[go: up one dir, main page]

CN100536450C - Non-zero complex weighted space-time code for multiple antenna transmission - Google Patents

Non-zero complex weighted space-time code for multiple antenna transmission Download PDF

Info

Publication number
CN100536450C
CN100536450C CNB028072901A CN02807290A CN100536450C CN 100536450 C CN100536450 C CN 100536450C CN B028072901 A CNB028072901 A CN B028072901A CN 02807290 A CN02807290 A CN 02807290A CN 100536450 C CN100536450 C CN 100536450C
Authority
CN
China
Prior art keywords
signals
phase
hopping sequence
signal
predetermined hopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028072901A
Other languages
Chinese (zh)
Other versions
CN1611047A (en
Inventor
K·库基
A·霍蒂宁
O·蒂尔科宁
M·库塞拉
Y·凯派宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/819,573 external-priority patent/US6748024B2/en
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of CN1611047A publication Critical patent/CN1611047A/en
Application granted granted Critical
Publication of CN100536450C publication Critical patent/CN100536450C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种用于在多个天线(160,162,164,166)上传输相位跳跃和时空编码信号的方法和装置。该方法和装置提供了通过在N×N’的时空块编码符号内使用相位跳跃来将N×N’的时空块编码扩展到一个M×M’的时空块编码,这里,M>N,从而允许时空块编码在多于N’的分集天线上发射。M个发射天线可以实现M个天线分集的结果。

Figure 02807290

The present invention provides a method and apparatus for transmitting phase-hopping and space-time coded signals over multiple antennas (160, 162, 164, 166). The method and apparatus provide for extending an NxN' spatio-temporal block coding to an MxM' spatio-temporal block coding by using phase jumps within the NxN' spatio-temporal block coding symbols, where M>N, whereby Allows space-time block codes to be transmitted on more than N' diversity antennas. The M transmit antennas can achieve the result of M antenna diversity.

Figure 02807290

Description

用于多重天线传输的非零复数加权时空编码 Non-Zero Complex Weighted Space-Time Coding for Multiple Antenna Transmission

发明的领域field of invention

本发明涉及一种用于实现无线通讯系统中的传输分集的方法和装置,尤其是,涉及一种用于多重天线传输的对信号进行非零复数加权和时空编码的方法和装置。The present invention relates to a method and device for realizing transmission diversity in a wireless communication system, in particular to a method and device for performing non-zero complex weighting and space-time coding on signals for multi-antenna transmission.

发明的背景background of the invention

随着无线通信系统的发展,关于设备和性能需求方面的无线系统设计的要求逐渐提高。未来的无线系统,与第一代的模拟和目前正在使用的第二代数字系统相比,其应为第三或者第四代系统,除了需要提供高质量的语音服务以外,还需要提供高质量高传输速率的数据服务。与系统的服务性能需求相一致,在设备设计上存在着限制,这较大的影响了移动终端的设计。第三和第四代无线移动终端将需要更小、更轻、多个能够提供固有的声音和这些未来的无线系统所需的数据服务的有效能量单元。With the development of wireless communication systems, the requirements for wireless system design in terms of equipment and performance requirements are gradually increasing. Compared with the first generation of analog and the second generation digital system currently in use, the future wireless system should be the third or fourth generation system. In addition to providing high-quality voice services, it also needs to provide high-quality Data service with high transfer rate. Consistent with the service performance requirements of the system, there are limitations in equipment design, which greatly affects the design of mobile terminals. Third and fourth generation wireless mobile terminals will require smaller, lighter, multiple energy efficient units capable of providing the inherent voice and data services required by these future wireless systems.

随时间变化的多径衰减是无线系统中的一个效应,由于接收机信号的建设性的和破坏性的和,一个传送的信号沿着通向接收机的多条路经传播,从而造成了接收信号的衰减。目前已知的用于克服多径衰减效应的方法有以下几个,例如,与误差校正码进行时间交织,利用频谱扩散技术实现频率的分集,或者发射机能量控制技术。但是,这些技术中的每一个在第三和第四代无线系统中使用都存在着缺陷。时间交织引入了不必要的延迟,频谱扩散技术为了克服大的相干带宽,需要较大的带宽分配,能量控制技术需要比固有的接收机-发射机回馈技术所需的更高的发射机能量,回馈技术提高了移动终端的复杂性。所有的这些缺点都消极的影响了实现第三和第四代移动终端所需的特性。Time-varying multipath fading is an effect in wireless systems in which a transmitted signal propagates along multiple paths to the receiver due to the constructive and destructive summation of the receiver signal, causing reception signal attenuation. Currently known methods for overcoming multipath fading effects include the following, for example, time interleaving with error correction codes, frequency diversity by using spectrum diffusion technology, or transmitter energy control technology. However, each of these technologies has drawbacks for use in third and fourth generation wireless systems. Time interleaving introduces unnecessary delay, spectral diffusion techniques require large bandwidth allocations to overcome large coherence bandwidths, energy control techniques require higher transmitter energy than inherent receiver-transmitter feedback techniques, Feedback technology increases the complexity of mobile terminals. All these disadvantages negatively affect the characteristics required to realize third and fourth generation mobile terminals.

天线分集是用于克服无线系统中多径衰减效应的另一种技术。在分集接收中,两个或者多个物理分隔的天线被用于接收一个传送的信号,然后信号被合并和转换处理,从而产生了一个接收的信号。分集接收的缺点在于天线之间所需的物理分隔使得在新的无线系统中无法在前向链路上使用分集接收,并且在新的无线系统中需要小型的移动终端。用于实现天线分集的另一种方法是传输分集。在传输分集中,一个信号从两个或者多个天线被传送,然后通过使用例如最大似然顺序估计量(MLSE),最小均方误差(MMSE)接收机,最大a后向接收机或者它们的近似值在接收机端进行处理。传输分集在无线系统的前向链路中具有更为实际的应用,其中,在基站中比在移动终端中能够更为简便的实现多重天线。Antenna diversity is another technique used to overcome the effects of multipath fading in wireless systems. In diversity reception, two or more physically separated antennas are used to receive a transmitted signal, which is then combined and switched to produce a received signal. Disadvantages of diversity reception are that the required physical separation between the antennas precludes the use of diversity reception on the forward link in new wireless systems and requires small mobile terminals in new wireless systems. Another method for achieving antenna diversity is transmit diversity. In transmit diversity, a signal is transmitted from two or more antennas and then detected by using e.g. maximum likelihood sequential estimator (MLSE), minimum mean square error (MMSE) receiver, maximum a backward receiver or their The approximation is processed at the receiver. Transmit diversity has more practical applications in the forward link of wireless systems, where multiple antennas can be implemented more easily in base stations than in mobile terminals.

现已完好地研究了两个天线的传输分集的情况。Alamouti建议了一种为复数值信号提供了第二级分集的两个天线的分集传输的方法。S.Alamouti,“用于无线通信的简单的传输分集技术”(IEEE选择通信区域杂志,1451-1458,1998年10月)。Alamouti方法涉及在一个符号周期从两个天线同时传输两个信号。在一个符号周期中,从第一个天线传送来的信号被表示为S0,从第二天线传送来的信号被表示为S1。在下一个符号周期中,从第一个天线传送来的信号为-S1*,从第二个天线传送来的信号被表示为S0*,其中*为复数共轭表示符。一个简单的分集传输系统也可以在编码域实现。例如,相同符号的两个复制可以使用两个正交的沃尔什码平行的传送。同样的技术也可以被用于构造一个频率域的编码方法。The case of transmit diversity with two antennas has been well studied. Alamouti proposes a method for diversity transmission of two antennas that provides a second level of diversity for complex-valued signals. S. Alamouti, "Simple transmit diversity techniques for wireless communications" (IEEE Journal of Selected Areas for Communications, 1451-1458, October 1998). The Alamouti method involves simultaneous transmission of two signals from two antennas during one symbol period. In one symbol period, the signal transmitted from the first antenna is denoted as S0, and the signal transmitted from the second antenna is denoted as S1. In the next symbol period, the signal transmitted from the first antenna is -S1 * , and the signal transmitted from the second antenna is denoted as S0 * , where * is a complex conjugate indicator. A simple diversity transmission system can also be implemented in the coded domain. For example, two copies of the same symbol can be transmitted in parallel using two orthogonal Walsh codes. The same technique can also be used to construct a frequency domain encoding method.

Alamouti方法并不能直接的扩展到两个以上的天线。Tarokh等人已经提出了一种使用rate=1/2和3/4的使用复数信号星座图在三个和四个天线上进行传输的时空块编码的方法。V.Tarokh,H.Jafarkhani,和A.Calderbank,“正交设计的时空块编码”(IEEE关于信息理论的学报,1456-1467,1999年7月)。这种方法具有一个缺点,损失了传输比率,而且ST编码符号的多电平特性增加了发射信号所需的峰值-均值比例,以及增加了线性功率放大器设计的严格要求。减轻这些问题的另外的方法是由O.Tirkkonen以及A.Hottinen所提出来的“用于4Tx天线的复数时空块编码”(全球通信系统学报2000,2000年11月,美国旧金山)。其它建议的方法包括rate=1,正交分集发射(OTD)+4天线时空分集发射(STTD)方法。L.Jalloul,K.Kuchi和J.Chen,“CDMA分集发射方法的性能分析”(IEEE媒介技术会议学报,1999年秋)以及M.Harrison和K.Kuchi“在2和4元件上的高数据率的开放和闭合循环分集发射”(摩托罗拉投稿3GPP-C30-19990817-017)。这种方法需要一个外部编码,并且由于STTD块(Alamouti块)以及使用OTD块的第二顺序交织增益而提供了第二顺序分集。这种方法的性能依赖于外部编码的强度。由于这种方法需要外部编码,其不适用于未编码的系统。对于rate=1/3的卷积编码的情况,OTD+STTD方法以及Tarokh rate=3/4方法的ST块编码方法的性能是相同的。另一个rate=1的方法在O.Tirkkonen,A.BOARIU以及A.Hottinen,“用于3+Tx天线的最小非正交rate1时空块编码”(ISSSTA学报,2000年9月)中有所涉及。该文章中建议的方法达到了高的性能但是需要一个复杂接收机。The Alamouti method does not scale directly to more than two antennas. Tarokh et al. have proposed a method for space-time block coding using complex signal constellations for transmission on three and four antennas using rate=1/2 and 3/4. V. Tarokh, H. Jafarkhani, and A. Calderbank, "Space-Temporal Block Coding for Orthogonal Designs" (IEEE Transactions on Information Theory, 1456-1467, July 1999). This approach has the disadvantage of a loss of transmission ratio, and the multilevel nature of the ST-coded symbols increases the peak-to-average ratio required for the transmitted signal, as well as stringent requirements for linear power amplifier design. Another approach to alleviate these problems is "Complex Spatiotemporal Block Coding for 4Tx Antennas" by O. Tirkkonen and A. Hottinen (Journal of Global Communication Systems 2000, Nov. 2000, San Francisco, USA). Other suggested methods include rate=1, Orthogonal Diversity Transmission (OTD) + 4-antenna Space-Time Diversity Transmission (STTD) method. L.Jalloul, K.Kuchi and J.Chen, "Performance Analysis of CDMA Diversity Transmission Method" (Proceedings of IEEE Media Technology Conference, Fall 1999) and M.Harrison and K.Kuchi "High Data Rate Over 2 and 4 Elements Open and Closed Loop Diversity Emissions" (Motorola Contribution 3GPP-C30-19990817-017). This method requires an outer coding and provides second order diversity due to STTD blocks (Alamouti blocks) and second order interleaving gain using OTD blocks. The performance of this method depends on the strength of the external encoding. Since this method requires external encoding, it is not suitable for unencoded systems. For the case of convolutional encoding of rate=1/3, the performance of the ST block encoding method of the OTD+STTD method and the Tarokh rate=3/4 method is the same. Another rate=1 method is covered in O.Tirkkonen, A.BOARIU and A.Hottinen, "Minimum non-orthogonal rate1 space-time block coding for 3+Tx antennas" (ISSSTA Journal, September 2000) . The method suggested in this article achieves high performance but requires a complex receiver.

因此,若有一种方法和装置,能够在多于两个天线上提供分集传输,同时不增加系统的设计复杂性将是非常有利的。Therefore, it would be very beneficial to have a method and apparatus that can provide diversity transmission on more than two antennas without increasing the design complexity of the system.

发明概述Summary of the invention

本发明提供了一种用于在多个天线上传输非零复数加权和时空编码信号的方法和装置。该方法和装置提供了通过在N×N’的时空块编码内使用循环和符号的非零复数加权来将一个N×N’的时空块编码扩展到一个M×M’的时空块编码,其中N是发射路径的数目,N’是每个发射路径上输出符号的数目,这里,M>N,从而允许时空块编码在M个多重天线上发射。分集发射路径可以包括分离的天线或者波束。较大的编码M’的暂时的长度可以等于原始码N’的暂时长度。在该方法和装置中,在一个输入符号流上执行变换从而产生一个包括一个时空块编码的变换结果。然后时空块编码的N个输出流,每一个都包括N’个输出符号,被重复,并且至少一个重复的流在时间上进行非零复数加权从而产生N’个输出符号的M个流,用于在M个分集发射路径上传输。非零复数加权包括相位移动。The present invention provides a method and apparatus for transmitting non-zero complex weighted and space-time coded signals over multiple antennas. The method and apparatus provide for extending an NxN' spatio-temporal block coding to an MxM' spatio-temporal block coding by using non-zero complex weights of cyclic and signed within the NxN' spatio-temporal block coding, where N is the number of transmission paths, N' is the number of output symbols on each transmission path, where M>N, thus allowing space-time block coding to be transmitted on M multiple antennas. Diversity transmit paths may include separate antennas or beams. The nonce length of the larger code M' may be equal to the nonce length of the original code N'. In the method and apparatus, a transform is performed on an input symbol stream to produce a transform result comprising a spatio-temporal block encoding. Then the N output streams of the spatio-temporal block coding, each comprising N' output symbols, are repeated, and at least one repeated stream is given a non-zero complex weight in time to produce M streams of N' output symbols, with to be transmitted on M diversity transmit paths. Non-zero complex weighting includes phase shifting.

在一个实施例中,N至少为2,M至少为3。N’个输出符号中的N个流中的至少两个,相应于N’个输出符号中的N个原始流,然后每一个在第一个至少一个天线上发射,和N’个符号中的M-N非零复数加权流中的至少一个在第二个至少一个天线中的一个上被发射。第一个至少一个天线和第二个至少一个天线可以包括M个天线中的任何一个。In one embodiment, N is at least 2 and M is at least 3. At least two of the N streams of the N' output symbols, corresponding to the N original streams of the N' output symbols, each of which is then transmitted on the first at least one antenna, and the N' of the N' symbols At least one of the M-N non-zero complex weighted streams is transmitted on one of the second at least one antennas. The first at least one antenna and the second at least one antenna may include any one of the M antennas.

在另一个实施例中,该方法和装置可以在一个具有公共或者专用导频频道的发射机中实现,该公共或者专用导频频道能够有效的进行解码时空编码所需的系数的频道估算。在该实施例中,公共和专用导频频道在发射机中可以单独的或者两个相组合的实现。在该实施例的一个替代实施例中,在N个分集传输路径上发射训练序列,这样就能使得估算N个独立的分集发射路径成为可能。为此,一个专用的导频频道编码序列可以被多路复用到每一个原始时空块编码的N’个输出符号的N个流上,从而产生N’个输出符号的N个流和导频频道序列。然后循环和非零复数加权可以被应用从而产生N’个符号的M相位移动流和导频频道序列。N’个输出符号的N个原始流中的至少两个和导频频道序列然后在第一个至少一个天线中的一个被发射,和N’个输出符号的M-N个复数加权流中的至少一个和导频频道序列然后在第二个至少一个天线中的一个被发射。能够估算N个频道的另一种方法是发射公共导频频道信号,这样N个公共导频频道信号就在第一个至少一个天线中的每一个上发射,N个公共导频频道的一些M-N复数加权副本就在第二个至少一个天线中的一个上被发射。在每一个第二个至少一个天线上的公共频道所使用的复数加权因子与用于根据N’个输出符号的N个原始流构成N’个输出符号的M-N复数加权流所使用的因子相同。在这些实施例中,接收机可以知道也可以不知道用于将一个N×N’时空块编码扩展到一个M×N’时空块编码的方法,以及所使用的暂时加权序列。In another embodiment, the method and apparatus can be implemented in a transmitter with common or dedicated pilot channels that enable efficient channel estimation of the coefficients needed to decode space-time codes. In this embodiment, the common and dedicated pilot channels can be implemented individually or in combination in the transmitter. In an alternative to this embodiment, the training sequence is transmitted on N diversity transmission paths, thus making it possible to evaluate N independent diversity transmission paths. To this end, a dedicated pilot channel coding sequence can be multiplexed onto the N streams of N' output symbols coded per original spatio-temporal block, resulting in N streams of N' output symbols and the pilot channel sequence. Cyclic and non-zero complex weights can then be applied to generate an M-phase shifted stream of N' symbols and a pilot channel sequence. At least two of the N original streams of N' output symbols and the pilot channel sequence are then transmitted on one of the first at least one antenna, and at least one of the M-N complex weighted streams of N' output symbols and pilot channel sequences are then transmitted on a second one of the at least one antennas. Another way to be able to estimate N channels is to transmit common pilot channel signals such that N common pilot channel signals are transmitted on each of the first at least one antenna, some M-N of the N common pilot channels A complex weighted copy is then transmitted on one of the second at least one antennas. The common channels on each second at least one antenna use the same complex weighting factors as are used to form the M-N complex weighted streams of N' output symbols from the N original streams of N' output symbols. In these embodiments, the receiver may or may not know the method used to extend an NxN' spatio-temporal block code to an MxN' spatio-temporal block code, and the temporal weighting sequence used.

在另一个实施例中,N至少为2,M至少为3,导频频道可以被配置成能够估算至少N+1个分集发射路径。N’个输出符号的N个流中的至少一个,相应于N’个输出符号的原始的N个流,然后在一个第一个至少一个天线上发射,N’个符号的M-N复数加权流的至少一个在第二个至少一个天线中的一个上被发射。不同的公共导频频道在第一个至少一个天线中的每一个和第二个至少一个天线中的至少一个上被发射。在这些实施例例中,接收机需要至少用于将一个N×N’时空块编码扩展到一个M×N’时空块编码的方法的部分知识,以及所使用的暂时加权序列。In another embodiment, N is at least 2, M is at least 3, and the pilot channel can be configured to be able to evaluate at least N+1 diversity transmission paths. At least one of the N streams of N' output symbols, corresponding to the original N streams of N' output symbols, is then transmitted on a first at least one antenna, of the M-N complex weighted streams of N' symbols At least one is transmitted on a second one of the at least one antennas. A different common pilot channel is transmitted on each of the first at least one antenna and at least one of the second at least one antenna. In these embodiments, the receiver requires at least partial knowledge of the method used to extend an NxN' spatio-temporal block code to an MxN' spatio-temporal block code, and the temporal weighting sequence used.

各个实施例中的复数加权可以通过将一个周期的或者随机的复数加权模式应用到被复数加权的每一个符号流中来实现。在各个天线上发射的符号流的复数加权之间的关系也可以被预定。Complex weighting in various embodiments may be achieved by applying a periodic or random complex weighting pattern to each symbol stream that is complex weighted. The relationship between the complex weights of the symbol streams transmitted on the various antennas can also be predetermined.

附图的简要说明Brief description of the drawings

附图1a表明了根据本发明的一个实施例的发射机的方框图;Accompanying drawing 1a has shown the block diagram of the transmitter according to one embodiment of the present invention;

附图1b表明了根据本发明的一个实施例的公共导频频道STTD发射机的部分的方框图;Accompanying drawing 1b has shown the block diagram of the part of common pilot channel STTD transmitter according to one embodiment of the present invention;

附图3表明了根据本发明的另一个实施例的专用导频频道STTD发射机的部分的方框图;Accompanying drawing 3 has shown the block diagram of the part of dedicated pilot channel STTD transmitter according to another embodiment of the present invention;

附图4表明了与附图1的发射机配套使用的一个接收机的实施例的部分的方框图;Accompanying drawing 4 has shown the block diagram of the part of the embodiment of a receiver used with the transmitter of accompanying drawing 1;

附图5表明了与附图2或者附图3的发射机配套使用的一个接收机的实施例的部分的方框图;Accompanying drawing 5 has shown the block diagram of the part of the embodiment of a receiver used with the transmitter of accompanying drawing 2 or accompanying drawing 3;

附图6表明了附图5中的STTD解调制器508的耙式查找器的实施例。FIG. 6 illustrates an embodiment of a rake finder of the STTD demodulator 508 of FIG. 5 .

附图7表明了根据本发明的一个实施例的STS发射机的部分的方框图;Figure 7 shows a block diagram of part of an STS transmitter according to one embodiment of the present invention;

附图8表明了根据本发明的一个实施例的OTD发射机的部分的方框图;Accompanying drawing 8 has shown the block diagram of the part of the OTD transmitter according to an embodiment of the present invention;

附图9表明了与附图7的发射机配套使用的接收机的一个实施例的部分的方框图;Figure 9 shows a block diagram of part of an embodiment of a receiver for use with the transmitter of Figure 7;

附图10表明了与附图8的发射机配套使用的接收机的一个实施例的部分的方框图;Figure 10 shows a block diagram of a portion of an embodiment of a receiver for use with the transmitter of Figure 8;

附图11表明了根据本发明的一个实施例的一个长的ST块编码发射机的部分的方框图;Figure 11 shows a block diagram of part of a long ST block coded transmitter according to one embodiment of the present invention;

附图12表明了根据本发明的另一个实施例的一个公共/专用导频频道STTD发射机的部分的方框图;Accompanying drawing 12 has shown the block diagram of the part of a common/dedicated pilot channel STTD transmitter according to another embodiment of the present invention;

附图13表明了与附图12的发射机配套使用的一个接收机的部分的方框图;以及Figure 13 shows a block diagram of part of a receiver for use with the transmitter of Figure 12; and

附图14表明了与附图12的发射机配套使用的一个接收机的能量控制部分的方框图。FIG. 14 shows a block diagram of the power control portion of a receiver for use with the transmitter of FIG. 12. FIG.

附图15表明了定义了一个在本发明的各个实施例中使用的相位移动模式的星座图。Figure 15 illustrates a constellation diagram defining a phase shifting pattern used in various embodiments of the present invention.

本发明的详细描述Detailed description of the invention

现在参照附图1a,这里表明了根据本发明的一个实施例的一个发射机150的方框图。发射机150包括输入端152,用于接收一个输入符号流,块编码处理器154,用于在一个输入符号流上执行变换从而产生一个由正交时空块编码表示的变换结果,并且输出两个变换结果的符号流,非零复数加权器156,用于对两个符号流中的第一个进行非零复数加权,非零复数加权器158,用于对两个符号中的第二个进行非零复数加权,一个RF发射机160,用于在天线1发射第一个符号流,一个RF发射机162,用于在天线2发射符号的非零复数加权流,一个RF发射机164,用于在天线3发射第二个符号流,以及一个RF发射机166,用于在天线4发射相位移动的第二符号流。天线1-4可以彼此之间极化放置从而提供增强的分集接收。例如,天线1或2可以分别与水平极化放置的天线3或4垂直极化。附图1a中的发射机的例子可以以各种形式来实现,只要其适于能够一个2×N’块编码扩展到在4个分集传输路径上进行传输的不同技术和系统。在发射机150中,4个分集传输路径中的每一个包括一个分离的天线,天线1-天线4。可以包括码分多址(CDMA)系统,时分多址(TDMA)系统,或者其他任何可以引入传输分集的数字通信系统。在附图1a的一个替代实施例中,非零复数加权可以全部在选定的传输路经上被执行,从而在天线1和天线2或者天线3和天线4的传输之间产生相位移动。例如,非零复数加权也可以在输入到RF发射机160和164之前被应用,产生一个每个符号流的非零复数加权版本,但是在传送的信号之间保持一个相对的相位移动。发射机150的一个替代实施例150可以使用少于4个天线来实现4条分集传输的路径。例如,输入到RF发射机164或166的信号可以被连在一起并且在一个单独的天线中传送。另一种替代也是可能的,其中使用了少于4个分集传输路径,例如,仅有两个数据流中的一个可以被非零复数加权并且在两个分集路径上传送。在附图1a的一个替代实施例中,非零复数加权操作可以在RF发射机块160,162,164,166中被执行,即非零复数加权可以在调制和时空编码符号的基带滤波之后作为一个连续的相位扫描。Referring now to FIG. 1a, there is shown a block diagram of a transmitter 150 in accordance with one embodiment of the present invention. The transmitter 150 includes an input 152 for receiving an input symbol stream, a block coding processor 154 for performing a transform on an input symbol stream to generate a transform result represented by an orthogonal space-time block code, and outputting two The symbol stream of the transformed result, non-zero complex weighter 156 for applying non-zero complex weight to the first of the two symbol streams, non-zero complex weighter 158 for applying non-zero complex weight to the second of the two symbol streams Non-zero complex weights, an RF transmitter 160 for transmitting the first symbol stream at antenna 1, an RF transmitter 162 for transmitting the non-zero complex weighted stream of symbols at antenna 2, an RF transmitter 164 for transmitting the first symbol stream at antenna 2, and an RF transmitter 164 for An RF transmitter 166 is used to transmit the phase-shifted second symbol stream at antenna 4. Antennas 1-4 may be polarized relative to each other to provide enhanced diversity reception. For example, antenna 1 or 2 may be vertically polarized with horizontally polarized antenna 3 or 4 respectively. The transmitter example in Fig. 1a can be realized in various forms, as long as it is suitable for different technologies and systems that can extend a 2xN' block coding to transmit on 4 diversity transmission paths. In transmitter 150, each of the four diversity transmission paths includes a separate antenna, Antenna1-Antenna4. This can include a Code Division Multiple Access (CDMA) system, a Time Division Multiple Access (TDMA) system, or any other digital communication system that can introduce transmit diversity. In an alternative embodiment of FIG. 1a, non-zero complex weighting may be performed entirely on selected transmission paths, resulting in a phase shift between the transmissions from antenna 1 and antenna 2 or antenna 3 and antenna 4. For example, non-zero complex weighting may also be applied prior to input to RF transmitters 160 and 164, producing a non-zero complex-weighted version of each symbol stream, but maintaining a relative phase shift between transmitted signals. An alternate embodiment 150 of transmitter 150 may use less than 4 antennas to achieve 4 paths for diversity transmission. For example, the signals input to RF transmitter 164 or 166 may be concatenated and transmitted in a single antenna. Another alternative is also possible, where less than 4 diversity transmission paths are used, eg only one of the two data streams can be complex-weighted by a non-zero number and transmitted on two diversity paths. In an alternative embodiment of Figure 1a, the non-zero complex weighting operation may be performed in the RF transmitter blocks 160, 162, 164, 166, i.e. the non-zero complex weighting may be performed after baseband filtering of the modulated and space-time coded symbols as A continuous phase scan.

在天线2和4上的这些传输的非零复数加权可以根据各种替代方式被执行。例如,在天线2上使用的相位模式W1(t)=exp(j*pi*phase-in-degrees/180)可以被应用,并且相位模式-W1(t),其偏移W1(t)的相位为180度,可以在天线4上被使用。角度的相位移动模式的例子在4PSK星座图上的天线2上的是{0,90,180,270}以及天线4上的是{180,270,0,90}。附图15表明了能够在本发明的各个实施例中使用的另一种相位移动模式的星座图。该序列的移动度数{0,135,270,45,180,315,90,225}可以在天线2上被传送同时在天线4上使用移动角度模式{180,315,90,225,0,135,270,45}。相位移动可以是周期性的或者随机的。周期性的相位移动指的是一个预定的相位模式,例如,周期性的重复复数加权W1(t)。复数加权能够被定义从而使复数加权的序列定义了一个最大长度的路径,以便于尽可能独立的对有效频道进行连续的采样。这能够产生交织冗余并且降低延迟传输。所使用的伪随机相位移动可以是从一个MPSK星座图中选择出来的随机相位的序列。此外,当估算频道系数或与非零复数加权频道的能量控制相关的度量的时候,另一种非零复数加权方案是有利的,这种方案中连续的相位状态之间的相位差尽可能的小。在这种情况下,在一个编码块的持续时间内,相位状态可以覆盖360度。频道交织也可以在传统系统的实施例中被使用。也可能执行非零复数加权序列和联合交织,这样交织器的输出的符号可以尽可能的独立。而且,通过分别改变天线1和2和3和4之间的相对的相位,该方法能够被执行从而在所有的天线元件上都具有一个相位移动或扫描,但是天线1,2,3,4之间的相位移动被保持。例如,利用相位扫描,在天线1上具有一个50Hz的相位扫描,以及在天线2上具有一个-50Hz的相位扫描,从而具有一个100Hz的有效扫描。对于天线3和天线4类似。The non-zero complex weighting of these transmissions on antennas 2 and 4 can be performed according to various alternatives. For example, the phase pattern W1(t) = exp(j * pi * phase-in-degrees/180) used on antenna 2 can be applied, and the phase pattern -W1(t), which is offset by W1(t) The phase is 180 degrees and can be used on antenna 4. Examples of phase shift patterns of angles are {0, 90, 180, 270} on antenna 2 and {180, 270, 0, 90} on antenna 4 on the 4PSK constellation. Figure 15 illustrates a constellation diagram of another phase shifting pattern that can be used in various embodiments of the present invention. The sequence of degrees of movement {0, 135, 270, 45, 180, 315, 90, 225} can be transmitted on antenna 2 while using the movement angle pattern {180, 315, 90, 225, 0, 135 on antenna 4 , 270, 45}. The phase shift can be periodic or random. Periodic phase shift refers to a predetermined phase pattern, eg, periodically repeating complex weights W1(t). The complex weights can be defined such that the sequence of complex weights defines a path of maximum length for consecutive sampling of the active channels as independently as possible. This can create interleaving redundancy and reduce delayed transmission. The pseudo-random phase shift used may be a sequence of random phases selected from an MPSK constellation. Furthermore, when estimating channel coefficients or metrics related to energy control of non-zero complex-weighted channels, another non-zero complex weighting scheme is advantageous where the phase difference between successive phase states is as large as possible Small. In this case, the phase state can cover 360 degrees during the duration of one encoded block. Channel interleaving may also be used in legacy system embodiments. It is also possible to perform non-zero complex weighted sequences and joint interleaving so that the signs of the interleaver outputs are as independent as possible. Furthermore, by changing the relative phases between antennas 1 and 2 and 3 and 4 respectively, the method can be performed so as to have a phase shift or sweep across all antenna elements but not between antennas 1, 2, 3, 4. The phase shift between is maintained. For example, with a phase sweep, have a 50 Hz phase sweep on antenna 1 and a -50 Hz phase sweep on antenna 2 to have an effective 100 Hz sweep. It is similar for antenna 3 and antenna 4.

也可以每T秒改变一次相位旋转。T的选择根据数据符号总的持续时间以及用于估算频道系数的方法来决定。相位可以被保持不变为数据符号所占用的总的持续时间,其中至少一个时空编码块和相应的专用或者公共导频序列/训练序列能够被用于进行适当的频道估算。导频序列可以是一个如CDMA系统中使用的沃尔什码,或者是在TDMA系统中用于频道估算的具有较好的校正特性的训练符号的序列。导频符号可以在时空块中与数据应用相同的非零复数加权系数。此外,导频也可以没有相位跳跃的被传送。在这种情况下,数据的有效频道可以能够从一个先前已知的跳跃模式和根据一个非跳跃模式频道获得的频道估算来联合导出。在非零复数加权被应用到公共导频的情况下,对于数据和公共导频可以应用相同或者不同的相位模式。使用非跳跃导频或者训练序列(在公共或者专用频道上的传送)的频道估算由于频道更为稳定而提供了更好的频道估算。It is also possible to change the phase rotation every T seconds. The choice of T depends on the total duration of the data symbols and the method used to estimate the channel coefficients. The phase can be kept constant for the total duration occupied by a data symbol, where at least one space-time coding block and corresponding dedicated or common pilot sequence/training sequence can be used for proper channel estimation. The pilot sequence can be a Walsh code as used in CDMA systems, or a sequence of training symbols with better correction properties for channel estimation in TDMA systems. The pilot symbols may have the same non-zero complex weighting coefficients applied to the data in the spatio-temporal block. In addition, pilots can also be transmitted without phase jumps. In this case, the effective channel of the data may be able to be derived jointly from a previously known hopping pattern and a channel estimate obtained from a non-hopping pattern channel. Where non-zero complex weighting is applied to the common pilots, the same or different phase patterns may be applied for the data and common pilots. Channel estimation using non-hopping pilots or training sequences (transmission on common or dedicated channels) provides better channel estimation due to more stable channels.

现在参照附图1b,这里是一个根据本发明的一个实施例的一个公共导频频道时空分集传输(STTD)发射机100的部分方框图。发射机100可以用作一个延伸到第三代系统标准的宽带CDMA(WCDMA)的版本99的4天线分集传输。发射机100包括输入端126,块编码处理器124,业务频道符号流处理分支输入102a-102d,天线增益块104a-104d,移相器106a和106b,移相器输入端112a和112b,编码乘法器108a-108d,导频序列处理分支输入114a-114d,天线增益块116a-116d,编码乘法器118a-118d,RF发射机128,包括RF发射机128z-128d以及天线1-4。Referring now to FIG. 1b, there is shown a partial block diagram of a common pilot channel space-time diversity transmission (STTD) transmitter 100 in accordance with an embodiment of the present invention. Transmitter 100 can be used as a 4-antenna diversity transmission extended to Release 99 of the Wideband CDMA (WCDMA) standard for third generation systems. Transmitter 100 includes input 126, block code processor 124, traffic channel symbol stream processing branch inputs 102a-102d, antenna gain blocks 104a-104d, phase shifters 106a and 106b, phase shifter inputs 112a and 112b, code multiplication 108a-108d, pilot sequence processing branch inputs 114a-114d, antenna gain blocks 116a-116d, code multipliers 118a-118d, RF transmitter 128, including RF transmitters 128z-128d, and antennas 1-4.

在附图1b中,将被传送的数据在输入端126被接收,该数据包括一个频道编码和包含符号S1S2的交织输入符号流X(t)。块编码处理器124每两个接收符号S1S2执行一次编码从而产生一个包含一个2×2的正交时空块编码的变换结果。在本实施例中,块编码处理器124可以执行Alamouti变换从而产生一个块编码,以下列的矩阵形式表示:In Fig. 1b, data to be transmitted is received at input 126, the data comprising a channel code and an interleaved input symbol stream X(t) comprising symbols S1S2. The block coding processor 124 performs coding every two received symbols S1S2 to generate a transform result comprising a 2×2 orthogonal spatio-temporal block coding. In this embodiment, the block encoding processor 124 may perform an Alamouti transform to generate a block encoding, expressed in the following matrix form:

SS 11 SS 22 -- SS 22 ** SS 11 ** -- -- -- (( 11 ))

然后矩阵被分为两个符号的4个流,这些流中的每一个都输入到业务频道符号流处理分支输入端102a-102d中。如图1所示,流S1S2被输入到102a,S1S2被输入到102b,-S2*S1*被输入到102c,-S2*S1*被输入到102d。非零复数加权被天线增益块104a-104d和移相器106a和106b执行。每一个处理分支的天线增益在天线增益块104a-104d中调整。当天线增益被调整以后,移相器106a和106b将一个相移应用到天线增益块104b输出的流S1S2以及天线增益块104d输出的流-S2*S1*。移相器控制块112a和112b通过使用一个连续的或者分离的相位跳跃模式来移相从而控制移相器106a和106b。然后向编码乘法器108a-108d输入一个CDMA加扰码,从而产生流向RF发射机128a的流S1S2,在天线1上发射,流向RF发射机128b的流S1S2(exp(jΦk1),在天线2上发射,流向RF发射机128c的流-S1*S2*,在天线3上发射,以及流向RF发射机128d的流-S2*S1*(exp(jΦk2),在天线4上发射。RF发射机可以执行基带脉冲成形,调制和载波上变换。在一些设备中,可以在基带脉冲成形和调制步骤之后选择应用相位跳跃或扫描。The matrix is then divided into 4 streams of two symbols, each of these streams is input to a traffic channel symbol stream processing branch input 102a-102d. As shown in FIG. 1, stream S1S2 is input to 102a, S1S2 is input to 102b, -S2 * S1 * is input to 102c, and -S2 * S1 * is input to 102d. Non-zero complex weighting is performed by antenna gain blocks 104a-104d and phase shifters 106a and 106b. The antenna gain of each processing branch is adjusted in antenna gain blocks 104a-104d. When the antenna gain is adjusted, phase shifters 106a and 106b apply a phase shift to the stream S1S2 output by antenna gain block 104b and the stream -S2 * S1 * output by antenna gain block 104d. Phase shifter control blocks 112a and 112b control phase shifters 106a and 106b by shifting phases using a continuous or discrete phase skip pattern. A CDMA scrambling code is then input to code multipliers 108a-108d, thereby generating stream S1S2 flowing to RF transmitter 128a on antenna 1 and stream S1S2(exp(jΦk1) flowing to RF transmitter 128b on antenna 2 To transmit, the stream -S1 * S2 * to RF transmitter 128c, transmits on antenna 3, and the stream -S2 * S1 * (exp(jΦk2), to RF transmitter 128d, transmits on antenna 4. The RF transmitter can Performs baseband pulse shaping, modulation, and carrier upconversion. In some devices, phase hopping or sweeping can optionally be applied after the baseband pulse shaping and modulation steps.

公共导频频道序列X1-X4被输入到导频序列处理分支输入114a-114d。导频序列然后通过增益块116a-116d和编码乘法器118a-118d被分别处理。编码乘法器118a-118d的编码输出然后被分别输入到RF发射机130的RF发射器128a-128d中。Common pilot channel sequences X1-X4 are input to pilot sequence processing branch inputs 114a-114d. The pilot sequences are then processed through gain blocks 116a-116d and code multipliers 118a-118d, respectively. The encoded outputs of encoded multipliers 118a-118d are then input into RF transmitters 128a-128d of RF transmitter 130, respectively.

然后导频序列X1在天线1上被发射,导频序列X2在天线2上被发射,导频序列X3在天线3上被发射,以及导频序列X4在天线4上被发射。Then pilot sequence X1 is transmitted on antenna 1 , pilot sequence X2 is transmitted on antenna 2 , pilot sequence X3 is transmitted on antenna 3 , and pilot sequence X4 is transmitted on antenna 4 .

现在参照附图4,其是一个与附图1b中的发射机100配套使用的一个接收机的部分方框图。附图4表明了在一个接收机部件中的一个耙式查找器中的信号处理。接收的从发射机100发射的导频序列X1-X4被分别接收和输入到频道估算处理器402a-402d。频道估算器404然后执行频道估算功能,例如对每一个频道1-4的一个低通滤波的移动平均功能。然后频道1-4的估计值从输出端406a406d输出到加法器410a,移相器408a,加法器410b和移相器408b。移相器408a从移相控制块414a接收输入并为频道2移动与发射机100的天线2所发射的业务频道符号S1S2中所使用的相同的相移估计值。移相器408b从移相控制块414b接收输入并为频道4移动与发射机100的天线4所发射的业务频道符号-S2*S1*中所使用的相同的相移估计值。频道2的估测相位版本与频道1的估计值通过加法器410a相合并,频道4的估测相位版本与频道3的估测在加法器410b中合并。频道1和2(412a)合并的估测值以及频道3和4(412b)的合并估测值然后被输入到STTD解调器418,解调器418使用频道估测来处理接收的传输信号。解调制信号然后在耙式合并器,解交织和频道解码器420中被处理从而产生接收的符号S1S2。Reference is now made to FIG. 4, which is a partial block diagram of a receiver for use with transmitter 100 of FIG. 1b. Figure 4 illustrates signal processing in a rake finder in a receiver unit. The received pilot sequences X1-X4 transmitted from transmitter 100 are received and input to channel estimation processors 402a-402d, respectively. Channel estimator 404 then performs a channel estimation function, such as a low pass filtered moving average function for each of channels 1-4. The estimated values of channels 1-4 are then output from output terminals 406a, 406d to adder 410a, phase shifter 408a, adder 410b and phase shifter 408b. Phase shifter 408a receives input from phase shift control block 414a and shifts for channel 2 by the same phase shift estimate used in traffic channel symbols S1S2 transmitted by antenna 2 of transmitter 100 . Phase shifter 408b receives input from phase shift control block 414b and shifts for channel 4 by the same phase shift estimate used in the traffic channel symbols - S2 * S1 * transmitted by antenna 4 of transmitter 100 . The estimated phase version of channel 2 is combined with the estimate of channel 1 in adder 410a, and the estimated phase version of channel 4 is combined with the estimate of channel 3 in adder 410b. The combined estimate of channels 1 and 2 (412a) and the combined estimate of channels 3 and 4 (412b) are then input to the STTD demodulator 418, which uses the channel estimate to process the received transmission signal. The demodulated signal is then processed in a rake combiner, deinterleaver and channel decoder 420 to produce received symbols S1S2.

在一个替代的4天线分集的公共导频频道实施例中,公共的导频频道在传输以前以与业务频道相同的方式被移相。现在参照附图2,其是一个根据本发明的另一个实施例的一个公共导频频道STTD发射机200的部分方框图。发射机200包括输入端226,块编码处理器224,业务频道符号流处理分支输入202a-202d,天线增益块204a-204d,移相器206a和206b,导频序列处理分支输入端241a-214d,天线增益块216a-216d,移相器218a和218b,移相控制块224a和224b,编码乘法器220a-220d,编码乘法器输入端222,RF发射机228,包括RF发射机228a-228d,以及天线1-4。In an alternate 4-antenna diversity common pilot channel embodiment, the common pilot channel is phase shifted in the same manner as the traffic channel prior to transmission. Referring now to FIG. 2, which is a partial block diagram of a common pilot channel STTD transmitter 200 according to another embodiment of the present invention. Transmitter 200 includes input 226, block encoding processor 224, traffic channel symbol stream processing branch inputs 202a-202d, antenna gain blocks 204a-204d, phase shifters 206a and 206b, pilot sequence processing branch inputs 241a-214d, Antenna gain blocks 216a-216d, phase shifters 218a and 218b, phase shift control blocks 224a and 224b, code multipliers 220a-220d, code multiplier input 222, RF transmitter 228, including RF transmitters 228a-228d, and Antennas 1-4.

发射机200中的业务频道处理和传输以与附图1中的发射机100中所使用的业务频道处理相同的方式被执行。但是发射机200使用被移相了的公共导频。公共导频频道序列P1被输入到导频序列处理分支输入端214a和214b,公共导频频道序列P2被输入到导频序列处理分支输入端214c和214d。导频序列然后通过天线增益块216a-216d被分别处理。从天线增益块216a输出的导频序列P1被输入到编码乘法器220a。从天线增益块216c输出的导频序列P2被输入到编码乘法器220c。从天线增益块216b输出的导频序列P2被输入到移相器218a。从天线增益块216d输出的导频序列P2被输入到移相器218b。移相器218a和218b在移相控制器224a和224b的控制器分别进行一个相位移动。相位移动可以是在业务频道中使用的相同的连续模式或者分离的相位跳跃模式。移相器218a输出的移相导频道序列P1然后被输入到编码乘法器220b,从移相器218b输出的移相导频序列P2然后被输入到编码乘法器220d。编码乘法器220a输出的编码导频序列P1被输入到RF发射机228a,在天线1上传输。编码乘法器220b输出的编码移相导频序列P1被输入到RF发射机228b,在天线2上传输,编码乘法器220c输出的编码导频序列P2被输入到RF发射机228c,在天线3上传输,以及从编码乘法器220b输出的编码移相导频序列P被输入到RF发射机228d,在天线4上传输。Traffic channel processing and transmission in transmitter 200 is performed in the same manner as traffic channel processing used in transmitter 100 in FIG. 1 . But the transmitter 200 uses the phase-shifted common pilots. The common pilot channel sequence P1 is input to the pilot sequence processing branch input terminals 214a and 214b, and the common pilot channel sequence P2 is input to the pilot sequence processing branch input terminals 214c and 214d. The pilot sequences are then separately processed through antenna gain blocks 216a-216d. The pilot sequence P1 output from the antenna gain block 216a is input to the code multiplier 220a. The pilot sequence P2 output from the antenna gain block 216c is input to the code multiplier 220c. The pilot sequence P2 output from the antenna gain block 216b is input to the phase shifter 218a. The pilot sequence P2 output from the antenna gain block 216d is input to the phase shifter 218b. Phase shifters 218a and 218b perform a phase shift at the controllers of phase shift controllers 224a and 224b, respectively. The phase shift can be the same continuous pattern used in traffic channels or a separate phase-hopping pattern. The phase-shifted pilot sequence P1 output from the phase shifter 218a is then input to the code multiplier 220b, and the phase-shifted pilot sequence P2 output from the phase shifter 218b is then input to the code multiplier 220d. Coded pilot sequence P1 output by coded multiplier 220a is input to RF transmitter 228a for transmission on antenna 1 . The coded phase-shifted pilot sequence P1 output by the coded multiplier 220b is input to the RF transmitter 228b for transmission on antenna 2, and the coded pilot sequence P2 output by the coded multiplier 220c is input to the RF transmitter 228c for transmission on the antenna 3 Transmission, and the coded phase-shifted pilot sequence P output from coded multiplier 220b is input to RF transmitter 228d for transmission on antenna 4.

移相器218a和218b可以根据各种替代方式来进行相位移动,例如,上述的在附图1的实施例中所执行的相位移动。Phase shifters 218a and 218b may perform phase shifting according to various alternatives, for example, the phase shifting performed in the embodiment of FIG. 1 described above.

现在参照附图5,其为与附图2中的发射机配套使用的一个接收机实施例500的部分方框图。接收机500包括频道1和频道2估算处理分支输入端502a和频道3和频道4估算处理分支输入端502b,频道估算器504,STTD解调制器508,传输信号输入510和耙式合并器,解交织器和频道解码器512。Referring now to FIG. 5, which is a partial block diagram of an embodiment 500 of a receiver for use with the transmitter of FIG. Receiver 500 includes channel 1 and channel 2 estimation processing branch input 502a and channel 3 and channel 4 estimation processing branch input 502b, channel estimator 504, STTD demodulator 508, transmit signal input 510 and rake combiner, Interleaver and Channel Decoder 512.

分别从发射机200的天线1和天线2在频道1和频道2接收到的接收导频序列P1(ch1+ch2Φ)被输入到输入端502a。分别从发射机200的天线3和天线4在频道3和频道4接收到的接收导频序列P2(ch3+ch4Φ)被输入到输入端502b。频道估算器504使用诸如低通滤波移动平均功能来执行频道估算,并且为频道1和频道2(chest1,2)输出一个合并的估计值,为频道3和频道4(chest3,4)输出一个合并的估计值。频道估计值然后被输入到STTD解调制器508,该解调制器使用频道估计值处理从输入端510接收的传输信号。解调制的信号然后在耙式合并器,解交织器和频道解码器512中被处理,从而产生接收的符号S1S2。附图6表明了附图5中的STTD解调制器508的耙式查找器的一个实施例,该查找器利用频道1,2和频道3,4来解调制接收的传输信号。Reception pilot sequences P1 (ch1+ch2Φ) received from antenna 1 and antenna 2 of transmitter 200 on channel 1 and channel 2, respectively, are input to input terminal 502a. The received pilot sequences P2(ch3+ch4Φ) received from the antenna 3 and the antenna 4 of the transmitter 200 on the channel 3 and the channel 4, respectively, are input to the input terminal 502b. The channel estimator 504 performs channel estimation using a function such as a low-pass filtered moving average and outputs a combined estimate for channels 1 and 2 (chest1,2) and a combined estimate for channels 3 and 4 (chest3,4). estimated value. The channel estimate is then input to STTD demodulator 508 which processes the transmission signal received from input 510 using the channel estimate. The demodulated signal is then processed in a rake combiner, deinterleaver and channel decoder 512 to produce received symbols S1S2. FIG. 6 illustrates an embodiment of the rake finder of STTD demodulator 508 of FIG. 5, which uses channels 1,2 and channels 3,4 to demodulate received transmissions.

在4天线分集的另一个实施例中,专用的导频频道可以在附图1中的发射机150的一个WCDMA的版本中被应用。现在参照附图3,其为一个根据本发明的另一个实施例的专用导频频道STTD发射机300的部分方框图。发射机300包括输入端318,块编码处理器316,频道符号流处理分支输入端302a-302d,天线增益块304a-304d,移相器306a和306b,移相器输入端312a和312b,编码乘法器308a-308d,编码乘法器输入端310以及天线1-4。In another embodiment of 4-antenna diversity, dedicated pilot channels may be employed in a WCDMA version of transmitter 150 in FIG. 1 . Referring now to FIG. 3, which is a partial block diagram of a dedicated pilot channel STTD transmitter 300 according to another embodiment of the present invention. Transmitter 300 includes input 318, block code processor 316, channel symbol stream processing branch inputs 302a-302d, antenna gain blocks 304a-304d, phase shifters 306a and 306b, phase shifter inputs 312a and 312b, code multiplication 308a-308d, code multiplier input 310, and antennas 1-4.

附图3中的发射机300是一个使用专用导频频道的设备,专用导频是通过将导频序列嵌入到业务频道符号流中来传输的。输入端318和块编码处理器316与附图1中输入端126和块编码处理器124的运行方式相同。在发射机300中,当符号S1S2被输入到符号流处理分支输入端302a和302b的时候,导频频道序列U1被输入到输入端302a和302b,在S1S2符号组之间多路复用。-S2*S1*被输入到符号流处理分支输入端302c和302d,导频频道序列U2被输入到输入端302c和302d,并且在-S2*S1*的符号组之间进行多路复用。另一种可能是定义4个不同的专用导频序列,每一个传输天线一个。The transmitter 300 in FIG. 3 is a device that uses a dedicated pilot channel, which is transmitted by embedding a pilot sequence into the traffic channel symbol stream. Input 318 and block encoding processor 316 operate in the same manner as input 126 and block encoding processor 124 of FIG. 1 . In transmitter 300, when symbols S1S2 are input to symbol stream processing branch inputs 302a and 302b, pilot channel sequence U1 is input to inputs 302a and 302b, multiplexed between groups of S1S2 symbols. -S2 * S1 * is input to symbol stream processing branch inputs 302c and 302d, pilot channel sequence U2 is input to inputs 302c and 302d, and multiplexed between symbol groups of -S2 * S1 * . Another possibility is to define 4 different dedicated pilot sequences, one for each transmit antenna.

在输入端302a-302d多路复用的符号流然后被分别输入到天线增益块304a-304d。频道增益被应用到天线增益块304a-304d。包括S1S2和导频序列U1的流从天线增益块304a输出到编码乘法器308a。包括S1S2和导频序列U1的流从天线增益块304b输出到移相器306a,在那里,信号流根据移相控制块312a的输入进行相位移动,然后被输入到编码乘法器308b。包括-S2*S1*和导频序列U2的流从天线增益块304c输出到编码乘法器308c,然后相同的流,-S2*S1*和导频序列从天线增益块304d输出到移相器306b,在那里流根据移相控制器312b的输入进行相位移动,然后输入到编码乘法器308d。编码乘法器308a-308d将适当的流乘以一个加扰码。编码相乘的流S1S2和导频序列U1然后被输入到RF发射机314a,在天线1上发射。编码相乘移相的流S1S2和导频序列U1被输入到RF发射机314b,在天线2上发射。编码相乘的流-S2*S1*和导频序列U2被输入到RF发射机314c,在天线3上发射,以及编码相乘相位移动的流-S2*S1*和导频序列U2被输入到RF发射机314d,在天线4上发射。RF发射机314a-314d在天线1-4发射流之前,执行调制和载波上变换。RF发射机可以执行基带的脉冲成形,调制和载波上变换。在一些设备中可以在基带脉冲成型和调制之后选择应用非零加权。The symbol streams multiplexed at inputs 302a-302d are then input to antenna gain blocks 304a-304d, respectively. Channel gains are applied to antenna gain blocks 304a-304d. A stream including S1S2 and pilot sequence U1 is output from antenna gain block 304a to code multiplier 308a. The stream including S1S2 and pilot sequence U1 is output from antenna gain block 304b to phase shifter 306a where the signal stream is phase shifted according to the input of phase shift control block 312a and then input to code multiplier 308b. A stream comprising -S2 * S1 * and pilot sequence U2 is output from antenna gain block 304c to code multiplier 308c, then the same stream, -S2 * S1 * and pilot sequence is output from antenna gain block 304d to phase shifter 306b , where the stream is phase shifted according to the input of the phase shift controller 312b, and then input to the encoding multiplier 308d. Code multipliers 308a-308d multiply the appropriate stream by a scrambling code. The coded multiplied stream S1S2 and pilot sequence U1 are then input to RF transmitter 314a for transmission on antenna 1 . The coded, multiplied and phase-shifted stream S1S2 and the pilot sequence U1 are input to the RF transmitter 314b for transmission on the antenna 2. Code multiplied stream - S2 * S1 * and pilot sequence U2 is input to RF transmitter 314c, transmitted on antenna 3, and code multiplied phase shifted stream - S2 * S1 * and pilot sequence U2 is input to RF transmitter 314d, transmits on antenna 4. RF transmitters 314a-314d perform modulation and carrier up-conversion prior to transmitting the streams from antennas 1-4. The RF transmitter can perform baseband pulse shaping, modulation, and carrier upconversion. In some devices there is an option to apply non-zero weighting after baseband pulse shaping and modulation.

附图5中的接收机可以进行改变与附图3中的发射机300配套使用。在这种情况下,接收机500可进行类似的运行,除了输入端502a和502b分别向频道估算器504c输入U1(Ch1+Ch2Φ)和U2(Ch3+Ch4Φ)。The receiver in FIG. 5 can be changed to be used in conjunction with the transmitter 300 in FIG. 3 . In this case, receiver 500 may operate similarly, except that inputs 502a and 502b input U1(Ch1+Ch2Φ) and U2(Ch3+Ch4Φ) to channel estimator 504c, respectively.

在4天线分集的另一个实施例中,专用导频频道和公共导频频道可以在一个联合的实施例中应用。现在参照附图12,其为根据本发明的另一个实施例的一个专用/公共导频频道STTD发射机1200的部分方框图。In another embodiment of 4-antenna diversity, dedicated pilot channels and common pilot channels can be applied in a joint embodiment. Referring now to FIG. 12, which is a partial block diagram of a dedicated/common pilot channel STTD transmitter 1200 according to another embodiment of the present invention.

发射机1200基本上与附图3中的发射机300的运行方式相同,只是在天线1和天线3上增加了公共导频频道。公共导频频道P1和P2被分别输入到导频序列处理分支输入端1218a和1218b。导频序列然后通过天线增益块1220a和1220b以及编码乘法器1222a和1222b被分别处理。从编码乘法器1222a和1222b输出的编码然后被分别输入到RF发射机1214的RF发射机1214a和1214c。RF发射机可以执行基带脉冲成形,调制,载波上变换。在一些设备中,也可以在基带脉冲成形和调制以后选择应用非零加权。Transmitter 1200 basically operates in the same manner as transmitter 300 in FIG. 3 , except that common pilot channels are added on antenna 1 and antenna 3 . Common pilot channels P1 and P2 are input to pilot sequence processing branch inputs 1218a and 1218b, respectively. The pilot sequences are then processed through antenna gain blocks 1220a and 1220b and code multipliers 1222a and 1222b, respectively. The codes output from code multipliers 1222a and 1222b are then input to RF transmitters 1214a and 1214c of RF transmitter 1214, respectively. The RF transmitter can perform baseband pulse shaping, modulation, and carrier upconversion. In some devices, non-zero weighting may also optionally be applied after baseband pulse shaping and modulation.

附图12中的发射机在天线1和天线3上提供了非跳跃的公共导频频道,在天线1,2,3,4上提供了专用的导频频道。导频序列可以在一个时隙内多路复用,例如在一个实施例中,在一个传送帧内具有15个时隙。天线增益可以对公共和专用控制频道设定的不同。天线增益也能够随时间变化。The transmitter in Figure 12 provides non-hopping common pilot channels on antenna 1 and antenna 3 and dedicated pilot channels on antennas 1,2,3,4. The pilot sequences may be multiplexed within a time slot, eg, 15 time slots within a transmission frame in one embodiment. Antenna gain can be set differently for common and private control channels. Antenna gain can also vary over time.

现在参照附图13,其为一个与附图12中的发射机配套使用的接收机的部分方框图。接收机1300包括具有输入端1302a和1302b的频道1和频道2处理分支和具有输入端1302c和1302d的频道3和频道4处理分支。移相输入端1304,频道估算器1306,STTD解调制器1310,传输信号输入端312和解交织和解码器1314。Reference is now made to FIG. 13, which is a partial block diagram of a receiver for use with the transmitter of FIG. 12. FIG. Receiver 1300 includes channel 1 and channel 2 processing branches having inputs 1302a and 1302b and channel 3 and channel 4 processing branches having inputs 1302c and 1302d. Phase shift input 1304 , channel estimator 1306 , STTD demodulator 1310 , transmit signal input 312 and deinterleaver and decoder 1314 .

接收的导频序列P1,U1,P2和U2和输入分别输入到接收机1300的1302a,1302b,1302c和1302d。频道估算器1306执行频道估算,例如,利用一个具有平均功能的低通滤波,并且为频道1和2(chest1,2)1308a输出一个合并的估计值,为频道3和频道4(chest3,4)输出一个合并的估计值。然后频道估计值被输入到STTD解调制器1310,该解调制器利用频道估计值处理从输入端1312接收的传输信号。解调制信号然后在耙式合并器,解交织器和频道解码器1314中被处理,从而产生接收的符号S1S2。The received pilot sequences P1, U1, P2 and U2 are input to receiver 1300 at 1302a, 1302b, 1302c and 1302d, respectively. Channel estimator 1306 performs channel estimation, e.g., using a low-pass filter with an averaging function, and outputs a combined estimate for channels 1 and 2 (chest1,2) 1308a, and a combined estimate for channels 3 and 4 (chest3,4) Outputs a pooled estimate. The channel estimate is then input to STTD demodulator 1310, which processes the transmission signal received from input 1312 using the channel estimate. The demodulated signal is then processed in rake combiner, deinterleaver and channel decoder 1314 to produce received symbols S1S2.

相位跳跃的一种已知的技术是为了能量控制的目的使用的。现在参照附图14,其表明了根据本发明的一个实施例的用于估计能量控制的一个接收机的部分。接收机1400包括频道估算器1402,频道估算分支输入端1404a-1404d,移相输入端1408a和1408b,移相器1406a和1406b,频道估算输出端1410a和1410b,平方块1412a和1412b,能量控制器1414。One known technique of phase jumping is used for energy control purposes. Referring now to FIG. 14, there is shown a portion of a receiver for estimating energy control in accordance with an embodiment of the present invention. Receiver 1400 includes channel estimator 1402, channel estimation branch inputs 1404a-1404d, phase shifting inputs 1408a and 1408b, phase shifters 1406a and 1406b, channel estimation outputs 1410a and 1410b, square blocks 1412a and 1412b, energy controller 1414.

频道估算器1402在一个给定的时隙“t”过程中,为所有的四个天线根据从例如发射机1200来的公共或专用频道计算频道系数。其可以是一个时隙t+1的频道预测,交替地,时隐t的频道估算可以在缓慢变化的衰落信道中使用。这些频道系数在输入端1404a-1404d分别被表示为Chanest#1(t),Chanest#2(t),Chanest#3(t),Chanest#4(t)。对于多重耙式查找器,例如,Chanest#1(t)是一个与天线1的所有耙式查找器相对应的矢量频道估计。Channel estimator 1402 calculates channel coefficients for all four antennas based on common or dedicated channels from eg transmitter 1200 during a given time slot "t". It may be a channel prediction for one time slot t+1, alternatively a channel estimate for time implicit t may be used in a slowly varying fading channel. These channel coefficients are denoted as Chanest #1(t), Chanest #2(t), Chanest #3(t), Chanest #4(t) at inputs 1404a-1404d, respectively. For multiple rake finders, for example, Chanest#1(t) is a vector channel estimate corresponding to all rake finders for antenna 1.

使用相位移动输入端1408a和1408b的相位跳跃的现有知识和当前时隙“t”的频道估算的知识,时隙“t+1”的频道系数可以估算:Using prior knowledge of the phase jump at the phase shift inputs 1408a and 1408b and knowledge of the channel estimate for the current time slot "t", the channel coefficient for time slot "t+1" can be estimated as:

Chanest#12(t)=Chanest#1(t)+Chanest#2(t)eΦ12(t+1) Chanest#12(t)=Chanest#1(t)+Chanest#2(t)e Φ12(t+1)

Chanest#34(t)=Chanest#3(t)+Chanest#4(t)eΦ34(t+1)  (2)Chanest#34(t)=Chanest#3(t)+Chanest#4(t)e Φ34(t+1) (2)

其中Φ12,Φ34是已知的一个优先权。Among them, Φ12 and Φ34 are a known priority.

时隙(t+1)的接收信号能量估算能够根据Chanest#12(t+1)和Chanest#12(t+1)来计算:The received signal energy estimate for time slot (t+1) can be calculated from Chanest#12(t+1) and Chanest#12(t+1):

received_power(t+1)=||Chanest#12(t+1)||2+||Chanest#34(t+1)||2 received_power(t+1)=||Chanest#12(t+1)|| 2 +||Chanest#34(t+1)|| 2

利用接收的能量估算,处理器1414产生了一个能量控制命令。Using the received energy estimate, processor 1414 generates an energy control command.

本发明的方法和装置也可以在沃尔什码域的分集中实现。现在参照附图7,其为根据本发明的一个实施例的时空扩散(STS)发射机700的部分方框图。The method and apparatus of the present invention can also be implemented in diversity in the Walsh code domain. Reference is now made to FIG. 7, which is a partial block diagram of a space-time dispersive (STS) transmitter 700 in accordance with one embodiment of the present invention.

发射机700是附图1a中的发射机150的一个STS实施例,其中时空块处理器在沃尔什码域执行变换。使用的STS块编码矩阵可以被表示为:Transmitter 700 is an STS embodiment of transmitter 150 in FIG. 1a in which the spatio-temporal block processor performs the transform in the Walsh code domain. The STS block coding matrix used can be expressed as:

S 1 W ~ 1 - S 2 * W ~ 2 S 2 W ~ 1 + S 1 * W ~ 2 其中 W ~ 1 = W 1 W 1 W ~ 2 = W 1 - W 1 - - - ( 3 ) S 1 W ~ 1 - S 2 * W ~ 2 S 2 W ~ 1 + S 1 * W ~ 2 in W ~ 1 = W 1 W 1 W ~ 2 = W 1 - W 1 - - - ( 3 )

如附图1a中的实施例所做的,矩阵的每一行和它的相位移动版本被分别在天线1-4上发射。在每一行上的符号S1和S2在两个符号周期内被同步发射,而不是依次发射。数据符号在频道编码器720的输入端718被输入到发射机700。频道编码器720编码,穿孔,交织和形成输入数据符号,并且每隔一个编码器输出符号S1作为偶数数据,每隔一个编码器输出符号S2作为奇数数据。偶数数据然后通过符号接收块702a,b,e,f,沃尔什功能块704b和704d,沃尔什乘法器706a,b,e,f,加法器708a-708d以及复数加法器710a和710b被处理。奇数数据通过符号接收块702c,d,g,h,沃尔什功能块704b和704d,沃尔什乘法器706c,d,g,h,加法器708a-708d以及复数加法器710a和710b被处理。复数加法器710a输出的结果是矩阵行

Figure C0280729000184
复数加法器710b输出的结果是矩阵行 Each row of the matrix and its phase-shifted version are transmitted on antennas 1-4 respectively, as done in the embodiment of Figure 1a. Symbols S1 and S2 on each row are transmitted synchronously within two symbol periods, rather than sequentially. Data symbols are input to transmitter 700 at input 718 of channel encoder 720 . Channel encoder 720 encodes, punctures, interleaves and forms the input data symbols, and every other encoder outputs symbol S1 as even data and every other encoder outputs symbol S2 as odd data. Even data is then passed through sign receiving blocks 702a, b, e, f, Walsh functional blocks 704b and 704d, Walsh multipliers 706a, b, e, f, adders 708a-708d and complex adders 710a and 710b are deal with. Odd data is processed through sign receiving blocks 702c, d, g, h, Walsh function blocks 704b and 704d, Walsh multipliers 706c, d, g, h, adders 708a-708d and complex adders 710a and 710b . The output of the complex adder 710a is the matrix row
Figure C0280729000184
The output of the complex adder 710b is the matrix row

Figure C0280729000186
然后被输入到复数乘法器712a,产生
Figure C0280729000187
Figure C0280729000188
被输入到复数乘法器712b,产生
Figure C0280729000189
Figure C02807290001810
然后被输入到RF发射机714a,在天线1上传输,
Figure C02807290001811
被输入到RF发射机714b,在天线2上传输,
Figure C02807290001812
被输入到RF发射机714c,在天线3上传输,以及
Figure C02807290001813
被输入到RF发射机714d,在天线4上传输。
Figure C0280729000186
is then input to complex multiplier 712a, producing
Figure C0280729000187
Figure C0280729000188
is input to the complex multiplier 712b, which produces
Figure C0280729000189
Figure C02807290001810
is then input to RF transmitter 714a for transmission on antenna 1,
Figure C02807290001811
is input to RF transmitter 714b, transmitted on antenna 2,
Figure C02807290001812
is input to RF transmitter 714c, transmitted on antenna 3, and
Figure C02807290001813
is input to RF transmitter 714d for transmission on antenna 4.

现在参照附图9,其为一个表明了与附图7中的发射机700配套使用的接收机900的一个实施例的部分方框图。发射机700包括输入端912,沃尔什功能块902b和902d,沃尔什乘法器902a和902c,频道乘法器904a-904d,复数加法器906a和906b,乘法器(MUX)908,以及输出端910。一个接收的信号在输入端912被接收,并且被STS解调制器所处理。导频频道传输和频道估算处理与STTD的情况相同。频道估算904c和904b与非跳跃公共导频频道的情况下的附图4中的412a和412b相同。对于跳跃公共导频或者专用导频传输的情况,频道估算能够从图5的频道估算模块504获得。这些频道估算值作为h1和h2被输入到图9的STS解调制器,h1相应于来自于天线1,天线2的合并频道估算,h2相应于来自于天线3,天线4的频道估算。当利用902a,b,c,d和904a,b,c,d以及906a,b进行了STS解调制以后,908的输出就是STS解调制的信号,并且该信号被送到图5的耙式合并器,解交织器和频道解码器模块。Referring now to FIG. 9, which is a partial block diagram illustrating one embodiment of a receiver 900 for use with the transmitter 700 of FIG. The transmitter 700 includes an input 912, Walsh functional blocks 902b and 902d, Walsh multipliers 902a and 902c, channel multipliers 904a-904d, complex adders 906a and 906b, a multiplier (MUX) 908, and an output 910. A received signal is received at input 912 and processed by the STS demodulator. The pilot channel transmission and channel estimation process are the same as in the case of STTD. Channel estimates 904c and 904b are the same as 412a and 412b in Figure 4 for the non-hopping common pilot channel case. For the case of hopping common pilot or dedicated pilot transmissions, the channel estimate can be obtained from the channel estimation module 504 of FIG. 5 . These channel estimates are input to the STS demodulator of FIG. 9 as h1 and h2, h1 corresponding to the combined channel estimate from antenna 1, antenna 2 and h2 corresponding to the channel estimate from antenna 3, antenna 4. After using 902a, b, c, d and 904a, b, c, d and 906a, b for STS demodulation, the output of 908 is the STS demodulated signal, and the signal is sent to the rake combination in Figure 5 , deinterleaver and channel decoder blocks.

这里建议的发明也可以被应用在本发明的一个正交分集(OTD)传送的实施例中。现在参照附图8,其为根据本发明的一个实施例的一个OTD发射机800的部分方框图。发射机800包括输入端822,频道编码器820,符号接收模块802a-802d,沃尔什功能模块804a和804b,沃尔什乘法器806a-806d,复数加法器808a-808d,复数乘法器810a和810b,RF发射机812a-812d。发射机是附图1a中的发射机150的一个正交分集传输(OTD)的实施例,其时空块编码处理器在沃尔什码域执行变换。所使用的OTD块编码矩阵可以这样表示:The invention suggested here can also be applied in an Orthogonal Diversity (OTD) transmission embodiment of the present invention. Reference is now made to FIG. 8, which is a partial block diagram of an OTD transmitter 800 according to one embodiment of the present invention. Transmitter 800 includes input 822, channel encoder 820, symbol receiving blocks 802a-802d, Walsh functional blocks 804a and 804b, Walsh multipliers 806a-806d, complex adders 808a-808d, complex multiplier 810a and 810b, RF transmitters 812a-812d. The transmitter is an Orthogonal Diversity (OTD) embodiment of transmitter 150 in Figure 1a with a spatio-temporal block coding processor performing the transform in the Walsh code domain. The OTD block coding matrix used can be represented as follows:

S 1 W ~ 1 S 2 W ~ 2 这里 W ~ 1 = W 1 W 1 W ~ 2 = W 1 - W 1 - - - ( 4 ) S 1 W ~ 1 S 2 W ~ 2 here W ~ 1 = W 1 W 1 W ~ 2 = W 1 - W 1 - - - ( 4 )

如附图1a中所完成的,矩阵的每一行以及它的相位移动版本都被分别传送到天线1-天线4。数据符号在频道编码器820的输入端822被输入到发射机800。频道编码器820编码,穿孔,交织和形成输入数据符号并且每隔一个编码器输出符号S1作为偶数数据,每个一个编码器输出符号S2作为奇数数据。偶数数据然后通过符号接收模块802a和802b,沃尔什功能模块804a,沃尔什乘法器806a和806b以及复数加法器808a被处理。奇数数据通过符号接收模块802c和802d,沃尔什功能模块804b,沃尔什乘法器806c和806d以及复数加法器808b被处理。复数加法器808a输出的结果是

Figure C0280729000194
复数加法器808b输出的结果是
Figure C0280729000195
Figure C0280729000196
然后被输入到复数乘法器818a,产生
Figure C0280729000197
Figure C0280729000198
被输入到复数乘法器818b,产生
Figure C0280729000199
Figure C02807290001910
然后被输入到RF发射机812a,用于在天线1上发射,
Figure C0280729000201
被输入到RF发射机812b,用于在天线2上发射,
Figure C0280729000202
被输入到发射机812c,用于在天线3上发射,以及
Figure C0280729000203
被输入到RF发射机812d,用于在天线4上传输。As done in Figure 1a, each row of the matrix and its phase-shifted version are transmitted to antenna 1-antenna 4 respectively. Data symbols are input to transmitter 800 at input 822 of channel encoder 820 . The channel encoder 820 encodes, punctures, interleaves and forms the input data symbols and every other encoder outputs symbol S1 as even data and every other encoder outputs symbol S2 as odd data. Even data is then processed through sign receive blocks 802a and 802b, Walsh function block 804a, Walsh multipliers 806a and 806b, and complex adder 808a. Odd data is processed through sign receive blocks 802c and 802d, Walsh function block 804b, Walsh multipliers 806c and 806d, and complex adder 808b. The output of the complex adder 808a is
Figure C0280729000194
The output of the complex adder 808b is
Figure C0280729000195
Figure C0280729000196
is then input to complex multiplier 818a, producing
Figure C0280729000197
Figure C0280729000198
is input to complex multiplier 818b, which produces
Figure C0280729000199
Figure C02807290001910
is then input to RF transmitter 812a for transmission on antenna 1,
Figure C0280729000201
is input to RF transmitter 812b for transmission on antenna 2,
Figure C0280729000202
is input to transmitter 812c for transmission on antenna 3, and
Figure C0280729000203
is input to RF transmitter 812d for transmission on antenna 4.

现在参照附图10,其表明了与附图8中的发射机800配套使用的接收机100的一个实施例的部分方框图。发射机800包括输入端1010,沃尔什功能模块1002a和1002b,沃尔什乘法器1010a和1010b,乘法器1004a和1004b,乘法器1006和输出端1008。在输入端912接收的已接收输入信号利用频道系数h1*和h2*的知识,使用OTD解调制器1000被解调制。该OTD模块的频道系数h1和h2与附图4和附图中解释的导出方式相同。OTD解调制器1000利用1010,1010a,b和1012a,b和1004a,b以及1006被实现。OTD解调制输出1008被送到附图5的耙式合并器,解交织器和频道解码模块512。Referring now to FIG. 10, a partial block diagram of one embodiment of a receiver 100 for use with the transmitter 800 of FIG. 8 is shown. Transmitter 800 includes input 1010 , Walsh functional blocks 1002 a and 1002 b , Walsh multipliers 1010 a and 1010 b , multipliers 1004 a and 1004 b , multiplier 1006 and output 1008 . The received input signal received at input 912 is demodulated using OTD demodulator 1000 with knowledge of channel coefficients h1 * and h2 * . The channel coefficients h1 and h2 of this OTD module are derived in the same way as in Fig. 4 and explained in the accompanying drawings. OTD demodulator 1000 is implemented using 1010, 1010a, b and 1012a, b and 1004a, b and 1006. The OTD demodulated output 1008 is sent to the rake combiner, deinterleaver and channel decoding module 512 of FIG. 5 .

附图1中的实施例也可以在一个EDGE系统中的一个TDMA发射器中应用。现在参照附图11,其为根据本发明的一个实施例的长的ST块编码发射机的部分方框图。发射机1100包括输入端1118,1120,符号流处理分支输入端1116a-1116d,时间反转模块1102和1104,复数共轭模块1106a和b,乘法器1108,相位乘法器1110a和1110b,相位乘法控制模块1112a和1112b以及天线1,2,3,4。频道编码器1120编码,穿孔,交织,和形成一个在接收端1118接收的符号流。频道编码器1120也将输入的符号流分成奇数和偶数数据流。偶数数据流被输入到分支输入端1116a和RF发射机1122a,用于在一个数据脉冲的第一个一半的过程中在天线1上发射,奇数数据流被输入到分支输入端1116c和RF发射机1112c,用于在该数据脉冲的第一个一半的周期内在天线2上发射。在一个脉冲的第二个一半的过程中,偶数数据流被输入到分支输入端1116b,在时间反转模块1102接收时间,在复数共轭模块1106a进行复数共轭并被送到RF发射机1122c,用于在天线3上发射。在该数据脉冲的第二个一半的过程中,奇数数据流被输入到分支输入端1116d,在时间反转模块1104接收时间,在复数共轭模块1106b进行复数共轭,在乘法器1108乘以一个负数,然后被发送到RF发射机1122d,在天线4上发射。一个训练序列SEQ1被嵌入在天线1的发射脉冲的中间,一个训练序列SEQ2被嵌入在天线2的发射脉冲的中间。相位乘法器1112a和1112d分别使用乘法模块1110a和1110b将输入相移到RF发射机1122b和1122d。然后相位乘法器1112a的输出被输入到RF发射机1112b,在天线2上发射,相位乘法器1112b的输出被输入到RF发射机1122d,用于在天线4上发射。RF发射机可以执行基带的脉冲成形,调制,和载波上变换。在一些设备中,可以在基带成形和调制步骤之后选择应用相位相乘。The embodiment in Fig. 1 can also be applied in a TDMA transmitter in an EDGE system. Reference is now made to FIG. 11, which is a partial block diagram of a long ST block coded transmitter in accordance with one embodiment of the present invention. Transmitter 1100 includes inputs 1118, 1120, symbol stream processing branch inputs 1116a-1116d, time reversal modules 1102 and 1104, complex conjugate modules 1106a and b, multiplier 1108, phase multipliers 1110a and 1110b, phase multiplication control Modules 1112a and 1112b and antennas 1,2,3,4. Channel encoder 1120 encodes, punctures, interleaves, and forms a symbol stream received at receiver 1118 . Channel encoder 1120 also splits the incoming symbol stream into odd and even data streams. Even data streams are input to branch input 1116a and RF transmitter 1122a for transmission on antenna 1 during the first half of a data pulse, odd data streams are input to branch input 1116c and RF transmitter 1112c, for transmitting on antenna 2 during the first half period of the data pulse. During the second half of a pulse, the even data stream is input to branch input 1116b, time is received at time reversal block 1102, complex conjugated at complex conjugation block 1106a and sent to RF transmitter 1122c , for transmitting on antenna 3. During the second half of the data burst, the odd data stream is input to branch input 1116d, time is received at time reversal block 1104, complex conjugated at complex conjugation block 1106b, and multiplied at multiplier 1108 by A negative number is then sent to RF transmitter 1122d for transmission on antenna 4. A training sequence SEQ1 is embedded in the middle of the transmission pulse of antenna 1, and a training sequence SEQ2 is embedded in the middle of the transmission pulse of antenna 2. Phase multipliers 1112a and 1112d phase shift the input to RF transmitters 1122b and 1122d using multiplication blocks 1110a and 1110b, respectively. The output of phase multiplier 1112a is then input to RF transmitter 1112b for transmission on antenna 2 and the output of phase multiplier 1112b is input to RF transmitter 1122d for transmission on antenna 4. The RF transmitter can perform baseband pulse shaping, modulation, and carrier upconversion. In some devices, phase multiplication may optionally be applied after the baseband shaping and modulation steps.

在相位乘法器1122a和1122b中应用的相位旋转在脉冲的长度过程中可以保持不变,相位是在一个脉冲中以脉冲为基础进行改变的。相位能够从一个先前解释的MPSK星座图中周期的或者随机的选择。在一个优选实施例中,天线4上的相位旋转与天线2上的相位旋转一个180度的相移或者乘以一个-1保持相同。相位相乘可以在基带成形之前或者之后进行。在附图11的一个替代实施例中,天线1和天线3的发射可以进行内部充电。The phase rotation applied in phase multipliers 1122a and 1122b may remain constant over the length of the pulse, with the phase changing on a pulse-by-pulse basis. The phase can be chosen periodically or randomly from a previously explained MPSK constellation. In a preferred embodiment, the phase rotation on antenna 4 remains the same as the phase rotation on antenna 2 by a phase shift of 180 degrees or multiplied by -1. Phase multiplication can be performed before or after baseband shaping. In an alternative embodiment of FIG. 11, the transmissions from antenna 1 and antenna 3 can be internally charged.

附图3中所示的发射机也能够被应用具有某种改变的EDGE当中。在316中描述的时空编码被应用为块方式,而不是一个EDGE设备中的符号方式。块长度能够被选择为脉冲的第一个一半。在EDGE中,脉冲的第一个一半的长度和第二个一半的长度等于58个符号。在这种情况下,S1和S2表示一个符号块,()*表示符号块的时间反转和负数共轭操作。S1*表示符号块S1已经进行了时间反转和复数共轭。-S2*表示符号块S2已经进行了符号反转,复数共轭和乘以-1.0。导频序列U1和U2能够被选择作为两个训练序列,例如已知的CAZAC序列。扩散码308a,b,c,d没有被应用于EDGE。相位乘法模块306a和306b被保留。The transmitter shown in Fig. 3 can also be used in EDGE with some modifications. The space-time coding described at 316 is applied blockwise rather than symbolically in an EDGE device. The block length can be chosen to be the first half of the pulse. In EDGE, the length of the first half of the pulse and the length of the second half equals 58 symbols. In this case, S1 and S2 represent a symbol block, and () * represents the time reversal and negative conjugate operation of the symbol block. S1 * indicates that the symbol block S1 has been time reversed and complex conjugated. -S2 * indicates that the sign block S2 has been sign-reversed, complex conjugated and multiplied by -1.0. Pilot sequences U1 and U2 can be chosen as two training sequences, eg known CAZAC sequences. Diffusion codes 308a, b, c, d are not applied to EDGE. Phase multiplication blocks 306a and 306b are retained.

一个为2天线时空块编码设计的接收机也可以使用附图1或者附图2中的接收机的实施例。A receiver designed for 2-antenna space-time block coding can also use the embodiment of the receiver in Fig. 1 or Fig. 2 .

根据上面的描述和实施例,本领域的技术人员应该能够意识到尽管本发明的方法和装置式参照特定的实施例进行描述的,但是应当明白对于上面所描述的实施例可以做出各种改变和变形,在不背离如随后的权利要求所限制的本发明的精神和范围内,本发明的各种实施例都能够被实现。Based on the above description and embodiments, those skilled in the art should be able to appreciate that although the method and apparatus of the present invention are described with reference to specific embodiments, it should be understood that various changes can be made to the embodiments described above. With modifications and variations, various embodiments of the invention can be practiced without departing from the spirit and scope of the invention as defined in the following claims.

Claims (22)

1.一种用于从多个天线发射信号的方法,包括:1. A method for transmitting signals from a plurality of antennas, comprising: 接收变换结果,所述变换结果通过对输入符号流执行变换而产生,所述的变换结果包括一个N×N’的正交时空块编码,并且产生N个第一信号,N个第一信号中的每一个包括N’个符号;以及receiving a transform result, the transform result is generated by performing a transform on the input symbol stream, the transform result includes an N×N' orthogonal space-time block coding, and generates N first signals, among the N first signals Each of consists of N' symbols; and 在时间上,对所述的变换结果的N个第一信号中的至少一个进行非零复数加权,从而产生至少一个第二信号,该至少一个第二信号的每一个相对于从其产生它的N个第一信号中的一个具有相位移动;所述的N个第一信号和至少一个第二信号一起包括M个信号,其中M大于N;In time, at least one of the N first signals of the transformation result is subjected to a non-zero complex weighting to generate at least one second signal, each of which is relative to the one from which it is generated One of the N first signals has a phase shift; said N first signals and at least one second signal together comprise M signals, wherein M is greater than N; 其中所述非零复数加权准备用于基本同时地,在第一N个天线的相应一个上发射所述的变换结果的所述N个第一信号的每一个,在第二至少一个天线的相应一个上发射所述至少一个第二信号的每一个,由此在M个发射分集路径上发射所述符号流。wherein said non-zero complex weights are prepared for substantially simultaneously transmitting each of said N first signals of said transformation result on a respective one of said first N antennas, on a respective one of a second at least one antenna Each of said at least one second signal is transmitted on one, thereby transmitting said stream of symbols on M transmit diversity paths. 2.如权利要求1的方法,其中所述非零复数加权包括,根据至少预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个,应用包括:根据角度为0,135,270,45,180,315,90,225的第一预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个,以及,根据至少角度为180,315,90,225,0,135,270,45的第二预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个。2. The method of claim 1, wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to at least a predetermined hopping sequence, the application comprising: according to an angle of 0, 135, 270, 45, 180, 315, 90, 225 of a first predetermined hopping sequence to apply a phase shift to at least one of said N first signals, and, according to at least an angle of 180, 315, 90, 225, 0, A second predetermined hopping sequence of 135, 270, 45 to apply a phase shift to at least one of said N first signals. 3.权利要求2的方法,其中所述N个第一信号包括第一个第一信号和至少第二个第一信号,并且其中,根据该第一预定跳跃序列对该第一个第一信号进行相位移动,和根据该第二预定跳跃序列对该第二个第一信号进行相位移动。3. The method of claim 2, wherein said N first signals comprise a first first signal and at least a second first signal, and wherein said first first signal is phase shifting, and phase shifting the second first signal according to the second predetermined hopping sequence. 4.权利要求3的方法,其中第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃以连续选择的间隔排序,其中在所述非零复数加权期间,该第一个第一信号和第二个第一信号分别根据该第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃而被相位移动。4. The method of claim 3, wherein the phase shift jumps of the first predetermined hopping sequence and the second predetermined hopping sequence are sequenced at successively selected intervals, wherein during said non-zero complex weighting period, the first first signal and the second The two first signals are phase shifted according to the phase shift hopping of the first predetermined hopping sequence and the second predetermined hopping sequence, respectively. 5.权利要求4的方法,其中该连续选择的间隔包括周期性的间隔,在该连续选择的间隔期间排序对该第一个第一信号和第二个第一信号进行相位移动的该第一和第二预定跳跃序列的相位移动跳跃。5. The method of claim 4, wherein the successively selected intervals comprise periodic intervals during which the first first signal and the second first signal are sequenced phase-shifted. and the phase shift hop of the second predetermined hop sequence. 6.权利要求3的方法,其中第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃以随机的间隔排序,其中在所述非零复数加权期间,该第一个第一信号和第二个第一信号分别根据第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃而被相位移动。6. The method of claim 3, wherein the phase shift hops of the first predetermined hopping sequence and the second predetermined hopping sequence are sequenced at random intervals, wherein during said non-zero complex weighting, the first first signal and the second The first signals are phase shifted according to the phase shifting hops of the first predetermined hopping sequence and the second predetermined hopping sequence, respectively. 7.权利要求1的方法,其中,所述非零复数加权包括根据至少预定跳跃序列来将相位移动应用到所述N个第一信号中的至少一个,并且其中该预定跳跃序列的相位移动跳跃以连续选择的间隔排序,其中在所述非零复数加权期间所述N个第一信号中的至少一个根据该预定跳跃序列的相位移动跳跃而被相位移动。7. The method of claim 1, wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to at least a predetermined hopping sequence, and wherein the phase shift of the predetermined hopping sequence jumps Sequenced at successively selected intervals, wherein at least one of said N first signals is phase-shifted during said non-zero complex weighting according to a phase-shifting hop of said predetermined hopping sequence. 8.权利要求7的方法,其中该连续选择的间隔包括周期性的间隔,在该连续选择的间隔期间排序对该所述N个第一信号中的至少一个进行相位移动的该预定跳跃序列的相位移动跳跃。8. The method of claim 7, wherein the continuously selected interval comprises a periodic interval during which the predetermined hopping sequence of the phase-shifted at least one of the N first signals is sequenced during the continuously selected interval Phase shift jumps. 9.权利要求1的方法,其中所述非零复数加权包括根据至少预定跳跃序列来将相位移动应用到所述N个第一信号中的至少一个,并且其中该预定跳跃序列的相位移动跳跃以随机的间隔排序,其中在所述非零复数加权期间,所述N个第一信号的至少一个根据该预定跳跃序列的相位移动跳跃而被相位移动。9. The method of claim 1, wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to at least a predetermined hopping sequence, and wherein the phase shift of the predetermined hopping sequence hops by Random interval ordering, wherein during said non-zero complex weighting at least one of said N first signals is phase shifted according to a phase shift hop of the predetermined hopping sequence. 10.权利要求1的方法,其中,所述输入符号流包括符号S1,S2,并且所述时空块包括2×2的时空块编码,所述N个第一信号包括分别在t1和t2发射的流S1和-S2*,以及分别在t1和t2发射的流S2和S1*。10. The method of claim 1, wherein said input symbol stream comprises symbols S 1 , S 2 , and said space-time blocks comprise 2×2 space-time block codes, said N first signals comprising Streams S1 and -S2 * emitted, and streams S2 and S1 * emitted at t1 and t2, respectively. 11.一种用于发射一个信号的装置,所述装置包括:11. An apparatus for transmitting a signal, said apparatus comprising: 至少一个加权器,用于接收变换结果,所述变换结果通过对输入符号流执行变换而产生,所述的变换结果包括一个N×N’的正交时空块编码,并产生N个第一信号,N个第一信号中的每一个包括N’个符号,at least one weighter, configured to receive a transformation result, the transformation result is generated by performing transformation on the input symbol stream, the transformation result includes an N×N' orthogonal space-time block coding, and generates N first signals , each of the N first signals includes N' symbols, 其中,所述至少一个加权器还用于,在时间上,对所述的变换结果的N个第一信号中的至少一个进行非零复数加权,从而产生至少一个第二信号,所述至少一个第二信号的每一个相对于产生它的N个第一信号中的一个进行了相位移动,所述的N个第一信号和至少一个第二信号一起包括M个信号,其中M大于N,Wherein, the at least one weighter is further configured to perform non-zero complex weighting on at least one of the N first signals of the transformation result in time, so as to generate at least one second signal, and the at least one Each of the second signals is phase-shifted with respect to one of the N first signals from which it was generated, said N first signals and at least one second signal together comprising M signals, where M is greater than N, 其中所述非零复数加权准备用于基本同时地,在第一N个天线的相应一个上发射所述的变换结果的所述的N个第一信号的每一个,在第二至少一个天线的相应一个上发射所述至少一个第二信号的每一个,由此在M个发射分集路径上发射所述符号流。wherein said non-zero complex weights are prepared for substantially simultaneously transmitting each of said N first signals of said transformation result on a respective one of said first N antennas, on a second at least one antenna Each of said at least one second signal is transmitted on a corresponding one, thereby transmitting said symbol stream on M transmit diversity paths. 12.权利要求11的装置,其中所述非零复数加权包括,根据预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个,应用包括:根据角度为0,135,270,45,180,315,90,225的第一预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个,以及,根据至少角度为180,315,90,225,0,135,270,45的第二预定跳跃序列来将相位移动应用到所述N个第一信号的至少一个。12. The apparatus of claim 11 , wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to a predetermined hopping sequence, the application comprising: according to an angle of 0, 135, 270, A first predetermined hopping sequence of 45, 180, 315, 90, 225 to apply a phase shift to at least one of said N first signals, and, according to at least an angle of 180, 315, 90, 225, 0, 135, 270, a second predetermined hopping sequence of 45 to apply a phase shift to at least one of said N first signals. 13.权利要求12的装置,其中所述N个第一信号包括第一个第一信号和至少第二个第一信号,并且其中,该第一个第一信号根据该第一预定跳跃序列而被相位移动,和该第二个第一信号根据该第二预定跳跃序列而被相位移动。13. The apparatus of claim 12, wherein said N first signals comprise a first first signal and at least a second first signal, and wherein the first first signal is based on the first predetermined hopping sequence phase shifted, and the second first signal is phase shifted according to the second predetermined hopping sequence. 14.权利要求13的装置,其中该第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃以连续选择的间隔排序,其中该第一个第一信号和第二个第一信号分别由所述至少一个加权器根据该第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃而被相位移动。14. The apparatus of claim 13, wherein the phase shift hops of the first predetermined hopping sequence and the second predetermined hopping sequence are sequenced at successively selected intervals, wherein the first first signal and the second first signal are respectively determined by the The at least one weighter is phase shifted according to the phase shifting hops of the first predetermined hopping sequence and the second predetermined hopping sequence. 15.权利要求14的装置,其中该连续选择的间隔包括周期性的间隔,在该连续选择的间隔期间排序对该第一个第一信号和第二个第一信号进行相位移动的该第一和第二预定跳跃序列的相位移动跳跃。15. The apparatus of claim 14 , wherein the successively selected intervals comprise periodic intervals during which the first first signal and the second first signal are sequenced phase-shifted. and the phase shift hop of the second predetermined hop sequence. 16.权利要求13的装置,其中第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃以随机的间隔排序,其中由所述至少一个加权器根据第一预定跳跃序列和第二预定跳跃序列的相位移动跳跃分别对该第一个第一信号和第二个第一信号进行相位移动。16. The apparatus of claim 13, wherein the phase shift hops of the first predetermined hopping sequence and the second predetermined hopping sequence are ordered at random intervals, wherein the at least one weighter is based on the first predetermined hopping sequence and the second predetermined hopping sequence The phase shift jumps of , respectively, phase shift the first first signal and the second first signal. 17.权利要求12的装置,其中所述至少一个加权器包括一第一加权器,用于非零复数加权该N个第一信号的第一个第一信号,和至少一第二加权器,所述第二加权器用于非零复数加权该N个第一信号的第二个第一信号。17. The apparatus of claim 12, wherein said at least one weighter comprises a first weighter for non-zero complex number weighting of a first first signal of said N first signals, and at least one second weighter, The second weighter is used for weighting the second first signal of the N first signals with a non-zero complex number. 18.权利要求17的装置,其中所述第一加权器根据第一预定跳跃序列对该第一个第一信号进行相位移动,和其中所述第二加权器根据第二预定跳跃序列对该第二个第一信号相位移动。18. The apparatus of claim 17, wherein said first weighter phase shifts said first first signal according to a first predetermined hopping sequence, and wherein said second weighter phase shifts said first signal according to a second predetermined hopping sequence. The phases of the two first signals are shifted. 19.权利要求11的装置,其中,所述非零复数加权包括根据至少预定跳跃序列来将相位移动应用到所述N个第一信号中的至少一个,并且其中该预定跳跃序列的相位移动跳跃以连续选择的间隔排序,其中所述N个第一信号中的至少一个由所述至少一个加权器根据该预定跳跃序列的相位移动跳跃进行相位移动。19. The apparatus of claim 11 , wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to at least a predetermined hopping sequence, and wherein a phase shift of the predetermined hopping sequence jumps Sequencing at successively selected intervals, wherein at least one of said N first signals is phase-shifted by said at least one weighter according to phase-shifting hops of said predetermined hopping sequence. 20.权利要求19的装置,其中该连续选择的间隔包括周期性的间隔,在该连续选择的间隔期间排序对所述N个第一信号中的至少一个进行相位移动的该预定跳跃序列的相位移动跳跃。20. The apparatus of claim 19 , wherein the continuously selected interval comprises a periodic interval during which the phases of the predetermined hopping sequence of phase-shifting at least one of the N first signals are sequenced Move and jump. 21.权利要求11的装置,其中,所述非零复数加权包括根据至少预定跳跃序列来将相位移动应用到所述N个第一信号中的至少一个,并且其中该预定跳跃序列的相位移动跳跃以随机间隔排序,其中由所述至少一个加权器根据该预定跳跃序列的相位移动跳跃对所述N个第一信号中的至少一个进行相位移动。21. The apparatus of claim 11 , wherein said non-zero complex weighting comprises applying a phase shift to at least one of said N first signals according to at least a predetermined hopping sequence, and wherein the phase shift of the predetermined hopping sequence jumps Sequenced at random intervals, wherein at least one of the N first signals is phase-shifted by the at least one weighter according to phase-shift hopping of the predetermined hopping sequence. 22.权利要求11的装置,其中,所述输入符号流包括符号S1,S2,并且所述时空块包括2×2的时空块编码,所述N个第一信号包括分别在t1和t2发射的流S1和-S2*,以及分别在t1和t2发射的流S2和S1*。22. The apparatus of claim 11, wherein said input symbol stream comprises symbols S 1 , S 2 , and said space-time blocks comprise 2×2 space-time block codes, said N first signals comprising Streams S1 and -S2 * emitted, and streams S2 and S1 * emitted at t1 and t2, respectively.
CNB028072901A 2001-03-28 2002-03-26 Non-zero complex weighted space-time code for multiple antenna transmission Expired - Lifetime CN100536450C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/819,573 US6748024B2 (en) 2001-03-28 2001-03-28 Non-zero complex weighted space-time code for multiple antenna transmission
US09/819,573 2001-03-28
US10/078,840 2002-02-20
US10/078,840 US6816557B2 (en) 2001-03-28 2002-02-20 Non-zero complex weighted space-time code for multiple antenna transmission

Publications (2)

Publication Number Publication Date
CN1611047A CN1611047A (en) 2005-04-27
CN100536450C true CN100536450C (en) 2009-09-02

Family

ID=29422707

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028072901A Expired - Lifetime CN100536450C (en) 2001-03-28 2002-03-26 Non-zero complex weighted space-time code for multiple antenna transmission

Country Status (9)

Country Link
EP (1) EP1512256A4 (en)
JP (1) JP2005503045A (en)
CN (1) CN100536450C (en)
AU (1) AU2002251395A1 (en)
BR (1) BR0208208A (en)
CA (1) CA2440033C (en)
MX (1) MXPA03008030A (en)
RU (1) RU2276463C2 (en)
WO (1) WO2002080375A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814538A (en) * 2011-06-24 2014-05-21 松下电器产业株式会社 Transmission device, transmission method, receiving device and receiving method
CN103814538B (en) * 2011-06-24 2016-11-30 太阳专利托管公司 Dispensing device, sending method, reception device and method of reseptance

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920314B2 (en) * 2001-07-30 2005-07-19 Lucent Technologies Inc. Symmetric sweep phase sweep transmit diversity
KR100630108B1 (en) 2002-10-10 2006-09-27 삼성전자주식회사 Transmitting and receiving apparatus for supporting transmission antenna diversity using space-time block code
KR100605860B1 (en) * 2003-01-09 2006-07-31 삼성전자주식회사 Transmission apparatus and method in a wireless communication system using four transmitting antennas
KR100557085B1 (en) * 2003-01-09 2006-03-03 삼성전자주식회사 Receiver of wireless communication system using at least three transmit antennas
EP1656757A4 (en) 2003-07-21 2011-12-28 Broadcom Corp Weight generation method for multi-antenna communication systems utilizing rf-based and baseband signal weighting and combining based upon minimum bit error rate
US7242722B2 (en) * 2003-10-17 2007-07-10 Motorola, Inc. Method and apparatus for transmission and reception within an OFDM communication system
WO2005078978A1 (en) * 2004-02-13 2005-08-25 Matsushita Electric Industrial Co., Ltd. Transmitter apparatus, receiver apparatus, and wireless communication method
US8077691B2 (en) * 2004-03-05 2011-12-13 Qualcomm Incorporated Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system
CA2557736C (en) 2004-05-07 2013-01-22 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding space time block code in a mobile communication system using multiple input multiple output scheme
AU2005273137B2 (en) 2004-08-17 2009-03-05 Samsung Electronics Co., Ltd. Apparatus and method for space-time-frequency block coding for increasing performance
KR101241881B1 (en) * 2005-10-26 2013-03-11 엘지전자 주식회사 Method for encoding space-time codes in multi-antenna system
CN101228710B (en) * 2005-11-17 2011-04-20 华为技术有限公司 Method for improving wireless system transmission diversity performance and transmitter
EP1958346B1 (en) * 2005-12-06 2015-03-18 Lg Electronics Inc. Method of transmitting signals for multiple antenna system
TWI288545B (en) * 2005-12-09 2007-10-11 Chung Shan Inst Of Science MIMO-CDMA apparatus and the coding/decoding method thereof
JP4527065B2 (en) 2006-01-17 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ Mobile station, communication system, and transmission method
CN101043497A (en) * 2006-03-20 2007-09-26 松下电器产业株式会社 Single carrier transmitting and receiving method and equipment and communication system
US8670504B2 (en) 2006-12-19 2014-03-11 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
US9106296B2 (en) * 2006-12-19 2015-08-11 Qualcomm Incorporated Beam space time coding and transmit diversity
JP4531784B2 (en) * 2007-03-20 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ User device and transmission method
US8155232B2 (en) 2007-05-08 2012-04-10 Samsung Electronics Co., Ltd. Multiple antennas transmit diversity scheme
US7885619B2 (en) * 2007-06-12 2011-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Diversity transmission using a single power amplifier
FR2937483A1 (en) * 2008-10-17 2010-04-23 Thomson Licensing METHOD FOR RECEIVING A SIGNAL AND TRANSMITTING METHOD THEREOF
JP5362845B2 (en) 2008-11-13 2013-12-11 ノーテル・ネットワークス・リミテッド Low complexity channel estimation for uplink receivers
US10570113B2 (en) 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
JP5585306B2 (en) 2010-08-25 2014-09-10 ソニー株式会社 BASE STATION, RADIO COMMUNICATION DEVICE, RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION METHOD, AND PROGRAM
JP5578619B2 (en) 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Transmitter and receiver
CN102404039A (en) * 2011-12-23 2012-04-04 桂林电子科技大学 A multi-antenna diversity reception method and device based on time reversal
EP2742609A2 (en) * 2012-05-11 2014-06-18 Telefonaktiebolaget LM Ericsson (Publ) Method and apparatus for transmitting demodulation pilots in a multi antenna wireless communication system
EP2854318B1 (en) * 2012-05-22 2020-11-04 Sun Patent Trust Transmission method and transmission system
US8605807B1 (en) * 2012-05-22 2013-12-10 Nigel Iain Stuart Macrae Communicating distinct data over a single frequency using multiple linear polarized signals
WO2014073654A1 (en) * 2012-11-12 2014-05-15 日本放送協会 Transmission system and reception device
EP3104637A4 (en) * 2014-02-05 2017-09-13 Mitsubishi Electric Corporation Base station, communication system, and communication method
JP6558658B2 (en) * 2018-03-08 2019-08-14 サン パテント トラスト Transmitter and receiver
JP7117533B2 (en) * 2019-07-04 2022-08-15 サン パテント トラスト transmitter and receiver

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120574A (en) * 1996-05-17 2002-09-12 Motorala Ltd Method and devices for transmitter path weights
US6396804B2 (en) * 1996-05-28 2002-05-28 Qualcomm Incorporated High data rate CDMA wireless communication system
US6006075A (en) * 1996-06-18 1999-12-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting communication signals using transmission space diversity and frequency diversity
BR9913277A (en) * 1998-09-04 2001-09-25 At & T Corp Block-space coding and combined channel coding in a multi-antenna array
US6643338B1 (en) * 1998-10-07 2003-11-04 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
RU2145152C1 (en) * 1998-10-08 2000-01-27 Гармонов Александр Васильевич Method for orthogonal distributed transmission- reception of signal in cellular communication network using code channel division
US6317411B1 (en) * 1999-02-22 2001-11-13 Motorola, Inc. Method and system for transmitting and receiving signals transmitted from an antenna array with transmit diversity techniques
US6515978B1 (en) * 1999-04-19 2003-02-04 Lucent Technologies Inc. Methods and apparatus for downlink diversity in CDMA using Walsh codes
AU2001260750B2 (en) * 2000-05-25 2004-03-25 Samsung Electronics Co., Ltd Apparatus and method for transmission diversity using more than two antennas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814538A (en) * 2011-06-24 2014-05-21 松下电器产业株式会社 Transmission device, transmission method, receiving device and receiving method
CN103814538B (en) * 2011-06-24 2016-11-30 太阳专利托管公司 Dispensing device, sending method, reception device and method of reseptance

Also Published As

Publication number Publication date
MXPA03008030A (en) 2005-04-29
EP1512256A4 (en) 2009-12-02
CN1611047A (en) 2005-04-27
WO2002080375A2 (en) 2002-10-10
JP2005503045A (en) 2005-01-27
AU2002251395A1 (en) 2002-10-15
WO2002080375A3 (en) 2005-01-13
RU2276463C2 (en) 2006-05-10
RU2003131399A (en) 2005-05-27
CA2440033A1 (en) 2002-10-10
EP1512256A2 (en) 2005-03-09
CA2440033C (en) 2007-01-09
BR0208208A (en) 2006-12-12

Similar Documents

Publication Publication Date Title
CN100536450C (en) Non-zero complex weighted space-time code for multiple antenna transmission
JP4511619B2 (en) Non-zero complex weighted space-time code for multi-antenna transmission
JP3990156B2 (en) Space-time codes for transmission with multiple antennas
US7623590B2 (en) Diversity transmitter and diversity transmission method
EP1468517B1 (en) High rate transmit diversity transmission and reception
JP4472190B2 (en) Method and system using diversity technique
US7680211B1 (en) MIMO maximum-likelihood space-time architecture
US7929653B2 (en) Open-loop diversity technique for systems employing multi-transmitter antennas
US7756210B2 (en) Method for transmitting optimally diversified information in a MIMO telecommunication system
US9166855B2 (en) MIMO communication method, MIMO transmitting device, and MIMO receiving device
Ozgur et al. Multi-user detection for mutually orthogonal sequences with space-time coding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160112

Address after: Espoo, Finland

Patentee after: Technology Co., Ltd. of Nokia

Address before: Espoo, Finland

Patentee before: Nokia Oyj

CX01 Expiry of patent term

Granted publication date: 20090902

CX01 Expiry of patent term