动马达产生再生和制动块控制ECU的目标值的制动器制动转矩、作为在未图示的轮毂电动马达控制ECU中的目标值的电动马达驱动转矩。FIG. 11( b ) shows the operation amount distribution process (step S1042b ) when the vehicle 50 has a known in-wheel electric motor type power drive system. The operation amount allocation process outputs the steering amount as the target value in the SBW·VGR driver ECU81 and the SBW driver ECU82, and the brake brake as the target value of the regenerative and brake pad control ECU by the in-wheel electric motor not shown in the figure. The torque is an electric motor drive torque that is a target value in an in-wheel electric motor control ECU (not shown).

通过实际上对应于控制车辆的执行元件的构成来进行操作量的分配处理,即使改变执行元件构成,也可通过交换操作量分配处理的执行装置来对应,具有提高车辆控制装置的开发效率的效果。By performing the allocation process of the operation amount corresponding to the configuration of the actuators that actually control the vehicle, even if the configuration of the actuators is changed, it is possible to respond by exchanging the execution device for the allocation processing of the operation amount, which has the effect of improving the development efficiency of the vehicle control device .

对DBW系统综合控制ECU20的构成参照图12进行说明。The configuration of the DBW system integrated control ECU 20 will be described with reference to FIG. 12 .

右前轮驱动转矩接受部201,接受在右前轮72R应该发生的驱动转矩。左前轮驱动转矩接受部202接受在左前轮72L应该发生的驱动转矩。右后轮驱动转矩接受部203接受在右后轮75R应该发生的驱动转矩。左后轮驱动转矩接受部204接受在左后轮75L应该发生的驱动转矩。The right front wheel drive torque receiving unit 201 receives the drive torque to be generated by the right front wheel 72R. The left front wheel drive torque receiving unit 202 receives the drive torque that should be generated at the left front wheel 72L. The right rear wheel drive torque receiving unit 203 receives the drive torque that should be generated at the right rear wheel 75R. The left rear wheel drive torque receiving unit 204 receives the drive torque that should be generated at the left rear wheel 75L.

动力驱动系操作量计算部205,计算作为在控制实际的执行元件的ECU中的目标值的值,指示内燃机控制ECU21、变速器控制ECU22、电动马达控制ECU23、蓄电池控制ECU24的操作量。The powertrain operation amount calculation unit 205 calculates a value as a target value in the ECU that controls the actual actuators, and instructs the operation amount of the internal combustion engine control ECU 21 , transmission control ECU 22 , electric motor control ECU 23 , and battery control ECU 24 .

在公知的转矩基础的车辆控制装置中,以在驱动装置的驱动轴应该发生的转矩为目标值进行控制。因此,就有作为能够控制按各车轮的驱动力的轮毂电动马达型用的DBW系统综合控制ECU20没有互换性的课题。In a known torque-based vehicle control device, control is performed with the torque to be generated at the drive shaft of the drive device as a target value. Therefore, there is a problem that the DBW system integrated control ECU 20 for an in-wheel electric motor type capable of controlling the driving force for each wheel is not compatible.

在这里,例如,在具有内燃机及混合型系统那样的集中地发生驱动力的驱动装置的驱动系统中,也将每个车轮的驱动力作为控制目标值接受,并在DBW系统综合控制ECU20的内部再分配到驱动用的执行元件上。其结果,能够使混合型系统用的DBW系统综合控制ECU和轮毂电动马达型系统用的DBW系统综合控制ECU的指令值接受方式(接口)共通化。Here, for example, in a drive system including a drive device that generates drive force intensively such as an internal combustion engine or a hybrid system, the drive force of each wheel is received as a control target value, and is integrated within the DBW system control ECU20. Then distribute to the actuator for driving. As a result, the command value receiving method (interface) of the DBW system integrated control ECU for the hybrid system and the DBW system integrated control ECU for the in-wheel electric motor system can be made common.

(实施例2)(Example 2)

对面向应用本发明的车辆控制装置的下一代车辆综合车辆控制装置、自律分散控制平台参照图13进行说明。An integrated vehicle control device for a next-generation vehicle and an autonomous decentralized control platform to which the vehicle control device of the present invention is applied will be described with reference to FIG. 13 .

自律分散控制平台的目的,是以低成本实现车辆控制中的高可靠性、实时处理、扩展性。The purpose of the autonomous decentralized control platform is to achieve high reliability, real-time processing, and scalability in vehicle control at low cost.

作为「自律分散」,是在控制领域中的高可靠分散系统模型的一个。被称为对应于生物中的细胞的节点的计算主体,是通过放置称为数据区的共有数据的地方、疏散地结合的系统。As "autonomous decentralization", it is one of the highly reliable decentralized system models in the field of control. Computation subjects called nodes corresponding to cells in living things are loosely combined systems where common data called data areas are placed.

另外,有关「自律分散」的详细的内容,请参照森欣司、宫本二、井原广一的“自律分散概念的提案”,电气学会论文杂志C V01.104No.12pp.303-310(1984)、及K.Mori:Autonomous Decentralized Systems:Concept,Data field Architecture and Future Trends:IEEE InterationalSymposium on Autonous Decentralized Systems(ISADS)pp.28-34(1993-Mar)。In addition, for the details of "autonomous decentralization", please refer to "Proposal for the concept of self-discipline decentralization" by Shinji Mori, Miyamoto Niji, and Ihara Koichi, Journal of Electrical Society C V01.104No.12pp.303-310(1984) , and K. Mori: Autonomous Decentralized Systems: Concept, Data field Architecture and Future Trends: IEEE Interational Symposium on Autonomous Decentralized Systems (ISADS) pp.28-34 (1993-Mar).

在自律分散系统中,以将各节点设为与其它独立且可以自律地动作的程序,而实现一部分障碍不影响系统整体的构成,能够实现可靠性及扩展性好的分散系统。但是,很难应用于根据生物学的模型的概念的实际系统,不能达到确立具有一般性的应用方法。因此,需要对每个应用系统探讨体系机构。In the autonomous distributed system, each node is set as a program that is independent from other nodes and can operate autonomously, so that a partial failure does not affect the overall configuration of the system, and a distributed system with good reliability and scalability can be realized. However, it is difficult to apply the concept of the biological model to an actual system, and it is impossible to establish a general application method. Therefore, architecture needs to be explored for each application system.

自律分散控制平台由下述部分构成:1)用于共有数据的数据区DF10,2)自律的动作,3)自律的管理,4)可进行自律的备份的节点(传感器节点A20、执行元件节点A30、控制器节点A10)。另外,各节点具有自监控器(自监视功能)A13、A23、A33。The autonomous distributed control platform consists of the following parts: 1) Data area DF10 for shared data, 2) Autonomous action, 3) Autonomous management, 4) Nodes (sensor node A20, actuator node) capable of autonomous backup A30, controller node A10). In addition, each node has a self-monitor (self-monitoring function) A13, A23, A33.

控制器节点A10,根据时间条件A12(例如10「ms」周期),起动处理程序A11。控制器节点A10,从数据区DF10取得传感器数据DA20,运算执行元件节点A30的控制目标值,使其作为控制器数据DA10向数据区DF10进行无线电传送。The controller node A10 activates the processing program A11 according to the time condition A12 (eg, 10 "ms" period). The controller node A10 acquires the sensor data DA20 from the data field DF10, calculates the control target value of the actuator node A30, and transmits it by radio to the data field DF10 as controller data DA10.

数据区DF10是假定地设置在控制网络上的共有存储空间,在正常状态,存在传感器节点A20输出的传感器数据DA20、和控制器节点10输出的控制器数据(控制目标值)DA10。The data field DF10 is a shared storage space presumably provided on the control network, and in a normal state, there are sensor data DA20 output from the sensor node A20 and controller data (control target value) DA10 output from the controller node 10 .

所谓自律的动作,是不接收从其它节点给出的处理要求,根据时间条件、节点的状态自发地进行处理的功能。The so-called autonomous operation is a function to perform processing spontaneously according to time conditions and the status of nodes without receiving processing requests from other nodes.

所谓自律的管理功能,是对在其它节点隐蔽的自节点的动作和状态的监视,由自身执行的功能。The so-called autonomous management function is a function performed by itself to monitor the operation and status of its own node that is hidden from other nodes.

所谓自律的备份,是通过内装简易控制,而在对自节点的处理需要的数据有异常的时候,通过简易控制来运算自己需要的数据,实现所需要的最低限度的处理的功能。The so-called self-disciplined backup is a function that realizes the minimum required processing by using the built-in simple control, and when there is an abnormality in the data required for the processing of the own node, the simple control calculates the data required by itself.

以下,根据数据区DF10,表示对提高适用于车辆控制装置的扩展性,通过自律的动作而适用于实时分散控制的时间驱动动作,通过自律的管理功能和自律的备用功能来实现用于可靠性确保的状态监视和系统耐故障性。Hereinafter, according to the data field DF10, it is indicated that the expansion applicable to the vehicle control device is improved, and the time-driven action suitable for real-time distributed control through autonomous action is used to achieve reliability through the autonomous management function and the autonomous backup function. Guaranteed status monitoring and system failure tolerance.

使用图14(a)、(b),叙述自律分散控制平台中的数据区。Using Fig. 14(a) and (b), the data area in the autonomous distributed control platform will be described.

数据区的目标是提高车辆控制装置的扩展性。通过数据区的导入,在使节点间的接口标准化的基础上,还能够实现容易进行部件的更换、追加的目的。The goal of the data area is to increase the scalability of the vehicle control unit. The introduction of the data area not only standardizes the interface between nodes, but also facilitates replacement and addition of parts.

在自律分散控制平台上,节点间的数据交换,通过作为被定义在网络上的假想的共有存储器的数据区DF20来进行。即,不意识在网络上连接怎样的机器,对数据本身作为对象进行识别。On the autonomous distributed control platform, data exchange between nodes is performed through the data field DF20 which is a virtual shared memory defined on the network. That is, the data itself is recognized as an object without knowing what kind of equipment is connected to the network.

因此,被定义在数据区DF20上的数据,是在传感器·执行元件水准可标准化的抽象度高的数据。例如在传感器计测中,进行不是由电压值那样的基本要素的数据、而是由多重计测实行的滤波处理或浮点化的物理值,被定义在数据区上。在执行元件控制中,也是将制动的目标制动力那样的标准化的数据定义在数据区上。Therefore, the data defined in the data field DF20 is data with a high degree of abstraction that can be standardized at the sensor/actuator level. For example, in sensor measurement, data that is not a basic element such as a voltage value, but a filtering process performed by multiple measurements or a floating-point physical value is defined in the data area. Also in actuator control, standardized data such as the target braking force for braking is defined in the data area.

在图14(a)的例中,通过制动踏板位置传感器节点A200来计测制动踏板SA200的踏入量,并在变换成物理量的基础上,作为制动踏板状态量(制动踏入量)DA200无线电传送到数据区DF20上。In the example of Fig. 14(a), the depression amount of the brake pedal SA200 is measured by the brake pedal position sensor node A200, and converted into a physical quantity, as the brake pedal state quantity (brake depression Quantity) DA200 radio transmission to the data field DF20.

控制器节点A100,参照制动踏板状态量DA200,运算各轮的目标制动力(仅图示右前轮目标制动力DA100、左前轮目标制动力DA101)并无线电传送到数据区DF20上。The controller node A100 calculates the target braking force of each wheel (only the right front wheel target braking force DA100 and the left front wheel target braking force DA101 is shown) with reference to the brake pedal state quantity DA200 and transmits it to the data area DF20 by radio.

前轮制动器执行元件节点A300,在参照右前轮目标制动力DA100、左前轮目标制动力DA101的基础上,为实现目标制动力,控制左前轮制动器执行元件AA300、左后轮制动器执行元件AA301。The front wheel brake actuator node A300 controls the left front wheel brake actuator AA300 and the left rear wheel brake actuator AA301.

图14(b)的例,是对于图14(a)的控制构造,在追加车间距离控制功能的基础上,变更制动控制器的构成。In the example of FIG. 14(b), the configuration of the brake controller is changed in addition to adding the inter-vehicle distance control function to the control structure of FIG. 14(a).

追加计测与前行车的车间距离的雷达SA210和控制雷达的雷达节点A210,将计测的车间距离DA210无线电传送到数据区DF20中。A radar SA210 for measuring the inter-vehicle distance to the preceding vehicle and a radar node A210 for controlling the radar are added, and the measured inter-vehicle distance DA210 is radio-transmitted to the data field DF20.

控制器节点A100,参照制动踏板状态量DA200和车间距离DA210,运算车轮的目标制动力(仅图示右前轮目标制动力DA100、左前轮目标制动力DA101)并无线电传送到数据区DF20上。Controller node A100, referring to the brake pedal state quantity DA200 and inter-vehicle distance DA210, calculates the target braking force of the wheels (only the right front wheel target braking force DA100 and the left front wheel target braking force DA101 are shown) and transmits it to the data area DF20 by radio superior.

右前轮的制动器执行元件节点A310参照右前轮目标制动力DA100并控制右前轮的制动器执行元件AA310。The brake actuator node A310 of the right front wheel refers to the right front wheel target braking force DA100 and controls the brake actuator AA310 of the right front wheel.

左前轮的制动器执行元件节点A320,参照左前轮目标制动力DA101并控制左前轮的制动器执行元件AA320。The left front wheel brake actuator node A320 controls the left front wheel brake actuator AA320 with reference to the left front wheel target braking force DA101 .

以上,如图14(a)、(b)所示,对其它的传感器·执行元件不给予影响,以仅在数据区DF20上追加「车间距离」的数据,就能够作为车间距离计测节点进行雷达节点A210的追加。As above, as shown in Fig. 14(a) and (b), without affecting other sensors and actuators, it can be performed as a vehicle-to-vehicle distance measurement node only by adding the data of "vehicle distance" to the data area DF20. Addition of radar node A210.

另外,虽然制动器执行元件节点也从前轮控制型变更成各轮独立型,但对其它的节点和数据区DF20不施以影响。即,通过使用数据区DF20可以疏散地结合各节点,能够容易地实现扩张性好的分散系统。In addition, although the brake actuator node is also changed from the front wheel control type to each wheel independent type, it does not affect other nodes and the data area DF20. That is, by using the data field DF20, each node can be loosely connected, and a distributed system with good expandability can be realized easily.

使用图15(和图13)对在分散控制平台特征中的、自律动作进行叙述。The autonomous operation among the characteristics of the distributed control platform will be described using FIG. 15 (and FIG. 13 ).

自律的动作的目的,是为了对应分散实时处理,可实现使处理时间的预测根据容易进行的时间驱动而动作。The purpose of the autonomous operation is to enable the prediction of the processing time to be performed according to the time-driven operation which is easy to perform in order to cope with the distributed real-time processing.

所谓在自律分散控制平台中的自律的动作,是通过时间条件或节点的状态而使节点自发地开始处理的动作。即,作为节点的动作条件,不仅短信息的接收,而且通过时间条件(时刻和周期)和自节点的状态变化(插入)而进行启动处理。The so-called autonomous operation in the autonomous distributed control platform is an operation in which a node starts processing spontaneously according to a time condition or a state of a node. That is, as the operation condition of the node, not only the reception of the short message, but also the time condition (time and cycle) and the state change (insertion) of the own node are used to perform the start-up process.

在实时系统中,捕捉控制对象的系统的状态,在一定时间内反映到控制是必须不可缺少的。为此在控制设计时,必须能够设计在End-to-End中的处理执行时间。进而,另一方面,也要求不受其它节点的异常的影响而继续自节点的处理的功能。为了实现这样的高可靠分散实时系统,需要将节点的动作设为自律。In a real-time system, it is essential to capture the state of the system to be controlled and reflect it to the control within a certain period of time. Therefore, when designing the control, it is necessary to be able to design the processing execution time in End-to-End. Furthermore, on the other hand, a function of continuing the processing of the own node without being affected by the abnormality of other nodes is also required. In order to realize such a highly reliable decentralized real-time system, it is necessary to make the operation of nodes autonomous.

传感器节点A20,通过时间条件A22(例如10[ms]周期),启动处理程序A21。The sensor node A20 activates the processing program A21 according to the time condition A22 (eg, 10 [ms] cycle).

传感器节点A20,读取传感器SA20的计测值,在进行滤波处理、浮点化等前处理而变换成物理量后,将传感器数据DA20无线电传送到数据区DF10。The sensor node A20 reads the measured value of the sensor SA20, performs pre-processing such as filter processing and floating-point conversion, and converts it into a physical quantity, and then wirelessly transmits the sensor data DA20 to the data area DF10.

执行元件节点A30也根据个别的时间条件32(20[ms]周期)启动处理程序A31。The actuator node A30 also activates the processing program A31 according to the individual time condition 32 (20 [ms] cycle).

执行元件节点A30,从数据区DF10取得传感器数据DA20,在运算自节点A30的控制目标后,为了实现目标值进行执行元件AA30的控制。The actuator node A30 acquires the sensor data DA20 from the data area DF10, calculates the control target of its own node A30, and then controls the actuator AA30 to realize the target value.

另外,作为启动条件的时间条件A22、A32,例如像内燃机旋转插入那样,也可以为自节点的状态变化。这样,通过自发地启动处理、同时自己取得必要的数据进行运算,可以进行节点的自律的动作。In addition, the time conditions A22 and A32 serving as start conditions may be state changes of own nodes, such as engine rotation interruption, for example. In this way, autonomous operations of nodes can be performed by voluntarily starting processing and simultaneously obtaining necessary data and performing calculations.

通过自律的动作,使节点的动作为时间驱动型或由自节点的状态变化带来的驱动型。即,不需要其它节点的偶发驱动,使最坏执行时间的设计变得非常容易。另外,由于不受其它的节点异常的影响而可以继续处理,所以能够实现高可靠的系统。Through autonomous actions, the actions of nodes are time-driven or driven by the state changes of their own nodes. That is, it does not require sporadic driving of other nodes, making the design of the worst execution time very easy. In addition, since processing can be continued without being affected by other node abnormalities, a highly reliable system can be realized.

下面,对在自律分散控制平台的特征中、自律的管理进行叙述。自律的管理的目的,是确保车辆控制所需的高可靠性。具体地说,是以构成分散系统的各节点单位来实现自节点的动作监视或异常时的处理(故障运行/故障无反应)。另外,为了同时达到高可靠性和低成本化,作为异常时处理,根据对象节点而分配使用故障运行(故障时操作的可能性)和故障无反应(故障时非失控性)。Next, among the characteristics of the autonomous distributed control platform, autonomous management will be described. The purpose of autonomous management is to ensure the high reliability required for vehicle control. Specifically, operation monitoring of own nodes and handling of abnormalities (failure operation/failure non-response) are realized by each node unit constituting the distributed system. In addition, in order to achieve high reliability and cost reduction at the same time, failure operation (possibility of operation at failure) and failure non-response (non-runaway performance at failure) are assigned and used as abnormal processing according to the target node.

在以往构成中,通过每个子系统的ECU来进行传感器计测、车辆控制量运算、执行元件控制。因此,如果要达到系统的高可靠性化,则需要较多的ECU的故障运行性,则导致高成本化。另外,在使用由ECU互相带来的相互监视功能的时候,就有ECU间的结合变紧密、涉及到扩展性及开发效率的恶化的问题。In the conventional configuration, sensor measurement, vehicle control variable calculation, and actuator control are performed by each subsystem's ECU. Therefore, in order to achieve high reliability of the system, a lot of ECU failure operability is required, resulting in high cost. In addition, when the mutual monitoring function provided by each ECU is used, there is a problem that the connection between ECUs becomes tighter, and the scalability and development efficiency deteriorate.

在图16中表示了自律的监视的概要。The outline of autonomous monitoring is shown in FIG. 16 .

在本构成中,在节点A400中设置自己监视功能A430,监视在正常状态的动作A410。并且,在发生异常时进行功能停止处理A411(故障无反应)。In this configuration, a self-monitoring function A430 is provided in the node A400 to monitor the normal operation A410. And, when an abnormality occurs, the function stop processing A411 (failure non-response) is performed.

另外,对于制动踏板、转向盘等的备份困难的节点,具有故障运行性,进行功能继续。另外,通过在自律监视功能自身的故障时也进行节点的功能停止,可防止节点的失控。In addition, for nodes where it is difficult to back up the brake pedal, steering wheel, etc., there is failure operability, and the function is continued. In addition, by stopping the function of the node even when the autonomous monitoring function itself fails, runaway of the node can be prevented.

通过该自律的监视,可疏散地保持节点的结合,同时,以低成本的故障无反应节点的集合可以构筑高可靠性的系统。进而,通过与下面叙述的自律的备份的组合,能够实现在系统水平的故障运行性。Through this autonomous monitoring, it is possible to maintain the connection of nodes in a dispersed manner, and at the same time, it is possible to construct a highly reliable system with a low-cost collection of nodes that do not respond to failures. Furthermore, by combining with autonomous backup described below, failover at the system level can be realized.

下面,对在自律分散控制平台的特征中、自律的备份进行叙述。自律的备份的目的是确保对车辆控制所需的高可靠性。具体地说,是用于补偿构成分散车辆控制装置的节点的故障的简易的控制功能。Next, among the features of the autonomous distributed control platform, autonomous backup will be described. The purpose of autonomous backup is to ensure the high reliability required for vehicle control. Specifically, it is a simple control function for compensating for a failure of a node constituting a distributed vehicle control device.

所谓自律的备份,是通常在取主从构成的控制节点的逻辑构成中,在完成主功能的节点发生故障时,通过辅助节点间的数据共有而实现需要的最低限的控制的功能。The so-called self-disciplined backup is usually a logical configuration of master-slave control nodes. When the node that performs the master function fails, the required minimum control is realized by sharing data between the slave nodes.

图17表示执行元件节点的动作流。Fig. 17 shows the operation flow of the actuator node.

通常,使用传感器节点A20的计测值使控制器节点A10运算控制目标值,基于该控制目标值,执行元件节点A30进行执行元件AA30的控制(步骤S311肯定→步骤S312→步骤S313)。Normally, the controller node A10 calculates a control target value using the measured value of the sensor node A20, and the actuator node A30 controls the actuator AA30 based on the control target value (Yes in step S311→step S312→step S313).

另一方面,执行元件节点A30,内装有主节点(控制器节点A10)的控制功能的简易版(简易控制功能)A34(参照图13),与控制目标值同时也参照传感器计测值,并基于传感器计测值来运算简易控制目标值。万一,在主节点发生异常的时候,通过上述的自己监视功能而实行功能停止,所以例如,根据不更新数据区DF10上的数据的事项,执行元件节点A30在步骤S311中判定主节点的故障。在执行元件节点A30判定主节点的故障后,执行步骤S311否定→步骤S314→步骤S313,并通过内装的简易控制功能A34,为了实现自节点的功能而由自己备份必要的处理。On the other hand, the actuator node A30 incorporates a simplified version (simple control function) A34 (see FIG. 13 ) of the control function of the master node (controller node A10), and refers to the sensor measurement value together with the control target value, and The simple control target value is calculated based on the sensor measurement value. In case, when an abnormality occurs in the master node, the above-mentioned self-monitoring function is used to stop the function. Therefore, for example, based on the fact that the data on the data area DF10 is not updated, the actuator node A30 determines the failure of the master node in step S311. . After the actuator node A30 judges the failure of the master node, it executes step S311 negative → step S314 → step S313, and through the built-in simple control function A34, it backs up the necessary processing by itself in order to realize the function of its own node.

通过该自律备份功能和上述的自律的监视功能,以低成本的故障无反应节点的集合,可以实现高可靠性的故障运行系统。Through this autonomous backup function and the aforementioned autonomous monitoring function, a high-reliability failure operation system can be realized with a low-cost collection of failure-unresponsive nodes.

接着,以制动控制功能为例说明自律分散控制体系结构的动作例。特别是,出示通过本提案以可靠的节点的组合能够构筑故障运行系统。Next, an example of the operation of the autonomous decentralized control architecture will be described using the brake control function as an example. In particular, according to this proposal, it is shown that a failure operation system can be constructed by combining reliable nodes.

在图18(a)、(b)中表示XBW车辆控制装置的构成例。在图18(a)、(b)中,主要着眼于车辆综合控制ECU、制动踏板位置传感器、制动器执行元件(BBW(Brake-By-Wire)驱动器ECU)和数据区。另外数据区例如设置在由FlexRay安装的车辆控制用网络上。An example of the configuration of the XBW vehicle control device is shown in FIGS. 18( a ) and ( b ). In Fig. 18(a) and (b), focus is mainly on the vehicle integrated control ECU, brake pedal position sensor, brake actuator (BBW (Brake-By-Wire) driver ECU) and data area. Another data area is provided, for example, on a network for vehicle control implemented by FlexRay.

首先,使用图18(a),说明通常时的自律分散控制平台中的制动控制功能的动作。First, using FIG. 18( a ), the operation of the brake control function in the autonomous distributed control platform at normal times will be described.

自律分散控制平台中的制动控制功能,由制动踏板节点B20、车辆运动综合控制节点(车辆运动综合控制ECU)B10、制动器执行元件节点B30构成。The brake control function in the autonomous decentralized control platform is composed of a brake pedal node B20, a vehicle motion integrated control node (vehicle motion integrated control ECU) B10, and a brake actuator node B30.

制动踏板节点B20,周期地自律启动,使用A/D变换器B203计测制动踏板位置传感器SB20的状态。The brake pedal node B20 is periodically activated autonomously, and uses the A/D converter B203 to measure the state of the brake pedal position sensor SB20.

制动踏板节点B20,对于计测的值由滤波修正处理部件B202进行滤波及修正处理等,进而由数据标准化部B204进行数据的标准化。其后,使用通信驱动器B201在自律分散数据区DF30上公开数据「制动踏板状态」。The brake pedal node B20 performs filtering, correction processing, etc. on the measured value by the filter correction processing unit B202, and further normalizes the data by the data normalization unit B204. Thereafter, the data "brake pedal state" is published in the autonomous distributed data area DF30 using the communication driver B201.

车辆运动综合控制节点B10周期地启动。车辆运动综合控制节点B10启动后、使用通信驱动器B101参照自律分散数据区DF30上的制动踏板状态和其它的数据(偏航速率、方向盘舵角等),由车辆运动观测器B102推定车辆的运动状态,由驾驶员意图把握部B103推定驾驶员的操作意图。并且,基于推定结果,由执行元件目标值生成部件B104,运算制动力、驱动轴转矩、转向角等的执行元件控制目标值。其后,使用通信驱动器B101在自律分散数据区DF30上公开控制目标值。The vehicle motion integrated control node B10 starts up periodically. After the vehicle motion integrated control node B10 starts, use the communication driver B101 to refer to the brake pedal state and other data (yaw rate, steering wheel rudder angle, etc.) on the autonomous decentralized data area DF30, and the vehicle motion observer B102 to estimate the motion of the vehicle state, the driver's intention to operate is estimated by the driver's intention grasping unit B103. Then, based on the estimation result, the actuator target value generation unit B104 calculates actuator control target values such as braking force, drive shaft torque, and steering angle. Thereafter, the control target value is disclosed on the autonomous distributed data field DF30 using the communication driver B101.

在这里,以左后轮为例说明制动器执行元件节点B30的动作。与其它的节点相同,制动器执行元件节点B30也周期地启动。在制动器执行元件节点B30启动后,使用通信驱动器B301参照自律分散数据区NF30上的控制目标值、即目标制动力。并且,基于目标制动力进行制动器执行元件AB30的控制。使用A/D变换器B303观测制动的状态,由制动钳控制部B302,基于制动器产生的制动力和目标的差分来运算制动控制量,使用预驱动器B304控制制动器执行元件AB30。Here, the operation of the brake actuator node B30 will be described by taking the left rear wheel as an example. Like the other nodes, the brake actuator node B30 is also activated periodically. After the brake actuator node B30 is activated, the communication driver B301 is used to refer to the control target value, that is, the target braking force on the autonomous distributed data area NF30. And, the control of the brake actuator AB30 is performed based on the target braking force. The A/D converter B303 is used to observe the braking state, the brake caliper control unit B302 calculates the braking control amount based on the difference between the braking force generated by the brake and the target, and the brake actuator AB30 is controlled using the pre-driver B304.

另外,数据区参照的周期和执行元件控制的周期也不一定是同一周期,也可以更高速地取执行元件控制周期。由此,能够与控制对象执行元件的控制时常数一致地进行适当的控制。In addition, the period referred to by the data area and the period controlled by the actuator are not necessarily the same period, and the period controlled by the actuator can be taken at a higher speed. Accordingly, appropriate control can be performed in accordance with the control time constant of the controlled actuator.

接着,使用图18(b),说明车辆运动综合控制节点B10的故障时的制动控制功能的动作。Next, the operation of the braking control function at the time of failure of the vehicle motion integrated control node B10 will be described using FIG. 18( b ).

制动踏板节点B20与通常时相同,自律地启动进行处理。不受车辆运动综合控制节点B10的故障影响。车辆运动综合控制节点B10,在通过自律管理功能来检测自身的故障时,进行故障无反应处理。即,在从外部看时,为停止一切的处理的状态。因此,不更新自律分散数据区DF30上的执行元件目标值。The brake pedal node B20 is automatically activated and processed as usual. It is not affected by the failure of the vehicle motion integrated control node B10. When the vehicle motion integrated control node B10 detects its own failure through the self-discipline management function, it performs failure non-response processing. That is, when viewed from the outside, it is in a state where all processing is stopped. Therefore, the actuator target value on the autonomous distributed data area DF30 is not updated.

在这里,以左后轮为例说明制动器执行元件节点B30的动作。制动器执行元件节点B30周期地启动。在制动器执行元件节点B30启动后,参照自律分散数据区DF30上的控制目标值、即目标制动力。但是,由于不更新目标制动力的数据,所以检测车辆运动综合控制节点B10的故障。由此,启动制动踏板节点B20的自律分散控制功能305。自律分散控制功能305,参照自律分散数据区DF30上的制动踏板状态来运算简易目标值。Here, the operation of the brake actuator node B30 will be described by taking the left rear wheel as an example. The brake actuator node B30 is activated periodically. After the brake actuator node B30 is activated, the control target value, that is, the target braking force on the autonomous distributed data area DF30 is referred to. However, since the data of the target braking force is not updated, a failure of the vehicle motion integrated control node B10 is detected. As a result, the autonomous distribution control function 305 of the brake pedal node B20 is activated. The autonomous distribution control function 305 calculates a simple target value with reference to the state of the brake pedal in the autonomous distribution data area DF30.

制动钳控制部B302,取代车辆运动综合控制节点B10运算的控制目标值,基于自律分散控制功能305运算的简易目标值来进行制动器执行元件AB30的控制。The brake caliper control unit B302 controls the brake actuator AB30 based on the simple target value calculated by the autonomous decentralized control function 305 instead of the control target value calculated by the vehicle motion integrated control node B10 .

这里,该简易目标值,是仅使用制动踏板状态而计算的值,不是控制车辆运动综合控制节点B10运算的控制车辆的举动的值。Here, the simple target value is a value calculated using only the state of the brake pedal, and is not a value for controlling the behavior of the vehicle calculated by the vehicle motion integrated control node B10.

以上,对使用自律分散控制平台的制动控制功能的动作进行了叙述。根据作为自律分散平台的特征的数据区、自律的动作、自律的管理、自律的备份,可表示例如即使在运算目标值的控制器节点发生故障的时候、也能够作为车辆控制装置动作。The operation of the brake control function using the autonomous distributed control platform has been described above. According to the data area, autonomous operation, autonomous management, and autonomous backup that are the characteristics of the autonomous distributed platform, it can be shown that, for example, even when the controller node that calculates the target value fails, it can operate as a vehicle control device.

根据这一效果,通过故障无反应节点的组合,可以实现故障运行的车辆控制装置,可认为对高可靠系统的低成本化有效。According to this effect, it is considered that the failure-operating vehicle control device can be realized by combining failure-free nodes, which is considered to be effective for cost reduction of a highly reliable system.

参照图19说明本发明的车辆控制装置的基本构成。The basic configuration of the vehicle control device of the present invention will be described with reference to FIG. 19 .

车辆控制装置,由检测驾驶员的要求的传感器500、检测车辆状态的传感器550、执行元件400、操作量生成节点100、和执行元件驱动节点300构成。The vehicle control device is composed of a sensor 500 that detects a driver's request, a sensor 550 that detects a vehicle state, an actuator 400 , an operation amount generating node 100 , and an actuator driving node 300 .

其中,检测驾驶员的要求的传感器500、操作量生成节点100、和执行元件驱动节点300,分别具有故障检测功能210A、210B、210C。执行元件驱动节点300的故障检测功能210C,不仅有自我诊断功能,还具有检测执行元件400的故障的功能。Among them, the sensor 500 for detecting the driver's request, the operation amount generating node 100, and the actuator driving node 300 have failure detection functions 210A, 210B, and 210C, respectively. The failure detection function 210C of the actuator drive node 300 not only has a self-diagnosis function, but also has a function of detecting failure of the actuator 400 .

操作量生成节点100,基于驾驶员的要求信号200和车辆状态信号201来运算操作量指令值。The operation amount generating node 100 calculates an operation amount command value based on the driver's request signal 200 and the vehicle state signal 201 .

执行元件驱动节点300接收该操作量指令值120,控制执行元件400,由此执行车辆的驱动、操舵、、制动等。The actuator drive node 300 receives the operation amount command value 120 and controls the actuator 400 to drive, steer, brake, etc. the vehicle.

故障检测功能210A、210B、210C,当检测出节点内或执行元件400的故障时,向节点的外部输出通知自己为故障状态用的故障检测通知230。当具有故障检测功能的节点全部为故障状态的时候,除去输出该故障检测通知230以外,停止向外部的输出,即,构成故障无反应。The failure detection functions 210A, 210B, and 210C, when detecting a failure in the node or in the actuator 400, output the failure detection notification 230 for the failure state to the outside of the node. When all the nodes having a failure detection function are in a failure state, the output to the outside is stopped except for outputting the failure detection notification 230, that is, no response to failure is constituted.

图20是操作量生成节点100的功能图。操作量生成节点100,内装有车辆控制用的多个控制逻辑,在从其它的节点接收故障检测通知230时,根据故障处及故障的程度,切换控制逻辑(控制A、控制B、控制C)。FIG. 20 is a functional diagram of the operation amount generation node 100 . The operation amount generating node 100 is equipped with a plurality of control logics for vehicle control, and when receiving the failure detection notification 230 from other nodes, it switches the control logic (control A, control B, control C) according to the location of the failure and the degree of the failure. .

图21是执行元件驱动节点300的功能图。执行元件驱动节点300,内装有基于操作量生成节点100生成的操作量指令值120来运算执行元件400的动作目标值用的多个控制逻辑(控制X、控制Y、控制Z)。控制器320,驱动执行元件400以达到该目标值。FIG. 21 is a functional diagram of the actuator drive node 300 . The actuator drive node 300 incorporates a plurality of control logics (control X, control Y, control Z) for calculating the operation target value of the actuator 400 based on the operation amount command value 120 generated by the operation amount generation node 100 . The controller 320 drives the actuator 400 to reach the target value.

执行元件驱动节点300,在从其它节点接收故障检测通知230时,根据故障处及故障的程度,切换控制逻辑。执行元件驱动节点300,在能够接收操作量指令值120时,基于该指令值执行控制X或控制Y,但因操作量生成节点100或通信经路的故障而在不能够接收操作量指令值120时,取入驾驶员的要求信号200,为了由自己运算操作量指令值,切换到控制Z。The actuator drive node 300, when receiving the fault detection notification 230 from other nodes, switches the control logic according to the location of the fault and the degree of the fault. The actuator drive node 300 executes control X or control Y based on the command value when it can receive the command value of the operation amount 120, but it cannot receive the command value of the operation amount 120 due to a failure of the operation variable generating node 100 or the communication path. At this time, the driver's request signal 200 is taken in, and the control Z is switched to calculate the operation amount command value by itself.

(实施例3)(Example 3)

对本发明的车辆控制装置的实施例3,参照图22进行说明。图22抽出有关车辆控制装置的、特别是制动控制和转向控制的部分来表示。Embodiment 3 of the vehicle control device of the present invention will be described with reference to FIG. 22 . FIG. 22 is shown by extracting the parts related to the vehicle control device, especially the brake control and steering control.

该车辆控制装置,作为检测驾驶员的要求的传感器,具有测定转向盘51的旋转角度的操舵角传感器41、测定制动踏板52的踏入量的制动踏板位置传感器42,作为操作量生成节点,具有从检测驾驶员的要求的传感器的信号解释驾驶员的意图并与从检测未图示的车辆状态的传感器、例如加速传感器·偏航率传感器、车轮速传感器的信号一起,综合地控制车辆运动的车辆运动综合控制ECU30。This vehicle control device has a steering angle sensor 41 for measuring the rotation angle of the steering wheel 51 and a brake pedal position sensor 42 for measuring the depression amount of the brake pedal 52 as sensors for detecting the driver's request, and serves as an operation amount generating node. , interpreting the driver's intention from the signal of the sensor that detects the driver's request and controlling the vehicle comprehensively together with signals from the sensor that detects the state of the vehicle not shown, such as an acceleration sensor, a yaw rate sensor, and a wheel speed sensor Sporty vehicle motion comprehensive control ECU30.

该车辆控制装置,进而,作为执行元件驱动节点,具有:控制产生前轮的操舵力的电动马达M1和作用于被安装在转向柱轴上的可变传动比(VGR)机构的电动马达M5的SBW·VGR驱动器ECU81、控制产生后轮的操舵力的转动电动马达M2的SBW驱动器ECU82、控制产成四轮的制动力的制动电动马达M3A~M3D的BBW驱动器ECU83A~83D。This vehicle control device further has, as an actuator drive node, an electric motor M1 that controls the generation of the steering force of the front wheels, and an electric motor M5 that acts on a variable transmission ratio (VGR) mechanism mounted on the steering column shaft. SBW·VGR driver ECU81, SBW driver ECU82 which controls rotation electric motor M2 which generates steering force for the rear wheels, and BBW driver ECU83A to 83D which controls brake electric motors M3A to M3D which generate braking force for four wheels.

在这里,作为计测驱动器的制动踏板操作量的传感器,也可以使用测定由踏入制动踏板52而发生的油压压力的油压传感器。Here, as the sensor for measuring the brake pedal operation amount of the driver, a hydraulic pressure sensor for measuring the hydraulic pressure generated by stepping on the brake pedal 52 may be used.

上述的节点全部构成为故障无反应。通信网络由总线N1A和备份线N1B构成,相对于在总线N1A上连接上述全部的节点,在备份线N1B上连接有关车辆的安全的行驶的所需要最低限的节点,即,车辆运动综合控制ECU30、后轮的SBW驱动器ECU82以外的全部节点。虽然未图示,但对连接到备份线N1B的全部节点,至少双重地供给电源。All of the above-mentioned nodes are configured to fail to respond. The communication network is composed of a bus N1A and a backup line N1B, and the bus N1A is connected to all the above-mentioned nodes, and the backup line N1B is connected to the backup line N1B to connect the minimum necessary nodes related to the safe driving of the vehicle, that is, the vehicle motion integrated control ECU 30 , All nodes except the SBW driver ECU82 of the rear wheel. Although not shown in the figure, at least double power is supplied to all the nodes connected to the backup line N1B.

前轮的SBW·VGR驱动器ECU81和四轮的BBW驱动器ECU83A~83D,内装有简易控制逻辑部811、831。在这里,所谓简易控制,意味着例如使电动马达转矩指令值与传感器信号值单纯地成比例地处理负荷比较少的控制。The SBW·VGR driver ECU 81 for the front wheels and the BBW driver ECUs 83A to 83D for the four wheels have simple control logic units 811 and 831 built therein. Here, the simple control means, for example, control in which the electric motor torque command value is simply proportional to the sensor signal value and the processing load is relatively small.

在正常时,前轮的SBW·VGR驱动器ECU81、后轮的SBW驱动器ECU82、和四轮的BBW驱动器ECU83A~83D,经由通信网络接收从车辆运动综合控制ECU30给出的舵角指令、制动力指令,基于该指令值来控制电动马达。Under normal conditions, the SBW·VGR driver ECU81 for the front wheels, the SBW driver ECU82 for the rear wheels, and the BBW driver ECU83A-83D for the four wheels receive the rudder angle command and braking force command from the vehicle motion integrated control ECU30 via the communication network , to control the electric motor based on the command value.

在本实施例中,转向盘51,与前轮操舵机构71机械地结合,制动踏板52,即使是油压系统也与前轮制动器73连接,在电子控制停止时,使用这些备份机构,驾驶员直接能够操舵、制动车辆。In this embodiment, the steering wheel 51 is mechanically combined with the front wheel steering mechanism 71, and the brake pedal 52 is also connected with the front wheel brake 73 even if it is an oil pressure system. When the electronic control stops, these backup mechanisms are used to drive The driver can directly steer and brake the vehicle.

以下,以图22所示的车辆控制装置为例详细叙述,即使在于本车辆控制装置的某处发生了故障的时候,也不丧失制动和转向的功能,使车辆稳定地行驶。Hereinafter, the vehicle control device shown in FIG. 22 will be described in detail as an example. Even if a failure occurs somewhere in the vehicle control device, the functions of braking and steering will not be lost, and the vehicle will run stably.

另外,在这里,以下例为前提进行说明,假设同时不发生两个以上的故障,在发生故障时,对驾驶员警告其主要情况,通过在比较短的时间内修理故障部位,能够预先防止第2个故障。In addition, here, the following example is used as the premise to explain. Assuming that two or more failures do not occur at the same time, when a failure occurs, the driver is warned of the main situation. By repairing the failure part in a relatively short period of time, the first failure can be prevented 2 glitches.

(1)车辆运动综合控制ECU30发生了故障的情形(1) When the vehicle motion integrated control ECU30 fails

这时,车辆运动综合控制ECU30向总线N1A输出故障检测通知。使通信网络为分时多路访问(TDMA),如果在预先确定各节点的时隙中进行向网络的输出,则以没有输出也能够进行故障检测通知。At this time, vehicle motion integrated control ECU 30 outputs a failure detection notification to bus N1A. If the communication network is time-division multiple access (TDMA) and output to the network is performed in a predetermined time slot for each node, failure detection notification can be performed without output.

这例如在图23中所示,将通信周期分割成数据发送周期和诊断周期,在诊断周期中,全部节点能够按顺序输出某个数据来实现。在图23的例中,由于在诊断周期的节点F的时隙没有向网络的输出,所以可知其它节点在节点F发生故障。This is achieved, for example, by dividing the communication cycle into a data transmission cycle and a diagnosis cycle, as shown in FIG. 23 , and in the diagnosis cycle, all nodes can sequentially output certain data. In the example of FIG. 23 , since there is no output to the network at the time slot of node F in the diagnostic cycle, it can be known that other nodes have failed at node F.

前轮的SBW·VGR驱动器ECU81、后轮的SBW驱动器ECU82,当接收到从车辆运动综合控制ECU30给出的故障检测通知时,从网络取入操舵角传感器41的值,执行简易控制。When the SBW·VGR driver ECU 81 for the front wheels and the SBW driver ECU 82 for the rear wheels receive a failure detection notification from the vehicle motion integrated control ECU 30 , they take in the value of the steering angle sensor 41 from the network and execute simple control.

另外,四轮的BBW驱动器ECU83A~83D,取入制动踏板位置传感器42的值,由简易控制逻辑部813执行简易控制。In addition, the four-wheel BBW driver ECUs 83A to 83D take in the value of the brake pedal position sensor 42 and execute simple control by the simple control logic unit 813 .

(2)在通信网络中,在主线N1A中发生故障的情形(2) In the communication network, when a failure occurs in the main line N1A

这时,使用备份线N1B,前轮的SBW·VGR驱动器ECU81、和四轮的BBW驱动器ECU83A~83D与车辆运动综合控制ECU30发生故障的时候同样进行简易控制。At this time, using the backup line N1B, the SBW·VGR driver ECU 81 for the front wheels, the BBW drivers ECU 83A to 83D for the four wheels, and the vehicle motion integrated control ECU 30 also perform simple control when failure occurs.

(3)前轮的BBW驱动器ECU83A、83B的其中之一、或者前轮的制动电动马达M3A、M3B的其中之一发生了故障的情形(3) When one of the BBW driver ECUs 83A, 83B of the front wheels or one of the brake electric motors M3A, M3B of the front wheels fails

这时,通过停止对故障侧的前轮制动电动马达的供电,该车轮为不能制动的状态,车辆运动综合控制ECU30用剩下三个轮子稳定地停止车辆地进行控制。或者,驾驶员使用备份机构,也能够直接停止车辆。At this time, by stopping the electric power supply to the front wheel brake electric motor on the faulty side, the wheel becomes unbrakeable, and the integrated vehicle motion control ECU 30 performs control so that the remaining three wheels stop the vehicle stably. Alternatively, the driver can stop the vehicle directly by using the backup mechanism.

在这里在电动马达的故障中,虽未图示,但包含对电动马达控制需要的电动马达旋转位置传感器及电流传感器等的故障。后轮的BBW驱动器ECU83C、83D其中之一,或者后轮的制动电动马达M3C、M3D其中之一发生故障的情形也同样。Here, failures of the electric motor include failures of an electric motor rotational position sensor, a current sensor, and the like, which are necessary for controlling the electric motor, although not shown in the figure. The same applies to the case where one of the rear wheel BBW driver ECUs 83C, 83D or one of the rear wheel brake electric motors M3C, M3D fails.

(4)前轮的SBW·VGR驱动器ECU81或者前轮的转向电动马达M1(包含对电动马达控制所需要的传感器)的其中之一发生故障的情形(4) When one of the front wheel SBW·VGR driver ECU81 or the front wheel steering electric motor M1 (including sensors required for electric motor control) fails

这时,停止作用于前轮转向电动马达M1和VGR机构54的电动马达M5的供电,驾驶员使用备份机构,直接操舵车辆。At this time, the power supply to the front steering electric motor M1 and the electric motor M5 of the VGR mechanism 54 is stopped, and the driver uses the backup mechanism to directly steer the vehicle.

(5)操舵角传感器41或制动踏板位置传感器42发生了故障的情形(5) When the steering angle sensor 41 or the brake pedal position sensor 42 fails

在这种情况下,停止向作用于转向电动马达M1、M2和VGR机构的电动马达M5或制动电动马达M3A~M3D的供电,驾驶员使用备份机构直接操舵、或制动车辆。In this case, the power supply to the electric motor M5 acting on the steering electric motors M1, M2 and the VGR mechanism or the braking electric motors M3A-M3D is stopped, and the driver uses the backup mechanism to directly steer or brake the vehicle.

另外,在本实施例中,不会发生以单一故障操舵和制动、同时使用备份机构的状况。In addition, in this embodiment, a situation in which a single failure is used for steering and braking while using a backup mechanism does not occur.

如以上所述,根据本实施例的构成,由于能够在系统整体中对错误实行备份,所以不使各个节点的冗长度提高到需要以上,在有备份机构的车辆控制装置中,仅通过使所有的节点为故障无反应运行的构成,就能够实现非常高可靠性的车辆控制装置。As described above, according to the configuration of this embodiment, since errors can be backed up in the entire system, the redundancy of each node is not increased more than necessary, and in the vehicle control device with a backup mechanism, only by making all By configuring the nodes to operate without reaction to failure, it is possible to realize a vehicle control device with very high reliability.

故障无反应节点,与即使发生故障也继续正常动作的故障运行比较,由于硬件构成简单,所以根据本发明,与公知例比较能够提供低成本的高可靠性车辆控制装置。The failure non-responsive node has a simple hardware configuration compared with a failure operation in which normal operation is continued even if a failure occurs. Therefore, according to the present invention, it is possible to provide a low-cost, high-reliability vehicle control device compared with known examples.

进而,对备份线N1B,通过仅连接涉及车辆的安全的行驶所需要的最低限的节点,能够减少使通信接口冗长化必要的节点数,所以能够降低成本。Furthermore, by connecting only the minimum nodes necessary for safe running of the vehicle to the backup line N1B, the number of nodes required to make the communication interface redundant can be reduced, thereby enabling cost reduction.

对故障无反应的操舵角传感器41或制动踏板位置传感器42的功能构成例参照图24进行说明。An example of the functional configuration of the steering angle sensor 41 or the brake pedal position sensor 42 that does not respond to a failure will be described with reference to FIG. 24 .

操舵角传感器41/制动踏板位置传感器42由下述部分构成:两个传感器部件60A、60B、将各个传感器元件60A、60B的模拟输出变换成数字值的A/D变换器61A、61B、故障检测功能210、滤波功能63、通信控制器64、向主线N1A输出信号用的通信驱动器65A和向备份线N1B输出信号用的通信驱动器65B。The steering angle sensor 41/brake pedal position sensor 42 is composed of two sensor units 60A, 60B, A/D converters 61A, 61B for converting the analog outputs of the respective sensor elements 60A, 60B into digital values, and malfunction The detection function 210, the filter function 63, the communication controller 64, the communication driver 65A for outputting a signal to the main line N1A, and the communication driver 65B for outputting a signal to the backup line N1B.

故障检测功能210具有判定在预先确定由A/D变换器61A、61B形成的两个A/D变换值的误差范围内是否相同的一致检验功能62,在不一致的时候,使通信驱动器65A和65B不活跃化,为故障无反应。The failure detection function 210 has a coincidence checking function 62 for judging whether the two A/D conversion values formed by the A/D converters 61A and 61B are the same within the error range of the predetermined error range. When they are inconsistent, the communication drivers 65A and 65B are Inactivation does not respond to failure.

故障检测功能210,为了同时执行两个传感器部件60A、60B的A/D变换,对A/D变换器61A、61B输出触发信号。The failure detection function 210 outputs a trigger signal to the A/D converters 61A, 61B in order to perform A/D conversion of the two sensor units 60A, 60B simultaneously.

根据本构成例,通过传感器具有滤波功能63,即使在以短的周期采样传感器信号、实施过采样等的滤波处理的时候,由于不需要适应该采样周期对通信网络输出数据,所以能够减少网络的通信量。According to this configuration example, since the sensor has the filtering function 63, even when the sensor signal is sampled at a short cycle and filter processing such as oversampling is performed, since it is not necessary to output data to the communication network in accordance with the sampling cycle, the network load can be reduced. traffic.

对故障无反应的操舵角传感器41或制动踏板位置传感器42的硬件构成例参照图25进行说明。A hardware configuration example of the steering angle sensor 41 or the brake pedal position sensor 42 that does not respond to a failure will be described with reference to FIG. 25 .

操舵角传感器41/制动踏板位置传感器42由下述部分构成:主要的传感器部件60A、参考的传感器部件60B、失效保护LSI600、两个通信驱动器65A、65B。The steering angle sensor 41/brake pedal position sensor 42 is constituted by a main sensor unit 60A, a reference sensor unit 60B, a fail-safe LSI 600, and two communication drivers 65A, 65B.

失效保护LSI600由下述部分构成:冗长化的A/D变换器61A、61B,CPU66A、66B,通信控制器64A、64B,比较器62A、62B,和一个ROM、RAM67。The fail-safe LSI 600 is composed of redundant A/D converters 61A, 61B, CPUs 66A, 66B, communication controllers 64A, 64B, comparators 62A, 62B, and a ROM, RAM67.

在失效保护LSI600中,在对从各个传感器部件60A、60B给出的信号进行A/D变换后,对A/D变换值在CPU66A、66B间相互交换而一致化。CPU66A、66B分别使用该一致化后的A/D变换值而进行滤波运算。In the fail-safe LSI 600, after A/D conversion is performed on the signals given from the respective sensor units 60A, 60B, the A/D conversion values are mutually exchanged between the CPUs 66A, 66B to be aligned. The CPUs 66A and 66B perform filter calculations using the aligned A/D conversion values, respectively.

运算结果的一致检验,通过将通信控制器64A、64B的输出输入到比较器62A、62B来进行。The coincidence check of the calculation results is performed by inputting the outputs of the communication controllers 64A, 64B to the comparators 62A, 62B.

在本实施例中,由于有两个通信总线,所以通信控制器64是两通道,用比较器62A、62B互相比较各个通道的输出。In this embodiment, since there are two communication buses, the communication controller 64 has two channels, and the outputs of each channel are compared with each other by comparators 62A and 62B.

在本实施例中,通过使失效保护功能单片化(1chip),以低成本能够构成故障无反应的传感器节点。In this embodiment, by integrating the failsafe function into one chip (1 chip), it is possible to configure a sensor node that does not respond to failure at low cost.

(实施例4)(Example 4)

对本发明的车辆控制装置的实施例4参照图26进行说明。另外,在图26中,对与图22相对应于的部分赋予与在图22中给的符号相同的符号并省略其说明。Embodiment 4 of the vehicle control device of the present invention will be described with reference to FIG. 26 . In addition, in FIG. 26 , portions corresponding to those in FIG. 22 are assigned the same reference numerals as those in FIG. 22 , and description thereof will be omitted.

在于图22所示的实施例3中,对网络直接连接传感器,但在实施例4中为,对HMI·ECU25输入传感器信号,在HMI·ECU25执行了传感器值的比较及滤波处理后,对网络输出传感器数据。In Embodiment 3 shown in FIG. 22 , the sensor is directly connected to the network, but in Embodiment 4, the sensor signal is input to the HMI ECU 25, and after the HMI ECU 25 performs sensor value comparison and filtering processing, the sensor signal is connected to the network. Output sensor data.

这时,操舵角41A和制动踏板位置传感器42A仅由两个传感器部件构成。At this time, the steering angle 41A and the brake pedal position sensor 42A are composed of only two sensor components.

另外,在单一故障中,为了不发生操舵和制动同时使用备份机构的状况,需要使HMI·ECU25构成为故障运行。In addition, in order to avoid a situation where the backup mechanism is used simultaneously for steering and braking in a single failure, it is necessary to configure the HMI·ECU 25 to operate in failure.

(实施例5)(Example 5)

对本发明的车辆控制装置的实施例5参照图27进行说明。另外,在图27中,对与图22相对应于的部分赋予与在图22中给的符号相同的符号并省略其说明。Embodiment 5 of the vehicle control device of the present invention will be described with reference to FIG. 27 . In addition, in FIG. 27 , the parts corresponding to those in FIG. 22 are given the same reference numerals as those in FIG. 22 , and description thereof will be omitted.

实施例5,是有关节点构成和网络构成,与实施例3相同,但在转向柱(转向盘51)和操舵力发生机构、和制动踏板52和制动力发生机构之间,是没有机械的结合的车辆控制装置。从而,不能够期待使用在实施例3中叙述的机械的备份机构的车辆的操舵、制动。Embodiment 5 is the relevant node configuration and network configuration, which is the same as Embodiment 3, but between the steering column (steering wheel 51) and the steering force generating mechanism, and the brake pedal 52 and the braking force generating mechanism, there is no mechanical Combined vehicle controls. Therefore, steering and braking of the vehicle using the mechanical backup mechanism described in the third embodiment cannot be expected.

在这里,在本实施例的车辆控制装置中,使操舵角传感器41B、制动踏板位置传感器42B、和前轮72R、72L的SBW驱动器ECU81A,为即使发生故障也继续正常动作的故障运行节点。Here, in the vehicle control device of this embodiment, the steering angle sensor 41B, the brake pedal position sensor 42B, and the SBW driver ECU 81A of the front wheels 72R, 72L are used as failure operation nodes that continue to operate normally even if a failure occurs.

并且,进一步,使前轮72R、72L的转向电动马达二重化(M1A、M1B)。Furthermore, the steering electric motors for the front wheels 72R, 72L are doubled (M1A, M1B).

前轮的SBW驱动器ECU81A虽未图示,由两个故障无反应节点构成,各个故障无反应节点独立地控制二重化了的转向电动马达M1A、M1B。SBW驱动器ECU81A包含简易控制逻辑部811。Although not shown, the SBW driver ECU 81A for the front wheels is composed of two failure-free nodes, and each failure-free node independently controls the duplexed steering electric motors M1A, M1B. The SBW driver ECU 81A includes a simple control logic unit 811 .

作为转向电动马达M1A、M1B虽能够生成的转矩,但如果使用与在机械地结合转动和操舵力发生机构的系统中使用的转动电动马达的转矩相比较小(这里,为了生成与机械地结合的系统相等的转矩为1/2以上的)的电动马达,则能够减少使电动马达二重化带来的成本的增加。Although the torque that can be generated as the steering electric motors M1A, M1B is small if used compared with the torque of the rotating electric motor used in the system of mechanically combining the rotation and steering force generating mechanism (here, in order to generate and mechanically If the combined system equivalent torque is 1/2 or more) electric motors, the increase in cost caused by duplication of electric motors can be reduced.

前轮的SBW驱动器ECU81A,进而,控制作用于在转向柱模拟地生成从路面给出的反力的机构上的电动马达M6。The SBW driver ECU 81A of the front wheels further controls the electric motor M6 acting on the mechanism that simulates the reaction force given from the road surface to the steering column.

操舵角传感器41B和制动踏板位置传感器42B,为使图25中所示的故障无反应的传感器二重化的构成。对图25中所示的故障无反应的传感器,使传感器部件三重化,通过具有三个传感器信号的多数判定功能,也可以进一步单一使用高可靠性化的故障无反应的传感器。The steering angle sensor 41B and the brake pedal position sensor 42B are configured by duplicating sensors that do not respond to the failure shown in FIG. 25 . For the non-response to failure sensor shown in FIG. 25 , the sensor parts are tripled, and the high-reliability non-response sensor can also be single-used by having a majority judgment function of three sensor signals.

在前轮的SBW驱动器ECU81A的一方的故障无反应节点或转向电动马达M1A、M1B的一方(包含对电动马达控制所需要的传感器)发生故障的时候,该节点停止对发生故障侧的转向电动马达的供电,输出故障检测通知。When the fault non-response node of one side of the SBW driver ECU81A of the front wheel or one of the steering electric motors M1A and M1B (including the sensors required for electric motor control) fails, the node stops the steering electric motor on the faulty side. power supply, output failure detection notification.

车辆运动综合控制ECU30接收该故障检测通知后,由剩下的转向电动马达稳定地操舵车辆地进行切换控制。After receiving the failure detection notification, the vehicle motion integrated control ECU 30 performs switching control so that the vehicle can be steered stably by the remaining steering electric motors.

在于这以外的地方发生故障的时候,不失去制动和转向功能,对于使车辆稳定地行驶的方法,是如在实施例3中说明的那样。When a failure occurs in other places, the braking and steering functions are not lost, and the method for making the vehicle run stably is as described in the third embodiment.

根据实施例5,由于在系统整体中能够对错误实行备份,所以在没有转向和制动的备份机构的车辆控制装置中,也仅以导入需要最低限的故障运行节点,就可以低成本实现非常高可靠性的车辆控制装置。According to Embodiment 5, since errors can be backed up in the entire system, even in a vehicle control device that does not have a backup mechanism for steering and braking, it is possible to realize very low-cost operation only by introducing a minimum number of faulty operation nodes. High reliability vehicle control device.

(实施例6)(Example 6)

对本发明的车辆控制装置的实施例6参照图28进行说明。另外,在图28中,对应于图3、图22的部分赋予与在图22中给予的符号相同的符号并省略其说明。Embodiment 6 of the vehicle control device of the present invention will be described with reference to FIG. 28 . In addition, in FIG. 28 , portions corresponding to those in FIG. 3 and FIG. 22 are denoted by the same reference numerals as in FIG. 22 , and description thereof will be omitted.

实施例6是在实施例3的车辆控制装置中,追加驱动系统及安全系统等节点,表示有关车辆的行驶的控制系统的整体像的实施例。本实施例具有转向和制动的备份机构,即使不具备其的车辆控制装置也能够为同样的构成。Embodiment 6 is an embodiment in which nodes such as a drive system and a safety system are added to the vehicle control device of Embodiment 3, and an overall image of a control system related to vehicle travel is shown. This embodiment has a backup mechanism for steering and braking, and a vehicle control device that does not have it can have the same configuration.

在主线N1A中,除去有关在实施例3叙述的转向控制和制动控制的节点以外,还连接有:综合地控制车辆的驱动系统的DBW系统综合控制ECU20、控制调整阻尼力的悬架电动马达M4A~M4D的EAS驱动器ECU84A~84D、测定加速踏板53的踏入量的加速踏板位置传感器43、检测车辆的外界的状态的毫米波雷达/照相机44、和控制气囊的展开的气囊ECU85。In the main line N1A, in addition to the nodes related to the steering control and braking control described in Embodiment 3, there are also connected: the DBW system comprehensive control ECU 20 for comprehensively controlling the driving system of the vehicle, and the suspension electric motor for controlling and adjusting the damping force The EAS driver ECUs 84A to 84D of M4A to M4D, the accelerator pedal position sensor 43 to measure the depression amount of the accelerator pedal 53 , the millimeter wave radar/camera 44 to detect the external state of the vehicle, and the airbag ECU 85 to control the deployment of the airbag.

前轮的SBW·VGR驱动器ECU81和四轮的BBW驱动器ECU83A~83D内装有简易控制逻辑部811、831。Simple control logic units 811 and 831 are built in the SBW·VGR driver ECU 81 for the front wheels and the BBW driver ECUs 83A to 83D for the four wheels.

在DBW系统综合控制ECU20中,通过网络N2连接内燃机控制ECU21、变速器控制ECU22、电动马达控制ECU23、蓄电池控制ECU24。The internal combustion engine control ECU21, the transmission control ECU22, the electric motor control ECU23, and the battery control ECU24 are connected to the DBW system integrated control ECU20 through the network N2.

车辆运动综合控制ECU30,通过网络N3与下述部分连接:作为向控制车辆卫星定位仪等信息系统的机器的网络的入口的信息系统网关35、门锁、门侧镜、作为控制各种仪表等车体系统的机器的网络的入口的车体系统网关36;并进行这些节点和数据的存取。The vehicle motion integrated control ECU 30 is connected to the following parts through the network N3: the information system gateway 35 as the entrance to the network of the equipment controlling the information system such as the vehicle satellite locator, the door lock, the door side mirror, and the control of various instruments, etc. The body system gateway 36 of the entrance to the network of machines of the body system; and access to these nodes and data.

虽未图示,但气囊ECU85,也是在另外一端与综合对气囊展开控制需要的各种传感器·执行元件的安全系统的网络连接的构造。Although not shown, the airbag ECU 85 is also configured to be connected at the other end to a safety system network that integrates various sensors and actuators necessary for airbag deployment control.

在本实施例中,车辆运动综合控制ECU30,从操舵角传感器41、制动踏板位置传感器42、加速踏板位置传感器43解释驱动的意图,与从检测未图示的车辆状态的传感器,例如加速度传感器、偏航速率传感器、车轮速传感器给出的信号一起,运算实现最佳的车辆运动用的舵角、制动力、驱动力等,向前轮的SBW·VGR驱动器ECU81和后轮的SBW驱动器ECU82发送舵角指令,向四轮的BBW驱动器ECU83A~83D发送制动力指令,向DBW系统综合控制ECU20发送驱动力指令。In this embodiment, the vehicle motion integrated control ECU 30 interprets the intention of driving from the steering angle sensor 41, the brake pedal position sensor 42, and the accelerator pedal position sensor 43, and from a sensor that detects a vehicle state not shown, such as an acceleration sensor , yaw rate sensor, and wheel speed sensor to calculate the rudder angle, braking force, driving force, etc. for optimal vehicle motion. The SBW·VGR driver ECU81 for the front wheel and the SBW driver ECU82 for the rear wheel A rudder angle command is sent, a braking force command is sent to the four-wheel BBW driver ECUs 83A to 83D, and a driving force command is sent to the DBW system integrated control ECU 20 .

DBW系统综合控制ECU20接收驱动力指令,考虑能量效率等,运算内燃机、电动马达等各个驱动力发生源应该发生的驱动力,使运算的驱动力指令通过网络N2发送到内燃机控制ECU21、电动马达控制ECU23等中。The DBW system integrated control ECU20 receives the driving force command, considers energy efficiency, etc., calculates the driving force that should be generated by each driving force generation source such as the internal combustion engine and the electric motor, and sends the calculated driving force command to the internal combustion engine control ECU21 and the electric motor control through the network N2. ECU23 etc.

车辆运动综合控制ECU30,不仅通过检测驾驶员的要求的传感器的信息,而且通过使用检测车辆的外界的状态的毫米波雷达/照相机44的信息,进行对前行车的跟踪行驶、车线保持行驶、危险躲避驾驶等的控制。The integrated vehicle motion control ECU 30 performs follow-up driving, lane keeping running, Hazard avoidance controls for driving, etc.

关于可靠性,与通信网络的主线N1A连接的节点全部构成为故障无反应。另外,在备份线N1B中,如在实施例3中所说明的,通过仅连接关于车辆的安全的行驶的所需要最低限的节点,可减少需要使通信接口冗长化的节点的数量,降低成本。Regarding reliability, all nodes connected to the main line N1A of the communication network are configured to fail to respond to failure. In addition, in the backup line N1B, as described in Embodiment 3, by connecting only the minimum nodes necessary for the safe running of the vehicle, the number of nodes requiring redundant communication interfaces can be reduced and the cost can be reduced. .

加速踏板位置传感器43在主线N1A、DBW系统综合控制ECU20、网络N2的其中之一发生故障的时候也能够驱动车辆,也与内燃机控制ECU21直接连接。The accelerator pedal position sensor 43 can also drive the vehicle when one of the main line N1A, the DBW system integrated control ECU20, and the network N2 fails, and is also directly connected to the internal combustion engine control ECU21.

对于在本实施例中的对错误实行备份的方法、由此带来的效果,如在实施例3中所述的那样。The method of backing up errors in this embodiment and the resulting effects are as described in Embodiment 3.

(实施例7)(Example 7)

对本发明的车辆控制装置的实施例7参照图29、图30进行说明。Embodiment 7 of the vehicle control device of the present invention will be described with reference to FIGS. 29 and 30 .

操作量生成节点610生成操作量612,将操作量612送到执行元件驱动节点630中。The operation amount generation node 610 generates an operation amount 612 and sends the operation amount 612 to the actuator driver node 630 .

修正量生成节点620生成修正量622,将修正量622送到执行元件驱动节点630中。The correction amount generating node 620 generates a correction amount 622 and sends the correction amount 622 to the actuator driving node 630 .

执行元件驱动节点630如图30所示,具有控制器632、切换器634,在修正量生成节点620正常的时候,对从操作量生成节点610给出的操作量612施加从修正量生成节点620给出的修正量622、作为控制目标值635来控制执行元件640。对此,在修正量生成节点620异常的时候,使从操作量生成节点610给出的操作量612作为控制目标值635来控制执行元件640。As shown in Fig. 30, the actuator drive node 630 has a controller 632 and a switch 634. When the correction amount generation node 620 is normal, it applies the operation amount 612 given by the operation amount generation node 610 to the operation amount 612 from the operation amount generation node 610. The given correction amount 622 is used as a control target value 635 to control the actuator 640 . On the other hand, when the correction amount generation node 620 is abnormal, the actuator 640 is controlled using the operation amount 612 given from the operation amount generation node 610 as the control target value 635 .

在此实施例中,在修正量生成节点620正常的时候,通过修正量,可以进行更细的控制,另外,在修正量生成节点620发生故障的时候,在使功能减退的同时不用修正量也能够继续进行控制。In this embodiment, when the correction amount generation node 620 is normal, finer control can be performed by using the correction amount. In addition, when the correction amount generation node 620 fails, the function is degraded and the correction amount is not used. able to continue to take control.

由于需要知道是否修正量生成节点620为正常,所以修正量生成节点620具有故障检测功能621是理想的。基于故障检测功能621进行的故障检测结果623,执行元件驱动节点630的切换器634进行切换动作。Since it is necessary to know whether the correction amount generation node 620 is normal, it is desirable that the correction amount generation node 620 has a failure detection function 621 . Based on the failure detection result 623 performed by the failure detection function 621, the switch 634 of the actuator drive node 630 performs a switching operation.

对于为了修正量生成而需要高度的信息处理,操作量生成以比较简单的信息处理即可完成。因此,修正量生成节点620,要求与操作量生成节点610相比有较高的处理性能的结果、部件个数增加、动作频率(处理器的时钟频率)变高,要求电的、热的富裕量少的动作。从而,修正量生成节点620与操作量生成节点610相比较,故障率(部件的故障率(fit数)的总和)变高。In contrast to the highly advanced information processing required for correction amount generation, operation amount generation can be accomplished with relatively simple information processing. Therefore, the correction amount generation node 620 is required to have higher processing performance than the operation amount generation node 610. As a result, the number of parts increases, the operating frequency (clock frequency of the processor) becomes higher, and electricity and heat margins are required. A small amount of action. Therefore, the correction amount generation node 620 has a higher failure rate (the sum of failure rates (fit numbers) of components) than the operation amount generation node 610 .

即,修正量生成节点620为比操作量生成节点610处理能力高的节点。例如,修正量生成节点620由比操作量生成节点610动作频率高的计算机(节点)构成。That is, the correction amount generation node 620 is a node with higher processing capacity than the operation amount generation node 610 . For example, the correction amount generation node 620 is constituted by a computer (node) whose operating frequency is higher than that of the operation amount generation node 610 .

从而,对于控制的继续所需要最低限的操作量生成节点610,能够期待比修正量生成节点620低的故障率。即,操作量生成节点610为比修正量生成节点620故障率低的节点。Therefore, a failure rate lower than that of the correction amount generation node 620 can be expected for the minimum operation amount generation node 610 necessary for continuation of control. That is, the operation amount generation node 610 is a node with a lower failure rate than the correction amount generation node 620 .

进一步,由于即使在修正量生成节点620发生故障的时候也需要操作量生成节点610为正常,所以操作量生成节点610具有耐故障功能611是理想的。Furthermore, since the operation amount generation node 610 needs to be normal even when the correction amount generation node 620 fails, it is desirable that the operation amount generation node 610 has the failure tolerance function 611 .

作为修正量生成节点620具有的故障检测功能621,已有种种考虑,但如图31所示,通过使修正量生成节点620二重化,也可对其输出进行比较。Various considerations have been made as the failure detection function 621 of the correction amount generation node 620, but as shown in FIG. 31, by duplicating the correction amount generation node 620, the outputs can be compared.

这时具有下述方法:预先在修正量生成节点620侧比较二重化了的修正量生成节点620输出的修正量622a和622b,向执行元件驱动节点630传送修正量622a和622b的单方和故障检测结果的方法;如图32所示,将多重化的修正量生成节点620输出的修正量622a和622b分别传送到执行元件驱动节点630,在执行元件驱动节点630,通过比较功能631来比较修正量622a和622b而得到故障检测结果623的方法。In this case, there is a method of comparing the doubled correction amounts 622a and 622b output from the correction amount generation node 620 on the side of the correction amount generation node 620 in advance, and transmitting the fault detection result of the single sum of the correction amounts 622a and 622b to the actuator drive node 630. method; as shown in FIG. 32 , the correction amounts 622a and 622b output by the multiple correction amount generation node 620 are respectively transmitted to the actuator drive node 630, and the correction amount 622a is compared by the comparison function 631 at the actuator drive node 630 and 622b to obtain the fault detection result 623.

另外,也考虑了各种操作量生成节点610具有的耐故障功能611,但如图31所示,也能够通过使操作量生成节点610三重化而取其输出的多数逻辑判定来实现。In addition, the failure tolerance function 611 of various operation amount generation nodes 610 is considered, but as shown in FIG. 31 , it can also be realized by a majority logic decision in which the operation amount generation nodes 610 are tripled and the output is obtained.

这时具有下述方法:对冗长化的操作量生成节点610生成的操作量612a、612b、612c预先在操作量生成节点610侧采取多数逻辑判定,向执行元件驱动节点630传送的方法;如图32所示,将操作量生成节点610生成的操作量612a、612b、612c分别传送到执行元件驱动节点630,由执行元件驱动节点630具有的多数判定功能633采取多数逻辑判定的方法。At this time, there is the following method: the operation amount 612a, 612b, 612c generated by the redundant operation amount generation node 610 is preliminarily adopted at the operation amount generation node 610 side to adopt a majority logic decision, and the method is transmitted to the actuator driving node 630; as shown in the figure As shown in 32, the operation quantities 612a, 612b, 612c generated by the operation quantity generation node 610 are respectively transmitted to the actuator driver node 630, and the majority decision function 633 of the actuator driver node 630 adopts the method of majority logic decision.

另外,如图33所示为,在执行元件驱动节点630上,设置增益可变器636和控制增益可变器636的增益的斜坡发生器637,将故障检测结果623输入到斜坡发生器637中,将对由操作量生成节点610给出的修正量622用增益可变器636乘上可变增益的值、施加到从操作量生成节点610给出的操作量612上、作为控制目标值635来控制传感器装置640也可以。这时,在修正量生成节点620的异常时,控制目标值635不急剧地变化而是慢慢地变化。In addition, as shown in FIG. 33 , on the actuator drive node 630 , a gain variable 636 and a ramp generator 637 controlling the gain of the gain variable 636 are provided, and the fault detection result 623 is input into the ramp generator 637 , the value obtained by multiplying the correction amount 622 given by the operation amount generation node 610 by the variable gain with the gain variable device 636 is applied to the operation amount 612 given from the operation amount generation node 610 as the control target value 635 It is also possible to control the sensor device 640. At this time, when the correction amount generation node 620 is abnormal, the control target value 635 does not change rapidly but changes gradually.

将本实施例的动作表示在图34中。在修正量生成节点620为正常时,作为斜坡发生器637的输出的斜坡输出637为高位的值,从修正量生成节点620给出的修正量622,乘上由增益可变器636预先设定的高位的增益,与从操作量生成节点610给出的操作量612相加,作为控制目标值635来控制执行元件640。The operation of this embodiment is shown in FIG. 34 . When the correction amount generation node 620 is normal, the ramp output 637 as the output of the ramp generator 637 is a high value, and the correction amount 622 given from the correction amount generation node 620 is multiplied by the gain variable 636 preset The high-order gain of is added to the operation amount 612 given from the operation amount generation node 610 to control the actuator 640 as the control target value 635 .

对此,在修正量生成节点620为异常时,从故障检测结果623由从“正常”变为“异常”的时刻起,斜坡输出637从高位的值到低位的值随时间缓缓地变化。In contrast, when the correction amount generating node 620 is abnormal, the ramp output 637 gradually changes from a high value to a low value over time from the time when the fault detection result 623 changes from "normal" to "abnormal".

其结果,由增益可变器636乘上从修正量生成节点620给出的修正量622的可变增益、也从高位的增益值到低位的增益值随时间缓缓地变化。其结果,从在控制目标值635的计算时被加上的修正量生成节点620给出的修正量622,随时间缓缓减小。As a result, the variable gain obtained by multiplying the correction amount 622 given from the correction amount generating node 620 by the gain variable unit 636 also gradually changes over time from a high-order gain value to a low-order gain value. As a result, the correction amount 622 given from the correction amount generation node 620 added when calculating the control target value 635 gradually decreases with time.

在图34所示的实施例中,以低位的增益为0,也可以根据修正量生成节点620的故障的轻重决定低位的增益的大小。另外,在该实施例中,斜坡输出637从高位的值到低位的值作线性地变化,但也可以不限于线性而以包含曲线的任意的方式变化。另外,变化的方式为单调地递减是理想的。In the embodiment shown in FIG. 34 , the gain of the lower bit is assumed to be 0, and the magnitude of the gain of the lower bit may be determined according to the severity of the failure of the correction amount generating node 620 . In addition, in this embodiment, the ramp output 637 changes linearly from the high order value to the low order value, but it may change in any manner including a curve without being limited to linearity. In addition, it is desirable that the mode of change is monotonically decreasing.

根据以上叙述的实施例,由于在修正量生成节点620的异常时控制目标值635不是急速而是缓缓地变化,所以对操作者不会感到有不适感。另外,由于也不发生伴随切换的控制目标值635的高低差异,所以也能够避开起因于相对于高低差异操作者的反应迟缓的控制性恶化。According to the embodiment described above, since the control target value 635 does not change rapidly but gradually when the correction amount generation node 620 is abnormal, the operator does not feel uncomfortable. In addition, since the level difference of the control target value 635 accompanying switching does not occur, it is also possible to avoid deterioration of the controllability due to the delay of the operator's response to the level difference.

另外,如图35所示,从操作量生成节点610给出的操作量612和从修正量生成节点620给出的修正量622,也能够为经过单一的通信路(通信总线)650传送到执行元件驱动节点630的网络构成。In addition, as shown in FIG. 35 , the operation amount 612 given from the operation amount generating node 610 and the correction amount 622 given from the correction amount generating node 620 can also be transmitted to the execution through a single communication path (communication bus) 650. A network configuration of element driver nodes 630 .

根据该实施例,由于在node·to·node不个别地具有通信路即可完成,所以与节省配线相关联,就此部分,在降低系统的成本的基础上,还能够达到轻量化。According to this embodiment, since it can be completed without separately having a communication path between node·to·node, it leads to saving wiring, and in this part, it is possible to reduce the weight of the system in addition to reducing the cost.

经过本实施例中的通信路650而传送的信息,如图36所示,按每个发送的节点时间划分为多个时隙,操作量612在被操作量生成节点610分配的时隙614中传送,修正量622在被修正量生成节点620分配的时隙624中传送。The information transmitted through the communication path 650 in this embodiment, as shown in FIG. 36 , is divided into multiple time slots according to the node time for each transmission, and the operation amount 612 is in the time slot 614 allocated by the operation amount generation node 610 Transmitted, the correction 622 is transmitted in the time slot 624 allocated by the correction generation node 620 .

在这里,将前面叙述的修正量生成节点620输出的修正量622a和622b分别传送到执行元件驱动节点630的方法中,冗长化了的修正量生成节点620分别分配个别的时隙,在各个时隙中传送修正量622a和622b。Here, in the method of transmitting the correction amounts 622a and 622b outputted from the correction amount generation node 620 described above to the actuator drive node 630, the redundant correction amount generation nodes 620 are allocated individual time slots, and at each time The corrections 622a and 622b are transmitted intermittently.

另外,在将操作量生成节点610生成的操作量612a、612b、612c分别传送到执行元件驱动节点630的方法中,在冗长化的操作量生成节点610上分别分配各个时隙,在各个时隙中传送操作量612a、612b、612c。In addition, in the method of transmitting the operation amounts 612a, 612b, and 612c generated by the operation amount generation node 610 to the actuator drive node 630, each time slot is allocated to the redundant operation amount generation node 610, and each time slot The operation quantities 612a, 612b, and 612c are transferred in the middle.

图37表示在Steer-by-Wire系统中应用本实施例的具体例。Fig. 37 shows a specific example of applying this embodiment to a Steer-by-Wire system.

在操作量生成节点610中连接转动柱(转动盘)615,生成根据转动柱615的操作角度的操舵角度的操作量612,该操作量612通过通信路650传送到执行元件驱动节点630上。A rotating column (rotating disk) 615 is connected to the operating amount generating node 610 to generate an operating amount 612 of a steering angle based on the operating angle of the rotating column 615 and transmit the operating amount 612 to the actuator driving node 630 through the communication path 650 .

在修正量生成节点620上,连接加速传感器·偏航率传感器625,生成从加速传感器·偏航率传感器625给出的信号和从操作量612的信息给出的修正量622,该修正量622通过通信路650传送到执行元件驱动节点630。The acceleration sensor and yaw rate sensor 625 are connected to the correction amount generation node 620, and a signal from the acceleration sensor and yaw rate sensor 625 and a correction amount 622 given from the information of the operation amount 612 are generated. The correction amount 622 The data is transmitted to the actuator drive node 630 through the communication path 650 .

在执行元件驱动节点630上,在修正量生成节点620为正常时,将对操作量612加上修正量622的值作为控制目标值来控制操舵装置641。At the actuator drive node 630, when the correction amount generation node 620 is normal, the steering device 641 is controlled using a value obtained by adding the correction amount 622 to the operation amount 612 as a control target value.

根据以上所述的本实施例,在驾驶员过分转动转向柱615的时候,在没有修正量622的时候,前轮失去锁紧而车辆的稳定性下降,由加速传感器·偏航速率传感器625检测车辆的横滑及自转,由于由修正量生成节点620为抑制横滑及自转而生成修正量622,所以可提高车辆的操纵稳定性。According to the present embodiment described above, when the driver turns the steering column 615 excessively, without the correction amount 622, the front wheels lose lock and the stability of the vehicle decreases, which is detected by the acceleration sensor and yaw rate sensor 625. For the lateral slip and rotation of the vehicle, since the correction amount generation node 620 generates the correction amount 622 to suppress the lateral slip and rotation, the steering stability of the vehicle can be improved.

图38表示在Brake-by-Wire系统中应用本实施例的具体例。Fig. 38 shows a specific example of applying this embodiment to a Brake-by-Wire system.

在操作量生成节点610中连接制动踏板616,生成根据制动踏板616的操作的制动踏力的操作量612,其通过通信路650传送到执行元件驱动节点630-1~630-4。A brake pedal 616 is connected to an operation amount generation node 610 , and an operation amount 612 of brake pedal force according to the operation of the brake pedal 616 is generated and transmitted to the actuator drive nodes 630 - 1 to 630 - 4 through the communication path 650 .

在修正量生成节点620中连接加速传感器·偏航速率传感器625,从由加速传感器·偏航速率传感器625给出的信号或从操作量612的信息生成各踏板的修正量622-1~622-4,其通过通信路650传送到执行元件驱动节点30。The acceleration sensor/yaw rate sensor 625 is connected to the correction amount generation node 620, and the correction amount 622-1 to 622- 4. It is transmitted to the actuator driving node 30 through the communication path 650 .

在执行元件驱动节点630-i(i=1~4),在修正量生成节点620为正常的时候,将对操作量612加上修正量622-i(i=1~4)的值作为控制目标值来控制各车轮的制动器642-i(i=1~4)。When the actuator drive node 630-i (i=1~4), when the correction amount generating node 620 is normal, add the value of the correction amount 622-i (i=1~4) to the operation amount 612 as the control The brake 642-i (i=1-4) of each wheel is controlled according to the target value.

根据以上所述的本实施例,在驾驶员过分踏入制动踏板616的时候,如果没有修正量622-i(i=1~4),则各车轮失去锁紧而车辆的稳定性下降,但由加速传感器·偏航速率传感器625检测车辆的横滑及自转,则由于由修正量生成节点620为抑制横滑及自转而生成修正量622-i(i=1~4),所以可提高车辆的操纵稳定性。According to the present embodiment described above, when the driver steps on the brake pedal 616 too much, if there is no correction amount 622-i (i=1-4), each wheel will lose locking and the stability of the vehicle will decrease. However, when the acceleration sensor and the yaw rate sensor 625 detect the lateral slip and rotation of the vehicle, since the correction amount generating node 620 generates the correction amount 622-i (i=1 to 4) for suppressing the lateral slip and rotation, it is possible to improve The handling stability of the vehicle.

图39表示在综合Steer-by-Wire和Brake-by-Wire的系统中应用本实施例的具体例。Fig. 39 shows a specific example of applying this embodiment to a system integrating Steer-by-Wire and Brake-by-Wire.

在操作量生成节点610中连接转向柱615和制动踏板616,生成根据转向柱615的操作角度的操舵角度的操作量612-0和根据制动踏板616的操作的制动踏力的操作量612-2,其通过通信路650传送到执行元件驱动节点630-0~630-4。The steering column 615 and the brake pedal 616 are connected to the operation amount generation node 610, and the operation amount 612-0 of the steering angle according to the operation angle of the steering column 615 and the operation amount 612 of the brake pedal force according to the operation of the brake pedal 616 are generated. -2, which is transmitted to the actuator drive nodes 630-0 to 630-4 through the communication path 650.

在执行元件驱动节点630-0中,在修正量生成节点620正常的时候,将对操作量612-0加上修正量622-0的值作为控制目标值来控制操舵装置641。In the actuator drive node 630-0, when the correction amount generation node 620 is normal, the steering device 641 is controlled using a value obtained by adding the correction amount 622-0 to the operation amount 612-0 as a control target value.

在执行元件驱动节点630-i(i=1~4)中,在修正量生成节点620为正常的时候,将对操作量612-i加上修正量622-i(i=1~4)的值作为目标值来控制各车轮的制动器642-i(i=1~4)。In the actuator driving node 630-i (i=1~4), when the correction amount generation node 620 is normal, the operation amount 612-i is added with the correction amount 622-i (i=1~4). The value is used as a target value to control the brake 642-i (i=1 to 4) of each wheel.

根据以上所述的本实施例,在驾驶员过分转动转向柱615、过分踏入制动踏板616的时候,在没有修正量622-i(i=1~4)的时候,前轮失去锁紧而车辆的稳定性下降,但由加速传感器·偏航速率传感器625检测车辆的横滑及自转,则由于由修正量生成节点620为抑制横滑及自转而生成修正量622-i(i=1~4),所以可提高车辆的操纵稳定性。According to the present embodiment described above, when the driver turns the steering column 615 excessively and steps on the brake pedal 616 excessively, the front wheels lose lock when there is no correction amount 622-i (i=1-4). However, the stability of the vehicle is reduced, but the acceleration sensor and the yaw rate sensor 625 detect the lateral slip and rotation of the vehicle, and the correction amount 622-i (i=1) is generated by the correction amount generation node 620 to suppress the lateral slip and rotation. ~4), so the handling stability of the vehicle can be improved.

(实施例8)(Embodiment 8)

对本发明的车辆控制装置的实施例8参照图40进行说明。Embodiment 8 of the vehicle control device of the present invention will be described with reference to FIG. 40 .

本实施例的车辆控制装置,具有下述构成:检测表示对车辆运动的驾驶员的要求的加速踏板、制动踏板、方向盘等的操作量的传感器500;检测表示车辆运动的状态的车辆速度、加速度、偏航速率、进而通过电波或图像取得的车外的信息等的传感器550;对应实现驱动、制动、操舵的动力源、制动、转向的每一个的多个执行元件400;生成控制这些执行元件400用的目标操作量的操作量生成节点100;基于操作量生成节点100生成的目标操作量控制执行元件400的多个执行元件驱动节点300。The vehicle control device of this embodiment has the following configurations: a sensor 500 that detects the operation amount of the accelerator pedal, brake pedal, steering wheel, etc. indicating the driver's request for vehicle movement; detects the vehicle speed, Sensors 550 for acceleration, yaw rate, and information outside the vehicle obtained through radio waves or images; multiple actuators 400 corresponding to each of the power source for driving, braking, and steering, braking, and steering; generation control The operation amount generation node 100 of the target operation amount for these actuators 400 ; a plurality of actuators driving the nodes 300 that control the actuators 400 based on the target operation amount generated by the operation amount generation node 100 .

操作量生成节点100,在图中没有详细显示,其具有:执行程序的中央处理器(CPU),和储存程序和数据的非挥发性的记忆装置(ROM)和非挥发性的记忆装置(RAM),和连接传感器500、传感器550、执行元件驱动节点300用的输出输入装置(I/O),这些也可以是由双方向的总线连接的一般的微机构成的构造。The operation amount generation node 100, not shown in detail in the figure, has a central processing unit (CPU) for executing programs, and a non-volatile memory device (ROM) and a non-volatile memory device (RAM) for storing programs and data. ), and the input/output device (I/O) for connecting the sensor 500, the sensor 550, and the actuator drive node 300, these can also be constructed by a general microcomputer connected by a bidirectional bus.

操作量生成节点100,进一步具有模拟/数字变换装置(ADC),也可以将传感器500、传感器550连接到ADC上,具有串行通信装置(SCI),也可以将传感器500、传感器550、执行元件驱动节点300连接到SCI上。进而,这些装置也可以是由1个至多个半导体集成电路来实现的装置。The operation variable generating node 100 further has an analog/digital conversion device (ADC), and the sensor 500 and sensor 550 can also be connected to the ADC, and a serial communication device (SCI) can also be used to connect the sensor 500, sensor 550, and actuator The drive node 300 is connected to the SCI. Furthermore, these devices may be realized by one or more semiconductor integrated circuits.

操作量生成节点100,基于传感器500输出的驾驶员要求信号200和传感器500输出的车辆状态信号201来运算各执行元件400的目标操作量,并将其作为操作量指令值120通过网络发送到执行元件驱动节点300中。操作量指令值120,根据各个执行元件400决定执行元件400如果是动力源则为目标驱动力,如果是制动则为各四轮的目标制动力,如果是转向则为目标舵角。The operation amount generation node 100 calculates the target operation amount of each actuator 400 based on the driver request signal 200 output by the sensor 500 and the vehicle state signal 201 output by the sensor 500, and sends it as an operation amount command value 120 to the execution unit through the network. The element drives node 300 . The operation amount command value 120 is determined according to each actuator 400. If the actuator 400 is a power source, it is the target driving force, if it is braking, it is the target braking force of each four wheels, and if it is steering, it is the target rudder angle.

执行元件驱动节点300在图中没有详细显示,其具有:执行程序的中央处理器(CPU),和储存程序和数据的非挥发性的记忆装置(ROM)和非挥发性的记忆装置(RAM),和连接传感器500与操作量生成节点100用的输出输入装置(I/O),这些也可以是由双方向的总线连接、进而具有驱动执行元件的驱动电路、并连接到I/O的一般的微机的构成。The actuator driver node 300 is not shown in detail in the figure, and it has: a central processing unit (CPU) for executing programs, and a non-volatile memory device (ROM) and a non-volatile memory device (RAM) for storing programs and data , and the output/input device (I/O) used to connect the sensor 500 and the operation amount generation node 100, these may also be connected by a bidirectional bus, further have a drive circuit for driving the actuator, and be connected to the general I/O Composition of the microcomputer.

执行元件驱动节点300,进一步具有模拟/数字变换装置(ADC),也可以将传感器500连接到ADC上,具有串行通信装置(SCI),也可以将传感器500至操作量生成节点100连接到SCI上。进而,这些装置也可以是由1个至多个半导体集成电路来实现的装置。The actuator drive node 300 further has an analog/digital conversion device (ADC), and the sensor 500 can also be connected to the ADC, and a serial communication device (SCI), and the sensor 500 can also be connected to the operand generation node 100 to the SCI superior. Furthermore, these devices may be realized by one or more semiconductor integrated circuits.

执行元件驱动节点300未图示,但具有检测执行元件400的驱动力、制动力、舵角的其中之一、或者为了推定这些而必须的信息的传感器,执行元件400的驱动力、制动力、舵角与从操作量生成节点100接收的操作量指令值120一致地执行对执行元件400的驱动控制。The actuator driving node 300 is not shown, but has a sensor that detects one of the driving force, braking force, and rudder angle of the actuator 400, or information necessary for estimating these. The driving force, braking force, and Drive control of the actuator 400 is performed in accordance with the operation amount command value 120 received from the operation amount generation node 100 by the steering angle.

另外,执行元件驱动节点300,将由传感器检测的执行元件的驱动力、制动力、舵角发送到操作量生成节点100中。由此,操作量生成节点100参照执行元件400的驱动力、制动力、舵角,能够运算各执行元件400的目标操作量。In addition, the actuator driving node 300 transmits the driving force, braking force, and rudder angle of the actuator detected by the sensor to the operation amount generating node 100 . Thereby, the operation amount generation node 100 can calculate the target operation amount of each actuator 400 by referring to the driving force, the braking force, and the steering angle of the actuator 400 .

传感器500、操作量生成节点100、执行元件驱动节点300分别具有检测自己的故障的故障检测功能210A、210B、210C。The sensor 500 , the operation amount generating node 100 , and the actuator driving node 300 each have failure detection functions 210A, 210B, and 210C for detecting their own failure.

由故障检测功能210A的传感器的故障检测,能够通过判定传感器500所检测的值偏离规定的范围来实现,另外,通过使用多个传感器对这些检测结果比较、校对或多数逻辑判定也能够实现。Sensor failure detection by the failure detection function 210A can be realized by judging that the value detected by the sensor 500 deviates from a predetermined range, or by using multiple sensors to compare, collate, or majority logic judgment on these detection results.

故障检测功能210B的操作量生成节点100的故障检测,由监视计时器形成的CPU的暂停、由冗长符号形成的ROM、RAM和双方向总线的短时间错误检测、由I/O的比较核对能够实现,另外,也能够通过使用多个操作量生成节点100对这些输出进行比较核对或多数逻辑判定来实现。The failure detection function 210B can detect the failure of the operation amount generation node 100, pause the CPU by the watchdog timer, detect the short-term error of the ROM, RAM and the bidirectional bus by redundant symbols, and compare and check by the I/O. Realization can also be realized by using a plurality of operation amount generation nodes 100 to perform comparison check or majority logic decision on these outputs.

故障检测功能210C的执行元件驱动节点300的故障检测,通过监视计时器形成的CPU的暂停、由冗长符号形成的ROM、RAM和双方向总线的短时间错误检测、由I/0的比较核对能够实现,另外,也能够通过使用多个操作量生成节点对这些输出取比较核对或多数逻辑判定来实现。The failure detection of the actuator drive node 300 of the failure detection function 210C, the pause of the CPU formed by the watchdog timer, the short-term error detection of the ROM, the RAM and the bidirectional bus formed by redundant symbols, and the comparison check of I/O can Realization, in addition, can also be realized by using a plurality of operation amount generation nodes to perform comparison check or majority logic decision on these outputs.

进而,故障检测功能210C也具有从执行元件400的驱动力、制动力、舵角的变化量或操作量指令值120的差来检测执行元件400的故障的功能。Furthermore, the failure detection function 210C also has a function of detecting a failure of the actuator 400 from the driving force of the actuator 400 , the braking force, the amount of change in the rudder angle, or the difference in the operation amount command value 120 .

故障检测功能210A、210B、210C,在检测自己或执行元件400的故障的时候,对操作量生成节点100和其它的执行元件驱动节点300,输出通知自己为故障状态用的故障检测通知230。The fault detection functions 210A, 210B, and 210C output a fault detection notification 230 for notifying themselves of a fault state to the operation variable generation node 100 and other actuator drive nodes 300 when detecting a fault of itself or the actuator 400 .

传感器500、操作量生成节点100、执行元件驱动节点300,分别为在故障状态的时候仅以输出故障检测通知230而使其它的输出停止是理想的,进而,在不能正常地输出故障检测通知230的时候,该故障检测通知230也停止是理想的。It is ideal for the sensor 500, the operation amount generating node 100, and the actuator driving node 300 to output only the failure detection notification 230 and stop other outputs in the failure state. Furthermore, when the failure detection notification 230 cannot be output normally It is ideal that the failure detection notification 230 also ceases when .

另外,各执行元件驱动节点300,具有基于自己、其它的各执行元件驱动节点300、操作量生成节点100的各个故障检测结果等来选择控制程序(执行元件控制方法)用的控制程序选择功能(控制方法选择装置)200。In addition, each actuator driving node 300 has a control program selection function for selecting a control program (actuator control method) based on failure detection results of itself, other actuator driving nodes 300, and operation amount generating nodes 100, etc. ( control method selection means) 200.

控制程序选择功能200,通常基于从操作量生成节点100给出的操作量指令值120来选择控制执行元件400的控制程序,但在操作量生成节点100发生故障的时候,基于从传感器500给出的驾驶员要求信号200来选择控制执行元件400的控制程序,在自己或其它的特定处的执行元件驱动节点300发生故障的时候,选择安全地停止执行元件400的控制的控制程序。The control program selection function 200 normally selects a control program for controlling the actuator 400 based on the operation amount command value 120 given from the operation amount generating node 100, but when the operation amount generating node 100 fails, it selects the control program based on the operation amount command value 120 given from the sensor 500. The driver requires the signal 200 to select the control program for controlling the actuator 400, and selects the control program for safely stopping the control of the actuator 400 when the actuator drive node 300 in itself or other specific places fails.

由此,即使在操作量生成节点100及执行元件驱动节点300发生故障的时候,通过处于正常状态的执行元件驱动节点300能够继续进行车辆控制。Accordingly, even when the operation amount generation node 100 and the actuator driving node 300 fail, the vehicle control can be continued by the actuator driving node 300 in a normal state.

此实施例的车辆控制装置,如图41中所示,也可以由CAN等的网络600将操作量生成节点100和执行元件驱动节点300及传感器500可以通信地进行连接。操作量生成节点100和执行元件驱动节点300及传感器500,分别将操作量指令值120、故障检测通知230、驾驶员要求信号200及其它的短信息、经由网络600送到所希望的节点中。进而,多个节点也能够接收各个传感器发送的短信息。In the vehicle control device of this embodiment, as shown in FIG. 41 , the operation variable generating node 100, the actuator driving node 300, and the sensor 500 may be communicably connected by a network 600 such as CAN. Manipulation generating node 100 , actuator driving node 300 and sensor 500 send manipulating command value 120 , failure detection notification 230 , driver request signal 200 and other short messages to desired nodes via network 600 . Furthermore, multiple nodes can also receive short messages sent by each sensor.

另外,如图42所示,此实施例的车辆控制装置,也能够为传感器550也作为一个节点连接到网络600的构成。由此,传感器550能够将车辆状态信号201经过网络600发送到所希望的节点中。进而,多个节点也能够接收传感器550发送的短信息。In addition, as shown in FIG. 42 , the vehicle control device of this embodiment can also have a configuration in which the sensor 550 is also connected to the network 600 as one node. Thus, sensor 550 can transmit vehicle state signal 201 to a desired node via network 600 . Furthermore, a plurality of nodes can also receive the short message sent by the sensor 550 .

另外,在图41、图42所示的车辆控制装置中,通过具有多个网络600并具有冗长性,能够提高网络的可靠性。Moreover, in the vehicle control device shown in FIG. 41, FIG. 42, by having a plurality of networks 600 and having redundancy, the reliability of the network can be improved.

图43是操作量生成节点100的功能方块图。操作量生成节点100,将车辆控制用的多个控制程序装入到ROM和RAM中,在通过故障检测功能210B检测自己的故障的时候,或在从传感器500、传感器550、执行元件驱动节点400接收到故障检测通知230的时候,根据故障的地方及故障的程度,切换控制程序。FIG. 43 is a functional block diagram of the operation amount generating node 100 . The operation amount generation node 100 loads multiple control programs for vehicle control into ROM and RAM, and when detecting its own failure through the failure detection function 210B, or when driving the node 400 from the sensor 500, sensor 550, and actuator When the fault detection notification 230 is received, the control program is switched according to the location and degree of the fault.

图44是执行元件驱动节点300的功能方块图。执行元件驱动节点300,将用于基于从操作量生成节点100接收的操作量指令值120来运算执行元件400的动作目标值的多个控制程序装入到ROM和RAM中。执行元件驱动节点300,具有:基于操作量生成节点100输出的操作量指令值120来控制执行元件400的程序X,和基于传感器500输出的驾驶员要求信号200来控制执行元件400的控制程序Y,和与操作量指令值120及驾驶员要求信号200无关、将执行元件维持在规定的状态的控制程序Z,通过控制程序选择功能220,根据自己的故障或其它的节点的故障状况,能够切换控制程序。FIG. 44 is a functional block diagram of the actuator driving node 300 . The actuator drive node 300 loads, into ROM and RAM, a plurality of control programs for calculating operation target values of the actuator 400 based on the operation amount command value 120 received from the operation amount generating node 100 . The actuator driving node 300 has: a program X that controls the actuator 400 based on the operation amount command value 120 output from the operation amount generating node 100 , and a control program Y that controls the actuator 400 based on the driver request signal 200 output from the sensor 500 , and the control program Z that maintains the actuator in a predetermined state regardless of the operation amount command value 120 and the driver's request signal 200 can be switched by the control program selection function 220 according to its own failure or the failure status of other nodes control program.

以下,以图40~图44为例,对在于本车辆控制装置内发生故障时继续车辆运动用的基本的处理进行说明。Hereinafter, using FIGS. 40 to 44 as an example, the basic processing for continuing the vehicle movement when a failure occurs in the vehicle control device will be described.

对操作量生成节点100发生故障时的基本的处理进行说明。操作量生成节点100,当由故障检测功能检测出自己的故障时,停止操作量指令值120的发送,同时,发送故障检测通知230。在不能够正常地发送故障检测通知230的时候,操作量生成节点100也停止故障检测通知230的发送。Basic processing when the operation amount generating node 100 fails will be described. When the operation amount generation node 100 detects its own failure by the failure detection function, it stops transmission of the operation amount command value 120 and simultaneously transmits a failure detection notification 230 . When the failure detection notification 230 cannot be normally transmitted, the operation amount generating node 100 also stops transmission of the failure detection notification 230 .

由此,连接到网络600的各执行元件驱动节点300,通过接收从操作量生成节点100给出的故障检测通知230,能够检测操作量生成节点100发生了故障,另外,通过在预先确定的时间内不接收操作量指令值120,能够检测在操作量生成节点100发生了某种异常。Thus, each actuator drive node 300 connected to the network 600 can detect that a failure has occurred in the operation amount generation node 100 by receiving the failure detection notification 230 given from the operation amount generation node 100, and by Without receiving the operation amount command value 120 inside, it is possible to detect that some kind of abnormality has occurred in the operation amount generation node 100 .

另外,如果使网络600为分时多路存取(TDMA),构成为各节点在予定的时隙执行短信息的发送,则通过操作量生成节点100确认在发送操作量指令值120的时隙的有无接收,而能够检测在操作量生成节点100发生了某种异常。In addition, if the network 600 is time-division multiple access (TDMA), and each node is configured to transmit a short message at a predetermined time slot, then it is confirmed by the operation amount generation node 100 that the time slot for sending the operation amount command value 120 It is possible to detect whether some kind of abnormality has occurred in the operation amount generation node 100 by receiving or not receiving.

各执行元件驱动节点300,当检测到从操作量生成节点100给出的故障检测通知230或者检测出没有接收操作量指令值120的发送时,将控制程序从(X)切换到(Y),以从网络600取入传感器500的驾驶员要求信号200来执行驱动力、制动力、舵角等的车辆运动控制。Each actuator drive node 300 switches the control program from (X) to (Y) when detecting the fault detection notification 230 given from the operation amount generation node 100 or detecting that the transmission of the operation amount command value 120 is not received, Vehicle motion control of driving force, braking force, rudder angle, and the like is executed with the driver request signal 200 taken from the sensor 500 from the network 600 .

由此,操作量生成节点100即使发生故障也继续进行车辆运动控制。As a result, the operation amount generation node 100 continues to perform vehicle motion control even if a failure occurs.

接着,对执行元件驱动节点300和执行元件400发生故障时的基本的处理进行说明。另外,在执行元件400的故障中,包含对于未图示的执行元件控制所需要的旋转位置传感器及电流传感器等的故障。Next, basic processing when the actuator drive node 300 and the actuator 400 fail will be described. Incidentally, failures of the actuator 400 include failures of a rotational position sensor, a current sensor, and the like necessary for actuator control not shown.

在设置在四轮的制动器的每个上的执行元件驱动节点300或执行元件400发生故障时,执行元件驱动节点300,当通过故障检测功能检测出自己的故障时,在发送故障检测通知230的同时,将控制程序从(X)切换到(Z),以解放该车轮的制动控制。When the actuator drive node 300 or the actuator 400 installed on each of the brakes of the four wheels fails, the actuator drive node 300 detects its own fault through the fault detection function, and sends the fault detection notification 230. At the same time, switch the control program from (X) to (Z) to release the brake control of this wheel.

操作量生成节点100,在接收到故障检测通知230时,由剩下的二轮至三轮来控制制动力。或者,驾驶员使用油压机构等的机械的备份机构来直接制动车辆。When the operation amount generating node 100 receives the failure detection notification 230, it controls the braking force of the remaining two to three wheels. Alternatively, the driver directly brakes the vehicle using a mechanical backup mechanism such as a hydraulic mechanism.

由此,即使设置在四轮的制动器的每个上的执行元件驱动节点300或执行元件400发生故障,也能够继续进行车辆运动控制。Accordingly, even if the actuator drive node 300 or the actuator 400 provided on each of the brakes of the four wheels fails, vehicle motion control can be continued.

在设置于转向器上的执行元件驱动节点300或执行元件400发生故障的时候,在执行元件驱动节点300通过故障检测功能210C检测自己的故障时,在发出故障检测通知230的同时,将控制程序从(X)切换到(Z)使舵角控制停止。When the actuator drive node 300 or the actuator 400 installed on the steering gear fails, when the actuator drive node 300 detects its own fault through the fault detection function 210C, while sending out the fault detection notification 230, the control program Switching from (X) to (Z) stops the rudder angle control.

并且,驾驶员使用转向柱等的机械的备份机构直接控制车辆操舵。在没有机械的备份机构的时候,设置多个转向用的执行元件驱动节点300和执行元件400,由至少一个执行元件驱动节点300和执行元件400控制舵角。In addition, the driver directly controls the steering of the vehicle using a mechanical backup mechanism such as a steering column. When there is no mechanical backup mechanism, a plurality of steering actuator drive nodes 300 and actuators 400 are provided, and at least one actuator drive node 300 and actuator 400 controls the rudder angle.

由此,即使设置于转向器的执行元件驱动节点300或执行元件400发生故障也能够继续进行车辆运动控制。Accordingly, even if the actuator driving node 300 or the actuator 400 provided in the steering gear fails, the vehicle motion control can be continued.

在设置为驱动力用的执行元件驱动节点300或执行元件400发生故障的时候,在执行元件驱动节点300通过故障检测功能检测自己的故障时,在发出故障检测通知230的同时,将控制程序从(X)切换到(Z)使驱动控制停止。When the actuator drive node 300 or the actuator 400 set as the driving force fails, when the actuator drive node 300 detects its own fault through the fault detection function, it sends out the fault detection notification 230 and transfers the control program from Switching from (X) to (Z) stops the drive control.

由此,即使设置为驱动力用的执行元件驱动节点300或执行元件400发生故障也能够使车辆安全停止。Thereby, even if the actuator drive node 300 or the actuator 400 provided as a driving force fails, the vehicle can be stopped safely.

在制动踏板用的传感器500发生故障的时候,解放全车轮的制动器的制动,驾驶员使用油压机构等的机械的备份机构直接制动车辆。在没有机械的备份机构的时候,设置多个制动踏板用的传感器500,用至少一个传感器500能够检测驾驶员的要求。When the brake pedal sensor 500 fails, the brakes on all wheels are released, and the driver directly brakes the vehicle using a mechanical backup mechanism such as a hydraulic mechanism. When there is no mechanical backup mechanism, a plurality of brake pedal sensors 500 are provided, and at least one sensor 500 can detect a driver's request.

由此,即使制动踏板用的传感器500发生故障,也能够继续进行车辆运动控制。Accordingly, even if the brake pedal sensor 500 fails, vehicle motion control can be continued.

在方向盘用的传感器500发生故障的时候,使转向器控制停止,驾驶员使用转向柱等的机械的备份机构直接操舵车辆。在没有机械的备份机构的时候,设置多个制动踏板用的传感器500,用至少一个传感器500能够检测驾驶员的要求。When the sensor 500 for the steering wheel fails, the steering control is stopped, and the driver directly steers the vehicle using a mechanical backup mechanism such as a steering column. When there is no mechanical backup mechanism, a plurality of brake pedal sensors 500 are provided, and at least one sensor 500 can detect a driver's request.

由此,即使方向盘用的传感器500发生故障也能够继续进行车辆运动控制。Accordingly, even if the sensor 500 for the steering wheel fails, the vehicle motion control can be continued.

在加速踏板用的传感器500发生故障的时候,使驱动力控制停止,使车辆安全地停止。或者设置多个制动踏板用的传感器500,用至少一个传感器500能够检测驾驶员的要求。When the accelerator pedal sensor 500 fails, the driving force control is stopped to bring the vehicle to a safe stop. Alternatively, a plurality of brake pedal sensors 500 are provided, and at least one sensor 500 can detect a driver's request.

由此,能够继续进行车辆运动控制。Accordingly, vehicle motion control can be continued.

在传感器500发生故障的时候,操作量生成节点100基于正常取得的车辆状态信息201、和从传感器500取得的驾驶员要求信号200来继续车辆运动。When the sensor 500 fails, the operation amount generating node 100 continues the movement of the vehicle based on the normally acquired vehicle state information 201 and the driver request signal 200 acquired from the sensor 500 .

如以上说明,根据本实施例,由于操作量生成节点100和执行元件驱动节点300相互备份,所以没有必要附加冗长的备份装置。As described above, according to the present embodiment, since the operation amount generating node 100 and the actuator driving node 300 back up each other, there is no need to add a redundant backup device.

然而,在操作量生成节点100发生故障的时候,元件驱动节点300分别独立地执行控制。However, when the operation amount generating node 100 fails, the element driving nodes 300 perform control independently, respectively.

因此,需要执行元件驱动节点300同等地检测操作量生成节点100的故障,另外,即使在车辆运动综合控制ECU30的基础上一部分执行元件驱动节点300发生故障的时候,也可通过剩下的执行元件驱动节点300安全地控制车辆。特别是制动器在左右的制动力产生差的时候,为单侧效应的状态,车辆在制动中自转。Therefore, it is necessary for the actuator drive nodes 300 to equally detect the failure of the operation amount generation node 100, and even if a part of the actuator drive nodes 300 fails on the basis of the vehicle motion integrated control ECU 30, it is necessary to pass the remaining actuators. The driving node 300 safely controls the vehicle. In particular, when there is a difference in the braking force between the left and right brakes, it is a state of one-sided effect, and the vehicle rotates while braking.

对为了避开这样的危险状态的操作量生成节点100和执行元件驱动节点300的动作例使用图45~图57进行详细说明。在这里,以制动器为例说明各个动作。Operation examples of the manipulation amount generating node 100 and the actuator driving node 300 to avoid such a dangerous state will be described in detail with reference to FIGS. 45 to 57 . Here, each operation will be described using the brake as an example.

操作量生成节点100,以一定的控制周期(A)反复执行制动控制的处理。该控制周期由车辆制动控制的必要精度来决定。另外,各执行元件驱动节点300如后所述,与操作量生成节点100的控制周期(A)比较,以更短的控制周期(B)反复执行执行元件400的制动力控制。这是由于对执行元件400的电流反馈控制要求较高精度的缘故。The operation amount generation node 100 repeatedly executes the brake control process in a constant control cycle (A). This control cycle is determined by the necessary accuracy of vehicle braking control. In addition, each actuator driving node 300 repeatedly executes the braking force control of the actuator 400 in a shorter control cycle (B) than the control cycle (A) of the operation amount generating node 100 as described later. This is because the current feedback control of the actuator 400 requires higher precision.

从而,在操作量生成节点100于控制周期(A)执行一系列的处理期间,各执行元件驱动节点300,基于最新的操作量指令值120、以控制周期(B)反复执行制动力控制,在与操作量生成节点100的通信处理等中不中断制动力控制。Therefore, while the operation amount generation node 100 executes a series of processes in the control cycle (A), each actuator driving node 300 repeatedly executes the braking force control in the control cycle (B) based on the latest operation amount command value 120, and in the The braking force control is not interrupted during communication processing with the operation amount generation node 100 and the like.

图45是表示执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。各执行元件驱动节点300以控制周期(B)反复执行以下的处理。FIG. 45 is a time chart showing the operation of the actuator drive node 300. The horizontal axis represents the passage of time from left to right. Each actuator drive node 300 repeatedly executes the following processing in a control cycle (B).

首先,执行元件驱动节点300确认是否从操作量生成节点100接收到了操作量指令值120和故障检测通知230、从传感器500接收到了驾驶员要求信号200(指令值、故障检测通知接收确认B1)。这些由于以控制周期(A)的间隔发送,所以使用计测控制周期(A)的时间的计时器能够确认操作量指令值120、驾驶员要求信号200的接收。或者,通过对这些使用分时多路存取(TDMA)型的网络以预先确定的时隙发送接收也能够确认接收。First, the actuator drive node 300 checks whether the operation amount command value 120 and the failure detection notification 230 are received from the operation amount generation node 100, and the driver request signal 200 is received from the sensor 500 (command value, failure detection notification reception confirmation B1). Since these are transmitted at intervals of the control cycle (A), reception of the operation amount command value 120 and the driver request signal 200 can be confirmed using a timer that measures the time of the control cycle (A). Alternatively, reception can also be confirmed by transmitting and receiving in predetermined time slots for these networks using a time division multiple access (TDMA) type.

接着,执行元件驱动节点300,将在前次的控制周期的最后检测的执行元件400的制动力和由故障检测功能210C给出的诊断结果、发送到操作量生成节点100或其它的执行元件驱动节点300(应答短信息发送B2)。这时,在由(指令值、故障检测通知接收确认B1)不接收操作量指令值120的时候,在对操作量指令值未接收、接收故障检测通知230的时候,也一起通知故障检测通知接收。这些是作为一个的应答短信息而一起发送。Next, the actuator driver node 300 sends the braking force of the actuator 400 detected at the end of the previous control cycle and the diagnosis result given by the failure detection function 210C to the operation variable generation node 100 or other actuator drivers. Node 300 (response short message sending B2). At this time, when the operation amount command value 120 is not received by (command value, failure detection notification reception confirmation B1), when the operation amount command value is not received and the failure detection notification 230 is received, the failure detection notification reception is also notified together. . These are sent together as one reply SMS.

接着,执行元件驱动节点300,基于有无操作量指令值120的接收、有无故障检测通知230的接收、有无执行元件400和自己的故障、和有无从其它执行元件驱动节点300给出的应答短信息及其内容选择控制程序(控制程序选择B3)。控制程序,具有基于操作量指令值120来执行制动力控制的控制程序(X),和基于驾驶员要求信号200来执行制动力控制的控制程序(Y),和也与操作量指令值120和驾驶员要求信号200够无关解放制动的控制程序(Z),并从其中选择一个。Next, the actuator drives the node 300, based on the presence or absence of reception of the operation amount command value 120, reception of the failure detection notification 230, presence or absence of failure of the actuator 400 and itself, and presence or absence of input from other actuator drive nodes 300. Answer the short message and its content selection control program (control program selection B3). The control program has a control program (X) that performs braking force control based on the operation amount command value 120, and a control program (Y) that performs braking force control based on the driver request signal 200, and is also related to the operation amount command value 120 and The driver requests the signal 200 to be independent of the brake release control program (Z), and selects one of them.

对该控制程序的选择程序(B3),参照图46的流程进行说明。The selection procedure (B3) of this control program will be described with reference to the flow of FIG. 46 .

首先,对自己的执行元件驱动节点300或执行元件400的异常发生,由以下的条件进行判定(步骤S1610)。First, the abnormal occurrence of its own actuator driving node 300 or actuator 400 is judged by the following conditions (step S1610).

条件1:自己和执行元件的诊断的结果、检测故障。Condition 1: The result of self-diagnosis and actuator diagnosis, detected failure.

条件2:在从操作量生成节点100接收故障检测通知230时,其它的两个以上的执行元件驱动节点300应答没有接收到故障检测通知230。Condition 2: When the failure detection notification 230 is received from the operation amount generation node 100 , the other two or more actuator drive nodes 300 respond that the failure detection notification 230 has not been received.

条件3:没有在从操作量生成节点100接收故障检测通知230时,其它的两个以上的执行元件驱动节点300应答接收到故障检测通知230。Condition 3: No other two or more actuator drive nodes 300 respond to the receipt of the failure detection notification 230 when the operation amount generation node 100 receives the failure detection notification 230 .

条件4:在从操作量生成节点100接收操作量指令值120时,其它的两个以上的执行元件驱动节点300应答没有接收操作量指令值120。Condition 4: When the manipulated variable command value 120 is received from the manipulated variable generation node 100 , the other two or more actuator drive nodes 300 respond that the manipulated variable command value 120 has not been received.

条件5:在从操作量生成节点100没有接收到操作量指令值120时,其它的两个以上的执行元件驱动节点300应答接收到操作量指令值120。Condition 5: When the manipulated variable command value 120 is not received from the manipulated variable generation node 100 , the other two or more actuator drive nodes 300 respond that the manipulated variable command value 120 has been received.

在从以上的条件1到条件5中,在至少一个成立时,判断为自己异常,选择控制程序(Z)解放制动(步骤S1680)。When at least one of the above conditions 1 to 5 is satisfied, it is judged that it is abnormal, and the control program (Z) is selected to release the brake (step S1680).

接着,对操作量生成节点100的异常发生由以下的条件进行判定(步骤S1620)。Next, the occurrence of an abnormality in the operation amount generating node 100 is judged by the following conditions (step S1620).

条件6:从操作量生成节点100接收故障检测通知230,并且,其它的两个以上的操作量生成节点100也应答接收到了故障检测通知230。Condition 6: The failure detection notification 230 is received from the operation amount generation node 100 , and two or more other operation amount generation nodes 100 also respond to the failure detection notification 230 being received.

条件7:从操作量生成节点100没有接收操作量指令值120,并且,其它的两个以上的操作量生成节点100也应答没有接收到操作量指令值120。Condition 7: The operation amount command value 120 has not been received from the operation amount generation node 100 , and two or more other operation amount generation nodes 100 also reply that the operation amount command value 120 has not been received.

在条件6、7的条件都不成立的时候,操作量生成节点100判定正常,选择控制程序(X)(步骤S1660),基于操作量指令值120执行制动力控制。When none of the conditions 6 and 7 are satisfied, the operation amount generating node 100 determines that it is normal, selects the control program (X) (step S1660 ), and executes braking force control based on the operation amount command value 120 .

另外,在条件6、7之中在至少一个成立的时候,操作量生成节点100判定异常,对其它的执行元件驱动节点300或执行元件400的异常发生由以下的条件进行判定(步骤S1630)。In addition, when at least one of conditions 6 and 7 is satisfied, the operation amount generation node 100 determines abnormality, and the occurrence of abnormality in other actuator drive nodes 300 or actuator 400 is determined by the following conditions (step S1630).

条件8:其它的执行元件驱动节点300通知故障。Condition 8: Other actuators drive the node 300 to notify the failure.

条件9:其它的一个执行元件驱动节点300不发送应答短信息。Condition 9: the other actuator drive node 300 does not send a response short message.

条件10:在从操作量生成节点100接收到故障检测通知230时,仅其它的一个执行元件驱动节点300应答没有接收到故障检测通知230。Condition 10: When the failure detection notification 230 is received from the operation amount generating node 100 , only the other actuator driving node 300 replies that the failure detection notification 230 has not been received.

条件11:在从操作量生成节点100没有接收到故障检测通知230时,仅其它的一个执行元件驱动节点300应答接收到了故障检测通知230。Condition 11: When the failure detection notification 230 is not received from the operation variable generation node 100 , only one other actuator driving node 300 acknowledges that the failure detection notification 230 has been received.

条件12:在从操作量生成节点100接收到操作量指令值120时,仅其它的一个执行元件驱动节点300应答没有接收到操作量指令值120。Condition 12: When the manipulated variable command value 120 is received from the manipulated variable generation node 100 , only one other actuator driving node 300 responds that the manipulated variable command value 120 has not been received.

条件13:在从操作量生成节点100没有接收到操作量指令值120时,仅其它的一个执行元件驱动节点300应答接收到了操作量指令值120。Condition 13: When the manipulated variable command value 120 is not received from the manipulated variable generating node 100 , only one other actuator driving node 300 acknowledges that the manipulated variable command value 120 has been received.

在从上述的条件8到条件13的条件都不成立的时候,其它的执行元件驱动节点300和执行元件400判断为正常,选择控制程序(Y)(步骤S1670),基于驾驶员要求信号200执行制动力控制。When none of the above-mentioned conditions from condition 8 to condition 13 is established, the other actuator drive nodes 300 and actuator 400 are judged to be normal, and the control program (Y) is selected (step S1670), and the control program is executed based on the driver request signal 200. power control.

另外,在从条件8到13之中,在至少一个成立的时候,其它的执行元件驱动节点300或执行元件400判定为异常,为了避开制动的单侧效应,参照后述的控制程序选择表(步骤S1640),选择控制程序(Y)或(Z)其中之一(步骤S1650)。In addition, when at least one of conditions 8 to 13 is established, the other actuator drive node 300 or actuator 400 is judged to be abnormal. table (step S1640), select one of the control program (Y) or (Z) (step S1650).

如以上说明,执行元件驱动节点300,基于从条件1到条件13,判定自己的执行元件驱动节点300或执行元件400的异常、操作量生成节点100异常、其它的执行元件驱动节点300或执行元件400的异常,并选择控制程序。As described above, the actuator driving node 300 judges the abnormality of its own actuator driving node 300 or actuator 400, the abnormality of the operation amount generation node 100, and the abnormality of other actuator driving nodes 300 or actuators based on conditions 1 to 13. 400 exception, and select the control program.

另外,上述的条件由于根据车辆系统的形态及各个构成要素的形态而不同,所以也可以使用根据它们的条件。In addition, since the above-mentioned conditions differ depending on the form of the vehicle system and the form of each component, conditions based on them may be used.

另外,对于从操作量生成节点100给出的操作量指令值120及故障检测通知230等的未接收,不是直接地判断为异常,可以在为二次以上未接收时判断为异常。这时,也可以在各执行元件驱动节点300间交换未接收次数,取多数逻辑判定等,使未接收次数一致。In addition, non-reception of the operation amount command value 120 and failure detection notification 230 from the operation amount generation node 100 is not directly judged as abnormal, but may be judged as abnormal when it is not received twice or more. At this time, the unreceived counts may be exchanged among the actuator drive nodes 300, and the unreceived counts may be made to match by taking a majority logic decision.

图47(a)、(b)表示控制程序选择表。47(a), (b) show control program selection tables.

表(a)是在四轮的制动中,在其它的执行元件驱动节点300或执行元件400为异常的时候,由前二轮和后二轮的其中之一的制动器制动车辆地选择控制程序的表。Table (a) is the selection control for braking the vehicle by the brake of one of the front two wheels and the rear two wheels when the other actuator drive node 300 or the actuator 400 is abnormal during four-wheel braking program table.

另外,表(b)是在四轮的制动中,在其它的执行元件驱动节点300或执行元件400为异常的时候,由处于对角线上的前一轮和后一轮的制动器制动车辆地选择控制程序的表。In addition, table (b) is in the four-wheel braking, when other actuators drive node 300 or actuator 400 is abnormal, brake by the brakes of the front wheel and the rear wheel on the diagonal A list of vehicle ground selection control programs.

另外,在这些表中,其前提是,在由前二轮或后二轮、或者处于对角线上的前一轮和后一轮的其中之一的制动器不能制动车辆的时候,解放由全执行元件400形成的制动,并且驾驶员通过油压机构制动车辆。In addition, in these tables, the premise is that when the vehicle cannot be braked by the brakes of the front two wheels or the rear two wheels, or one of the front and rear wheels on the diagonal line, the The brake formed by the full actuator 400, and the driver brakes the vehicle through the hydraulic mechanism.

当然,即使在这样的情况下,通过剩下的正常的执行元件400也可以执行车辆制动。Of course, even in such cases, vehicle braking can also be performed via the remaining normal actuator 400 .

另外,在没有油压机构的备份的时候,即使在由前二轮或后二轮、或者处于对角线上的前一轮和后一轮的其中之一的制动器不能制动车辆的时候,也需要通过剩下的正常的执行元件400执行车辆制动。通过在这些时候控制内燃机的旋转数降低车辆的速度,抑制制动的单侧效应带来的影响是理想的。In addition, when there is no backup of the hydraulic mechanism, even when the vehicle cannot be braked by the brakes of the front two wheels or the rear two wheels, or one of the front and rear wheels on the diagonal line, Vehicle braking also needs to be performed via the remaining normal actuator 400 . It is desirable to suppress the influence of the one-sided effect of braking by reducing the speed of the vehicle by controlling the number of revolutions of the internal combustion engine at these times.

在控制程序选择完成后,返回到使用图45的说明中,进行制动力的运算并执行制动控制(B4),其后,进行实际的制动力的取入和故障信息收集(B5)。After the selection of the control program is completed, return to the description using FIG. 45 , calculate the braking force and execute the braking control (B4), and thereafter, take in the actual braking force and collect the fault information (B5).

图48是表示制动的开始时期的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。FIG. 48 is a time chart showing the operations of the operation amount generating node 100 and the actuator driving node 300 at the start time of braking. The horizontal axis represents the passage of time from left to right.

首先,操作量生成节点100在检测驾驶员的制动踏板的踏入后,对四轮的执行元件驱动节点300发送制动开始通知(1810)。First, the operation amount generation node 100 transmits a brake start notification to the four-wheel actuator drive node 300 after detecting the driver's depression of the brake pedal (1810).

各执行元件驱动节点300在接收了制动开始通知后,使用故障检测功能210C执行自己的故障诊断和执行元件400的故障诊断(1820),将诊断结果通过应答短信息发送到操作量生成节点100(1830)。另外,各执行元件驱动节点300相互接收其它的诊断结果。After receiving the braking start notification, each actuator driving node 300 uses the fault detection function 210C to perform its own fault diagnosis and the fault diagnosis of the actuator 400 (1820), and sends the diagnosis result to the operation variable generation node 100 through a response message (1830). In addition, the individual actuator drive nodes 300 mutually receive other diagnostic results.

操作量生成节点100接收各执行元件驱动节点300的诊断结果,根据故障节点的有无和故障节点的位置来选择应该制动控制的车轮(1840)。另外,在执行元件驱动节点300没发送诊断结果的时候,该节点看作发生故障的节点。或者,也可以再次发送制动开始通知一次至数次试从执行元件驱动节点300给出的诊断结果发送。The operation variable generation node 100 receives the diagnosis result of each actuator drive node 300, and selects a wheel to be braked according to the presence or absence of a faulty node and the position of the faulty node (1840). In addition, when the actuator driver node 300 does not transmit a diagnosis result, this node is regarded as a node where a failure has occurred. Alternatively, the brake start notification may be retransmitted once to several times to try transmission from the diagnosis result given by the actuator drive node 300 .

操作量生成节点100,运算对于应该控制的车轮的目标操作量(1850),并对作为对象的执行元件驱动节点300发送操作量指令值120(1860)。The operation amount generation node 100 calculates the target operation amount for the wheel to be controlled (1850), and transmits the operation amount command value 120 to the target actuator drive node 300 (1860).

各执行元件驱动节点300,在接收操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制(1870)。Each actuator driving node 300 receives the operation amount command value 120, updates the target value of the braking force control, and executes the braking force control of the actuator 400 (1870).

另外,各执行元件驱动节点300,在一定的周期将执行元件400的制动力的检测和由故障检测功能210C检测的定期的诊断结果、通过应答短信息发送到操作量生成节点100(1880)。这时,各执行元件驱动节点300也相互接收其它的诊断结果。In addition, each actuator driving node 300 sends the detection of the braking force of the actuator 400 and the periodic diagnosis result detected by the fault detection function 210C to the operation amount generation node 100 by replying a short message at a certain period (1880). At this time, the individual actuator drive nodes 300 also receive other diagnostic results from each other.

图49是表示制动控制中的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。FIG. 49 is a time chart showing the operations of the operation amount generating node 100 and the actuator driving node 300 in braking control. The horizontal axis represents the passage of time from left to right.

操作量生成节点100按每个控制周期(A)执行以下的处理。The operation amount generating node 100 executes the following processing every control cycle (A).

首先,操作量生成节点100接收从各执行元件驱动节点300给出的应答短信息(1910),参照包含在应答短信息中的各执行元件驱动节点300的故障诊断结果,确认各执行元件驱动节点300和执行元件400的异常的有无和异常处,选择应该制动控制的各执行元件驱动节点300(1920)。First, the operation amount generation node 100 receives the response message from each actuator drive node 300 (1910), refers to the fault diagnosis result of each actuator drive node 300 included in the response message, and confirms that each actuator drive node Whether or not there is an abnormality in 300 and the actuator 400 and the location of the abnormality, each actuator drive node 300 to be brake-controlled is selected (1920).

接着,操作量生成节点100运算对于应该制动控制的车轮的目标操作量(1930),对作为对象的执行元件驱动节点300发送操作量指令值120(1940)。Next, the operation amount generation node 100 calculates the target operation amount for the wheel to be braked (1930), and sends the operation amount command value 120 to the target actuator drive node 300 (1940).

另外,在图49中,通过操作量生成节点100检测驾驶员的制动踏板的踏入而对四轮的执行元件驱动节点300发送制动开始通知,开始制动控制,但如果以驾驶员的制动踏板的踏入的有无作为驾驶员的要求量的差异,则与驾驶员的制动踏板的踏入的有无无关,而使操作量生成节点100总是如图49所示在控制周期(A)能够反复执行一系列的处理。In addition, in FIG. 49 , the operation amount generation node 100 detects that the driver's brake pedal is depressed, and sends a brake start notification to the four-wheel actuator drive node 300 to start brake control. Whether or not the brake pedal is depressed is regarded as a difference in the driver's request amount, regardless of whether or not the driver's brake pedal is depressed, and the operation amount generating node 100 is always controlled as shown in FIG. 49 The cycle (A) can repeatedly execute a series of processes.

图50是选择执行制动控制的车轮用的流程图。Fig. 50 is a flow chart for selecting a wheel for braking control.

首先,操作量生成节点100对自己的异常发生由以下的条件进行判定(步骤S2010)。First, the operation amount generation node 100 judges the occurrence of its own abnormality according to the following conditions (step S2010).

条件1:由自己的故障检测功能210B检测诊断的结果、故障。Condition 1: The diagnosis result and failure are detected by own failure detection function 210B.

条件2:没有接收到从三个以上的执行元件驱动节点300给出的应答短信息。Condition 2: no response short messages from more than three actuator drive nodes 300 are received.

在以上的条件1、条件2中,在至少一个成立时,操作量生成节点100判断为异常,对执行元件驱动节点300发送故障检测通知230的同时(步骤S2040),停止操作量指令值120的发送(步骤S2050)。When at least one of the above conditions 1 and 2 is satisfied, the operation amount generation node 100 determines that it is abnormal, and at the same time as sending the fault detection notification 230 to the actuator drive node 300 (step S2040), the operation amount command value 120 is stopped. Send (step S2050).

另外,在条件1、条件2都不成立的时候,操作量生成节点100判断为正常,对执行元件驱动节点300或执行元件400的异常发生,用以下的条件判定(步骤S2020)。In addition, when neither the condition 1 nor the condition 2 is satisfied, the operation amount generation node 100 judges that it is normal, and the abnormal occurrence of the actuator driving node 300 or the actuator 400 is judged by the following conditions (step S2020).

条件3:从执行元件驱动节点300接收故障检测通知。Condition 3: Failure detection notification is received from the actuator drive node 300 .

条件4:没有接收从两个以下的执行元件驱动节点300给出的应答短信息。Condition 4: The response short messages given from two or less actuator drive nodes 300 are not received.

在上述的条件3和条件4都不成立的时候,全部执行元件驱动节点300和执行元件400判断为正常,执行四轮全部的制动力控制(步骤S2070)。When the above-mentioned condition 3 and condition 4 are not satisfied, all actuator drive nodes 300 and actuators 400 are judged to be normal, and the braking force control of all four wheels is executed (step S2070 ).

对此,在条件3和条件中,在其任何一个成立的时候,执行元件驱动节点300或执行元件400判断为异常,为了避开制动器的单侧效应,参照后述的制动车轮选择表(2030),执行由选择的车轮给出的制动力控制(步骤S2060)。In this regard, in the condition 3 and the condition, when any one of them is established, the actuator drive node 300 or the actuator 400 is judged to be abnormal. In order to avoid the one-sided effect of the brake, refer to the brake wheel selection table ( 2030), execute the braking force control given by the selected wheel (step S2060).

如以上说明,操作量生成节点100基于条件1至条件4判定自己的异常、执行元件驱动节点300或执行元件400的异常,自己如果为正常,则使用正常的执行元件驱动节点300、避开制动器的单侧效应地执行制动控制,自己如果是异常,停止自己制动控制,移动到由执行元件驱动节点300实行的自律的制动控制。As explained above, the operation variable generation node 100 judges its own abnormality, the abnormality of the actuator driving node 300 or the actuator 400 based on the conditions 1 to 4, and if it is normal, it uses the normal actuator to drive the node 300 and avoids the brake. The brake control is executed in a unilateral effect, and if the self-control is abnormal, the self-brake control is stopped, and the self-regulatory brake control is performed by the actuator drive node 300 .

另外,上述的条件,由于根据车辆系统的形态及各个构成要素的形态而不同,所以也可以使用根据它们的条件。另外,从执行元件驱动节点300给出的应答短信息的未接收,不是直接地判断为异常,也可以在为二次以上未接收时判断为异常。In addition, since the above-mentioned conditions differ depending on the form of the vehicle system and the form of each component, conditions based on them may be used. In addition, the non-reception of the response short message given from the actuator drive node 300 is not directly judged as abnormal, but may be judged as abnormal when it is not received twice or more.

图51(a)、(b)表示制动车轮选择表。Fig. 51 (a), (b) shows a brake wheel selection table.

表(a)是,在四轮的制动中,在执行元件驱动节点300或执行元件400为异常的时候,由前二轮或后二轮的其中之一的制动器制动车辆地选择控制制动车轮的表。Table (a) is the selective control system for braking the vehicle by one of the brakes of the front two wheels or the rear two wheels when the actuator drive node 300 or the actuator 400 is abnormal during four-wheel braking. Wheel watch.

表(b)是,在四轮的制动中,在其它的执行元件驱动节点300或执行元件400为异常的时候,由处于对角线上的前一轮和后一轮的制动器制动车辆地选择制动车轮的表。Table (b) is, in four-wheel braking, when other actuators drive node 300 or actuator 400 is abnormal, the vehicle is braked by the brakes of the front and rear wheels on the diagonal Select the table for braked wheels.

另外,在这些表中虽没有表示,但其前提是,在由前二轮或后二轮、或者处于对角线上的前一轮和后一轮的其中之一的制动器不能制动车辆的时候,操作量生成节点100解放全执行元件400的制动运算操作量指令120,驾驶员通过油压制动车辆。In addition, although it is not shown in these tables, the premise is that the vehicle cannot be braked by the brakes of the front two wheels or the two rear wheels, or one of the front and rear wheels on the diagonal line. At this time, the operation amount generation node 100 releases the brake calculation operation amount instruction 120 of all actuators 400, and the driver brakes the vehicle through hydraulic pressure.

当然,即使在这样的情形,也可以通过剩下的正常的执行元件400执行车辆制动地运算操作量指令120。Of course, even in such a situation, the vehicle braking operation amount instruction 120 can be executed by the remaining normal actuator 400 .

另外,在没有油压的备份机构的时候,即使在由前二轮或后二轮、或者处于对角线上的前一轮和后一轮的其中之一的制动器不能制动车辆的时候,也需要通过剩下的正常的执行元件400执行车辆制动。通过在这些时候控制内燃机的旋转数降低车辆的速度,可抑制制动的单侧效应带来的影响是理想的。In addition, when there is no oil pressure backup mechanism, even when the vehicle cannot be braked by the brakes of the front two wheels or the rear two wheels, or one of the front and rear wheels on the diagonal line, Vehicle braking also needs to be performed via the remaining normal actuator 400 . It is desirable that the influence of the one-sided effect of braking can be suppressed by controlling the number of revolutions of the internal combustion engine to reduce the speed of the vehicle at these times.

图52是表示在制动的开始时期,左后轮的执行元件驱动节点300或执行元件400发生故障时的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。52 is a time chart showing the operations of the operation amount generating node 100 and the actuator driving node 300 when the actuator driving node 300 or the actuator 400 of the left rear wheel fails at the start of braking. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,操作量生成节点100是基于图51所示的制动车轮选择表(a)来选择执行制动力控制的车轮的节点。In addition, in this time chart, the operation amount generating node 100 is a node for selecting a wheel for performing braking force control based on the braking wheel selection table (a) shown in FIG. 51 .

首先,操作量生成节点100在检测到驾驶员的制动踏板的踏入后,对四轮的执行元件驱动节点300发送制动开始通知(2210)。First, when the operation amount generation node 100 detects that the driver has stepped on the brake pedal, it transmits a brake start notification to the four-wheel actuator drive node 300 (2210).

各执行元件驱动节点300在接收到制动开始通知后,使用故障检测功能210C执行自己的故障诊断和执行元件400的故障诊断(2220),将诊断结果通过应答短信息发送到操作量生成节点100(2230)。这时,左后轮的执行元件驱动节点300将检测故障通过应答短信息传递给操作量生成节点100。另外,各执行元件驱动节点300相互接收其它的诊断结果。Each actuator driving node 300 uses the fault detection function 210C to perform its own fault diagnosis and the fault diagnosis of the actuator 400 after receiving the notification of braking start (2220), and sends the diagnosis result to the operation variable generation node 100 through the response message (2230). At this time, the actuator drive node 300 of the left rear wheel transmits the detected fault to the operation variable generating node 100 through a response short message. In addition, the individual actuator drive nodes 300 mutually receive other diagnostic results.

操作量生成节点100,接收各执行元件驱动节点300的诊断结果,并检测左后轮的执行元件驱动节点300发生了故障,由前二轮执行制动控制选择车轮(2240)。The operation variable generation node 100 receives the diagnosis results of the actuator drive nodes 300, and detects that the actuator drive node 300 of the left rear wheel is faulty, and selects the wheel by performing braking control on the front two wheels (2240).

操作量生成节点100,运算对于前二轮的目标操作量(2250),在向前二轮的执行元件驱动节点300发送操作量指令值120的同时,对于后二轮的执行元件驱动节点300发送解放制动力的操作量指令值120(2260)。The operation amount generating node 100 calculates the target operation amount for the first two rounds (2250), and sends the operation amount instruction value 120 to the actuator driving nodes 300 of the second round while sending The operation amount command value of releasing the braking force is 120 (2260).

前二轮的执行元件驱动节点300,在接收到操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制。另外,右后轮的执行元件驱动节点300,在接收到操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制,但由于操作量指令值120是解放制动力的值,所以实际上不发生制动力。The actuator drive node 300 of the first two wheels updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the operation amount command value 120 . In addition, the actuator drive node 300 of the right rear wheel updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the operation amount command value 120. value, so no braking force actually occurs.

另外左后轮的执行元件驱动节点300,由于检测自己的故障的结果、选择控制程序(Z),所以不发生制动力(2270)。In addition, the actuator drive node 300 of the left rear wheel does not generate a braking force (2270) because the control program (Z) is selected as a result of detecting its own failure.

图53是表示在制动控制中左后轮的执行元件驱动节点300或执行元件400发生故障时的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。53 is a time chart showing the operations of the operation amount generation node 100 and the actuator drive node 300 when the actuator drive node 300 or the actuator 400 of the left rear wheel fails during braking control. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,操作量生成节点100是基于图51所示的制动车轮选择表(a)选择执行制动力控制的车轮的节点。In addition, in this time chart, the operation amount generating node 100 is a node for selecting a wheel for performing braking force control based on the braking wheel selection table (a) shown in FIG. 51 .

首先,操作量生成节点100,接收从各执行元件驱动节点300给出的应答短信息,从包含在应答短信息中的各执行元件驱动节点300的故障诊断结果,检测左后轮的执行元件驱动节点300发生了故障(2310),由前二轮执行制动控制地选择车轮(2320)。Firstly, the operation amount generation node 100 receives the response message from each actuator drive node 300, and detects the actuator drive of the left rear wheel from the fault diagnosis results of each actuator drive node 300 included in the response message. Node 300 fails (2310), and the front two wheels perform braking control to select the wheel (2320).

接着,操作量生成节点100,运算对于应该制动控制的车轮的目标操作量(2330),在向前二轮的执行元件驱动节点300发送操作量指令值120的同时,对于后二轮的执行元件驱动节点300发送解放制动力的操作量指令值120(2240)。Next, the operation amount generation node 100 calculates the target operation amount for the wheel to be braked and controlled (2330), and while sending the operation amount command value 120 to the actuator driving node 300 of the front two wheels, the execution of the two rear wheels The element driving node 300 transmits an operation amount command value 120 for releasing the braking force (2240).

前二轮的执行元件驱动节点300,在接收到操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制。另外,右后轮的执行元件驱动节点300,在接收到操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制,但由于操作量指令值120是解放制动力的值,所以实际上不发生制动力。The actuator drive node 300 of the first two wheels updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the operation amount command value 120 . In addition, the actuator drive node 300 of the right rear wheel updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the operation amount command value 120. value, so no braking force actually occurs.

另外,左后轮的执行元件驱动节点300,检测自己的故障的结果,由于选择控制程序(Z)不发生制动力(2270)。In addition, the actuator of the left rear wheel drives the node 300, and as a result of detecting its own failure, no braking force occurs due to the selection control program (Z) (2270).

以上,如使用图52和图53说明的那样,即使在任意的执行元件驱动节点300或执行元件400发生故障的时候,操作量生成节点100使用正常的前二轮或后二轮的执行元件驱动节点300制动车辆,为此生成操作量指令值120,所以能够避开制动的单侧效应。As described above with reference to FIG. 52 and FIG. 53 , even when any actuator driving node 300 or actuator 400 fails, the operation amount generation node 100 uses the normal first two rounds or the last two rounds of actuators to drive. The node 300 brakes the vehicle and generates the operation amount command value 120 for this purpose, so that the one-sided effect of braking can be avoided.

图54是表示在制动控制中一时发生故障的左后轮的执行元件驱动节点300或执行元件400恢复时的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。54 is a time chart showing operations of the operation amount generation node 100 and the actuator drive node 300 when the actuator drive node 300 or the actuator 400 of the left rear wheel that failed temporarily during braking control is recovered. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,操作量生成节点100是基于图51所示的制动车轮选择表(a)来选择执行制动力控制的车轮的节点。In addition, in this time chart, the operation amount generating node 100 is a node for selecting a wheel for performing braking force control based on the braking wheel selection table (a) shown in FIG. 51 .

操作量生成节点100,由于左后轮的执行元件驱动节点300发生故障,所以由前二轮执行制动控制选择车轮,在对前二轮的执行元件驱动节点300发送操作量指令值120的同时,对于后二轮的执行元件驱动节点300发送解放制动力的操作量指令值120(2410)。The operation variable generating node 100, since the actuator drive node 300 of the left rear wheel fails, the brake control of the first two wheels is performed to select the wheel, and at the same time, the operation amount command value 120 is sent to the actuator drive node 300 of the first two wheels , transmits the operation amount command value 120 for releasing the braking force to the actuator drive node 300 of the rear two wheels (2410).

各执行元件驱动节点300,使用故障检测功能210C执行自己的故障诊断和执行元件400的故障诊断,将诊断结果通过应答短信息发送到操作量生成节点100(2420)。这时,左后轮的执行元件驱动节点300,在故障恢复时,将控制程序从(Z)切换成(X),基于解放制动力的操作量指令值120,在将制动力维持在解放状态的同时,将故障已恢复通过应答短信息通知操作量生成节点100。另外,各执行元件驱动节点300相互接收其它的诊断结果。Each actuator driver node 300 uses the fault detection function 210C to perform its own fault diagnosis and the fault diagnosis of the actuator 400, and sends the diagnosis result to the operation variable generation node 100 through a response message (2420). At this time, the actuator drive node 300 of the left rear wheel switches the control program from (Z) to (X) when the failure is restored, and maintains the braking force in the released state based on the operation amount command value 120 for releasing the braking force. At the same time, the fault has been recovered and the operand generation node 100 is notified by replying a short message. In addition, the individual actuator drive nodes 300 mutually receive other diagnostic results.

操作量生成节点100接收各执行元件驱动节点300的诊断结果,检测左后轮的执行元件驱动节点300的故障已恢复,由四轮执行制动控制、选择车轮(2430)。The operation amount generation node 100 receives the diagnosis result of each actuator drive node 300, detects that the failure of the actuator drive node 300 of the left rear wheel has been recovered, performs brake control and selects the wheel by four wheels (2430).

操作量生成节点100,运算对于四轮的目标操作量(2440),向四轮的执行元件驱动节点300发送操作量指令值120(2450)。The operation amount generation node 100 calculates the target operation amount for the four wheels (2440), and sends the operation amount command value 120 to the actuator drive node 300 for the four wheels (2450).

前二轮的执行元件驱动节点300,在接收到操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制。另外,右后轮的执行元件驱动节点300也在接收到新的操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制。进而,左后轮的执行元件驱动节点300也接收到新的操作量指令值120后,更新制动力控制的目标值并执行执行元件400的制动力控制。The actuator drive node 300 of the first two wheels updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the operation amount command value 120 . In addition, the actuator drive node 300 of the right rear wheel also updates the target value of the braking force control and executes the braking force control of the actuator 400 after receiving the new operation amount command value 120 . Furthermore, after the actuator driving node 300 of the left rear wheel also receives the new operation amount command value 120 , it updates the target value of the braking force control and executes the braking force control of the actuator 400 .

以上,如使用图54说明的那样,即使在一时发生故障的执行元件驱动节点300或执行元件400已恢复的时候,由于操作量生成节点100根据执行元件驱动节点300或执行元件400的正常/异常而生成操作量指令值120,所以不发生制动的单侧效应就能够恢复到正常的控制状态。As described above using FIG. 54 , even when the actuator driving node 300 or the actuator 400 that failed temporarily has recovered, the operation amount generation node 100 depends on whether the actuator driving node 300 or the actuator 400 is normal or abnormal. Since the operation amount command value 120 is generated, the normal control state can be restored without causing a one-sided effect of braking.

图55是表示在制动控制中操作量生成节点100发生故障时的执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。FIG. 55 is a timing chart showing the operation of the actuator driving node 300 when the operation amount generating node 100 fails during braking control. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,执行元件驱动节点300是基于图47所示的控制程序选择表(a)来选择控制程序的节点。In addition, in this time chart, the actuator drive node 300 is a node for selecting a control program based on the control program selection table (a) shown in FIG. 47 .

操作量生成节点100,在通过故障检测功能210B检测到故障时,停止操作量指令值120的发送,发送故障检测通知230(2510)。When the operation amount generation node 100 detects a failure by the failure detection function 210B, the transmission of the operation amount command value 120 is stopped, and the failure detection notification 230 is transmitted (2510).

各执行元件驱动节点300,在接收到故障检测通知230时,发送应答短信息,相互确认故障检测通知230的接收,判断操作量生成节点100为异常(2520)。Each actuator drive node 300, when receiving the failure detection notification 230, sends a response short message to mutually confirm the receipt of the failure detection notification 230, and judges that the operation amount generation node 100 is abnormal (2520).

各执行元件驱动节点300,在判断操作量生成节点100为异常时,将控制程序(X)切换成控制程序(Y),基于驾驶员要求信号200来执行制动力控制。Each actuator drive node 300 switches the control program (X) to the control program (Y) when it is judged that the operation amount generating node 100 is abnormal, and executes braking force control based on the driver request signal 200 .

以上,如使用图55说明的那样,即使在操作量生成节点100发生故障的时候,各执行元件驱动节点300相互确认操作量生成节点100的故障发生,以整体切换控制程序、使用驾驶员要求信号200来制动车辆,所以能够维持车辆的制动控制。As described above using FIG. 55, even when the operation amount generation node 100 fails, each actuator drive node 300 mutually confirms that the operation amount generation node 100 has failed, switches the control program as a whole, and uses the driver's request signal. 200 to brake the vehicle, so the braking control of the vehicle can be maintained.

图56是表示在制动控制中一时发生故障的操作量生成节点100恢复时的操作量生成节点100和执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。FIG. 56 is a time chart showing operations of the manipulated variable generating node 100 and the actuator driving node 300 when the manipulated variable generating node 100 which failed temporarily during braking control is recovered. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,执行元件驱动节点300,是基于图47所示的控制程序选择表(a)来选择控制程序的节点。In this time chart, the actuator drive node 300 is a node for selecting a control program based on the control program selection table (a) shown in FIG. 47 .

执行元件驱动节点300,由于操作量生成节点100发生故障,所以使用控制程序(Y),并基于驾驶员要求信号200来执行制动力控制。The actuator drive node 300 performs braking force control based on the driver request signal 200 using the control program (Y) since the operation variable generating node 100 fails.

操作量生成节点100,在故障恢复时,接收从各执行元件驱动节点300给出的应答短信(2610),参照包含在应答短信中的各执行元件驱动节点300的故障诊断结果来确认各执行元件驱动节点300和执行元件400有无异常和异常处,并选择应该制动控制的各执行元件驱动节点300(2620)。The operation amount generation node 100, when recovering from the fault, receives the response message (2610) given by each actuator drive node 300, and confirms the fault diagnosis result of each actuator drive node 300 included in the response message to confirm Whether or not there is abnormality and abnormality in the driving node 300 and the actuator 400 is selected, and each actuator to be controlled by braking is selected to drive the node 300 (2620).

接着,操作量生成节点100,运算对于应该制动控制的车轮的目标操作量(2630),对作为对象的执行元件驱动节点300发送操作量指令值120(2640)。另外,操作量生成节点100,也可以为了将故障已恢复通知执行元件驱动节点300,一起发送故障恢复通知。Next, the operation amount generation node 100 calculates the target operation amount for the wheel to be braked (2630), and sends the operation amount command value 120 to the target actuator drive node 300 (2640). In addition, the operation amount generation node 100 may also transmit a failure recovery notification in order to notify the actuator drive node 300 that the failure has been recovered.

各执行元件驱动节点300,在接收到操作量指令值120后,发送应答信息相互确认操作量指令值120的接收,判断操作量生成节点100为正常(2650)。这时,也可以以故障恢复通知的接收来判断是否操作量生成节点100为正常。Each actuator driving node 300, after receiving the operation amount command value 120, sends response information to mutually confirm the receipt of the operation amount instruction value 120, and judges that the operation amount generation node 100 is normal (2650). At this time, whether or not the operation amount generating node 100 is normal may be judged by receiving the failure recovery notification.

各执行元件驱动节点300,在判断操作量生成节点100为正常时,将控制程序(Y)切换成控制程序(X),并基于操作量指令值120来执行制动力控制。Each actuator drive node 300 switches the control program (Y) to the control program (X) when it judges that the operation amount generating node 100 is normal, and executes braking force control based on the operation amount command value 120 .

以上,如使用图56说明的那样,即使在一时发生故障的操作量生成节点100已恢复的时候,由于各执行元件驱动节点300根据操作量生成节点100的正常/异常来切换控制程序,所以不发生制动的单侧效应能够恢复到正常的控制状态。As described above using FIG. 56 , even when the temporarily failed operation amount generation node 100 is restored, each actuator drive node 300 switches the control program according to whether the operation amount generation node 100 is normal or abnormal. A one-sided effect of braking occurs to restore normal control.

图57是表示,在制动控制中操作量生成节点100和左后轮的执行元件驱动节点300或执行元件400发生故障时的执行元件驱动节点300的动作的时间图。横轴表示从左向右时间的经过。57 is a time chart showing the operation of the actuator driving node 300 when the operation amount generating node 100 and the actuator driving node 300 or the actuator 400 of the left rear wheel fail during braking control. The horizontal axis represents the passage of time from left to right.

另外,在本时间图中,执行元件驱动节点300是基于图47所示的控制程序选择表(a)来选择控制程序的节点。In addition, in this time chart, the actuator drive node 300 is a node for selecting a control program based on the control program selection table (a) shown in FIG. 47 .

操作量生成节点100,当通过故障检测功能210B检测出故障时,停止操作量指令值120的发送,发送故障检测通知230(2510)。另外,左后轮的执行元件驱动节点300,在通过故障检测功能210B检测出故障时,将控制程序(X)切换成控制程序(Z)。When the operation amount generation node 100 detects a failure by the failure detection function 210B, the transmission of the operation amount command value 120 is stopped, and the failure detection notification 230 is transmitted (2510). In addition, the actuator drive node 300 of the left rear wheel switches the control program (X) to the control program (Z) when a failure is detected by the failure detection function 210B.

各执行元件驱动节点300,在接收到故障检测通知230时,发送应答短信息并相互确认故障检测通知230的接收。这时,发生故障的左后轮的执行元件驱动节点300使用应答短信息将检测到故障通知其它的执行元件驱动节点300(2720)。Each actuator drive node 300, when receiving the fault detection notification 230, sends a response short message and mutually confirms the receipt of the fault detection notification 230. At this time, the actuator drive node 300 of the failed left rear wheel notifies other actuator drive nodes 300 of the detected fault by using the reply short message (2720).

由此,其它的执行元件驱动节点300,判断操作量生成节点100和左后轮的执行元件驱动节点300为异常,并基于控制程序选择表(a)来选择控制程序。Accordingly, other actuator drive nodes 300 judge that the operation amount generating node 100 and the left rear wheel actuator drive node 300 are abnormal, and select a control program based on the control program selection table (a).

左右前轮的执行元件驱动节点300,将控制程序(X)切换成控制程序(Y),基于驾驶员要求信号200来执行制动力控制。另外,右后轮的执行元件驱动节点300,将控制程序(X)切换成控制程序(Z)并解放制动力。The actuators of the left and right front wheels drive the node 300 , switch the control program (X) to the control program (Y), and execute braking force control based on the driver request signal 200 . In addition, the actuator of the right rear wheel drives the node 300, switches the control program (X) to the control program (Z), and releases the braking force.

以上,如使用图57说明的那样,即使在操作量生成节点100和执行元件驱动节点300发生故障的时候,各执行元件驱动节点300相互确认操作量生成节点100和执行元件驱动节点300的故障发生,由于根据发生故障的各执行元件驱动节点300的地方切换控制程序、适当地执行使用驾驶员要求信号200的制动力控制或制动力的解放,所以在避开制动的单侧效应的同时能够维持车辆的制动控制。As described above using FIG. 57 , even when the operation amount generating node 100 and the actuator driving node 300 fail, each actuator driving node 300 mutually confirms that the operation amount generating node 100 and the actuator driving node 300 have failed. Since the control program is switched according to where the faulty actuators drive the node 300, and the braking force control or braking force release using the driver request signal 200 is appropriately performed, it is possible to avoid the one-sided effect of braking. Maintain brake control of the vehicle.

在以上说明中,以制动为例说明了操作量生成节点100和执行元件驱动节点300的动作,但本发明也同样能够适用于转向。In the above description, the operation of the operation variable generating node 100 and the actuator driving node 300 is described by taking braking as an example, but the present invention is also applicable to steering.

在舵角控制用的执行元件驱动节点300或执行元件400发生故障时,舵角控制用的执行元件驱动节点300将故障检测通知发送到操作量生成节点100和其它的执行元件驱动节点300。When the steering angle control actuator drive node 300 or the actuator 400 fails, the steering angle control actuator drive node 300 sends a failure detection notification to the operation variable generation node 100 and other actuator drive nodes 300 .

并且,操作量生成节点100在接收到从舵角控制用的执行元件驱动节点300给出的故障检测通知时,如果舵角控制用的执行元件驱动节点300和执行元件400多重化,则对正常的舵角控制用的执行元件驱动节点300发送操作量指令值120,能够继续操舵控制。或者以通过制动的右车轮和左车轮的制动力差产生车辆的旋转运动的方式,对舵角控制用的执行元件驱动节点300发送操作量指令值120也能够继续操舵控制。And, when the operation amount generation node 100 receives the failure detection notification given from the actuator drive node 300 for steering angle control, if the actuator drive node 300 for steering angle control and the actuator 400 are multiplexed, the normal The actuator drive node 300 for steering angle control sends the operation amount command value 120, and the steering control can be continued. Alternatively, the steering control can be continued by sending the operation amount command value 120 to the actuator drive node 300 for steering angle control so that the rotational motion of the vehicle is generated by the braking force difference between the braked right wheel and the left wheel.

另外,在发生操作量生成节点100的故障的时候,操作量生成节点100将故障检测通知发送到各执行元件驱动节点300。并且,舵角控制用的执行元件驱动节点300取入传感器500的驾驶员要求信号200而能够继续进行操舵控制。In addition, when a failure of the operation amount generation node 100 occurs, the operation amount generation node 100 transmits a failure detection notification to each actuator drive node 300 . And the actuator drive node 300 for steering angle control takes in the driver request signal 200 of the sensor 500, and can continue steering control.

另外,在舵角控制用的执行元件驱动节点300或执行元件400发生故障时,由于制动控制用的执行元件驱动节点300接收到从舵角控制用的执行元件驱动节点300给出的故障检测通知或者没接收应答短信息,则检测舵角控制用的执行元件驱动节点300的故障,以传感器500的驾驶员要求信号200为基础,通过制动的右车轮和左车轮的制动力差产生车辆的旋转运动,通过应答短信息相互参照各个操作量,同时也能够继续操舵控制。In addition, when the actuator drive node 300 for steering angle control or the actuator 400 fails, because the actuator drive node 300 for brake control receives the failure detection given from the actuator drive node 300 for steering angle control Notify or do not receive the reply short message, then detect the failure of the actuator drive node 300 used for rudder angle control, based on the driver's request signal 200 of the sensor 500, the braking force difference between the right wheel and the left wheel of the brake produces a vehicle The rotary motion of the steering wheel can be cross-referenced to each operation value by answering the short message, and the steering control can also be continued at the same time.

在以上说明中,对具有操作量生成节点100和执行元件驱动节点300的车辆控制装置进行了叙述,但本发明如在图58中所示,不使用操作量生成节点100,对用各执行元件驱动节点300控制车辆的车辆控制装置也有效。In the above description, the vehicle control device having the operation amount generation node 100 and the actuator drive node 300 has been described, but the present invention does not use the operation amount generation node 100 as shown in FIG. A vehicle control device that drives the node 300 to control the vehicle is also effective.

本实施例的车辆控制装置中的执行元件驱动节点300,选择控制程序(Y)或控制程序(Z)的其中之一来控制执行元件400,但该控制程序的选择,在车辆控制装置的上述的实施例中,与操作量生成节点100发生故障的情形相同。The actuator drive node 300 in the vehicle control device of this embodiment selects one of the control program (Y) or the control program (Z) to control the actuator 400, but the selection of the control program depends on the above-mentioned In the embodiment, it is the same as the case where the operation amount generating node 100 fails.

由此,通过独立动作的执行元件驱动节点300边相互协调、同时控制执行元件400,即使在没有操作量生成节点100的时候,也能够实现安全的车辆控制装置。As a result, the independently operating actuator driving nodes 300 control the actuators 400 while coordinating with each other, so that a safe vehicle control device can be realized even when there is no operation amount generating node 100 .

(实施例9)(Example 9)

下面,使用图59~图61,对本发明的车辆控制装置的实施例9进行说明。Next, Embodiment 9 of the vehicle control device of the present invention will be described using FIGS. 59 to 61 .

图58表示实施例9中的车辆控制装置的基本构成。车辆控制装置,由检测驾驶员的要求的传感器500、执行元件400、操作量生成节点100、和执行元件驱动节点300构成。Fig. 58 shows the basic configuration of the vehicle control device in the ninth embodiment. The vehicle control device is composed of a sensor 500 for detecting a driver's request, an actuator 400 , an operation amount generating node 100 , and an actuator driving node 300 .

其中,检测驾驶员的要求的传感器500、操作量生成节点100、和执行元件驱动节点300,分别具有故障检测功能210A、210B、210C。执行元件驱动节点300的故障检测功能210C不仅是自己诊断功能,也具有检测执行元件400的故障的功能。Among them, the sensor 500 for detecting the driver's request, the operation amount generating node 100, and the actuator driving node 300 have failure detection functions 210A, 210B, and 210C, respectively. The failure detection function 210C of the actuator drive node 300 is not only a self-diagnosis function, but also has a function of detecting failure of the actuator 400 .

操作量生成节点100,基于驾驶员的要求信号200和车辆状态信号201来运算操作量指令值120。接收该操作量指令值120,执行元件驱动节点300控制执行元件400,执行车辆的驱动、操舵、、制动等。The operation amount generation node 100 calculates an operation amount command value 120 based on a driver's request signal 200 and a vehicle state signal 201 . Receiving the operation amount command value 120, the actuator drive node 300 controls the actuator 400 to execute driving, steering, braking, etc. of the vehicle.

故障检测功能210A、210B、210C在检测了节点内或执行元件400的故障时,向节点外部输出通知自己为故障状态的故障检测通知230。当具有故障检测功能的节点全部是故障状态时,除去输出该故障检测通知230以外,停止向外部的输出。即构成为故障无反应。When the fault detection functions 210A, 210B, and 210C detect a fault in the node or in the actuator 400 , they output a fault detection notification 230 notifying that they are in a fault state to the outside of the node. When all nodes having a failure detection function are in a failure state, the output to the outside is stopped except for outputting the failure detection notification 230 . That is to say, there is no response to failure.

另外,各节点具有数据接收表9100。在这里省略说明,但同样也具有数据发送表。装入到发送表的数据,以在系统中预先决定的周期输出到其它节点。另外,相反从其它的节点接收的数据暂时被储存到数据接收表中,根据节点的控制周期读出而被利用。In addition, each node has a data reception table 9100 . The description is omitted here, but a data transmission table is also provided similarly. The data loaded in the transmission table is output to other nodes at a cycle predetermined in the system. On the other hand, data received from other nodes is temporarily stored in the data reception table, read out and used according to the control cycle of the node.

各节点的连接除去图59所示的信号线的连接以外,也可以取以时间分割使用共同的通信路的总线构成或网络构成。在此实施例中,能够由多个节点接收从一个节点输出的数据。各故障检测功能210A、210B、210C根据该数据接收表的内容,推定其它节点的状态,另外,也有将此推定结果报告到多个节点的功能。The connection of each node may be a bus configuration or a network configuration using a common communication path by time division, other than the connection of signal lines shown in FIG. 59 . In this embodiment, data output from one node can be received by a plurality of nodes. Each failure detection function 210A, 210B, 210C estimates the status of other nodes based on the contents of the data reception table, and also has a function of reporting the estimation result to a plurality of nodes.

图60是记载数据接收表9100的具体例的图。具有区别发送出处、进一步区别发送事项的短信息号码信息组9101。这也可以是实际的信息组,也可以是在短信息中预先分配的特定的地址,也可以没有实态的信息组。FIG. 60 is a diagram describing a specific example of the data reception table 9100 . There is a short message number field 9101 for distinguishing the sending source and further distinguishing the sending items. This may also be an actual information group, or a specific address pre-allocated in the short message, or there may be no actual information group.

在数据接收表9100的其它的信息组中,具有表示该短信息的有效性的有效信息组9102、记录该短信息发出时刻的时刻信息组9103、短信息数据信息组9104、故障投票信息组9105。Among the other information groups in the data receiving table 9100, there are effective information group 9102 indicating the validity of the short message, time information group 9103 recording the sending time of the short message, short message data information group 9104, fault voting information group 9105 .

在从各节点输出的短信息中包含这些信息,以在接收节点预先决定的信息组区分来储存到表中。These messages are included in the short message output from each node, and are stored in a table in a predetermined message group division at the receiving node.

另外,由于在该节点对于不需要的短信息就不需要储存,所以如在图60中的短信息号码(No.2),从开始能够使有效信息组为无效(0)。另外,在控制时不需要,但单纯地仅为了信号监视也能够为有效。当然,在有从各节点给出的故障检测通知230的时候被反映到数据信息组中,能够进行是否有效的判定。In addition, since there is no need to store unnecessary short messages at this node, the effective information group can be made invalid (0) from the beginning as the short message number (No. 2) in FIG. 60 . In addition, although it is not necessary at the time of control, it can be effective only for signal monitoring. Of course, when there is a failure detection notification 230 from each node, it is reflected in the data field, and it is possible to determine whether it is valid or not.

使用图61说明其他节点的故障诊断方法。在这里,表示操作量生成节点发生故障的情形,但有关其以外的节点也同样。A fault diagnosis method for other nodes will be described using FIG. 61 . Here, a case where the operation amount generating node fails is shown, but the same applies to other nodes.

首先,取出对应操作量生成节点的短信息号码信息组(步骤S2110)。在该信息组为地址的实施例的情形时,通过对该地址访问可达到目的。First, take out the short message number information group corresponding to the operation amount generation node (step S2110). In the case of an embodiment where the information set is an address, the purpose can be achieved by accessing the address.

接着,参照数据接收表9100的有效信息组9102,如果有效并且更新时刻信息组9103,则使用从操作量生成节点给出的数据9104进行控制。在这里,以是否更新,例如,自节点具有的时刻信息(now)和各短信息的时刻信息组(time)9103的差是否是预先确定的一定值(limit)以内来判定(步骤S2120)。Next, referring to the validity information group 9102 of the data reception table 9100, if it is valid and the time information group 9103 is updated, control is performed using the data 9104 given from the operation amount generation node. Here, it is determined whether to update, for example, whether the difference between the time information (now) owned by the node and the time information group (time) 9103 of each short message is within a predetermined value (limit) (step S2120).

返回到图60说明时,包含在节点5的短信息中的时刻,比其它的节点落后,为差分50以上。判断为以此为基础没有动作。在通过这些方法判定为不是有效的时候,表示操作量生成节点没正常地动作,使用从其以外的节点发送的信息进行控制(步骤S2140)。对此,在判定为有效的时候,使用从操作量生成节点发送的信息进行控制(步骤S2130)。Returning to the description of FIG. 60, the time included in the short message of node 5 lags behind other nodes by a difference of 50 or more. It is judged that there is no action based on this. When it is determined by these methods that it is not valid, it indicates that the operation amount generation node is not operating normally, and control is performed using information transmitted from other nodes (step S2140). On the other hand, when it is determined that it is valid, control is performed using information transmitted from the operation amount generation node (step S2130).

其后,为了将判定结果通知其它节点而进行故障投票输出(步骤S2150)。这是作为故障投票信息组储存的。数据接收表9100的故障投票信息组9105,以2进位数表现,从左按顺序对应短信息号码。在图60的例中除去节点5的有效的节点,全部判定为节点5发生了故障(vote=1)。Thereafter, failure vote output is performed to notify other nodes of the judgment result (step S2150). This is stored as a failure voting field. The failure voting information group 9105 of the data reception table 9100 is expressed in binary numbers, and corresponds to the short message numbers in order from the left. In the example in FIG. 60 , all valid nodes except node 5 are judged to be faulty at node 5 (vote=1).

虽然仅节点5自身给出正常(vote=0)的输出,但被确定的算法,例如,由多数逻辑判定节点5认定为无效,使有效信息组无效化(步骤S2160、步骤S2170)。Although only the node 5 itself gives a normal (vote=0) output, the determined algorithm, for example, determines that the node 5 is invalid by majority logic, and invalidates the valid information group (step S2160, step S2170).

在没有动作的节点复活的时候,例如,通过不理想状的解除、自动复位等来实现,其它情形也通过基于其它节点的观察结果的投票决定复活。When a non-active node is revived, for example, it is realized by canceling the undesired state, automatic reset, etc. In other cases, the revival is determined by voting based on the observation results of other nodes.

由此,施加控制的全节点同时能够接受节点5,按各系统的部分能够避开控制方法不同的状况的发生。As a result, all the nodes applying control can receive the node 5 at the same time, and it is possible to avoid a situation in which the control method is different for each system part.

另外,复活的情形的投票算法,也可以选择与故障认定的算法不同的方法,例如,全节点一致也能够认定复活。另外,进行故障投票,为了在系统中共有状态,即使是执行元件节点也进行输出处理。In addition, the voting algorithm in the case of resurrection can also choose a method different from the algorithm for failure identification. For example, the resurrection can be identified even if all nodes agree. In addition, fault voting is performed, and output processing is performed even for actuator nodes in order to share the state in the system.

以上,该实施例不是限定于上述的例子,能够以各种形态实施。例如,生成控制指令的指令控制器,不一定需要集中在一个上,也可以由多个指令控制器构成。As mentioned above, this Example is not limited to the above-mentioned example, It can implement in various forms. For example, the command controllers that generate control commands do not necessarily need to be concentrated on one, and may be composed of a plurality of command controllers.

如图62所示,也可以是下述的构成,取入方向盘角度传感器3000-2的信息将方向盘角度信息D3000输出到网络上的传感器控制器3000-1,和取入制动踏板位置传感器3001-2的信息将制动踏板踏入量的D3001输出到网络的传感器控制器3001-1,和使舵角控制电动马达3002-2动作的执行元件控制器3002-1,和使电动制动钳动作的执行元件控制器3003-1,和综合控制器A(3010-1),和综合控制器B(3010-2),由车内网络N3000连接。As shown in FIG. 62 , it is also possible to adopt a configuration in which the information of the steering wheel angle sensor 3000-2 is taken in, the steering wheel angle information D3000 is output to the sensor controller 3000-1 on the network, and the information of the brake pedal position sensor 3001 is taken in. The information of -2 outputs the D3001 of the brake pedal depression amount to the sensor controller 3001-1 of the network, and the actuator controller 3002-1 that makes the rudder angle control electric motor 3002-2 act, and makes the electric brake caliper The operating actuator controller 3003-1, the integrated controller A (3010-1), and the integrated controller B (3010-2) are connected by an in-vehicle network N3000.

通过采取这样的构成,通过物理地离开计算目标制动力D3010-2的指令控制器3010-2,和计算目标舵角D3010-1的指令控制器3010-1的配置,综合控制功能完全可以降低失去的确立。By adopting such a configuration, the comprehensive control function can completely reduce the loss of the command controller 3010-2 by physically leaving the configuration of the command controller 3010-2 for calculating the target braking force D3010-2 and the command controller 3010-1 for calculating the target rudder angle D3010-1. established.

本发明的车辆控制装置可得到如下的效果。The vehicle control device of the present invention can obtain the following effects.

(1)即使在不能使用车辆运动综合控制装置的时候,也可以进行驾驶员的操纵装置和车辆控制装置的通信,具有按照驱动意图能够执行车辆控制的效果。(1) Even when the vehicle motion integrated control device cannot be used, communication between the driver's operating device and the vehicle control device can be performed, and there is an effect that vehicle control can be performed according to the driving intention.

(2)在车辆控制装置中,在于不论哪个节点发生故障的时候,正常的节点基于发生故障的节点发送的故障通知,通过切换控制,可在系统全体能够防备错误,所以对各个节点的冗长度不提高到所需要以上,则能够以低成本实现非常高可靠性的车辆控制装置。(2) In the vehicle control device, when any node fails, the normal node can prevent errors in the entire system through switching control based on the failure notification sent by the failed node, so the redundancy of each node It is possible to realize a very high reliability vehicle control device at low cost without increasing it more than necessary.

(3)通过对由驾驶员实行的操作量由生成的节点所生成的修正量进行修正,作为结果能够为适当的转向操作、制动操作,能够达到车辆的稳定化。(3) By correcting the operation amount performed by the driver with the correction amount generated by the generated node, appropriate steering operation and braking operation can be obtained as a result, and the stabilization of the vehicle can be achieved.

(4)在修正量生成节点发生故障的时候,使功能退缩不用修正量能够进行按驾驶员操作的动作。(4) When a failure occurs in the correction amount generating node, the function can be deactivated without the correction amount and the operation can be performed according to the driver's operation.

(5)对于为了修正量生成需要高度的信息处理,操作量的生成以能够比较简单的信息处理即可完成。因此,修正量生成节点,要求与操作量生成节点10比较,部件个数增加,操作频率增高要求电、热富裕量少的动作。其结果,修正量生成节点20与操作量生成节点比较故障率变高。从而,避开由故障率更高的修正量生成节点的故障带来的影响,本发明的效果特别大。(5) The operation amount can be generated by relatively simple information processing, which requires advanced information processing for correction amount generation. Therefore, the correction amount generation node requires an operation with a smaller electric and thermal margin than the operation amount generation node 10 because the number of parts increases and the operation frequency increases. As a result, the failure rate of the correction amount generation node 20 becomes higher than that of the operation amount generation node. Therefore, the effect of the present invention is particularly large in avoiding the influence of a failure of a correction amount generating node having a higher failure rate.

(6)即使在操作量生成节点发生故障的时候,由于执行元件驱动节点检测操作量生成节点的异常、切换控制程序继续车辆控制,所以不需要操作量生成节点的多重化,能够实现安全且低成本的车辆控制装置。(6) Even when the operation amount generation node fails, since the actuator drive node detects the abnormality of the operation amount generation node and switches the control program to continue the vehicle control, there is no need for multiple operation amount generation nodes, and a safe and low-cost cost of vehicle controls.

(7)由于在执行元件驱动节点间相互检测异常、并切换到适当的控制程序,所以例如能够避开制动的单侧效应等危险的车辆运动,即使在操作量生成节点发生故障的状态下也能够维持安全的车辆控制。(7) Since mutual abnormality is detected between the actuator drive nodes and an appropriate control program is switched, for example, dangerous vehicle motions such as one-sided effects of braking can be avoided even in the state where the operation amount generation node fails Safe vehicle control can also be maintained.

Claims (10)

1. controller of vehicle is characterized in that:
Connect sensor controller, instruction control unit and executive component controller by network, wherein:
The sensor controller is taken into quantity of state, the driver's of expression vehicle the sensor signal of operational ton;
Above-mentioned instruction control unit, the sensor signal according to the sensor controller is taken into generates control target;
Above-mentioned executive component controller receives control target and makes for motor vehicle executive component action of control from above-mentioned instruction control unit;
Above-mentioned executive component controller, has the controlled target generating apparatus, this controlled target generating apparatus, when the control target generation that above-mentioned instruction control unit generates is unusual, sensor values according to the sensor controller on the network of this executive component controller reception generates control target; And above-mentioned executive component controller comes control actuating component by the control target that is generated by above-mentioned controlled target value generation device.
2. according to the described controller of vehicle of claim 1, it is characterized in that: the sensor controller is a deceleration indication unit, quicken indicating device and rudder angle indicating device; Above-mentioned executive component controller is gradual braking device, driving-force control apparatus and rudder angle control device; Above-mentioned instruction control unit is the vehicle movement composite control apparatus of the motion state of control vehicle;
When above-mentioned instruction control unit generation is unusual, above-mentioned gradual braking device comes control brake power according to the operational ton of above-mentioned deceleration indication unit, above-mentioned driving-force control apparatus, operational ton according to above-mentioned acceleration indicating device comes controlling and driving power, above-mentioned rudder angle control device is controlled rudder angle according to the operational ton of above-mentioned rudder angle indicating device.
3. according to claim 1 or 2 described controller of vehicle, it is characterized in that: above-mentioned instruction control unit, constitute by the vehicle movement composite control apparatus, this vehicle movement composite control apparatus has:
Infer state of motion of vehicle the vehicle-state estimating device and
The dbjective state arithmetic unit of the target state that the computing vehicle should obtain and
The motion state of presumptive vehicle and target state carry out computing to the operating physical force that takes place and moment in vehicle operating physical force and Calculating Torque during Rotary device and
According to aforesaid operations power and moment, carry out operational ton arithmetic unit for the computing of the control target of above-mentioned gradual braking device, above-mentioned driving-force control apparatus and above-mentioned rudder angle control device.
4. according to the described controller of vehicle of claim 3, it is characterized in that: the motion state of vehicle and target state are the quantity of states in the rigid motion of vehicle.
5. according to the described controller of vehicle of claim 3, it is characterized in that: above-mentioned vehicle-state estimating device, infer that management is fixed on motion state in the local coordinate system on the vehicle, is fixed on motion state in the coordinate system in specific place, vehicle ' around environment and the malfunction of the control device that has of vehicle.
6. according to the described controller of vehicle of claim 3, it is characterized in that: above-mentioned dbjective state arithmetic unit, according to above-mentioned deceleration indication unit, the operational ton of above-mentioned acceleration indicating device and above-mentioned rudder angle indicating device and above-mentioned state of motion of vehicle, calculate driver's manipulation intention, mechanical constant according to vehicle, the malfunction of the control device that the specification of the control device that vehicle has and vehicle have, calculate the extreme sport state that vehicle can obtain, according to above-mentioned state of motion of vehicle, above-mentioned driver's manipulation intention and above-mentioned extreme sport state calculate target state.
7. according to the described controller of vehicle of claim 3, it is characterized in that: aforesaid operations power and moment arithmetic unit, calculate operating physical force and moment in the local coordinate system that is fixed on the vehicle.
8. according to the described controller of vehicle of claim 3, it is characterized in that: aforesaid operations amount arithmetic unit has tire vector calculation element and operation quantity distribution portion; Wherein:
Above-mentioned tire vector calculation element according to aforesaid operations power and moment, calculates the tire force vector that takes place on each tire;
Aforesaid operations amount dispenser according to above-mentioned tire force vector, is calculated the control target in above-mentioned gradual braking device, above-mentioned driving-force control apparatus and above-mentioned rudder angle control device.
9. according to the described controller of vehicle of claim 8, it is characterized in that: above-mentioned tire vector calculus device, computing are fixed on the force vector in the local coordinate system on the vehicle.
10. according to the described controller of vehicle of claim 9, it is characterized in that: the formation of the above-mentioned gradual braking device that corresponding vehicle has, above-mentioned driving-force control apparatus and above-mentioned rudder angle control device and aforesaid operations amount dispenser is set.
CN 200510062960 2004-07-15 2005-03-31 vehicle control device Expired - Fee Related CN100545771C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004207997 2004-07-15
JP2004207997 2004-07-15
JP2005021656 2005-01-28

Publications (2)

Publication Number Publication Date
CN1722030A CN1722030A (en) 2006-01-18
CN100545771C true CN100545771C (en) 2009-09-30

Family

ID=35912391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510062960 Expired - Fee Related CN100545771C (en) 2004-07-15 2005-03-31 vehicle control device

Country Status (1)

Country Link
CN (1) CN100545771C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130076881A1 (en) * 2011-09-26 2013-03-28 Honda Motor Co., Ltd. Facial direction detecting apparatus
CN103043006A (en) * 2012-12-20 2013-04-17 联合汽车电子有限公司 Voltage control method of electronic controller of car body
WO2020132001A1 (en) * 2018-12-19 2020-06-25 Zoox, Inc. Multi-controller synchronization

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051252B4 (en) * 2007-10-26 2021-03-18 Robert Bosch Gmbh Method and device for reducing the drive torque during brief torque-reducing interventions
JP4840483B2 (en) * 2009-07-13 2011-12-21 トヨタ自動車株式会社 Control target arithmetic unit
CN101799666B (en) * 2010-03-30 2011-12-14 奇瑞汽车股份有限公司 Control method and system of automatic driving system
CN101885334B (en) * 2010-07-21 2013-04-10 奇瑞汽车股份有限公司 Top connecting assembly and method for improving vehicle performance by using same
US8944526B2 (en) * 2010-12-23 2015-02-03 Honda Motor Co., Ltd. Vehicle brake system
JP5853205B2 (en) * 2011-03-29 2016-02-09 パナソニックIpマネジメント株式会社 Vehicle control device
US8930036B2 (en) * 2011-04-13 2015-01-06 GM Global Technology Operations LLC Reconfigurable interface-based electrical architecture
CN105398450B (en) * 2011-06-02 2017-09-22 丰田自动车株式会社 The control device of vehicle
JP5234224B1 (en) * 2011-07-20 2013-07-10 トヨタ自動車株式会社 Vehicle control device
DE102011079668B3 (en) * 2011-07-22 2012-08-23 Continental Automotive Gmbh Control system for a motor vehicle
US8548667B2 (en) * 2011-12-15 2013-10-01 Steering Solutions Ip Holding Corporation Hands on steering wheel detect in lane centering operation
EP2808455B1 (en) * 2012-01-27 2018-05-30 Doosan Infracore Co., Ltd. Operational stability enhancing device for construction machinery
DE102012201185A1 (en) * 2012-01-27 2013-08-01 Siemens Aktiengesellschaft Method for operating at least two data processing units with high availability, in particular in a vehicle, and device for operating a machine
JP5938341B2 (en) * 2012-12-18 2016-06-22 日立建機株式会社 Electric construction machine
JP5919205B2 (en) * 2013-01-28 2016-05-18 日立オートモティブシステムズ株式会社 Network device and data transmission / reception system
US9292409B2 (en) * 2013-06-03 2016-03-22 Infineon Technologies Ag Sensor interfaces
JP2015058914A (en) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 Suspension device
EP2907730B1 (en) 2014-01-29 2017-09-06 Steering Solutions IP Holding Corporation Hands on steering wheel detect
US9956967B2 (en) * 2014-02-21 2018-05-01 Siemens Aktiengesellschaft Method for selecting multiple program functions, method for selecting one program function, associated apparatuses and associated vehicle, ship or aircraft
DE102014204128A1 (en) * 2014-03-06 2015-09-10 Robert Bosch Gmbh Electronic unit for a vehicle communication interface
US9174649B1 (en) * 2014-06-02 2015-11-03 Ford Global Technologies, Llc Redundancy for automated vehicle operations
CN105313880B (en) * 2014-08-05 2020-08-11 罗伯特·博世有限公司 Motor vehicle with at least two drive actuators and increased fail safety
DE102015225617A1 (en) * 2015-02-06 2016-08-11 Robert Bosch Gmbh Method for monitoring a drive-by-wire system of a motor vehicle
US10351159B2 (en) 2015-05-01 2019-07-16 Steering Solutions Ip Holding Corporation Retractable steering column with a radially projecting attachment
US10589774B2 (en) 2015-05-01 2020-03-17 Steering Solutions Ip Holding Corporation Counter rotation steering wheel
US9919724B2 (en) 2015-05-29 2018-03-20 Steering Solutions Ip Holding Corporation Retractable steering column with manual retrieval
US10343706B2 (en) 2015-06-11 2019-07-09 Steering Solutions Ip Holding Corporation Retractable steering column system, vehicle having the same, and method
US11560169B2 (en) 2015-06-11 2023-01-24 Steering Solutions Ip Holding Corporation Retractable steering column system and method
DE102016110791A1 (en) 2015-06-15 2016-12-15 Steering Solutions Ip Holding Corporation Gesture control for a retractable steering wheel
CN106256651B (en) 2015-06-16 2019-06-04 操纵技术Ip控股公司 Regracting steering column assembly and method
US10131362B1 (en) * 2015-06-23 2018-11-20 United Services Automobile Association (Usaa) Automobile detection system
US9828016B2 (en) 2015-06-24 2017-11-28 Steering Solutions Ip Holding Corporation Retractable steering column system, vehicle having the same, and method
US20160375931A1 (en) 2015-06-25 2016-12-29 Steering Solutions Ip Holding Corporation Rotation control system for a steering wheel and method
DE102016111473A1 (en) 2015-06-25 2016-12-29 Steering Solutions Ip Holding Corporation STATIONARY STEERING WHEEL ASSEMBLY AND METHOD
US10112639B2 (en) 2015-06-26 2018-10-30 Steering Solutions Ip Holding Corporation Vehicle steering arrangement and method of making same
US9840271B2 (en) 2015-06-29 2017-12-12 Steering Solutions Ip Holding Corporation Retractable steering column with rake limiter
JP6226919B2 (en) * 2015-07-10 2017-11-08 本田技研工業株式会社 Emergency vehicle control device
US9849904B2 (en) 2015-07-31 2017-12-26 Steering Solutions Ip Holding Corporation Retractable steering column with dual actuators
US9845106B2 (en) 2015-08-31 2017-12-19 Steering Solutions Ip Holding Corporation Overload protection for belt drive mechanism
JP6803657B2 (en) * 2015-08-31 2020-12-23 日立オートモティブシステムズ株式会社 Vehicle control device and vehicle control system
US10160472B2 (en) 2015-10-20 2018-12-25 Steering Solutions Ip Holding Corporation Steering column with stationary hub
US9809155B2 (en) 2015-10-27 2017-11-07 Steering Solutions Ip Holding Corporation Retractable steering column assembly having lever, vehicle having retractable steering column assembly, and method
CN106740788A (en) * 2015-11-20 2017-05-31 重庆金美通信有限责任公司 A kind of method of low-cost unmanned vehicle brake hard
US10029725B2 (en) 2015-12-03 2018-07-24 Steering Solutions Ip Holding Corporation Torque feedback system for a steer-by-wire vehicle, vehicle having steering column, and method of providing feedback in vehicle
US10496102B2 (en) 2016-04-11 2019-12-03 Steering Solutions Ip Holding Corporation Steering system for autonomous vehicle
DE102017108692B4 (en) 2016-04-25 2024-09-26 Steering Solutions Ip Holding Corporation Control of an electric power steering system using system state predictions
US10351161B2 (en) 2016-05-27 2019-07-16 Steering Solutions Ip Holding Corporation Steering column with manual retraction
US20170365105A1 (en) * 2016-06-17 2017-12-21 Ford Global Technologies, Llc Method and apparatus for inter-vehicular safety awareness and alert
US10421476B2 (en) 2016-06-21 2019-09-24 Steering Solutions Ip Holding Corporation Self-locking telescope actuator of a steering column assembly
US10457313B2 (en) 2016-06-28 2019-10-29 Steering Solutions Ip Holding Corporation ADAS wheel locking device
US10363958B2 (en) 2016-07-26 2019-07-30 Steering Solutions Ip Holding Corporation Electric power steering mode determination and transitioning
JP6350609B2 (en) * 2016-07-29 2018-07-04 マツダ株式会社 Wire harness arrangement structure
US10160477B2 (en) 2016-08-01 2018-12-25 Steering Solutions Ip Holding Corporation Electric power steering column assembly
JP6742192B2 (en) * 2016-08-09 2020-08-19 日立オートモティブシステムズ株式会社 Electronic control unit
US10189496B2 (en) 2016-08-22 2019-01-29 Steering Solutions Ip Holding Corporation Steering assembly having a telescope drive lock assembly
US10384708B2 (en) 2016-09-12 2019-08-20 Steering Solutions Ip Holding Corporation Intermediate shaft assembly for steer-by-wire steering system
US10160473B2 (en) 2016-09-13 2018-12-25 Steering Solutions Ip Holding Corporation Steering column decoupling system
US10399591B2 (en) 2016-10-03 2019-09-03 Steering Solutions Ip Holding Corporation Steering compensation with grip sensing
US10239552B2 (en) 2016-10-14 2019-03-26 Steering Solutions Ip Holding Corporation Rotation control assembly for a steering column
US10481602B2 (en) 2016-10-17 2019-11-19 Steering Solutions Ip Holding Corporation Sensor fusion for autonomous driving transition control
US10310605B2 (en) 2016-11-15 2019-06-04 Steering Solutions Ip Holding Corporation Haptic feedback for steering system controls
US10421475B2 (en) 2016-11-15 2019-09-24 Steering Solutions Ip Holding Corporation Electric actuator mechanism for retractable steering column assembly with manual override
US9862403B1 (en) 2016-11-29 2018-01-09 Steering Solutions Ip Holding Corporation Manually retractable steering column assembly for autonomous vehicle
US10351160B2 (en) 2016-11-30 2019-07-16 Steering Solutions Ip Holding Corporation Steering column assembly having a sensor assembly
US10780915B2 (en) 2016-12-07 2020-09-22 Steering Solutions Ip Holding Corporation Vehicle steering system having a user experience based automated driving to manual driving transition system and method
DE102017100618A1 (en) * 2017-01-13 2018-07-19 HELLA GmbH & Co. KGaA Control system for a motor vehicle, motor vehicle, method for controlling a motor vehicle, computer program product and computer-readable medium
US10370022B2 (en) 2017-02-13 2019-08-06 Steering Solutions Ip Holding Corporation Steering column assembly for autonomous vehicle
US10385930B2 (en) 2017-02-21 2019-08-20 Steering Solutions Ip Holding Corporation Ball coupling assembly for steering column assembly
US10384683B2 (en) * 2017-03-23 2019-08-20 Ford Global Technologies, Llc Retractable vehicle control
US10449927B2 (en) 2017-04-13 2019-10-22 Steering Solutions Ip Holding Corporation Steering system having anti-theft capabilities
DE102017209231B4 (en) * 2017-05-31 2021-02-25 Zf Friedrichshafen Ag Method and arrangement for the plausibility check and / or (re) initialization of a rear-wheel steering
DE102017209738A1 (en) * 2017-06-09 2018-12-13 Robert Bosch Gmbh Communication system for a hydraulic brake system
US10501092B2 (en) * 2017-10-05 2019-12-10 Gm Global Technololgy Operations Llc Proactive health-based transition to redundant subsystems
DE102017218643A1 (en) * 2017-10-19 2019-04-25 Volkswagen Aktiengesellschaft Function module, control unit for an operation assistance system and working device
CN110825566B (en) * 2017-12-30 2020-12-01 深圳北芯生命科技有限公司 FFR host with data recovery function
US10875566B2 (en) 2018-03-22 2020-12-29 Steering Solutions Ip Holding Corporation Stow release assembly for a manually adjustable steering column assembly
US10974756B2 (en) 2018-07-31 2021-04-13 Steering Solutions Ip Holding Corporation Clutch device latching system and method
CN109017728A (en) * 2018-08-22 2018-12-18 联华聚能科技股份有限公司 Separated electronic brake system
DE102018126094A1 (en) * 2018-10-19 2020-04-23 Wabco Gmbh Actuator module for a brake system of a vehicle
JP7233212B2 (en) * 2018-12-07 2023-03-06 日立Astemo株式会社 Vehicle control system and vehicle control method
CN110347079B (en) * 2019-07-04 2024-08-06 珠海云洲智能科技股份有限公司 Unmanned ship control circuit with failure protection function and unmanned ship
CN110843791B (en) * 2019-11-26 2021-10-29 斑马网络技术有限公司 Vehicle control method, device, storage medium and electronic equipment
CN112429012B (en) * 2020-10-30 2022-09-06 北京国家新能源汽车技术创新中心有限公司 Automobile electric control system, automatic driving control method and automobile
JP7581899B2 (en) * 2021-01-19 2024-11-13 マツダ株式会社 Control device and control system
CN112977091A (en) * 2021-03-18 2021-06-18 奇瑞新能源汽车股份有限公司 Whole-vehicle-area control module and control method of electric vehicle and vehicle
CN113928365B (en) * 2021-11-17 2024-02-27 中车南京浦镇车辆有限公司 Circuit for reliably outputting brake release application state of rail transit vehicle
CN114312833B (en) * 2021-12-21 2025-01-21 重庆长安汽车股份有限公司 Verification method for rationality of state control of autonomous driving system based on functional safety

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130076881A1 (en) * 2011-09-26 2013-03-28 Honda Motor Co., Ltd. Facial direction detecting apparatus
CN103043006A (en) * 2012-12-20 2013-04-17 联合汽车电子有限公司 Voltage control method of electronic controller of car body
CN103043006B (en) * 2012-12-20 2015-09-30 联合汽车电子有限公司 The voltage control method of electrical control unit device
WO2020132001A1 (en) * 2018-12-19 2020-06-25 Zoox, Inc. Multi-controller synchronization

Also Published As

Publication number Publication date
CN1722030A (en) 2006-01-18

Similar Documents

Publication Publication Date Title
CN100545771C (en) vehicle control device
JP6214730B2 (en) Vehicle control system
JP4478037B2 (en) Vehicle control device
EP2177413B1 (en) Vehicle control system
RU2765067C2 (en) Information processing apparatus
JP4341553B2 (en) Vehicle control information transmission structure, vehicle control apparatus using the transmission structure, and vehicle control simulator using the transmission structure
CN112141106A (en) Apparatus for controlling autonomous vehicle braking
US20090044041A1 (en) Redundant Data Bus System
JP6407732B2 (en) Vehicle control device
JP2024505097A (en) Control system and operating method for vehicle corner module
CN114348027B (en) Vehicle control method, device, platform and storage medium
EP4081430B1 (en) A brake system for a vehicle and a control method for the brake system
CN115384528A (en) Centralized chassis domain control architecture and method
JP2024036384A (en) Control device, method, program, vehicle
US6318819B1 (en) Method for handling errors in an electronic brake system and corresponding device
JP7074118B2 (en) Controls, methods, programs, and vehicles
JP2017105362A (en) Control system
JP4528457B2 (en) Brake device for automobile and control method thereof
CN115805935A (en) Motion manager, vehicle, vehicle control method and non-transitory storage medium
Verschuren et al. Design of a steer-by-wire prototype
Sakurai et al. Cost-effective and fault tolerant vehicle control architecture for X-by-wire systems (part 2: implementation design)
Yoshimura et al. Cost-Effective and Fault Tolerant Vehicle Control Architecture for X-by-Wire Systems (Part 1: Architecture Design Based on the Concept of Autonomous Decentralized Systems)
WO2022136590A1 (en) A vehicle's brake system and a method for braking a vehicle
Holzmann Actuators and drive train architecture
CN119428673A (en) Driver directional control during manual driving with brake-steer using model predictive control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Hitachinaka County, Japan

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Hitachinaka County, Japan

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211202

Address after: Hitachinaka County, Japan

Patentee after: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

Address before: Tokyo, Japan

Patentee before: Hitachi, Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090930