CN100524829C - Method and structure for operating memory device on control gate edge - Google Patents
Method and structure for operating memory device on control gate edge Download PDFInfo
- Publication number
- CN100524829C CN100524829C CNB2007101119183A CN200710111918A CN100524829C CN 100524829 C CN100524829 C CN 100524829C CN B2007101119183 A CNB2007101119183 A CN B2007101119183A CN 200710111918 A CN200710111918 A CN 200710111918A CN 100524829 C CN100524829 C CN 100524829C
- Authority
- CN
- China
- Prior art keywords
- charge trapping
- edge
- word line
- threshold voltage
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title abstract description 33
- 238000002347 injection Methods 0.000 claims abstract description 45
- 239000007924 injection Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims description 28
- 230000000694 effects Effects 0.000 abstract description 22
- 230000005684 electric field Effects 0.000 abstract description 4
- 230000015654 memory Effects 0.000 description 91
- 150000004767 nitrides Chemical class 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 229920005591 polysilicon Polymers 0.000 description 10
- 230000005641 tunneling Effects 0.000 description 10
- 230000005055 memory storage Effects 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 metal oxide nitride Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
Images
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
相关申请related application
本申请要求享有美国临时专利申请号60/805,448的优先权,该申请的申请日为2006/6/21,发明人为Chao-I Wu,发明名称为“Method and Structure for Operating MemoryDevices on Fringes of Control Gate”。This application claims priority to U.S. Provisional Patent Application No. 60/805,448, the filing date of which is 2006/6/21, the inventor is Chao-I Wu, and the title of the invention is "Method and Structure for Operating Memory Devices on Fringes of Control Gate ".
技术领域 technical field
本发明一般地涉及电可编程与可擦除存储器,并尤其有关于增加存储操作区间、并在单元多位操作中减少第二位效应的方法与装置。The present invention relates generally to electrically programmable and erasable memories, and more particularly to methods and apparatus for increasing memory operation intervals and reducing second-bit effects in multi-bit operations of cells.
背景技术 Background technique
以电荷储存结构为基础的电可编程与可擦除非易失性存储技术,称为电可擦除可编程只读存储器(EEPROM)以及闪速存储器,这些存储器用于许多当前的应用中。闪速存储器的设计基于可以独立可编程与读取的存储单元所组成的阵列。闪速存储器中的传感放大器用以决定数据数值、或者储存在非易失性存储器中的数值。在典型的感应机制中,通过存储单元的电流被感应,并在电流传感放大器中与参考电流作比较。Electrically programmable and erasable non-volatile memory technologies based on charge storage structures, known as electrically erasable programmable read-only memory (EEPROM) and flash memory, are used in many current applications. The design of flash memory is based on an array of memory cells that can be independently programmed and read. Sense amplifiers in flash memory are used to determine data values, or values stored in non-volatile memory. In a typical sensing mechanism, the current through the memory cell is sensed and compared to a reference current in a current sense amplifier.
在EEPROM和闪速存储器中使用了多种存储单元结构。随着集成电路的体积缩小,此领域的研究能量逐渐投注于以电荷捕捉介质层为基础的存储单元结构,因为其工艺可缩小尺寸、且相对简单。以电荷捕捉介质层为基础的存储单元结构,包括称为“N位存储器”的结构。此存储单元结构通过在电荷捕捉介质层中捕捉电荷而储存数据,电荷捕捉介质层可举例如氮化硅。负电荷被捕捉后,存储单元的临界电压会上升。存储单元的临界电压通过从电荷捕捉层移除负电荷而降低。Various memory cell structures are used in EEPROM and flash memory. As the volume of integrated circuits shrinks, the research energy in this field is gradually focused on the memory cell structure based on the charge trapping dielectric layer, because its process can be reduced in size and relatively simple. The memory cell structure based on the charge trapping dielectric layer includes a structure called "N-bit memory". The memory cell structure stores data by trapping charges in a charge trapping dielectric layer, such as silicon nitride. After the negative charge is trapped, the threshold voltage of the memory cell will rise. The threshold voltage of the memory cell is lowered by removing negative charges from the charge trapping layer.
NROM装置使用了相当厚的底氧化物以避免电荷流失,其厚度大于例如3纳米,典型地介于约5至9纳米。用以擦除单元的技术并非直接隧穿,而是带至带隧穿所诱发的热空穴注入(BTBTHH)。然而,热空穴注入会造成氧化物的损害,导致高临界电压单元中的电荷流失,并导致低临界电压单元中的电荷累积。在编程与擦除循环时,擦除时间必须逐渐增加,因为在电荷捕捉结构中的电荷将会因为逐渐累积而难以擦除。电荷累积的发生缘于空穴注入点与电子注入点并不彼此重叠,因此在擦除脉冲之后仍留下部分电子。此外,在N位存储器的区块擦除操作之后,每一单元的擦除速度会因为工艺变化(例如沟道长度的不同)而产生差异。在擦除速度的差异将导致擦除状态下的大Vt分布,使得某些单元难以擦除、而某些单元则过度擦除。因此,目标临界电压区间(Vtwindow)在每一编程与擦除循环之后关闭,因而得到不良的耐久性。随着工艺技术持续微小化,此现象会变得更加严重。NROM devices use a relatively thick base oxide, greater than, for example, 3 nanometers thick, typically between about 5 and 9 nanometers, to avoid charge loss. The technique used to erase cells is not direct tunneling, but band-to-band tunneling-induced hot hole injection (BTBTHH). However, hot hole injection causes damage to the oxide, leading to charge loss in high-threshold-voltage cells and charge accumulation in low-threshold-voltage cells. During the programming and erasing cycles, the erasing time must be gradually increased, because the charge in the charge trapping structure will gradually accumulate and be difficult to erase. Charge accumulation occurs because the hole injection point and the electron injection point do not overlap each other, so some electrons remain after the erase pulse. In addition, after the block erase operation of the N-bit memory, the erase speed of each cell will be different due to process variation (eg, channel length difference). The difference in erase speed will result in a large Vt distribution in the erased state, making some cells hard to erase and some cells over erased. Therefore, the target threshold voltage interval (Vtwindow) is closed after each program and erase cycle, resulting in poor endurance. This phenomenon will become more serious as process technology continues to be miniaturized.
传统的浮动栅极装置,在导电浮动栅极中储存一位的电荷。NROM单元的发明,提供了二位的闪速单元而可在氧化物-氮化物-氧化物(ONO)介质层中储存电荷。在NROM存储器的典型结构中,氮化物层用作为捕捉材料,而设置于顶氧化物层与底氧化物层之间。在ONO结构的氮化物层中,可以将电荷捕捉于NROM单元的左侧或右侧。“第二位效应”影响了操作区间,也因此成为问题。第二位效应由左位与右位的交互作用所引起。因此,优选能提供可增加电荷捕捉存储器的存储操作区间的方法与装置,而能大幅降低第二位效应。In conventional floating gate devices, one bit of charge is stored in a conductive floating gate. The invention of the NROM cell provides a two-bit flash cell that stores charge in an oxide-nitride-oxide (ONO) dielectric layer. In a typical structure of an NROM memory, a nitride layer is used as a trapping material and is disposed between a top oxide layer and a bottom oxide layer. In the nitride layer of the ONO structure, charges can be trapped on the left or right side of the NROM cell. The "secondary effect" affects the operating range and thus becomes a problem. The second bit effect is caused by the interaction of left and right bits. Therefore, it would be desirable to provide a method and apparatus that can increase the storage operating range of a charge trapping memory, thereby greatly reducing the second bit effect.
发明内容 Contents of the invention
电荷捕捉存储装置与方法通过边缘诱发效应,而增加第二位操作区间。边际诱发效应发生于字线底下的区域,使得施加空穴注入方法于存储装置时,空穴电荷储存于电荷捕捉层中,此电荷捕捉层正交于字线,且空穴电荷沿着字线的边缘储存。在电荷捕捉存储器的第一实施例中,虚拟接地阵列包括电荷捕捉层,其设置于二介质层之间,使得源极与漏极区域之上没有电荷捕捉层。施加空穴注入至此虚拟接地阵列之后,空穴电荷沿着每一字线的边缘储存,因为字线的边缘与非边缘部分相较之下,其电场较大。沿着边缘的空穴电荷将导致沟道的临界电压Vt降低。虚拟存储阵列的典型装置操作,由低临界电压所控制。在电荷捕捉存储器的第二实施例中,虚拟接地阵列包括电荷捕捉层,此电荷捕捉层延伸至源极与漏极区域之上。额外的空穴电荷被注入到延伸至源极与漏极区域之上的电荷捕捉层中。The charge trapping memory device and method increase the operation range of the second bit through the edge-induced effect. The marginal induction effect occurs in the area under the word line, so that when the hole injection method is applied to the memory device, the hole charge is stored in the charge trapping layer, which is orthogonal to the word line, and the hole charge is along the word line. edge storage. In a first embodiment of the charge trapping memory, the virtual ground array includes a charge trapping layer disposed between two dielectric layers such that there is no charge trapping layer above the source and drain regions. After hole injection is applied to the virtual ground array, hole charges are stored along the edge of each word line because the electric field is larger at the edge of the word line compared to the non-edge portion. The hole charge along the edge will cause the threshold voltage Vt of the channel to decrease. Typical device operation of virtual memory arrays is governed by low threshold voltages. In a second embodiment of the charge trapping memory, the virtual ground array includes a charge trapping layer extending above the source and drain regions. Additional hole charges are injected into the charge trapping layer extending over the source and drain regions.
在电荷捕捉存储器的第三实施例中,虚拟接地阵列包括电荷捕捉层,其设置于二介质层之间,使得源极与漏极区域之上没有电荷捕捉层。虚拟接地阵列包括多条字线,其中每一字线包括二边缘以及位于二边缘之间的非边缘部分。每一字线具有二临界电压,第一临界电压(Vtfringe)与字线的二边缘有关,而第二临界电压(Vtnon-fringe)则与字线的非边缘部分有关。边缘临界电压Vtfringe典型地低于Vtnon-fringe。在电荷捕捉存储器的第四实施例中,虚拟接地阵列包括电荷捕捉层,此电荷捕捉层延伸至源极与漏极区域之上。额外的空穴电荷注入电荷捕捉层被注入到延伸至源极与漏极区域之上的电荷捕捉层中。类似地,每一字线具有二临界电压,第一临界电压(Vtfringe)与字线的二边缘有关,而第二临界电压(Vtnon-fringe)则与字线的非边缘部分有关。边缘临界电压Vtfringe典型地低于Vtnon-fringe。In a third embodiment of the charge trapping memory, the virtual ground array includes a charge trapping layer disposed between two dielectric layers such that there is no charge trapping layer above the source and drain regions. The virtual ground array includes a plurality of word lines, wherein each word line includes two edges and a non-edge portion between the two edges. Each word line has two threshold voltages, the first threshold voltage (Vt fringe ) is related to the two edges of the word line, and the second threshold voltage (Vt non-fringe ) is related to the non-edge portion of the word line. The edge threshold voltage Vt fringe is typically lower than Vt non-fringe . In a fourth embodiment of the charge trapping memory, the virtual ground array includes a charge trapping layer extending above the source and drain regions. Additional hole charge injection into the charge trapping layer is injected into the charge trapping layer extending over the source and drain regions. Similarly, each word line has two threshold voltages, the first threshold voltage (Vt fringe ) is related to the two edges of the word line, and the second threshold voltage (Vt non-fringe ) is related to the non-edge portion of the word line. The edge threshold voltage Vt fringe is typically lower than Vt non-fringe .
广泛地说,存储装置包括衬底、衬底上的电荷捕捉结构(此电荷捕捉结构沿着第一方向延伸)、以及栅极其沿着第二方向延伸并与电荷捕捉层正交,栅极具有底面,此底面由第一边缘与非边缘部分所定义,第一边缘与第二边缘分隔,且非边缘部分位于第一边缘与第二边缘之间。非边缘部分具有第一临界电压,第一与第二边缘具有第二临界电压,第二临界电压值低于第一临界电压值,其中空穴通过空穴注入而移动到电荷捕捉层,并位于栅极底下、沿着第一与第二边缘排列。Broadly speaking, a memory device includes a substrate, a charge trapping structure on the substrate (the charge trapping structure extends along a first direction), and a gate extending along a second direction and perpendicular to the charge trapping layer, the gate having The bottom surface is defined by a first edge and a non-edge portion, the first edge is separated from the second edge, and the non-edge portion is located between the first edge and the second edge. The non-edge portion has a first critical voltage, the first and second edges have a second critical voltage, and the second critical voltage value is lower than the first critical voltage value, wherein holes are moved to the charge trapping layer by hole injection, and are located at The grid is arranged under the gate and along the first and second edges.
本发明描述在单个单元双位存储器中以第一空穴注入方法增加存储操作区间的方式,其施加正栅极电压+Vg以擦除存储单元至负电压电平。本发明亦描述在单个单元双位存储器中以第一空穴注入方法增加存储操作区间的方式,其施加负栅极电压-Vg以擦除电荷捕捉存储器至负电压电平。或者,电荷捕捉存储器被擦除,使得其电压电平低于初始临界电压电平(Vt(i))。此二种电荷捕捉存储器的方法,无论是擦除至负电压电平、或是擦除至低于初始临界电压的电平,可使用在编程步骤之前(亦即,预编程擦除操作),或在编程步骤之后(亦即,后编程擦除操作)。The present invention describes a way to increase the storage operating interval in a single cell dual bit memory with the first hole injection method, which applies a positive gate voltage +Vg to erase the memory cell to a negative voltage level. The present invention also describes a way to increase the storage operating interval in a single cell dual-bit memory with the first hole injection method, which applies a negative gate voltage -Vg to erase the charge trapping memory to a negative voltage level. Alternatively, the charge trapping memory is erased such that its voltage level is lower than the initial threshold voltage level (Vt(i)). Both methods of charge trapping memory, either erasing to a negative voltage level, or erasing to a level below the initial threshold voltage, can be used prior to the programming step (i.e., a pre-program erase operation), Or after a programming step (ie, a post program erase operation).
在后续的三个本发明实施例中,示例性说明二种擦除操作。此二擦除操作包括空穴注入擦除操作、以及带至带热空穴擦除操作。在第一实施例中,电荷捕捉存储器利用空穴注入而擦除,其利用正电压空穴隧穿而擦除。在第二实施例中,电荷捕捉存储器利用空穴注入而擦除,其利用负电压空穴隧穿而擦除。在第三实施例中,电荷捕捉存储器利用带至带热空穴操作而擦除。适用于上述电荷捕捉存储器擦除操作的编程技术,包括沟道热电子(CHE)。In the following three embodiments of the present invention, two kinds of erasing operations are exemplified. The two erase operations include a hole injection erase operation and a hot hole erase operation. In a first embodiment, the charge trapping memory is erased using hole injection, which is erased using positive voltage hole tunneling. In a second embodiment, the charge trapping memory is erased using hole injection, which is erased using negative voltage hole tunneling. In a third embodiment, the charge trapping memory is erased using a bring-to-hot hole operation. A programming technique suitable for the erase operation of the charge trapping memory described above includes channel hot electrons (CHE).
本发明的方法适用于多种电荷捕捉结构存储装置,包括但不限于,包括具有氮化物-氧化物结构、氧化物氮化物氧化物结构、氮化物氧化物氮化物氧化物结构、以及氧化物氮化物氧化物氮化物氧化物结构的存储装置。举例而言,在MNOS存储装置中,电荷捕捉层位于介质层之上,而在电荷捕捉层之上则不具有介质层。取而代之的是,多晶硅层形成于电荷捕捉层之上。不包括介质层的氮化物氧化物结构,允许了空穴直接从多晶硅层注入到电荷捕捉层。The method of the present invention is applicable to a variety of charge trapping structure memory devices, including but not limited to, including those having a nitride-oxide structure, an oxide nitride oxide structure, a nitride oxide nitride oxide structure, and an oxide nitride structure. A storage device with a compound oxide nitride oxide structure. For example, in an MNOS memory device, the charge trapping layer is located on the dielectric layer, and there is no dielectric layer on the charge trapping layer. Instead, a polysilicon layer is formed over the charge trapping layer. The nitride oxide structure, which does not include a dielectric layer, allows holes to be injected directly from the polysilicon layer into the charge trapping layer.
优选地,本发明增加了在电荷捕捉存储装置中的编程和擦除效率。此外,本发明扩张了第二位操作区间的大小。Preferably, the present invention increases programming and erasing efficiency in charge trapping memory devices. In addition, the present invention expands the size of the second bit operation interval.
本发明的结构与方法如下所详述。本发明说明并非用以定义本发明,而是以权利要求书定义的。本发明的其他实施例、特征、观点和优点,将会参照如下说明、权利要求书与附图而更加明显。The structure and method of the present invention are described in detail below. The description of the invention is not intended to define the invention, but rather is defined by the claims. Other embodiments, features, viewpoints and advantages of the present invention will be more apparent with reference to the following description, claims and drawings.
附图说明 Description of drawings
图1是示出本发明第一实施例的电荷捕捉存储单元的结构图,其包括氮化物-氧化物电荷储存结构,而不具有顶介质层,因此说明由空穴注入方法所造成的擦除操作,其将空穴从栅极端注入;1 is a structural diagram showing a charge trapping memory cell according to a first embodiment of the present invention, which includes a nitride-oxide charge storage structure without a top dielectric layer, thereby illustrating erasure caused by a hole injection method. operation, which injects holes from the gate terminal;
图2是结构示意图,其示出本发明第二实施例中,包括有ONO电荷捕捉结构与选定顶介质层的电荷捕捉存储器,以允许从栅极端进行空穴注入;2 is a structural schematic diagram showing a charge trapping memory including an ONO charge trapping structure and a selected top dielectric layer to allow hole injection from the gate terminal in a second embodiment of the present invention;
图3为结构示意图,其示出本发明第三实施例中,包括有ON电荷捕捉结构但不包括底介质层的电荷捕捉存储单元,以允许从衬底进行空穴注入;3 is a structural schematic diagram, which shows a charge trapping memory unit including an ON charge trapping structure but not including a bottom dielectric layer in a third embodiment of the present invention, so as to allow hole injection from the substrate;
图4是结构示意图,其示出本发明第四实施例中,包括有ONO电荷捕捉结构且具有一选定底介质层的电荷捕捉存储器,以允许从衬底进行空穴注入;4 is a structural schematic diagram showing a charge trapping memory including an ONO charge trapping structure and having a selected bottom dielectric layer to allow hole injection from the substrate according to a fourth embodiment of the present invention;
图5A是结构示意图,其示出本发明第一实施例的虚拟接地阵列,在空穴电荷注入方法前的俯视图,其应用于MONS存储器中;图5B是示出虚拟接地阵列在X1方向的透视图,其在源极与漏极接面之上不具有电荷捕捉层;图5C是示出虚拟接地阵列在Y1方向的透视图,其在字线的边缘上具有电荷捕捉层;Fig. 5A is a structural schematic diagram, which shows the top view of the virtual ground array of the first embodiment of the present invention before the hole charge injection method, which is applied in MONS memory; Fig. 5B is a perspective view showing the virtual ground array in the X1 direction Figure 5, which does not have a charge trapping layer above the source and drain junctions; FIG. 5C is a perspective view showing the virtual ground array in the Y1 direction, which has a charge trapping layer on the edge of the word line;
图6A是结构示意图,其示出第一实施例的虚拟接地阵列在空穴电荷注入后的结果;图6B是示出了虚拟接地阵列的电荷储存在电荷捕捉层的X2方向透视图;图6C是示出了本发明虚拟接地阵列在Y2方向的透视图,其中字线的边缘上具有电荷捕捉层;Fig. 6A is a structural schematic diagram showing the result of the virtual ground array of the first embodiment after hole charge injection; Fig. 6B is a perspective view in the X2 direction showing that the charges of the virtual ground array are stored in the charge trapping layer; Fig. 6C is a perspective view showing the virtual ground array of the present invention in the Y2 direction, wherein there is a charge trapping layer on the edge of the word line;
图7A是示出本发明第二实施例的虚拟接地阵列,在空穴电荷注入实施于MNOS存储器之前的俯视图;图7B是示出本发明虚拟接地阵列在X1方向的透视图,其在源极和漏极接面上具有电荷捕捉层;图7C是示出了本发明虚拟接地阵列在Y1方向的透视图,其在字线的边缘上具有电荷捕捉层;7A is a top view showing the virtual ground array of the second embodiment of the present invention before hole charge injection is implemented in the MNOS memory; FIG. There is a charge trapping layer on the drain junction; FIG. 7C is a perspective view showing the virtual ground array of the present invention in the Y1 direction, which has a charge trapping layer on the edge of the word line;
图8A是本发明第二实施例的虚拟接地阵列,在空穴电荷注入已经进行后的俯视图;图8B为本发明的虚拟阵列沿着X2方向的透视图,其中空穴电荷储存于电荷捕捉层中;图8C是示出本发明虚拟接地阵列沿着Y2方向的示意图,其中电荷捕捉层位于字线的边缘之上;Fig. 8A is a top view of the dummy ground array according to the second embodiment of the present invention after hole charge injection has been performed; Fig. 8B is a perspective view along the X2 direction of the dummy array of the present invention, wherein the hole charges are stored in the charge trapping layer Middle; FIG. 8C is a schematic diagram showing the virtual ground array of the present invention along the Y2 direction, wherein the charge trapping layer is located above the edge of the word line;
图9是结构示意图,其示出本发明第三实施例的虚拟接地阵列,在MNOS存储器上实施空穴电荷注入以作为字线的非对称临界电压电平之前的示意图;9 is a schematic structural diagram showing a virtual ground array according to a third embodiment of the present invention, before implementing hole charge injection on the MNOS memory as the asymmetric threshold voltage level of the word line;
图10是结构示意图,其示出本发明第四实施例的虚拟接地阵列,在MNOS存储器上实施空穴电荷注入以作为字线的非对称临界电压电平之前的示意图;FIG. 10 is a structural schematic diagram showing a virtual ground array according to a fourth embodiment of the present invention, before implementing hole charge injection on the MNOS memory as the asymmetric threshold voltage level of the word line;
图11A是结构示意图,其示出在MNOS结构中的左位进行编程;图11B为单单元双位操作区间的对应曲线图,其说明右位的第二位效应;Fig. 11A is a schematic diagram of the structure, which shows the programming of the left bit in the MNOS structure; Fig. 11B is a corresponding graph of the single-unit double-bit operation interval, which illustrates the second bit effect of the right bit;
图12是示出第二位区间在空穴注入后,发生边缘诱发操作的示例性曲线图。FIG. 12 is an exemplary graph illustrating an edge-induced operation of a second bit interval after hole injection.
具体实施方式 Detailed ways
以下将参照图1-12而说明本发明的结构实施例与方法。可以了解的是,本发明并不限于所公开的实施例,而是可以利用其他特征、元件、方法与形态以实施本发明。在不同实施例中的相似元件,一般以类似的标号指定的。The structural embodiments and methods of the present invention will be described below with reference to FIGS. 1-12 . It is to be understood that the invention is not limited to the disclosed embodiments, but that other features, elements, methods and forms can be used to practice the invention. Similar elements in different embodiments are generally designated with similar reference numerals.
图1示出第一实施例的电荷捕捉存储单元100,其包括氮化物-氧化物(NO)电荷捕捉结构120,而不具有顶介质层,此图示出以空穴注入方法而从栅极端注入空穴的擦除操作。电荷捕捉存储单元100包括p型衬底110,且源极区域112与漏极区域114分隔,其间则为沟道116。“空穴注入”一词亦可称为“空穴隧穿”。氮化物-氧化物捕捉结构120具有电荷捕捉层在介质层122之上,介质层122则位于p型衬底110之上。在本实施例中,NO电荷捕捉结构120并不具有顶氧化物结构。栅极130位于电荷捕捉结构120中的电荷捕捉层124之上。多种材料可用以形成栅极130,包括n型多晶硅、p型多晶硅、以及金属。FIG. 1 shows a first embodiment of a charge trapping
在本实施例中,正栅极电压+Vg 160施加至栅极130,以擦除电荷捕捉存储单元100至负电压电平、或将其电压擦除至低于初始临界电压的电平,以在电荷捕捉存储单元100中达成大存储操作区间,存储单元100在电荷捕捉层124的左边具有左存储储存侧124-1、并在电荷捕捉层124的右边具有右存储储存侧124-r。本擦除方法可在编程步骤之前进行(亦即,预编程擦除操作)、或在编程步骤之后进行(亦即,后编程擦除操作)。In this embodiment, a positive gate voltage +
当高偏压施加至栅极130的栅极端时,空穴170从栅极端(如箭头150a,150b所指)注入到电荷捕捉层124。作为示例性电压电平,栅极电压Vg 160施加16伏特的正电压,同时施加0伏特的漏极电压Vd 162、0伏特的源极电压Vs164、以及0伏特的衬底电压Vsub 166。这些电压的组合,会对电荷捕捉存储单元100进行空穴隧穿擦除,而将其临界电压降至负值(-Vt),因而增加存储操作区间、并减少第二位效应。When a high bias voltage is applied to the gate terminal of the
电荷捕捉存储单元100中的NO电荷捕捉结构120,如图式方式设计。电荷捕捉存储单元100包括了NO电荷捕捉存储结构120,其不具有顶氧化物,因此可允许空穴在没有顶氧化物存在的情况下直接进入电荷捕捉结构120。电荷捕捉存储单元100中的NO电荷捕捉结构120,可使用于类似金属氧化物氮化物氧化物半导体(MNOS)或硅氮化物氧化物半导体(SNOS)之类的存储器中。其他组合的电荷捕捉结构,例如氧化物氮化物氧化物(ONO)、或氧化物氮化物氧化物氮化物氧化物(ONONO)堆叠等,亦可使用于本发明中,而不背离本发明的精神。The NO
图2为结构示意图,其示出第二实施例的电荷捕捉存储器200,其包括氧化物-氮化物-氧化物(ONO)电荷捕捉结构220、并具有选定顶介质层,以允许从栅极端注入空穴。电荷捕捉存储单元200包括p型衬底210,其中包括有源极区域212与漏极区域214,此二区域之间则以沟道216分隔。ONO电荷捕捉结构220具有顶介质层226于电荷捕捉层224之上,而电荷捕捉层则位于底介质层222之上,而底介质层222则设置于p型衬底210之上。栅极230位于电荷捕捉结构220的顶介质层226之上。栅极230可使用多种材料,包括n型多晶硅、p型多晶硅、和金属。2 is a structural schematic diagram showing a second embodiment of a
在本实施例中,正栅极电压+Vg 260施加至栅极230,以将电荷捕捉存储单元200擦除至负电压电平、或擦除至低于初始临界电压的电平,以在电荷捕捉存储单元200中生成大存储操作区间。存储单元200在电荷捕捉层224的左边具有左存储储存侧224-1、并在电荷捕捉层224的右边具有右存储储存侧224-r。此擦除方法可在编程步骤之前进行(亦即,预编程擦除操作)、或在编程步骤之后进行(亦即,后编程擦除操作)。In this embodiment, a positive gate voltage +
当施加高偏压至栅极230的栅极端时,空穴270从栅极端注入到电荷捕捉层224,如箭号250a,250b所指示。可以使顶介质层226的厚度够薄,而让空穴隧穿通过顶介质层226。作为示例性电压电平,栅极电压Vg 260施加16伏特的正电压,同时施加0伏特的漏极电压Vd 262、0伏特的源极电压Vs 264、以及0伏特的衬底电压Vsub 266。这些电压的组合,会对电荷捕捉存储单元200进行空穴隧穿擦除,而将其临界电压降至负值(-Vt),因而增加存储操作区间、并减少第二位效应。When a high bias voltage is applied to the gate terminal of the
电荷捕捉存储单元200中的ONO电荷捕捉结构220如图式所设计。电荷捕捉存储单元200中的ONO电荷捕捉结构220,可使用于类似金属氧化物氮化物氧化物半导体(MONOS)或硅氮氧半导体(SONOS之类的存储器中。其他组合的电荷捕捉结构,例如氧化物氮化物氧化物氮化物氧化物(ONONO)堆叠等,亦可使用于本发明中,而不背离本发明的精神。The ONO
图3为结构示意图,其示出第三实施例的电荷捕捉存储单元300,其包括氧化物氮化物(ON)电荷捕捉结构320,而不具有底介质层,以允许空穴从衬底注入。电荷捕捉存储单元300包括p型衬底310,其中包括有源极区域312与漏极区域314,此二区域之间则以沟道316分隔。NO电荷捕捉结构320之中,包括有位于电荷捕捉层322之上的介质层324,而电荷捕捉层则位于p型衬底310之上。ON电荷捕捉结构320在本实施例中具有底介质层。栅极330位于电荷捕捉结构320中的电荷捕捉层322之上。栅极330可使用多种不同材料,包括n多晶硅、p型多晶硅和金属。3 is a structural schematic diagram showing a third embodiment of a charge trapping
在本实施例中,施加负栅极电压-Vg 360至栅极330,以将电荷捕捉存储单元300擦除至负电压电平、或擦除至低于初始临界电压的电平,以在电荷捕捉存储单元300中生成大存储操作区间。存储单元300在电荷捕捉层322的左边具有左存储储存侧322-1、并在电荷捕捉层322的右边具有右存储储存侧322-r。此擦除方法可在编程步骤之前进行(亦即,预编程擦除操作)、或在编程步骤之后进行(亦即,后编程擦除操作)。In this embodiment, a negative gate voltage -
当施加高偏压至栅极330的栅极端时,空穴370从衬底注入到电荷捕捉层322,如箭号350a,350b所指示。作为示例性电压电平,栅极电压-Vg 360施加-16伏特的正电压,同时施加0伏特的漏极电压Vd 362、0伏特的源极电压Vs364、以及0伏特的衬底电压Vsub 366。这些电压的组合,会对电荷捕捉存储单元300进行空穴隧穿擦除,而将其临界电压降至负值(-Vt),因而增加存储操作区间、并减少第二位效应。When a high bias voltage is applied to the gate terminal of the
电荷捕捉存储单元300中的ON电荷捕捉结构320如图式所设计。电荷捕捉存储单元300中的ON电荷捕捉结构320不具有底介质层,而允许空穴直接进入电荷捕捉结构320,不受到底氧化物的阻挡。电荷捕捉存储单元300中的ON电荷捕捉结构,可使用于类似金属氧化物氮化物半导体(MONS)或硅氮氧半导体(SNOS)之类的存储器中。其他组合的电荷捕捉结构,例如ONO结构、或氧化物氮化物氧化物氮化物氧化物(ONONO)堆叠等,亦可使用于本发明中,而不背离本发明的精神。The ON
图4示出第四实施例的电荷捕捉存储单元400,其包括ONO电荷捕捉结构420并具有选定底介质层,以允许空穴从衬底注入。电荷捕捉存储单元400包括p型衬底410,其中包括有源极区域412与漏极区域414,此二区域之间则以沟道416分隔。位于p型衬底上的ONO电荷捕捉结构420具有一顶介质层424于电荷捕捉层422之上,而电荷捕捉层则位于底介质层426之上。栅极430位于电荷捕捉结构420的顶介质层424之上。栅极430可使用多种材料,包括n型多晶硅、p型多晶硅、和金属。FIG. 4 shows a fourth embodiment of a charge trapping
在本实施例中,施加负栅极电压-Vg 460至栅极430,以将电荷捕捉存储单元400擦除至负电压电平、或擦除至低于初始临界电压的电平,以在电荷捕捉存储单元300中生成大存储操作区间。存储单元300在电荷捕捉层422的左边具有左存储储存侧422-1、并在电荷捕捉层422的右边具有右存储储存侧422-r。此擦除方法可在编程步骤之前进行(亦即,预编程擦除操作)、或在编程步骤之后进行(亦即,后编程擦除操作)。In this embodiment, a negative gate voltage -
当施加高偏压至栅极430的栅极端时,空穴470从衬底注入到电荷捕捉层422,如箭号450a,450b所指示。可使底介质层426的厚度够薄,以允许空穴隧穿通过底介质层426。作为示例性电压电平,栅极电压-Vg 460施加-16伏特的负电压,同时施加0伏特的漏极电压Vd 462、0伏特的源极电压Vs 464、以及0伏特的衬底电压Vsub 466。这些电压的组合,会对电荷捕捉存储单元400进行空穴隧穿擦除,而将其临界电压降至负值(-Vt),因而增加存储操作区间、并减少第二位效应。When a high bias voltage is applied to the gate terminal of the
电荷捕捉存储单元400中的ONO电荷捕捉结构420如图式所设计。电荷捕捉存储单元400中的ONO电荷捕捉结构420,可使用于类似金属氧化物氮化物氧化物半导体(MONOS)或硅氧氮氧半导体(SONOS)之类的存储器中。The ONO
其他组合的电荷捕捉结构,例如氧化物氮化物氧化物氮化物氧化物(ONONO)堆叠等,亦可使用于本发明中,而不背离本发明的精神。介质层122,222,226,324,424,426的代表性材料,包括二氧化硅与氮氧化硅,其厚度介于约5至10纳米,而亦可使用其他类似的高介质常数材料,例如氧化铝。底介质层的代表性材料包括,二氧化硅与氮氧化硅,其厚度介于3至10纳米之间,而亦可使用其他类似的高介质常数材料。电荷捕捉结构的代表性材料包括氮化硅,其厚度介于3至30纳米之间,也可使用其他高介质常数材料,包括如氧化铝、氧化铪、氧化铈等金属氧化物。电荷捕捉结构可为一组不连续的电荷捕捉材料囊或颗粒,或为图中所示的连续层。电荷捕捉结构120可捕捉如电子或空穴等电荷。Other combined charge trapping structures, such as oxide nitride oxide nitride oxide (ONONO) stacks, etc., can also be used in the present invention without departing from the spirit of the present invention. Representative materials for the
图5A示出第一实施例的虚拟接地阵列500,在空穴电荷注入法实施在MNOS存储器之前的俯视图。虚拟接地阵列500包括多条水平延伸的字线(栅极)WL1 510,WL2 512和WL3514,如箭号X1 502所示。每一WL1 510,WL2 512和WL3 514的宽度,由标号Wg 518所标示。虚拟接地阵列500也包括多条位线BL1 520,BL2 522,与BL3 524,并在位线BL1 520,BL2 522之间具有第一电荷捕捉部分521,在位线BL2 522,BL3 524之间具有第二电荷捕捉部分523,此二部分沿着垂直方向延伸,如箭号Y1 504所标示。每一电荷捕捉部分521,523的长度,由标号Lg 529所标示。第一电荷捕捉部分521与第二电荷捕捉部分523为电荷捕捉层的部份。在第一电荷捕捉部分521与第一、第二、第三字线WL1 510,WL2 512和WL3 514交错处,具有第一介质带525与第二介质带526垂直地延伸于第一电荷捕捉部分521的两侧。在第二电荷部分523与第一、第二、第三字线WL1 510,WL2 512和WL3 514交错处,则有第三介质带527与第四介质带528垂直地延伸于第二电荷捕捉部分523的两侧。FIG. 5A shows a top view of the
第一字线WL1 510具有第一边缘530与第二边缘532,以及非边缘区域531。本发明的实施例将非边缘区域531指示为,远离于第一边缘530与第二边缘532、且实质上接近中心的位置,亦即介于第一边缘530与第二边缘532之间。第二字线WL2 512具有第一边缘540与第二边缘542、以及非边缘区域541。本发明的实施例将非边缘区域541指示为,远离于第一边缘540与第二边缘542、且实质上接近中心的位置,亦即介于第一边缘540与第二边缘542之间。第三字线WL3 514具有第一边缘550与第二边缘552、以及非边缘区域551。本发明的实施例将非边缘区域551指示为,远离于第一边缘550与第二边缘552、且实质上接近中心的位置,亦即介于第一边缘550与第二边缘552之间。虚拟接地阵列500不具有边缘诱发效应,因为空穴电荷注入尚未施加至虚拟接地阵列500。The first
图5B是示出了虚拟接地阵列500在X1方向502的透视图,其在源极与漏极接面之上并不具有电荷捕捉层。虚拟接地阵列500包括衬底560,其中具有源极区域(n+)562与漏极区域(n+)564,其间则以沟道长度Lg 529分隔。在本实施例中,电荷捕捉层568并未向左延伸到底而与衬底的左侧对齐、也未向右延伸到底而与衬底的右侧对齐。而是,电荷捕捉层568的左侧具有第一介质区块565、并在右侧具有第二介质区块567。第一介质区块565的底面接触至源极区域562的上表面,因此不具有电荷捕捉层,如虚线圆圈570所示。第二介质区块567的底面接触至漏极区域564的上表面,因此不具有电荷捕捉层,如虚线圆圈572所示。介质层566延伸于第一与第二介质区块565,567之间,并位于电荷捕捉层568之下。5B is a perspective view showing a
图5C是示出了虚拟接地阵列500在Y1方向504的透视图,其具有电荷捕捉层568于字线的边缘之上。如同从Y1方向504所观察到的,第一字线WL1510与第二字线WL2512的底表面接触到电荷捕捉层568。电荷捕捉层568的上表面接触到第一字线510的第一与第二边缘530,532、以及第二字线512的第一与第二边缘540,542。FIG. 5C is a perspective view showing the
图6A是示出第一实施例的虚拟接地阵列500在空穴电荷注入方法实行后的结果。当空穴电荷注入实行之后,空穴电荷沿着每一字线的边缘储存,因为与每一字线之中心相较之下,边缘具有较大的电场。多个空穴电荷630沿着第一字线WL1510的第一边缘530储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。更详细地说,多个空穴电荷632沿着第一字线WL1 510的第二边缘532储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。对于第二字线WL2512而言,多个空穴电荷640沿着第二字线WL2512的第一边缘540储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。多个空穴电荷642沿着第二字线WL2512的第二边缘542储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。对于第三字线WL3 514而言,多个空穴电荷650沿着第三字线WL3 514的第一边缘550储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。多个空穴电荷652沿着第三字线WL3 514的第二边缘552储存,并与第一电荷捕捉部分521及第二电荷捕捉部分523相交。第一字线WL1 510的第一边缘530与第二边缘532,以及其他字线的各边缘,加强了漏极诱发势垒降低效应(DIBL,drain induced barrier lowering),以产生较大的第二位操作区间。FIG. 6A shows the result of the
图6B是示出了虚拟接地阵列500在X2方向602的透视图,其中空穴电荷630储存于电荷捕捉层568之上。空穴电荷630造成边缘或诱发沟道563,以获得较低的临界电压电平。此诱发沟道563使得虚拟接地阵列500被启动,进而使得源极与漏极区域562,564成为导通状态。临界电压Vt典型地会控制虚拟接地阵列500的元件操作。FIG. 6B is a perspective view showing the
图6C是示出虚拟接地阵列500在Y2方向604的透视图,其中电荷捕捉层位于字线的边缘上。如同Y2方向604所示,第一字线WL1 510与第二字线WL2512的底面接触到电荷捕捉层568。电荷捕捉层之上表面接触到第一字线510的第一与第二边缘530,532、并接触到第二字线512的第一与第二边缘540,542。位于电荷捕捉层之中、且位于第一字线510之下的非边缘区域531,并不储存空穴电荷。相似地,位于电荷捕捉层之中、且位于第二字线512之下的非边缘区域541,亦不储存空穴电荷。6C is a perspective view showing the
图7A为结构图,示出第二实施例在空穴注入方法实行于MNOS存储器之前的虚拟接地阵列700。虚拟接地阵列700包括多条水平延伸的字线(栅极)WL1 710,WL2 712和WL3714,如箭号X1 702所示。每一WL1 710,WL2 712和WL3 714的宽度,由标号Wg 718所标示。虚拟接地阵列700也包括多条位线BL1 720,BL2 722,与BL3 724,并在位线BL1 720,BL2 722之间具有第一电荷捕捉部分721,在位线BL2 722,BL3 724之间具有第二电荷捕捉部分723,此二部分沿着垂直方向延伸,如箭号Y1 704所标示。每一电荷捕捉部分721,723的长度,由标号Lg 728所标示。第一电荷捕捉部分721与第二电荷捕捉部分723为电荷捕捉层的部份。FIG. 7A is a structural diagram showing a
第一字线WL1 710具有第一边缘730与第二边缘732,以及非边缘区域731。在其他实施例中将非边缘区域731指示为,远离于第一边缘730与第二边缘732、且实质上接近中心的位置,亦即介于第一边缘730与第二边缘732之间。第二字线WL2 712具有第一边缘740与第二边缘742、以及非边缘区域741。在其他实施例中将非边缘区域741指示为,远离于第一边缘740与第二边缘742、且实质上接近中心的位置,亦即介于第一边缘740与第二边缘742之间。第三字线WL3 714具有第一边缘750与第二边缘752、以及非边缘区域751。在其他实施例中将非边缘区域751指示为,远离于第一边缘750与第二边缘752、且实质上接近中心的位置,亦即介于第一边缘750与第二边缘752之间。虚拟接地阵列700不具有边缘诱发效应,因为空穴电荷注入尚未施加至虚拟接地阵列700。The first
图7B是示出了虚拟接地阵列700在X1方向702的透视图,其在源极与漏极接面之上具有电荷捕捉层。虚拟接地阵列700包括衬底760,其中具有源极区域(n+)762与漏极区域(n+)764,其间则以沟道长度Lg 728分隔。在本实施例中,介质层766位于衬底760之上,且电荷捕捉层位于介质层766之上,而栅极710则位于电荷捕捉层768之上。在本实施例中,768延伸至源极区域762之上,如同虚线圆圈770所示、同时延伸到漏极区域764之上,如同虚线圆圈772所示。7B is a perspective view showing a
图7C示出了虚拟接地阵列700在Y1方向704的透视图,其中电荷捕捉层768位于字线的边缘上。如同从Y1方向704所观测者,第一字线WL1 710与第二字线WL2 712的底面接触至电荷捕捉层768。电荷捕捉层768之上表面与第一字线710的第一与第二边缘730,432接触,并与第二字线712的第一与第二边缘740,742接触。FIG. 7C shows a perspective view of the
图8A为第二实施例的虚拟接地阵列700,实施空穴电荷注入后的俯视图。当空穴电荷注入实行之后,空穴电荷沿着每一字线的边缘储存,因为与每一字线的中心相较之下,边缘具有较大的电场。多个空穴电荷830沿着第一字线WL1 710的第一边缘730储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。空穴电荷亦沿着字线的其他边缘而储存。更详细地说,多个空穴电荷832沿着第一字线WL1 710的第二边缘732储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。对于第二字线WL2 712而言,多个空穴电荷840沿着第二字线WL2 712的第一边缘740储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。多个空穴电荷842沿着第二字线WL2 712的第二边缘742储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。对于第三字线WL3 714而言,多个空穴电荷850沿着第三字线WL3 714的第一边缘750储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。多个空穴电荷852沿着第三字线WL3 714的第二边缘752储存,并与第一电荷捕捉部分721及第二电荷捕捉部分723相交。FIG. 8A is a top view of the
图8B示出了虚拟接地阵列700在X2方向802的透视图,其中空穴830储存于电荷捕捉层768之中。空穴电荷830造成边缘或诱发沟道,以获得较低的临界电压电平。此诱发沟道763使得虚拟接地阵列700被启动,进而使得源极与漏极区域762,764成为导通状态。临界电压Vt典型地会控制虚拟接地阵列700的元件操作。FIG. 8B shows a perspective view of the
图8C示出虚拟接地阵列700在Y2方向804的透视图,其中电荷捕捉层位于字线的边缘上。如同Y2方向804所示,第一字线WL1 710与第二字线WL2 712的底面接触到电荷捕捉层768。电荷捕捉层之上表面接触到第一字线710的第一与第二边缘730,732、并接触到第二字线712的第一与第二边缘740,742。位于电荷捕捉层之中、且位于第一字线710之下的非边缘区域731,并不储存空穴电荷。相似地,位于电荷捕捉层之中、且位于第二字线712之下的非边缘区域741,亦不储存空穴电荷。8C shows a perspective view of the
图9为结构图,其示出空穴电荷注入方法实施于MNOS存储器之上之前,虚拟接地阵列700的俯视图,其中此注入空穴作为沿着字线的非对称临界电压电平。虚拟接地阵列900包括多条水平延伸的字线(栅极)WL1 910,WL2 912和WL3 914。每一WL1 910,WL2 912和WL3 914的宽度,由标号Wg 918所标示。虚拟接地阵列900也包括多条位线BL1 920,BL2 922,与BL3 924,并在位线BL1 920,BL2 922之间具有第一电荷捕捉部分921,在位线BL2 922,BL3 924之间具有第二电荷捕捉部分923,此二部分沿着垂直方向延伸。每一电荷捕捉部分921,923的长度,由标号Lg 929所标示。第一电荷捕捉部分921与第二电荷捕捉部分923为电荷捕捉层的一部份。在第一电荷捕捉部分921与第一、第二、第三字线WL1 910,WL2 912和WL3 914的交错处,有第一介质带925与第二介质带926垂直地延伸于第一电荷捕捉部分921的两侧。在第二电荷捕捉部分923与第一、第二、第三字线WL1 910,WL2 912和WL3 914的交错处,有第三介质带927与第四介质带928垂直地延伸于第一电荷捕捉部分923的两侧。FIG. 9 is a block diagram showing a top view of a
第一字线WL1 910具有第一边缘930(如虚线方块所示)与第二边缘932(如虚线方块所示),以及非边缘区域931(如实线所示)。本发明的实施例将非边缘区域931指示为,远离于第一边缘930与第二边缘932、且实质上接近中心的位置,亦即介于第一边缘930与第二边缘932之间。第二字线WL2 912具有第一边缘940(如虚线方块所示)与第二边缘942(如虚线方块所示)、以及非边缘区域941(如实线所示)。本发明的实施例将非边缘区域941指示为,远离于第一边缘940与第二边缘942、且实质上接近中心的位置,亦即介于第一边缘940与第二边缘942之间。第三字线WL3 914具有第一边缘950(如虚线方块所示)与第二边缘952(如虚线方块所示)、以及非边缘区域951(如实线所示)。本发明的实施例将非边缘区域951指示为,远离于第一边缘950与第二边缘952、且实质上接近中心的位置,亦即介于第一边缘950与第二边缘952之间。虚拟接地阵列900不具有边缘诱发效应,因为空穴电荷注入尚未施加至虚拟接地阵列900。The first
每一字线WL1 910,WL2 912,WL3 914具有两种临界电压电平,边缘临界电压电平以Vtfringe表示,而非边缘临界电压电平则以Vtnon-fringe表示。在某些实施例中,边缘930,932与边缘临界电压Vtfringe有关,而非边缘区域931则与非边缘临界电压Vtnon-fringe有关。典型地,较低的临界电压电平会控制元件操作特性。为了在字线的边缘操作虚拟接地阵列900,边缘临界电压Vtfringe低于非边缘临界电压Vtnon-fringe。Each
图10为结构图,示出空穴电荷注入方法实施于MNOS存储器之上之前,虚拟接地阵列1000的俯视图,其中此注入空穴作为沿着字线的非对称临界电压电平。虚拟接地阵列1000包括多条水平延伸的字线(栅极)WL1 1010,WL2 1012和WL3 1014。每一WL1 1010,WL2 1012和WL3 1014的宽度,由标号Wg 1018所标示。虚拟接地阵列1000也包括多条位线BL1 1020,BL2 1022,与BL3 1024,并在位线BL1 1020,BL2 1022之间具有第一电荷捕捉部分1021,在位线BL2 1022,BL3 1024之间具有第二电荷捕捉部分1023,此二部分沿着垂直方向延伸。每一电荷捕捉部分1021,1023的长度,由标号Lg 10210所标示。第一电荷捕捉部分1021与第二电荷捕捉部分1023为电荷捕捉层的部份。FIG. 10 is a structural diagram showing a top view of a
第一字线WL1 1010具有第一边缘1030(如虚线方块所示)与第二边缘1032(如虚线方块所示),以及非边缘区域1031(如实线所示)。本发明的实施例将非边缘区域1031表示,远离于第一边缘1030与第二边缘1032、且实质上接近中心的位置,亦即介于第一边缘1030与第二边缘1032之间。第二字线WL2 1012具有第一边缘1040(如虚线方块所示)与第二边缘1042(如虚线方块所示)、以及非边缘区域1041(如实线所示)。本发明的实施例将非边缘区域1041表示,远离于第一边缘1040与第二边缘1042、且实质上接近中心的位置,亦即介于第一边缘1040与第二边缘1042之间。第三字线WL31014具有第一边缘1050(如虚线方块所示)与第二边缘1052(如虚线方块所示)、以及非边缘区域1051(如实线所示)。本发明的实施例将非边缘区域1051表示,远离于第一边缘1050与第二边缘1052、且实质上接近中心的位置,亦即介于第一边缘1050与第二边缘1052之间。虚拟接地阵列1000不具有边缘诱发效应,因为空穴电荷注入尚未施加至虚拟接地阵列1000。The first word line WL1 1010 has a first edge 1030 (shown as a dotted square) and a second edge 1032 (shown as a dotted square), and a non-edge area 1031 (shown as a solid line). In the embodiment of the present invention, the non-edge area 1031 represents a position away from the
每一字线WL1 1010,WL2 1012,WL3 1014具有两种临界电压电平,边缘临界电压电平以Vtfringe表示,而非边缘临界电压电平则以Vtnon-fringe表示。在某些实施例中,边缘1030,1032与边缘临界电压Vtfringe有关,而非边缘区域1031则与非边缘临界电压Vtnon-fringe有关。典型地,较低的临界电压电平会控制元件操作特性。为了在字线的边缘操作虚拟接地阵列1000,边缘临界电压Vtfringe低于非边缘临界电压Vtnon-fringe。Each word line WL1 1010 , WL2 1012 ,
图11A为结构图,示出在MNOS结构中的左位(Bit-L)的编程,而图11B则是对应的单单元双位操作区间,其说明了第二位效应,也就是指在右位(Bit-R)处所发生的。第二位效应发生在使用了单单元双位操作(亦即左位与右位)的电荷捕捉存储器中。当二位之一被编程时,即使只有一位被编程,另一位的临界电压亦可能随的增加。左位的编程示出于图11A之中,并在左侧1112标示电荷1110。虽然只有左位1112被编程,但左位1112的编程亦使得右位1114的临界电压增加,如图11B所示。曲线1120示出了右位1114的临界电压,在左位1112被编程时,会随着升高。此现象称为第二位效应。不具有第二位效应的理想曲线,会显示左位的连续编程会使左位的临界电压升高,但右位的临界电压则不受影响,使得右位的临界电压维持实质上稳定的状态。Figure 11A is a structural diagram showing the programming of the left bit (Bit-L) in the MNOS structure, while Figure 11B is the corresponding single-unit double-bit operation interval, which illustrates the second bit effect, that is, the right bit What happens at the bit (Bit-R). The second bit effect occurs in charge-trapping memories that use single-cell two-bit operations (ie, left and right bits). When one of the two bits is programmed, even if only one bit is programmed, the threshold voltage of the other bit may increase accordingly. The programming of the left bit is shown in FIG. 11A with
图12是示出了虚拟接地阵列的第二位区间的示例性曲线示意图1200,其使用了空穴注入边缘诱发操作。第二位区间定义为右位临界电压Vt(r)1210与左位临界电压Vt(1)1220之间的差异。如图12所示,左位临界电压变动了大约6.0伏特,而右位的临界电压变动了大约1.4伏特。因此,本例中的第二位区间,以Vt(1)1220的变动减去Vt(r)1210的变动,亦即6.0-1.5=4.5伏特。曲线图1200仅作为说明用,而非用以作为限制本发明,而操作区间4.5伏特为一理想参数。FIG. 12 is an exemplary graph diagram 1200 illustrating a second bit interval of a virtual ground array using a hole injection edge induced operation. The second bit interval is defined as the difference between the right bit threshold voltage Vt(r) 1210 and the left bit threshold voltage Vt(1) 1220 . As shown in FIG. 12, the threshold voltage of the left bit varies by about 6.0 volts, while that of the right bit varies by about 1.4 volts. Therefore, in the second bit interval in this example, the variation of Vt(r) 1210 is subtracted from the variation of Vt(1) 1220, that is, 6.0−1.5=4.5 volts. The
关于可在单单元中储存多位的电荷捕捉存储器的空穴注入方法与第二位效应,请参见美国专利申请号_11/614,905,名称为“Methods and Structures for Expnading aMemory Operation Window and Reducing a Second BitEffect”,其发明人与本发明相同,并列为本案的参考。For the hole injection method and the second bit effect of a charge trap memory that can store multiple bits in a single cell, please refer to US Patent Application No. _11/614,905, entitled "Methods and Structures for Expnading a Memory Operation Window and Reducing a Second BitEffect", whose inventors are the same as the present invention, and incorporated by reference in this case.
本领域技术人员应不需要额外信息以发展本发明的方法与系统,但或许可以通过阅读相关领域的一般参考数据,而获得某些有用的信息。Those skilled in the art should not need additional information to develop the methods and systems of the present invention, but may be able to obtain some useful information by reading general references in the relevant field.
虽然本发明已参照优选实施例来加以描述,将为我们所了解的是,本发明创作并未受限于其详细描述内容。替换方式及修改样式已于先前描述中所建议,并且其他替换方式及修改样式将为本领域技术人员所想到。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果者皆不脱离本发明的精神范围。因此,所有这种替换方式及修改样式意欲落在本发明于所附权利要求书及其等价物所定义的范围之中。任何在前文中提及的专利申请以及印刷文本,均列为本案的参考。While the invention has been described with reference to preferred embodiments, it will be understood that the inventive concept is not limited to the details described. Alternatives and modifications have been suggested in the preceding description, and other alternatives and modifications will occur to those skilled in the art. In particular, according to the structure and method of the present invention, all combinations of components substantially the same as those of the present invention to achieve substantially the same results as the present invention do not depart from the scope of the present invention. Accordingly, all such alternatives and modifications are intended to come within the scope of the invention as defined in the appended claims and their equivalents. Any patent applications mentioned above, as well as printed versions, are hereby incorporated by reference in this case.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80544806P | 2006-06-21 | 2006-06-21 | |
US60/805,448 | 2006-06-21 | ||
US11/614,905 | 2006-12-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101093860A CN101093860A (en) | 2007-12-26 |
CN100524829C true CN100524829C (en) | 2009-08-05 |
Family
ID=38991976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101119183A Active CN100524829C (en) | 2006-06-21 | 2007-06-20 | Method and structure for operating memory device on control gate edge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100524829C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867929A (en) * | 2014-02-24 | 2015-08-26 | 旺宏电子股份有限公司 | Non-volatile memory and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084706A1 (en) * | 2002-10-30 | 2004-05-06 | Renesas Technology Corp. | Non-volatile semiconductor memory |
US20050185466A1 (en) * | 2004-02-24 | 2005-08-25 | Micron Technology, Inc. | Multi-state memory cell with asymmetric charge trapping |
CN1723555A (en) * | 2002-12-12 | 2006-01-18 | 因芬尼昂技术股份公司 | Semiconductor memory with charge trapping memory unit and manufacturing method |
-
2007
- 2007-06-20 CN CNB2007101119183A patent/CN100524829C/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084706A1 (en) * | 2002-10-30 | 2004-05-06 | Renesas Technology Corp. | Non-volatile semiconductor memory |
CN1723555A (en) * | 2002-12-12 | 2006-01-18 | 因芬尼昂技术股份公司 | Semiconductor memory with charge trapping memory unit and manufacturing method |
US20050185466A1 (en) * | 2004-02-24 | 2005-08-25 | Micron Technology, Inc. | Multi-state memory cell with asymmetric charge trapping |
Also Published As
Publication number | Publication date |
---|---|
CN101093860A (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7471568B2 (en) | Multi-level cell memory structures with enlarged second bit operation window | |
US7382654B2 (en) | Trapping storage flash memory cell structure with inversion source and drain regions | |
CN101521207B (en) | integrated circuit | |
CN101090118B (en) | Non-volatile memory substrate transient hot carrier injection programming and erasing methods | |
EP1717815B1 (en) | Inversion bit line, charge trapping non-volatile memory and method of operating same | |
US7492636B2 (en) | Methods for conducting double-side-biasing operations of NAND memory arrays | |
CN100477233C (en) | memory element | |
US7773430B2 (en) | Method of identifying logical information in a programming and erasing cell by on-side reading scheme | |
US7599229B2 (en) | Methods and structures for expanding a memory operation window and reducing a second bit effect | |
US7561470B2 (en) | Double-side-bias methods of programming and erasing a virtual ground array memory | |
US7684252B2 (en) | Method and structure for operating memory devices on fringes of control gate | |
CN100524829C (en) | Method and structure for operating memory device on control gate edge | |
CN100470810C (en) | Memory structure for expanding second bit operation margin | |
CN100505317C (en) | memory element | |
US20070296023A1 (en) | Charge Monitoring Devices and Methods for Semiconductor Manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |