CN100520466C - Multi-port coupler, optical amplifier, and fiber laser - Google Patents
Multi-port coupler, optical amplifier, and fiber laser Download PDFInfo
- Publication number
- CN100520466C CN100520466C CNB2007101030733A CN200710103073A CN100520466C CN 100520466 C CN100520466 C CN 100520466C CN B2007101030733 A CNB2007101030733 A CN B2007101030733A CN 200710103073 A CN200710103073 A CN 200710103073A CN 100520466 C CN100520466 C CN 100520466C
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- core
- cladding
- excitation
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 79
- 230000003287 optical effect Effects 0.000 title claims abstract description 49
- 239000013307 optical fiber Substances 0.000 claims abstract description 196
- 230000005284 excitation Effects 0.000 claims abstract description 102
- 238000005253 cladding Methods 0.000 claims abstract description 101
- 230000003321 amplification Effects 0.000 claims abstract description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 21
- 230000005855 radiation Effects 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 19
- 238000005086 pumping Methods 0.000 claims description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明提供一种多端口耦合器,是将中心的信号用光纤与配置于其周围的多条激发用光纤一体化且将头端侧减径而成,并将激发光源与光放大用的包层泵浦光纤相连,其中,在位于中心的信号用光纤的纤芯周边设有放射光关入波导路部,其具有比该纤芯更大的外径,并具有比包层高而比纤芯小的折射率的值,该放射光关入波导路部连续地形成于从与包层泵浦光纤的连接部起至分支为多条光纤的耦合器部端部。
The present invention provides a multi-port coupler, which is formed by integrating a central signal optical fiber and a plurality of excitation optical fibers arranged around it and reducing the diameter of the head end side, and combining an excitation light source and an optical amplification package. Layer-pumped optical fiber, wherein a radiated light entrance waveguide is provided around the core of the signal optical fiber at the center, which has a larger outer diameter than the core, and has a The value of the refractive index of the core is small, and the radiated light confinement waveguide section is formed continuously from the connection section with the cladding pump fiber to the end section of the coupler section branched into a plurality of optical fibers.
Description
技术领域 technical field
本发明涉及在光通信,特别是在近距离传送系统中使用的光纤放大器或在光纤激光器等中使用的多端口耦合器,与使用了它的光放大器及光纤激光器。The present invention relates to an optical fiber amplifier used in optical communication, especially a short-distance transmission system or a multi-port coupler used in a fiber laser, and an optical amplifier and a fiber laser using the same.
本申请对2006年5月30日提出申请的日本国专利申请第2006-149696号以及2006年9月26日提出申请的日本国专利申请第2006-260881号主张优先权,在这里援引其内容。This application claims priority to Japanese Patent Application No. 2006-149696 filed on May 30, 2006 and Japanese Patent Application No. 2006-260881 filed on September 26, 2006, the contents of which are incorporated herein.
背景技术 Background technique
在高输出光放大器、光纤激光器等中,一般采用包层泵浦(clad-pump)构造。它是将为了放大在光纤中的纤芯传播的光而必需的激发光在包层中传播而提供的构造的装置。与该包层泵浦构造被广泛地采用的同时,多模光纤输出的高功率激光器二极管(以下,记作LD。)得以使用。包层泵浦光纤使用了在掺杂了稀土类元素的纤芯的外周具有多层包层的双包层构造。In high-output optical amplifiers, fiber lasers, and the like, a clad-pump structure is generally used. It is a device that provides a structure for propagating the excitation light necessary to amplify the light propagating through the core of the optical fiber through the cladding. At the same time that this cladding-pumped structure is widely used, a high-power laser diode (hereinafter, referred to as LD) output from a multimode fiber is used. The cladding pump fiber uses a double-clad structure in which a core doped with a rare earth element has multiple cladding layers.
为了将高功率多模LD的光送入放大用的包层泵浦光纤中,使用多端口耦合器。多端口耦合器具有如下的功能,即,会聚2条以上的多模光纤的光而与包层泵浦光纤相连,同时连接在普通信号光通过的单模光纤(以下,记作SM光纤。)与包层泵浦光纤的各自的纤芯。利用该多端口耦合器的功能,即使一个LD的输出为数W,也可以通过将几个LD与包层泵浦光纤相连,来获得较大的输出。将利用了该多端口耦合器的光放大器的构成图表示于图1中。In order to send the light of the high-power multimode LD to the cladding pump fiber for amplification, a multi-port coupler is used. The multi-port coupler has the function of converging the light of two or more multimode fibers and connecting it to the cladding pump fiber, and at the same time connecting to the single-mode fiber (hereinafter referred to as SM fiber) through which normal signal light passes. with the respective cores of the cladding-pumped fibers. Utilizing the function of this multi-port coupler, even if the output of one LD is several W, a larger output can be obtained by connecting several LDs to the cladding pump fiber. A configuration diagram of an optical amplifier using this multiport coupler is shown in FIG. 1 .
图1的光放大器1具有被射入信号光及激发光的多端口耦合器2、与该多端口耦合器2的输出端进行头端连接了的包层泵浦光纤3。该多端口耦合器2形成为,将中心的由SM光纤构成的信号用光纤5和配置于其周围的由多条多模光纤构成的激发用光纤4一体化,并且头端侧减径,并可以向与该被减径了的输出端连接的光放大用的包层泵浦光纤3射入信号光和激发光。在该多端口耦合器2的信号用光纤5上,连接有未图示的信号光源,另外在多条激发用光纤4上,分别连接有LD10。该光放大器1通过借助多端口耦合器2将激发光(例如波长910~980nm)向包层泵浦光纤3的包层射入,而将在包层泵浦光纤3的纤芯中掺杂的稀土类离子激发,通过借助多端口耦合器2向包层泵浦光纤3的纤芯射入信号光,而将所射入的信号光放大,并使该被放大了的信号光(高输出信号)得以从包层泵浦光纤3中输出。该种光放大器中,以增益的水平表示有时可以达到20dB以上,以最高输出表示有时可以达到1W~1kW。The optical amplifier 1 in FIG. 1 includes a
但是,以往所使用的组合了多端口耦合器与包层泵浦光纤的光放大器中,为了提高可靠性,LD的长寿命化被作为一个课题提出。However, in an optical amplifier combining a multiport coupler and a clad pump fiber conventionally used, in order to improve reliability, a longer lifetime of the LD has been proposed as a problem.
为了实现LD的长寿命化,不仅LD自身的高可靠性设计十分重要,而且作为使用条件来说温度控制也很重要。但是,以往的光放大器中,LD有时会因使用条件的影响而突然发生故障,从而对光放大器整体的高可靠性化造成很大的障碍。In order to realize the long life of LD, not only the high reliability design of LD itself is very important, but also the temperature control is very important as the conditions of use. However, in conventional optical amplifiers, LDs may suddenly break down due to the influence of operating conditions, which has greatly hindered the improvement of the overall reliability of optical amplifiers.
本发明人等进行了深入研究,结果发现,激发的LD发生突然失效的原因在于,从光放大器中输出的高输出信号光从外部的反射点向光放大器返回。故障的原因是,该反射光边在包层泵浦光纤的纤芯传播,边被反向放大,并且因在包层泵浦光纤与多端口耦合器的连接中产生的连接损耗而向包层泄露的光到达激发LD处,而破坏掉激发LD。特别是,在光放大器的增益为20dB以上的情况下,即使反射率为1%左右,在通过了光放大器后也会变为超过10%的很大的光。当此种很强的反射光返回时,特别是脉冲激光器的情形,较激发LD自身的输出的近10倍的功率的光射入LD,由此LD被破坏掉。As a result of intensive research by the present inventors, it was found that the cause of the sudden failure of the excited LD is that the high-output signal light output from the optical amplifier returns to the optical amplifier from an external reflection point. The reason for the failure is that the reflected light is reversely amplified while propagating in the core of the cladding pumping fiber, and is transmitted to the cladding layer due to the connection loss generated in the connection between the cladding pumping fiber and the multi-port coupler. The leaked light reaches the excitation LD and destroys the excitation LD. In particular, when the gain of the optical amplifier is 20 dB or more, even if the reflectance is about 1%, it becomes very large light exceeding 10% after passing through the optical amplifier. When such strong reflected light returns, especially in the case of pulsed lasers, light with a power nearly 10 times the output of the excitation LD itself enters the LD, thereby destroying the LD.
所以,本发明人等为了解决该问题,探求了即使反射光返回放大器也不会发生激发LD的失效的构造。Therefore, in order to solve this problem, the inventors of the present invention searched for a structure in which failure of the excitation LD does not occur even if the reflected light returns to the amplifier.
但是,作为抑制反射光本身的以往技术,虽然也有光隔离器,但是依靠光隔离器,只能将反射率衰减为-20dB左右,甚至还有与数W以上的光对应的光隔离器非常昂贵的问题。However, as a conventional technology for suppressing reflected light itself, there are optical isolators, but with optical isolators, the reflectance can only be attenuated to about -20dB, and even optical isolators corresponding to light of several W or more are very expensive. The problem.
由于反射光在放大光纤中是在纤芯的内部传播,因此只要光不从纤芯泄露,就没有向激发LD放射反射光的情况。所以,在调查了为何反射光会射入LD的原因后,发现反射光之所以被向激发LD放射,主要的原因是产生了多端口耦合器与包层泵浦光纤的连接部分的纤芯彼此间的连接损耗。Since the reflected light propagates inside the core in the amplification fiber, as long as the light does not leak from the core, the reflected light does not radiate to the excitation LD. Therefore, after investigating the reason why the reflected light enters the LD, it was found that the main reason why the reflected light is emitted to the excited LD is that the core of the connecting part of the multi-port coupler and the cladding pump fiber is connected to each other. connection loss between them.
在该连接部分产生损耗是因为,两条光纤的纤芯径(强度分布的大小)有较大不同。一般来说高功率的包层泵浦光纤具有直径20μm以上的纤芯径。另一方面,在信号传播用中使用的SM光纤的纤芯径为5μm左右(波长)。由此,特别是在反射光所传播的方向上,连接部的损耗的大小达到5dB以上。Loss occurs at this connection portion because the core diameters (magnitudes of intensity distribution) of the two optical fibers are largely different. Generally, high-power cladding pump fibers have a core diameter of 20 μm or more. On the other hand, the core diameter of the SM optical fiber used for signal propagation is about 5 μm (wavelength). As a result, especially in the direction in which the reflected light propagates, the magnitude of the loss at the connecting portion becomes 5 dB or more.
包层泵浦光纤的纤芯径较大的理由是,由于在高功率的放大器内光的功率密度非常大,因此在光纤内受到非线性光学效应的影响。为了避免此种影响,一般来说是增大包层泵浦光纤的纤芯的直径,其结果是,光纤中的光能密度被尽可能小地设计。但是,由于在此种截面积较大的纤芯中,单模传送非常困难,并且弯曲损耗也变大,因此不适于信号用光纤。所以,传送用光纤以纤芯截面积小的,放大用光纤以纤芯截面积大的为优选。由于在这两种光纤的中间有多端口耦合器,因此只要可以将该多端口耦合器的纤芯截面积设为两种光纤的截面积的中间的大小,就可以在某种程度上减少连接损耗。但是,在多端口耦合器的构造上,很明显与其说是减少连接损耗,不如说是增大连接损耗。这是因为,由于多端口耦合器通常来说是将多条光纤与一条光纤耦合,因此光纤的外径变小。The reason why the core diameter of the cladding pump fiber is large is that since the power density of light in a high-power amplifier is very large, it is affected by nonlinear optical effects in the fiber. In order to avoid this effect, generally the diameter of the core of the cladding pump fiber is increased, and as a result, the optical energy density in the fiber is designed to be as small as possible. However, in such a core with a large cross-sectional area, single-mode transmission is very difficult and bending loss increases, so it is not suitable for optical fibers for signals. Therefore, it is preferable that the optical fiber for transmission has a small core cross-sectional area, and the optical fiber for amplification has a large core cross-sectional area. Since there is a multi-port coupler in the middle of these two kinds of optical fibers, as long as the core cross-sectional area of the multi-port coupler can be set to the size in the middle of the cross-sectional area of the two optical fibers, the connection can be reduced to some extent. loss. However, in the structure of the multi-port coupler, it is obvious that rather than reducing the connection loss, it is better to increase the connection loss. This is because the outer diameter of the optical fiber is reduced because the multiport coupler generally couples a plurality of optical fibers to one optical fiber.
图2是表示以往的多端口耦合器2与包层泵浦光纤3的连接部的构造的图。多端口耦合器2的与包层泵浦光纤3连接的一侧的头端部形成如下的构造,即,将中心的信号用光纤5与其周围的多条激发用光纤4一体化,并且朝向头端减径成锥面状,以使与包层泵浦光纤3的外径一致。该头端部中,中心的信号用光纤5的纤芯径进一步变小,在与纤芯径较大的包层泵浦光纤3连接的情况下,两者的光纤的纤芯径的差别进一步变大。FIG. 2 is a diagram showing the structure of a connection portion between a
如果考虑以上的情况,则可知在现实上很难减少在多端口耦合器的连接部产生的连接损耗。Considering the above, it can be seen that it is practically difficult to reduce the connection loss generated at the connection part of the multiport coupler.
发明内容 Contents of the invention
本发明鉴于所述情况而形成的,目的在于,提供在使用了多端口耦合器的光放大器或光纤激光器中可以消除由反射光造成的激发光源的失效,实现装置的长寿命化的多端口耦合器,与使用了它的光放大器及光纤激光器。The present invention was made in view of the above circumstances, and an object of the present invention is to provide a multi-port coupling capable of eliminating the failure of the excitation light source due to reflected light in an optical amplifier or a fiber laser using a multi-port coupler and realizing a longer life of the device. device, and the optical amplifier and fiber laser that use it.
为了达成所述目的,本发明提供一种多端口耦合器,将中心的信号用光纤与配置于其周围的多条激发用光纤一体化且将头端侧减径而成,并将激发光源与光放大用的包层泵浦光纤相连,其中,在该多端口耦合器的外缘部设置有包层,在位于中心的信号用光纤的纤芯周边以同心圆状设有放射光关入波导路部,其具有比该纤芯更大的外径,并具有比所述多端口耦合器的所述包层高而比所述信号用光纤的所述纤芯小的折射率的值,该放射光关入波导路部连续地形成于从与所述包层泵浦光纤的连接部起至分支为多条光纤的耦合器部端部。In order to achieve the above object, the present invention provides a multi-port coupler, which integrates a central signal optical fiber and a plurality of excitation optical fibers arranged around it and reduces the diameter of the head end side, and integrates the excitation light source and the plurality of excitation optical fibers. A cladding pumping fiber for optical amplification is connected, wherein a cladding is provided on the outer edge of the multi-port coupler, and a radiation light entry waveguide is provided in a concentric circle around the core of the signal optical fiber at the center. a path portion having a larger outer diameter than the core and having a refractive index value higher than that of the cladding of the multiport coupler and smaller than that of the core of the signal optical fiber, the The radiation-light confinement waveguide section is formed continuously from the connection section with the clad pump fiber to the end section of the coupler section branched into a plurality of optical fibers.
该多端口耦合器可以在信号用光纤的纤芯的周围以同心圆状设置放射光关入波导路部。另外,可以将放射光关入波导路部设计为在信号用光纤的纤芯的周围具有多角形状的截面。In this multi-port coupler, the radiation light confinement waveguide section may be provided concentrically around the core of the signal optical fiber. In addition, the emitted light confinement waveguide section may be designed to have a polygonal cross-section around the core of the signal optical fiber.
另外,本发明提供一种多端口耦合器,使用毛细管而将中心的信号用光纤与配置于其周围的多条激发用光纤一体化,所述毛细管与所述信号用光纤及所述激发用光纤一起都与桥接(bridge)用光纤的后端连接,并且将所述桥接用光纤的头端侧减径而成,将激发光源与光放大用的包层泵浦光纤相连的,其中在所述桥接用光纤的纤芯周边设有放射光关入波导路部,其具有大于该纤芯的外径,并具有高于所述桥接用光纤的包层而小于所述桥接用光纤的所述纤芯的折射率的值,并且所述毛细管的折射率低于所述信号用光纤的包层的折射率,所述毛细管对于所述信号用光纤具有放射光的关入效果。In addition, the present invention provides a multiport coupler in which a central signal optical fiber and a plurality of excitation optical fibers arranged around it are integrated using a capillary, the capillary, the signal optical fiber and the excitation optical fiber Both are connected to the rear end of the optical fiber for bridge, and the head end side of the optical fiber for the bridge is reduced in diameter, and the excitation light source is connected with the cladding pump optical fiber for optical amplification, wherein in the The periphery of the core of the bridging optical fiber is provided with a radiated light confinement waveguide portion having an outer diameter larger than the core and having a cladding higher than that of the bridging optical fiber but smaller than the cladding of the bridging optical fiber. The value of the refractive index of the core, and the refractive index of the capillary is lower than the refractive index of the cladding of the signal optical fiber, and the capillary has a confining effect of emitted light on the signal optical fiber.
另外,本发明提供一种多端口耦合器,使用毛细管而将中心的信号用光纤与配置于其周围的多条激发用光纤一体化,所述毛细管与所述信号用光纤及所述激发用光纤一起都与桥接用光纤的后端连接,并且将所述桥接用光纤的头端侧减径而成,将激发光源与光放大用的包层泵浦光纤相连,其中在所述桥接用光纤的纤芯周边设有放射光关入波导路部,其具有大于该纤芯的外径,并具有高于所述桥接用光纤的包层而小于所述桥接用光纤的所述纤芯的折射率的值,并且所述毛细管的折射率与所述信号用光纤的包层的折射率相同,而且所述激发用光纤的所述包层低于毛细管的折射率,所述激发用光纤的包层对于所述信号用光纤及所述毛细管具有放射光的关入效果。In addition, the present invention provides a multiport coupler in which a central signal optical fiber and a plurality of excitation optical fibers arranged around it are integrated using a capillary, the capillary, the signal optical fiber and the excitation optical fiber Both are connected to the rear end of the bridging optical fiber, and the head end side of the bridging optical fiber is reduced in diameter, and the excitation light source is connected to the cladding pumping optical fiber for optical amplification, wherein the bridging optical fiber The periphery of the core is provided with a radiated light confinement waveguide section, which has an outer diameter larger than the core, and has a refractive index higher than that of the cladding of the bridging optical fiber but lower than that of the core of the bridging optical fiber value, and the refractive index of the capillary is the same as that of the cladding of the signal optical fiber, and the cladding of the excitation optical fiber is lower than the refractive index of the capillary, the cladding of the excitation optical fiber The signal optical fiber and the capillary have confinement effects of emitted light.
该多端口耦合器可以在桥接用光纤的纤芯的周围以同心圆状设置放射光关入波导路部。另外,可以将放射光关入波导路部设计为在桥接用光纤的纤芯的周围具有多角形状的截面。In this multi-port coupler, the radiation light confinement waveguide section may be provided concentrically around the core of the bridging optical fiber. In addition, the emitted light confinement waveguide section may be designed to have a polygonal cross-section around the core of the bridging optical fiber.
本发明的多端口耦合器中,优选为放射光关入波导路部的外径小于与多端口耦合器连接的信号用光纤的外径。In the multiport coupler of the present invention, it is preferable that the outer diameter of the emitted light confinement waveguide section is smaller than the outer diameter of the signal optical fiber connected to the multiport coupler.
本发明的多端口耦合器中,优选为设置将信号用光纤跨越适当的距离卷绕的放射光衰减部。In the multiport coupler of the present invention, it is preferable to provide a radiation light attenuation section that winds the signal optical fiber over an appropriate distance.
另外,本发明提供一种光放大器,其具有涉及所述本发明的多端口耦合器、光放大用的包层泵浦光纤、激发光源。In addition, the present invention provides an optical amplifier including the multiport coupler according to the present invention, a clad pump fiber for optical amplification, and an excitation light source.
另外,本发明提供一种光纤激光器,其具有涉及所述本发明的多端口耦合器、光放大用的包层泵浦光纤、激发光源。In addition, the present invention provides a fiber laser including the multiport coupler of the present invention, a clad pump fiber for optical amplification, and an excitation light source.
本发明的多端口耦合器由于是在位于中心的信号用光纤的纤芯周边设置了放射光关入波导路部的构造,其具有大于该纤芯的外径,并具有高于包层而小于纤芯的折射率的值,因此可以将向LD返回的反射光关入该放射光关入波导路部,消除由反射光造成的激发光源的失效,实现装置的长寿命化。The multi-port coupler of the present invention has a structure in which a radiated light confinement waveguide is arranged around the core of the signal optical fiber at the center, and has an outer diameter larger than the core, and has a diameter higher than the cladding and smaller than the cladding. Because of the value of the refractive index of the core, it is possible to confine the reflected light returning to the LD into the radiated light into the waveguide section, eliminate the failure of the excitation light source caused by the reflected light, and realize the long life of the device.
本发明的光放大器由于是使用涉及所述本发明的多端口耦合器将激发光和信号光与光放大用的包层泵浦光纤耦合的构造,因此可以将向LD返回的反射光关入该放射光关入波导路部,消除由反射光造成的激发光源的失效,实现装置的长寿命化。The optical amplifier of the present invention has a structure in which the excitation light and the signal light are coupled to the clad pump fiber for optical amplification using the multiport coupler related to the present invention, so that the reflected light returning to the LD can be enclosed in the optical amplifier. The radiated light is enclosed in the waveguide section, and the failure of the excitation light source due to the reflected light is eliminated, and the device life is extended.
附图说明 Description of drawings
图1是表示光放大器的一个例子的构成图。FIG. 1 is a configuration diagram showing an example of an optical amplifier.
图2是表示多端口耦合器的构造的剖面图。Fig. 2 is a cross-sectional view showing the structure of a multiport coupler.
图3是表示本发明的多端口耦合器的一个实施方式的剖面图。Fig. 3 is a cross-sectional view showing an embodiment of the multiport coupler of the present invention.
图4A是图3的多端口耦合器的横剖面图。FIG. 4A is a cross-sectional view of the multiport coupler of FIG. 3 .
图4B~D是表示放射光关入波导路部为多角形状的变形例的剖面图。4B to D are cross-sectional views showing modified examples in which the radiated light-entrapment waveguide portion has a polygonal shape.
图5是表示本发明的多端口耦合器的第二实施方式的分解立体图。Fig. 5 is an exploded perspective view showing a second embodiment of the multiport coupler of the present invention.
图6是沿着图5的A-A切割面的剖面图。Fig. 6 is a cross-sectional view along the cut plane A-A of Fig. 5 .
图7A是沿着图5的B-B切割面的剖面图。FIG. 7A is a cross-sectional view along the B-B cutting plane of FIG. 5 .
图7B~D是表示放射光关入波导路部为多角形状的变形例的剖面图。7B to 7D are cross-sectional views showing modified examples in which the radiated light entering waveguide portion has a polygonal shape.
图8是表示将图5的多端口耦合器与non-dope DCF连接使用的情况的分解立体图。Fig. 8 is an exploded perspective view showing a case where the multiport coupler of Fig. 5 is used in connection with a non-dope DCF.
图9是表示实施例的结果的图表。FIG. 9 is a graph showing the results of Examples.
具体实施方式 Detailed ways
下面,将参照附图对本发明的实施方式进行说明。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
图3是表示本发明的多端口耦合器的一个实施方式的图,图3A是表示多端口耦合器2的头端侧的构造的剖面图,图3B是表示多端口耦合器2的另一端侧的构造的剖面图。3 is a diagram showing an embodiment of the multiport coupler of the present invention, FIG. 3A is a cross-sectional view showing the structure of the head end side of the
本实施方式的多端口耦合器2将中心的信号用光纤5与配置于其周围的多条激发用光纤4一体化且将头端侧减径而成,并将激发光源与光放大用的包层泵浦光纤3相连,其特征是,在位于中心的信号用光纤5的纤芯6周边以同心圆状设有放射光关入波导路部7,其具有比该纤芯6更大的外径,并具有比包层8高而比纤芯6小的折射率的值,该放射光关入波导路部7连续地形成于从与包层泵浦光纤3的连接部至分支为多条光纤4、5的耦合器部端部。The
本发明人等分析了导致LD失效的机理,发明了在多端口耦合器中即使产生连接损耗也不会导致LD的失效的构造。本发明人等所着眼的是多端口耦合器的内部构造。The inventors of the present invention analyzed the mechanism causing LD failure, and invented a structure that does not cause LD failure even if connection loss occurs in a multiport coupler. The inventors of the present invention focused their attention on the internal structure of the multiport coupler.
如图2所示,多端口耦合器2被制为以信号用光纤5为中心并在其周围整齐排列多条激发用光纤4而一体化。所以可知,如图3所示,当在信号用光纤5的纤芯6的周围,形成比其外周部折射率略高的放射光关入波导路部7时,即使在连接部产生连接损耗而产生向周围放射的光,也可以在该折射率较高的区域有效地将放射光关入,以阻止向激发端口的进入。As shown in FIG. 2 , the
另外,在进一步研究后,发现对于放射光关入波导路部7与包层8的相对折射率差来说,最好是该放射光关入波导路部7的直径越大则越小,相反放射光关入波导路部7的直径越小则越大。In addition, after further research, it was found that, for the relative refractive index difference between the radiated light-entrapping
此时发现,在放射光关入波导路部7的直径D与放射光关入波导路部7相对于包层8的相对折射率差Δ的关系维持下式(1)At this time, it was found that the relationship between the diameter D of the radiation-light
D[μm]×Δ[%]=一定值A…(1)D[μm]×Δ[%]=a certain value A...(1)
的关系而变化时,则将放射光关入的效果就会达到一定。When the relationship between the light and the light changes, the effect of turning off the emitted light will reach a certain level.
此时,一定值A只要是根据将漏出的放射光以何种程度关入而决定即可。另外,A也会随着光放大用的包层泵浦光纤3的纤芯径和与包层的相对折射率差而变化。这是因为,放射的光的角度或强度是由包层泵浦光纤3的纤芯9决定的。In this case, the constant value A may be determined according to how much leaked radiated light is trapped. In addition, A also changes with the core diameter of the
该放射光关入波导路部7需要设置在从与包层泵浦光纤3的连接部起,到信号用光纤5和激发用光纤4各自分散地分离的区域。这是因为,当在途中无法将放射光关入时,则放射光就会从该处向激发用光纤4耦合。The radiated light
此外,放射光关入波导路部7的直径,最好小于信号用光纤5的包层外径。这是因为,倘若放射光关入波导路部7的直径较大的话,在该波导路内关入的放射光会在耦合器终端部与激发用光纤4耦合。In addition, the diameter of the radiated light
在放射光关入波导路部7中被关入的放射光如图3B所示,在信号用光纤5中反向传播时,会被玻璃包层外部的树脂慢慢地吸收、消灭。为了积极地促进吸收,最好对信号用光纤5跨越适当的长度地以一定范围的曲率卷绕。例如,在φ50mm时优选设为1m左右。The radiated light confined in the radiated
另外,在难以使用适当的长度的光纤的情况下,也可以向包层部分中添加用以吸收放射光的掺杂剂而吸收放射光。例如,为了吸收波长1064nm的光,掺杂了Sm的光纤是有效的。In addition, when it is difficult to use an optical fiber of an appropriate length, a dopant for absorbing radiated light may be added to the cladding portion to absorb radiated light. For example, in order to absorb light with a wavelength of 1064 nm, an optical fiber doped with Sm is effective.
对在本实施方式的多端口耦合器2中,设置了放射光关入波导路部7所带来的效果进行说明。In the
例如,在纤芯径为20μm、纤芯-包层相对折射率差为0.1%的包层泵浦光纤3与头端的纤芯径为2.5μm、纤芯-包层相对折射率差为0.4%的多端口耦合器2的连接中,通过设为A=3[μm×%],就可以将放射光的92%关入,将向外放射的光设为8%左右。此时,多端口耦合器2的折射率的分布例为,纤芯-放射光关入波导路部相对折射率差为0.4%,放射光关入波导路部-包层相对折射率差为0.05%,放射光关入波导路部直径为60μm。所述的效果是,在未实施任何的对策时,如果有50W左右的反射光返回,则可以将它减少为4W。For example, in a
以往,在导致激发LD失效的案例中,由于在激发LD自身的输出的2倍以上的功率下会有失效的情况,因此减少为8%的效果非常大。通常来说,激发为5~10W左右。In the past, in the case of causing failure of the excitation LD, the failure occurred at a power more than twice the output of the excitation LD itself, so the effect of reducing it to 8% was very large. Generally speaking, the excitation is about 5 to 10W.
另外,如果设为A=1.5[μm×%],则在相同的案例中,就可以关入放射光的85%。这在例如反射光为20W,激发LD发生失效的案例中,会将反射光减少为20W的15%,也就是3W,对于激发LD的保护仍然有效。Also, if A=1.5 [μm×%], 85% of the radiated light can be shut in in the same case. For example, in a case where the reflected light is 20W and the excitation LD fails, the reflected light will be reduced to 15% of 20W, that is, 3W, and the protection for the excitation LD is still effective.
另外,本实施方式的多端口耦合器2通过在信号用光纤5的周围设置了放射光关入波导路部7,可以将激发光有效地向包层泵浦光纤3的纤芯9会聚。在利用包层泵浦光纤3进行的光放大的情况下,将在包层中均匀地分布的激发光有效地用纤芯9吸收非常重要。只要可以将该激发光向纤芯9会聚(由于仅在纤芯中发生吸收),就可以将激发光有效地吸收。例如,在信号用光纤5的纤芯周边,设置了直径为50μm而相对折射率差为0.1%的放射光关入波导路部7的情况下,由包层泵浦光纤3的纤芯9的激发光的吸收效率会提高20%。In addition, the
此外,在图3所示的多端口耦合器2的情况下,信号用光纤的纤芯6与设于其周围的放射光关入波导路部7如图4A所示,具有同心圆状的截面,但是,本发明并不特殊地局限于此,放射光关入波导路部7也可以具有如图4B所示的六角形状、如图4C所示的四角形的状、如图4D所示的五角形状等多角形状的截面。即使放射光关入波导路部7的截面形状为多角形状,也可以与同心圆状的情况相同,发挥将反射光关入信号用光纤5中,而减少向激发用光纤4的射入功率的效果。In addition, in the case of the
在放射光关入波导路部7的截面为多角形状的情况下,所谓放射光关入波导路部7的外径小于与多端口耦合器2连接的信号用光纤5的外径(包层径),可以理解为放射光关入波导路部7的内切圆的直径小于信号用光纤5的外径。这是因为,在该情况下,因放射光关入波导路部7在全部截面积上均被内包于信号用光纤5的包层区域以内,因而被关入了放射光关入波导路部7内的放射光将全部与信号用光纤5耦合,从而可以起到在耦合终端部抑制放射光与激发用光纤4耦合的同等的效果。In the case where the cross-section of the radiated
如前所述,在多端口耦合器内部的波导路构造中,通过在纤芯周边设置将光关入的区域,就可以有效地防止激发LD因反射光而失效的情况,更进一步地还可以将激发光有效地分布于纤芯周边。另外,通过采用此种构造,就可以将激发光有效地向纤芯周边会聚。As mentioned above, in the waveguide structure inside the multi-port coupler, by setting a region around the fiber core that confines light, it can effectively prevent the failure of the excited LD due to reflected light, and furthermore, it can The excitation light is effectively distributed around the fiber core. In addition, by employing such a structure, the excitation light can be efficiently converged toward the periphery of the fiber core.
另外,本发明的多端口耦合器也可以构成如下,即,将信号用光纤和激发用光纤用毛细管构造聚束,更进一步地将其头端部与具有放射光关入波导路部和头端减径部的桥接用光纤连接。以下,对于本发明的第二实施方式,将参照图5~图8进行说明。In addition, the multi-port coupler of the present invention may also be constructed in such a way that the signal optical fiber and the excitation optical fiber are bundled with a capillary structure, and furthermore, the head end is connected to the light-emitting waveguide section and the head end. The bridging of the reducing section is connected with an optical fiber. Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 5 to 8 .
图5及图6所示的多端口耦合器11是使用毛细管14而将中心的信号用光纤12与配置于其周围配置的多条激发用光纤13一体化,毛细管14与信号用光纤12以及激发用光纤13一起都与桥接用光纤15的后端连接,并且将桥接用光纤15的头端侧减径而成,将激发光源与光放大用的包层泵浦光纤16相连的多端口耦合器11,其在桥接用光纤15的纤芯15a周边设有放射光关入波导路部17,其具有大于该纤芯15a的外径,并具有高于包层15b而小于纤芯15a的折射率的值。The
这里,毛细管14是具有可以插入信号用光纤12及激发用光纤13的多个贯穿孔(细孔)的多孔毛细管。多孔毛细管为了与光纤熔合连接,优选为由石英玻璃或添加了掺杂剂的石英类玻璃等构成。熔合连接例如可以通过使用电弧放电、二氧化碳激光器、氢氧焰等热源来进行。插入了毛细管14的中央的细孔的信号用光纤12的纤芯12a被与桥接用光纤15的纤芯15a耦合,插入了其周围的细孔的激发用光纤13的纤芯13a被与桥接用光纤15的包层15b耦合。桥接用光纤15的头端侧的减径部例如可以通过加热拉伸为锥面状而形成。Here, the capillary 14 is a porous capillary having a plurality of through holes (pores) into which the signal
在该多端口耦合器11中,作为避免反射光射入激发用光纤13的构成,有以下的(1)和(2)。In this
(1)毛细管14的折射率低于信号用光纤12的包层12b的折射率。该情况下,毛细管14对于信号用光纤12就具有放射光的关入效果。由此,毛细管14的折射率与激发用光纤13的包层13b的折射率的大小关系是任意的,无论毛细管14与激发用光纤13的包层13b相比折射率更高或更低,或者相同都可以。(1) The refractive index of the capillary 14 is lower than the refractive index of the
该构成中,由于毛细管14起到放射光关入波导路部的作用,因此当使之与桥接用光纤15的放射光关入波导路部合并时,放射光关入波导路部就会成为被从与包层泵浦光纤16的连接部到分支为多条光纤12、13的耦合器部端部连续地形成的部分。In this structure, since the capillary 14 plays the role of the radiated light confinement waveguide portion, when it is combined with the radiated light confinement waveguide portion of the bridging
(2)毛细管14的折射率与信号用光纤12的包层12b的折射率相同,并且激发用光纤13的包层13b的折射率低于毛细管14的折射率。(2) The refractive index of the capillary 14 is the same as that of the
该情况下,激发用光纤13的包层13b对信号用光纤12及毛细管14就具有放射光的关入效果。In this case, the
该构成中,当在毛细管14与桥接用光纤15之间产生连接损耗时,放射光就有可能与毛细管14耦合,然而由于激发用光纤13的包层13b对毛细管14具有放射光的关入效果,因此就可以抑制放射光与激发用光纤13耦合的情况。In this configuration, when a connection loss occurs between the capillary 14 and the bridging
在(1)、(2)的任何的构成中,设于桥接用光纤15中的放射光关入波导路部17的直径(外径)都最好小于信号用光纤12的外径(包层径)。这是因为,倘若放射光关入波导路部17的直径较大,则关入该波导路内的放射光就会在耦合器终端部与激发用光纤13耦合。In any of the configurations of (1) and (2), the diameter (outer diameter) of the radiated light
[59]在关入放射光关入波导路部17的放射光在信号用光纤12中反向地(图5中从右向左行进)传播时,会被信号用光纤12的包层12b的外部的树脂慢慢地吸收、消灭。为了积极地促进吸收,最好对信号用光纤12跨越适当的长度地以一定范围的曲率卷绕。例如,在φ50mm时优选设为1m左右。[59] When the radiated light entering the
[60]另外,在难以使用适当的长度的信号用光纤12的情况下,也可以向信号用光纤12的包层12b的部分中添加用以吸收放射光的掺杂剂而将放射光吸收。例如,为了吸收波长1064nm的光,掺杂了Sm的光纤是有效的。[60] In addition, when it is difficult to use the signal
[61]对在本实施方式的多端口耦合器11中,在桥接用光纤15中设置了放射光关入波导路部17所带来的效果进行说明。[61] In the
[62]在毛细管14与信号用光纤12的包层12b的折射率相同的(2)的构成中,将信号用光纤12的包层12b、毛细管14和激发用光纤13的纤芯13a全都用石英(折射率约为1.448)制作,将激发用光纤13的包层13b的折射率设为1.436(纤芯13a及毛细管14的相对折射率差为0.8%),将厚度设为10μm,其结果为,与未设置激发用光纤13包层13b的低折射率部的情况相比,可以将与激发用光纤13耦合的反射光的强度减少了约20dB(即大约百分之一)。[62] In the configuration (2) in which the capillary 14 and the
[63]在毛细管14与信号用光纤12的包层12b相比折射率更低的(1)的构成中,将信号用光纤12的包层12b和激发用光纤13的纤芯13a全都用石英(折射率约为1.448)制作,将激发用光纤13的包层13b的折射率设为1.436,将厚度设为10μm,进一步地将毛细管14的折射率也设为1.436,其结果为,与(2)的构成相比,将与激发用光纤13耦合的反射光的强度又减少了8dB。如果与未设置低折射率部的情况相比,则减少了约28dB。[63] In the configuration (1) in which the capillary 14 has a lower refractive index than the
[64]此外,对于图5所示的多端口耦合器11的情况,桥接用光纤15的纤芯15a与设于其周围的放射光关入波导路部17如图7A所示,是具有同心圆状的截面的构造。但是,本发明并不特殊地局限于此,放射光关入波导路部17也可以具有如图7B所示的六角形状、如图7C所示的四角形状、如图7D所示的五角形状等多角形状的截面。即使放射光关入波导路部17的截面形状为多角形状,也可以与同心圆状的情况相同,将反射光关入桥接用光纤15的纤芯15a而与信号用光纤12耦合,发挥减少向激发用光纤13的射入功率的效果。[64] In addition, in the case of the
在放射光关入波导路部17的截面为多角形状的情况下,所谓放射光关入波导路部17的外径小于与多端口耦合器11连接的信号用光纤12的外径(包层径),可以理解为放射光关入波导路部17的内切圆的直径小于信号用光纤12的外径。这是因为,在该情况下,因放射光关入波导路部17在全部截面积上均被内包于信号用光纤12的包层区域以内,因而被关入了放射光关入波导路部17内的放射光将全部与信号用光纤12耦合,从而可以起到在耦合终端部抑制放射光与激发用光纤13耦合的同等的效果。In the case where the cross-section of the radiation-
进一步地,本实施方式的多端口耦合器11中,通过在桥接用光纤15的纤芯15a的周边设置放射光关入波导路部17,就可以将来自激发用光纤13的激发光有效地向包层泵浦光纤16的纤芯16a会聚。在利用包层泵浦光纤16进行的光放大的情况下,将在包层中均匀地分布的激发光有效地用纤芯16a吸收非常重要。只要可以将该激发光向纤芯16a会聚(由于仅在纤芯中发生吸收),就可以将激发光有效地吸收。Further, in the
图5所示的例子中,作为与多端口耦合器11连接的包层泵浦光纤16,使用了如下的双包层构造光纤(DCF),即,在纤芯16a中添加有稀土类元素,在该纤芯16a的周围具有内侧包层16b和外侧包层16c。但是,本实施方式例的多端口耦合器11在如图8所示,连接有在纤芯18a中未添加稀土类元素的包层泵浦光纤(non-dope DCF)18的情况下也是有效的。该构成例中,在non-dope DCF18的一端连接有掺杂稀土类元素的DCF16,在non-dope DCF18的另一端连接有桥接用光纤15的头端减径部。In the example shown in FIG. 5, as the
此时,为了在non-dope DCF18与掺杂稀土类元素的DCF16的连接部没有向non-dope DCF18的包层18b、18c放出放射光的情况,而将其关入纤芯18a中,在纤芯18a与包层18b、18c之间,也需要设置具有比包层18b、18c更高而比纤芯18a更低的折射率的值的放射光关入波导路部19。放射光关入波导路部19的截面形状相对于纤芯18a无论是同心圆状还是多角形状都可以。具有此种构造的多端口耦合器即使是与将多端口耦合器直接与掺杂稀土类元素的DCF连接的情况相比,也可以以完全相同的水平抑制反射光向激发用光纤13的射入。At this time, in order not to emit emitted light to the cladding layers 18b and 18c of the
如前所述,在多端口耦合器内部的波导路构造中,通过在纤芯周边设置将光关入的区域,就可以有效地防止激发LD因反射光而失效的情况,甚至还可以将激发光有效地分布于纤芯周边。另外,通过采用此种构造,可以将激发光有效地会聚在纤芯周边。As mentioned above, in the waveguide structure inside the multi-port coupler, by setting a region around the fiber core that confines light, it can effectively prevent the excitation LD from failing due to reflected light, and even the excitation Light is efficiently distributed around the periphery of the fiber core. In addition, by employing such a configuration, excitation light can be efficiently focused around the core.
实施例Example
在激发波长为915nm、信号波长为1064nm的光放大器中,应用本发明的多端口耦合器(图3所示的多端口耦合器),并研究了LD失效抑制的效果。In an optical amplifier with an excitation wavelength of 915nm and a signal wavelength of 1064nm, the multiport coupler of the present invention (the multiport coupler shown in Figure 3) was applied, and the effect of LD failure suppression was studied.
作为包层泵浦光纤使用掺杂了Yb的双包层光纤。A Yb-doped double-clad fiber was used as the cladding pump fiber.
此时的光纤的尺寸如下所示。The dimensions of the optical fiber at this time are as follows.
·纤芯径:20μm,·纤芯-内侧包层相对折射率差Δ:0.1%,·内侧包层外径:400μm。• Fiber core diameter: 20 μm, • Core-inner cladding relative refractive index difference Δ: 0.1%, • Inner cladding outer diameter: 400 μm.
另外,激发中所用的LD使用了6台波长:915nm、输出:5W的LD。In addition, 6 LDs with a wavelength of 915 nm and an output of 5 W were used for the LD used for excitation.
另外,与该激发LD相连的激发用光纤的·纤芯径:105μm、·纤芯-包层相对折射率差Δ:0.55%。In addition, the excitation optical fiber connected to the excitation LD had a core diameter: 105 μm, and a core-cladding relative refractive index difference Δ: 0.55%.
此时,在光放大器的端部设置有反射点,设定为从光放大器中输出的光的5%左右再次返回至光放大器。此种构成中,安装了如下的两个耦合器,分别是将多端口耦合器如本发明所示那样以·纤芯径:2.5μm、·放射光关入波导路部直径:30μm、·放射光关入波导路部相对折射率差:0.1%制作的耦合器;和不具有放射光关入波导路部的耦合器,而进行了实验。At this time, a reflection point is provided at the end of the optical amplifier, and it is set so that about 5% of the light output from the optical amplifier returns to the optical amplifier again. In this kind of structure, the following two couplers are installed, and the multi-port coupler is respectively as shown in the present invention with core diameter: 2.5 μm, radiation light entering waveguide diameter: 30 μm, radiation The relative refractive index difference of the light-entry waveguide section: 0.1% was fabricated for the coupler and the coupler without the radiated light-entry waveguide section was tested.
其结果是,在使用了不具有放射光关入波导路部的耦合器的情况下,在与开始试验的同时,激发LD有4台/6台发生失效,变得无法使用。As a result, in the case of using a coupler that does not have a radiated light confinement waveguide portion, at the same time as the test was started, 4/6 of the excitation LDs failed and became unusable.
另一方面,在使用了设置有放射光关入波导路部的涉及本发明的耦合器的情况下,即使持续1小时以上地射入反射光,也没有发生LD的故障。On the other hand, in the case of using the coupler according to the present invention provided with the radiated light confinement waveguide portion, no failure of the LD occurred even if the reflected light was continuously incident for one hour or more.
利用计算机确认了该结果,其结果为,如图9所示,设置了放射光关入波导路部的耦合器(图9A)中,与没有放射光关入波导路部的耦合器(图9B)相比,放射光被明显地关入,LD被保护。This result was confirmed using a computer. As a result, as shown in FIG. ) compared to that, the emitted light is clearly shut in and the LD is protected.
下面,对在图5、图6所示的多端口耦合器11中,如图7B所示设置了六角形状的放射光关入波导路部17的实施例进行说明。Next, in the
在桥接用光纤15的包层15b的外径为400μm,当纤芯15a的直径为7μm时,在纤芯15a的周围形成了一边为45μm的放射光关入波导路部17。在该桥接用光纤15中,放射光关入波导路部17与包层15b的相对折射率差为0.1%,纤芯15a与放射光关入波导路部17的相对折射率差为0.18%。当将放射光关入波导路部17的外径用六角形的内切圆和外切圆的中间的圆的直径来近似时,则为42μm。作为包层泵浦光纤16,准备了纤芯径为30μm、纤芯-包层相对折射率差为0.12%的光纤。确认了在桥接用光纤15与包层泵浦光纤16的连接中可以看到何种程度的放射光关入的效果,其结果为,可以将放射光的95%以上关入桥接用光纤15的纤芯15a。When the outer diameter of the
以上虽然对本发明的优选的实施例进行了说明,但是本发明并不局限于这些实施例。在不脱离本发明的主旨的范围中,可以实施构成上的附加、省略、置换及其他的变更。本发明并不受所述的说明局限,而仅受附加的技术方案的范围局限。Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Structural additions, omissions, substitutions, and other changes can be made without departing from the gist of the present invention. The invention is not limited by the description described, but only by the scope of the additional technical solution.
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006149696 | 2006-05-30 | ||
JP2006149696 | 2006-05-30 | ||
JP2006260881 | 2006-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101082690A CN101082690A (en) | 2007-12-05 |
CN100520466C true CN100520466C (en) | 2009-07-29 |
Family
ID=38912356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101030733A Expired - Fee Related CN100520466C (en) | 2006-05-30 | 2007-05-23 | Multi-port coupler, optical amplifier, and fiber laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100520466C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100585966C (en) * | 2008-06-04 | 2010-01-27 | 中国科学院上海光学精密机械研究所 | Fiber laser device with automatic protection of semiconductor pump source |
WO2010055700A1 (en) * | 2008-11-14 | 2010-05-20 | 株式会社フジクラ | Ytterbium-doped optical fiber, fiber laser and fiber amplifier |
CN102668272B (en) * | 2009-10-27 | 2014-09-03 | 株式会社藤仓 | Light combiner and fiber laser device using same |
WO2012106624A2 (en) * | 2011-02-03 | 2012-08-09 | 3Sae Technologies, Inc. | Side pump fiber, method of making same, and optical devices using same |
US8908682B2 (en) * | 2012-02-02 | 2014-12-09 | International Business Machines Corporation | Switch discovery protocol for a distributed fabric system |
US10603744B2 (en) * | 2017-12-18 | 2020-03-31 | Lumentum Operations Llc | Aiming beam side-coupler |
JP7119611B2 (en) * | 2018-06-12 | 2022-08-17 | 住友電気工業株式会社 | fiber optic amplifier |
JP7291501B2 (en) * | 2019-03-11 | 2023-06-15 | 株式会社フジクラ | Laser processing equipment |
CN112228785A (en) * | 2019-06-28 | 2021-01-15 | 钟胜 | Energy-saving urban and rural centralized light supply system and matched product |
CN118472760B (en) * | 2024-07-10 | 2024-11-15 | 中国工程物理研究院激光聚变研究中心 | Annular pumping distributed side pumping optical fiber and optical fiber laser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864644A (en) * | 1997-07-21 | 1999-01-26 | Lucent Technologies Inc. | Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices |
-
2007
- 2007-05-23 CN CNB2007101030733A patent/CN100520466C/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864644A (en) * | 1997-07-21 | 1999-01-26 | Lucent Technologies Inc. | Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices |
Also Published As
Publication number | Publication date |
---|---|
CN101082690A (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5089950B2 (en) | Multi-port coupler, optical amplifier and fiber laser | |
CN100520466C (en) | Multi-port coupler, optical amplifier, and fiber laser | |
JP3247292B2 (en) | Optical communication system | |
EP0812039B1 (en) | Fiber light source with multimode fiber coupler | |
JP4243327B2 (en) | Photonic band gap fiber and fiber amplifier | |
US7593435B2 (en) | Powerful fiber laser system | |
US8094370B2 (en) | Cladding pumped fibre laser with a high degree of pump isolation | |
US8611003B2 (en) | Double clad fiber laser device | |
JP2009212441A (en) | Pump combiner | |
WO2008061360A1 (en) | Fiber amplifier with integrated fiber laser pump | |
JP2008171985A (en) | Residual light removing fiber, residual light removing structure using the same, and optical amplifier as well as fiber laser | |
US8902494B2 (en) | Amplification optical fiber with optical component and fiber laser device including the same | |
JP2007311412A (en) | Photoactive device | |
JP5643632B2 (en) | Multi-port coupler, and optical fiber amplifier, fiber laser apparatus and resonator using the same | |
JP5331950B2 (en) | Optical fiber laser light source | |
JP4899705B2 (en) | Optical amplification module | |
JP5014640B2 (en) | Multimode fiber, optical amplifier and fiber laser | |
WO2020203136A1 (en) | Fiber laser device | |
WO2003017440A2 (en) | Optical amplification system | |
JP5202820B2 (en) | Optical coupler, fiber laser and optical fiber amplifier | |
JP2007294534A (en) | Optical module | |
JP7536092B2 (en) | Fiber Laser Device | |
JP5178328B2 (en) | Optical fiber | |
CN100514170C (en) | Double-envelope erbium-ytterbium optical fiber amplifier with restraining 1060 nm signal and protecting function | |
WO2007077419A1 (en) | Optical fibre with angled core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090729 Termination date: 20210523 |