CN100519331C - Intelligent robot dolphin - Google Patents
Intelligent robot dolphin Download PDFInfo
- Publication number
- CN100519331C CN100519331C CNB2005100642019A CN200510064201A CN100519331C CN 100519331 C CN100519331 C CN 100519331C CN B2005100642019 A CNB2005100642019 A CN B2005100642019A CN 200510064201 A CN200510064201 A CN 200510064201A CN 100519331 C CN100519331 C CN 100519331C
- Authority
- CN
- China
- Prior art keywords
- dolphin
- joint
- fin
- intelligent robot
- output shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241001481833 Coryphaena hippurus Species 0.000 title claims abstract description 90
- 230000007246 mechanism Effects 0.000 claims abstract description 92
- 230000033001 locomotion Effects 0.000 claims abstract description 27
- 241001125840 Coryphaenidae Species 0.000 claims abstract description 23
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 210000003128 head Anatomy 0.000 claims description 40
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000001141 propulsive effect Effects 0.000 claims 12
- 210000001015 abdomen Anatomy 0.000 claims 2
- 230000009182 swimming Effects 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 5
- 230000003993 interaction Effects 0.000 abstract description 4
- 210000000006 pectoral fin Anatomy 0.000 description 27
- 238000010586 diagram Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000011664 nicotinic acid Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910018095 Ni-MH Inorganic materials 0.000 description 2
- 229910018477 Ni—MH Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 241001479123 Sousa chinensis Species 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007527 glass casting Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Landscapes
- Toys (AREA)
- Manipulator (AREA)
Abstract
本发明涉及一种智能机器海豚,其特征在于:它包括刚性海豚头,设置在所述海豚头内部的铝制骨架,设置在所述铝制骨架上的电源装置、控制装置、传感装置和配重块;由转弯机构、背腹式推进机构和弹性软体组成的弹性海豚体,以及由鳍肢机构、背鳍机构和尾鳍组成的仿鳍装置。本发明通过对各直流伺服电机的控制,可以成功地模拟典型的海豚多关节上下摆动推进和左右摆动转弯两个自由度的运动,还可以对摆动频率和摆动幅度进行调节。本发明一方面为研究海豚运动的水动力学、游动机理、减阻机制及运动控制方法提供实验平台;另一方面,可为研制高效、快速、隐形的水下推进器提供技术基础,并可以制作出人机交互的机器海豚用于娱乐或观赏。
The invention relates to an intelligent machine dolphin, which is characterized in that it comprises a rigid dolphin head, an aluminum skeleton arranged inside the dolphin head, a power supply device, a control device, a sensing device and Counterweight; elastic dolphin body composed of turning mechanism, dorsal-ventral propulsion mechanism and elastic soft body, and imitation fin device composed of flipper mechanism, dorsal fin mechanism and tail fin. The present invention can successfully simulate the two degrees of freedom of a typical dolphin multi-joint swing propulsion up and down and swing left and right through the control of each DC servo motor, and can also adjust the swing frequency and swing amplitude. On the one hand, the present invention provides an experimental platform for studying the hydrodynamics, swimming mechanism, drag reduction mechanism and motion control method of dolphins; Human-computer interaction robot dolphins can be produced for entertainment or viewing.
Description
技术领域 technical field
本发明涉及一种多关节驱动的智能机器海豚。The invention relates to an intelligent robot dolphin driven by multiple joints.
背景技术 Background technique
在水下仿生领域,海豚在游动性能、减阻机制、声纳探测和人机交互方面比鱼类更为卓越的性能,使它更适合于成为机器入学、自动控制及人工智能的研究对象。由于海豚的快速机动运动及实验标本(圈养海豚和野生海豚)难以获取,无论是在运动机理、减阻机制还是智慧评估方面,人们对海豚的认识还处在一个初步阶段。从工程技术的角度来说,如果能利用现有的机械、电子、计算机、控制等手段,开发一个模仿海豚运动的仿生机器人系统——机器海豚,将具有极大的理论和实践意义。一方面,基于实际仿生系统的海豚推进机理研究将有助于理解和揭示海豚高性能游动的奥秘、减阻机制和人机交互方式;另一方面,机器海豚作为一种新型的仿生机电系统,与普通水下推进器相比,其具有良好的机动性、灵活性、隐蔽性和高效率,在危险、狭窄、复杂的水下环境中的监测、侦探、救捞和维修作业中具有良好的应用前景。同时,机器海豚具有比机器鱼更优越的运动性能和智能,具有更高的科技含量和展示度,在水族馆、科技馆的科普和娱乐活动中有着良好的市场前景。In the field of underwater bionics, dolphins are superior to fish in terms of swimming performance, drag reduction mechanism, sonar detection and human-computer interaction, making them more suitable for research in machine learning, automatic control and artificial intelligence . Due to the rapid maneuvering of dolphins and the difficulty of obtaining experimental specimens (captive and wild dolphins), people's understanding of dolphins is still at a preliminary stage in terms of movement mechanism, drag reduction mechanism and intelligence evaluation. From the perspective of engineering technology, if we can use existing mechanical, electronic, computer, control and other means to develop a bionic robot system that imitates the movement of dolphins—a robot dolphin, it will have great theoretical and practical significance. On the one hand, the research on the propulsion mechanism of dolphins based on the actual bionic system will help to understand and reveal the mystery of dolphin high-performance swimming, the mechanism of drag reduction and the way of human-computer interaction; , compared with ordinary underwater thrusters, it has good maneuverability, flexibility, concealment and high efficiency, and has good performance in monitoring, reconnaissance, salvage and maintenance operations in dangerous, narrow and complex underwater environments. application prospects. At the same time, robot dolphins have superior motion performance and intelligence than robot fish, and have higher technological content and display degree. They have good market prospects in science popularization and entertainment activities in aquariums and science and technology museums.
作为生物推进机理和工程技术的结合点,机器海豚是包含水动力学控制和机器人技术的多学科问题。在国际上,由于机器海豚开发研制的诸多困难,针对机器海豚的理论和技术研究尚处于起步阶段。虽然有过相关的技术探索,但国内外尚未成功实现机器海豚的背腹式运动及典型的海豚运动动作,需要进一步研制仿生海豚,以填补这一空白。As a junction of biopropulsion mechanisms and engineering techniques, the robotic dolphin is a multidisciplinary problem involving hydrodynamic control and robotics. Internationally, due to many difficulties in the development and development of robot dolphins, the theoretical and technical research on robot dolphins is still in its infancy. Although there have been related technical explorations, the dorso-abdominal movement and typical dolphin movement of robotic dolphins have not been successfully realized at home and abroad. Further development of bionic dolphins is needed to fill this gap.
发明内容 Contents of the invention
针对上述问题,本发明的主要目的是提供一种能逼真模拟海豚典型的背腹式运动和转弯运动的智能机器海豚。In view of the above problems, the main purpose of the present invention is to provide an intelligent robot dolphin that can realistically simulate typical dolphin dorso-abdominal movement and turning movement.
为实现上述目的,本发明采取以下技术方案:一种智能机器海豚,其特征在于:它包括刚性海豚头,设置在所述海豚头内的铝制骨架,设置在所述铝制骨架上的电源装置、控制装置、传感装置和配重块;由转弯机构、背腹式推进机构和弹性软体组成的弹性海豚体,以及由鳍肢机构、背鳍机构和尾鳍组成的仿鳍装置;所述转弯机构包括1~3个摆动关节,每个所述摆动关节包括一固定架、一安装在所述固定架上的电机和一连接在所述电机输出端的摆动架,所述第一关节的固定架连接所述海豚头内的铝制骨架尾部,所述后面关节的固定架连接前面关节的摆动架;所述背腹式推进机构包括3~6个摆动关节,每个所述摆动关节包括一固定架、一安装在所述固定架上的电机和一连接在所述电机输出端的摆动架,所述第一关节的固定架连接所述转弯机构的最后一个摆动架,且其上电机的输出端方向与所述转弯机构的电机输出端方向相差90°,所述后面关节的固定架分别连接前面关节的摆动架,且所述相邻两关节上的电机输出端方向相差180°,所述最后一关节的摆动架通过一尾柄连接所述尾鳍;所述弹性软体由连接在各关节上的软体骨架和包覆在所述软体骨架外面的防水外皮组成,所述弹性软体密封连接在所述海豚头的末端;所述鳍肢机构设置在所述海豚头的中下部左右两侧,其包括步进电机和与所述步进电机连接带动所述鳍肢作转动和作拍打运动的传动机构。In order to achieve the above object, the present invention adopts the following technical solutions: an intelligent machine dolphin, characterized in that: it includes a rigid dolphin head, an aluminum skeleton arranged in the dolphin head, a power supply arranged on the aluminum skeleton device, control device, sensing device and counterweight; an elastic dolphin body composed of a turning mechanism, a dorsal-ventral propulsion mechanism and an elastic soft body, and a fin-like device composed of a flipper mechanism, a dorsal fin mechanism and a tail fin; said turning The mechanism includes 1 to 3 swing joints, each of which includes a fixed frame, a motor mounted on the fixed frame, and a swing frame connected to the output end of the motor, and the fixed frame of the first joint Connect the tail of the aluminum skeleton in the dolphin head, the fixed frame of the rear joint is connected with the swing frame of the front joint; the dorso-abdominal propulsion mechanism includes 3 to 6 swing joints, and each swing joint includes a fixed Frame, a motor installed on the fixed frame and a swing frame connected to the output end of the motor, the fixed frame of the first joint is connected to the last swing frame of the turning mechanism, and the output end of the motor on it The direction differs by 90° from the direction of the motor output end of the turning mechanism, the fixed frame of the rear joint is respectively connected to the swing frame of the front joint, and the direction of the motor output end on the two adjacent joints is 180° different, the last A joint swing frame is connected to the caudal fin through a tail handle; the elastic soft body is composed of a soft body skeleton connected to each joint and a waterproof skin coated outside the soft body skeleton, and the elastic soft body is sealed and connected to the The end of the dolphin head; the flipper mechanism is arranged on the left and right sides of the middle and lower part of the dolphin head, which includes a stepping motor and a transmission mechanism connected with the stepping motor to drive the flippers to rotate and flap .
所述软体骨架包括数个按照生物学海豚的剖面尺寸制作的椭圆环和用紧固件依次连接在各所述椭圆环之间的弹簧,在各所述椭圆环的外面包覆所述防水外皮。The soft body skeleton includes several elliptical rings made according to the cross-sectional size of biological dolphins and springs sequentially connected between each of the elliptical rings with fasteners, and the waterproof outer skin is covered on the outside of each of the elliptical rings .
所述软体骨架包括一连接在各所述关节上的纺锤形的异形弹簧,在所述纺锤形的异形弹簧的外面包覆所述防水外皮。The soft body skeleton includes a spindle-shaped special-shaped spring connected to each of the joints, and the outer surface of the spindle-shaped special-shaped spring is covered with the waterproof skin.
带动所述鳍肢作转动和作拍打运动的传动机构包括连接在所述步进电机输出端的主动齿轮、与所述主动齿轮啮合的从动齿轮、连接在所述从动齿轮中心的输出轴,所述鳍肢连接在所述输出轴上,在所述鳍肢下侧连接一拉绳,所述拉绳的另一端穿过所述输出轴的中心孔,并穿过跟随所述输出轴一起转动的延长臂后,固定在一支杆上。The transmission mechanism that drives the flippers to rotate and flap includes a driving gear connected to the output end of the stepping motor, a driven gear meshed with the driving gear, an output shaft connected to the center of the driven gear, The flipper is connected to the output shaft, and a stay rope is connected to the underside of the flipper, and the other end of the stay rope passes through the central hole of the output shaft, and passes through and follows the output shaft together. After rotating the extension arm, it is fixed on a pole.
所述传感系统包括距离传感器、视觉传感器、姿态传感器、压力传感器及传感器信号处理模块,所述传感装置的距离传感器设置在所述海豚头的最前部,所述视觉传感器设置在所述海豚头前部眼睛的位置,所述姿态传感器和压力传感器设置在所述海豚头内部靠近底部的位置。The sensing system includes a distance sensor, a vision sensor, an attitude sensor, a pressure sensor and a sensor signal processing module. The distance sensor of the sensing device is arranged at the frontmost part of the dolphin head, and the vision sensor is arranged at the front of the dolphin head. The position of the eyes at the front of the head, the attitude sensor and the pressure sensor are arranged at the position near the bottom inside the dolphin head.
所述控制装置包括一微控制器模块,分别与所述微控制器模块连接的通讯模块、传感器信息融合模块、控制参数存储模块、电机驱动模块,以及设置在所述海豚头上的天线。The control device includes a microcontroller module, a communication module connected to the microcontroller module, a sensor information fusion module, a control parameter storage module, a motor drive module, and an antenna arranged on the dolphin head.
所述电源装置为可携带的充电电池组。The power supply unit is a portable rechargeable battery pack.
本发明由于采用了以上技术方案,其具有以下优点:1、本发明设置了刚性的海豚头,弹性的海豚体和仿鳍肢机构,特别是在弹性海豚体内设置了多关节水平转弯机构和多关节背腹式推进机构,因此可以通过对各直流伺服电机的控制,成功地模拟典型的海豚多关节上下摆动推进和左右摆动转弯两个自由度的运动,本发明还可以对摆动频率和摆动幅度进行调节,使技术展示性和观赏性特别好。2、本发明通过将严格按照生物学海豚的剖面尺寸制作的椭圆环固定在各关节上,并在各椭圆环之间连接弹簧组成软体骨架,并在软体骨架外面设置防水外皮,使本发明在外形上可以更逼真地模拟天然海豚,且在游动过程中可保持稳定的形体,使离散的摆动运动相对平滑,从而减小水动力学阻力,提高推进效率。3、本发明由于设置了具有步进电机、传动齿轮和拉线的鳍肢机构,因此可以通过对步进电机的控制,实现天然海豚鳍肢的转动和对水面进行拍打的划水运动。4、本发明的控制装置采用模块化控制,将各模块连接在一起,利用智能控制算法协调转弯机构、背腹式推进机构及仿鳍装置的运动,实现海豚的各种复杂运动。本发明一方面为研究海豚运动的水动力学、游动机理、减阻机制及运动控制方法提供实验平台;另一方面,可为研制高效、快速、隐形的水下推进器提供技术基础,并可以制作出人机交互的机器海豚用于娱乐或观赏。The present invention has the following advantages due to the adoption of the above technical scheme: 1. The present invention is provided with a rigid dolphin head, an elastic dolphin body and an imitation flipper mechanism, especially a multi-joint horizontal turning mechanism and a multi-joint horizontal turning mechanism are provided in the elastic dolphin body. The joint dorsal-abdominal propulsion mechanism can successfully simulate the two degrees of freedom of the typical dolphin multi-joint swing propulsion up and down and left and right swing turning through the control of each DC servo motor. The present invention can also control the swing frequency and swing amplitude Make adjustments to make the technical display and appreciation particularly good. 2. The present invention fixes the elliptical rings made in strict accordance with the cross-sectional size of biological dolphins on each joint, and connects springs between the elliptical rings to form a soft body skeleton, and arranges a waterproof skin outside the soft body skeleton, so that the present invention can be used in The shape can simulate natural dolphins more realistically, and can maintain a stable shape during swimming, making discrete swing movements relatively smooth, thereby reducing hydrodynamic resistance and improving propulsion efficiency. 3. Since the present invention is provided with a flipper mechanism with a stepping motor, a transmission gear and a backguy, the rotation of the flippers of the natural dolphin and the paddling movement of flapping the water surface can be realized by controlling the stepping motor. 4. The control device of the present invention adopts modular control, connects each module together, uses intelligent control algorithm to coordinate the movement of the turning mechanism, the dorsal-ventral propulsion mechanism and the fin-like device, and realizes various complex movements of the dolphin. On the one hand, the present invention provides an experimental platform for studying the hydrodynamics, swimming mechanism, drag reduction mechanism and motion control method of dolphins; Human-computer interaction robot dolphins can be produced for entertainment or viewing.
附图说明 Description of drawings
图1是本发明整体结构示意图Fig. 1 is a schematic diagram of the overall structure of the present invention
图2是本发明设置在海豚头内的铝制骨架示意图Fig. 2 is the schematic diagram of the aluminum skeleton arranged in the head of the dolphin according to the present invention
图3是本发明驱动装置的转弯机构示意图Fig. 3 is a schematic diagram of the turning mechanism of the drive device of the present invention
图4是本发明驱动装置的背腹推进机构示意图Fig. 4 is a schematic diagram of the dorsal and ventral propulsion mechanism of the driving device of the present invention
图5是本发明鳍肢结构示意图Fig. 5 is a schematic diagram of flipper structure of the present invention
图6是图5的侧视示意图Figure 6 is a schematic side view of Figure 5
图7是本发明背鳍结构示意图Fig. 7 is a schematic diagram of the dorsal fin structure of the present invention
图8是本发明控制装置结构框图Fig. 8 is a structural block diagram of the control device of the present invention
具体实施方式 Detailed ways
下面根据本发明的较佳实施例,并配合附图对本发明的技术方案作进一步说明。The technical solution of the present invention will be further described below according to the preferred embodiments of the present invention and in conjunction with the accompanying drawings.
如图1所示,本发明包括刚性海豚头10、弹性海豚体20、仿鳍装置30、电源装置40、控制装置50、传感装置60、转弯机构70、背腹式推进机构80和弹性软体90。As shown in Figure 1, the present invention includes a
如图1、图2、图3所示,本发明采用质量轻、强度高的合金或玻璃钢或有机玻璃或优质松木雕刻等制作成流线型的仿生海豚头10。为制作和安装方便,海豚头10可以采用上下分体或左右分体的结构,二者接合处设置有橡胶密封材料,并通过螺钉11或其它部件密封连接。为了便于本发明反复充电和故障检测,在海豚头10上预留有充电孔12和测漏孔13,二者平时密闭,操作时打开。在海豚头10内固定连接一铝制骨架14,将电源装置40、控制装置50、传感装置60和一平衡配重块15分别用螺钉固定在铝制骨架14上。As shown in Fig. 1, Fig. 2 and Fig. 3, the present invention adopts light weight, high-intensity alloy or glass fiber reinforced plastics or plexiglass or high-quality pine carvings to make streamlined
如图2、图3、图4所示,本发明的海豚体20包括转弯机构70、背腹式驱动机构80和弹性软体90。As shown in FIG. 2 , FIG. 3 , and FIG. 4 , the
转弯机构70包括1~3个摆动关节,本实施例为两个关节,其由两个U型固定架71、72、两个摆动架73、74和安装在两个固定架71、72上的两个直流伺服电机A、B组成。第一关节的固定架71与海豚头10内的铝制骨架14尾部连接,电机A的输出端连接第一关节的摆动架73;第二个关节的固定架72连接第一关节的摆动架73,电机B的输出端连接第二关节的摆动架74。如果关节是多个,其连接依此类推,进而形成每个关节既可以随前一关节在水平方向摆动,又可以带动后一关节在水平方向摆动;多个关节不但可以提供转弯运动,还具有一定的摆动推进作用。如果只有一个关节,则仅有摆动架73相对于固定架71摆动,亦即仅仅起转弯作用。The
如图4所示,背腹式推进机构80包括3~6个关节,本实施例为三个关节,每个关节的组成与左右转弯机构的关节组成大致相同,包括三个固定架81、82、83,三个摆动架84、85、86和安装在三个固定架81、82、83上的直流伺服电机C、D、E。每个关节上电机C、D、E的输出端分别连接每个关节的摆动架84、85、86,后面关节上的固定架82、83,连接前面关节的摆动架84、85。背腹式推进机构80与转弯机构70不同的是各关节的连接方式,如图3、图4所示,第一关节固定架81与转弯机构70最后一个摆动架74连接,但固定架81上的电机C输出端方向与固定架72上的电机B输出端方向相差90°,第二关节固定架82上的电机D输出端方向与固定架81上的电机C输出端方向相差180°,第三关节固定架83上的电机E输出端方向与固定架82上的电机D输出端方向相差180°。如果是三个以上关节,其后面关节的连接方式依此类推均相差180°。背腹式推进机构80的各个电机C、D、E转动实现的是海豚多个关节在垂直平面的协调摆动,进而模拟海豚利用水的反作用力,通过背腹式运动推动整个身体往前游动。上述结构中,电机C、D、E的正反向180°的连接结构是为了减小协调运动中上下摆动而出现的俯仰运动。As shown in Figure 4, the dorso-
如图1、图3所示,弹性软体90由连接在各关节上的软体骨架和包覆在软体骨架外面的防水外皮91组成。本发明的软体骨架包括数个(例如C1~C12)严格按照生物学海豚的剖面特征尺寸制作的椭圆环92,材料可以采用1.2mm厚的不锈钢。在各椭圆环92内侧的上、下、左、右四个方向上分别连接有弹簧93,弹簧93采用直径为0.5~1.2mm的钢丝绕制,并用紧固件94与各椭圆环92连接。在软体骨架外面包覆的波纹状的防水外皮91,可以减小游动过程中的水动力学阻力,防水外皮91选用防水的尼龙布或橡胶或其它材料蒙皮。弹性软体90与海豚头10的连接处用强力胶粘合或用紧固件密封接合。在实际实施中,软体骨架也可直接用一纺锤形的异形弹簧来替代椭圆环92和弹簧93。As shown in FIG. 1 and FIG. 3 , the elastic
如图1所示,本发明的仿鳍装置30主要包括鳍肢机构31(胸鳍机构)、背鳍机构32和尾鳍33。如图4所示,尾鳍33通过尾柄87与背腹式推进装置80的最后一个关节摆动架86相连,随摆动架86一起在垂直平面内作正弦式摆动。如图5、图6所示,鳍肢机构31包括安装在铝制骨架14上的步进电机311,连接在电机311输出端的主动齿轮312,与主动齿轮312啮合的从动齿轮312’,连接在从动齿轮312’中心的输出轴313,以及连接在输出轴313上的鳍肢314,步进电机311的转动可以带动鳍肢314转动。在鳍肢314靠近海豚头10的一侧S1处连接一拉绳315,拉绳315的另一端穿过输出轴313的中心孔,并穿过跟随输出轴313一起转动的延长臂316后,固定在支杆317上的S2处。这样当电机311的转动时,还可以通过拉绳315带动鳍肢314往海豚头10内侧来回收敛、放松,进而实现鳍肢的划水动作。鳍肢机构31具体的安装位置可以参考生物海豚的外观特征来确定。鳍肢机构31与海豚头10的连接采用动密封,即在防水轴承318外加一盛油盒319,在盛油盒319内加注有润滑油。鳍肢机构31包括左、右两鳍肢314,因此可以设置两套相同的机构分别通过一个步进电机311控制,也可以直接由一个电机311整体控制。对鳍肢结构31的控制主要是控制鳍肢314的转动和拍水,进而实现海豚复杂的运动如翻滚、急停等,特别是在高速游动中,鳍肢机构31还可以增加运动的稳定性。As shown in FIG. 1 , the
如图1、图7所示,背鳍机构32安装在海豚头10上方靠近海豚体20处,具体的安装位置可参考生物海豚的外观特征确定。背鳍机构32包括:与铝制骨架14连接的托架321,安装在托架上的直流伺服电机322,连接在电机322输出轴323上的衬套324和连接背鳍的325。通过控制电机322的转动角度,可以控制背鳍的左转、右转。背鳍机构32既可以左右转动以提供转弯时的向心力,也可以不运动,仅起装饰作用。As shown in Fig. 1 and Fig. 7, the
本发明的电源装置40固定在海豚头10,分别给转弯机构70和背腹式推进机构80的直流伺服电机A、B、C、D、E和鳍肢机构31的步进电机311、控制装置50、传感装置60提供能源。为了提高机器海豚的机动性,控制装置50和驱动电机均由可携带的电源供电。本发明的电源装置40采用低功率密度、高储能的可充电电池,即用4.8V/4000mAh的镍氢电池组为控制装置50、直流伺服电机A、B、C、D、E、322供电,采用12V的高聚能锂电池为一个或两个步进电机311供电。镍氢电池组和锂电池均留有充电插头从充电孔12中引至海豚头10外,为了防止短路,平时用密封套包覆,充电时拆下即可。The power supply device 40 of the present invention is fixed on the
如图1所示,本发明的传感装置60包括距离传感器61、视觉传感器62、姿态传感器63、压力传感器64及传感器信号处理模块65。距离传感器61设在海豚头10的最前部,视觉传感器62设在海豚头10前部的眼睛位置,姿态传感器63和压力传感器64设在海豚头10内部靠近底部位置。传感装置60负责机器海豚的各种环境信息采集、处理,传感器信号处理模块65的输出为智能控制提供丰富的信息源。As shown in FIG. 1 , the
如图1、图8所示,本发明的控制装置50主要包括微控制器模块51、通讯模块52、传感器信息融合模块53、控制参数存储模块54和电机驱动模块55。为了使控制装置50能控制机器海豚的游动,海豚头10上设有天线16,天线16固定在背鳍32附近,可获得良好的无线电信号。传感器信息融合模块53主要负责对从传感装置60输入的各种信息进行筛选、汇总,作为自主控制的输入。通讯模块52主要负责数据交换,接收从上位机或遥控器发出的控制指令,并将采集的传感信息传输至机器海豚外面的控制中心。微控制器模块51则结合从通讯模块52接收的控制指令和从传感器信息处理模块53的输入,经智能运算提取控制参数,给出电机控制命令。这里,基本的游动控制参数存储在微控制器E2PROM中,可以通过无线通讯进行实时修改、刷新。电机驱动模块55包括直流伺服电机驱动模块56和步进电机驱动模块57。直流伺服电机驱动模块56将接收的控制参数实时转化为各直流伺服电机的转角,利用PWM(脉宽调制)信号实现多个电机A、B、C、D、E的协调摆动,从而模拟海豚在水中的背腹式运动和转弯。而步进电机驱动模块57将接收的控制参数准确地转化为步距角,模拟鳍肢314的转动和拍水。利用智能控制算法协调转弯机构70、背腹式推进机构80及仿鳍装置30的运动,进而可以实现机器海豚的各种复杂运动。机器海豚的游动速度控制58可以通过改变背腹式推进机构80的摆动频率和摆动幅度来调节,其运动方向控制59可通过向左右摆动的转弯机构70叠加不同的关节偏移量强行调整机器海豚的游动姿态来实现。As shown in FIG. 1 and FIG. 8 , the
依据上述结构说明,本申请人以被誉为“国宝”的中华白海豚为原型,制成550mm×70mm×80mm的机器海豚。该机器海豚模型具有玻璃铸造左右分体的流线型仿生海豚头,用铝制骨架连接转弯机构和背腹式推进机构,外撑弹性软体。微控器选用了ATMEL公司推出的90系列AVR单片机ATmega162,用两片ATmega162分别驱动直流伺服电机和步进电机,用433MHz的频率实现无线遥控。各关节均采用体积小、转速快、扭矩大的微型数字式FUTUBA电机驱动,步进电机选用扭矩较大的24BYJ48。机器海豚的最高游速可达0.45m/s,最小转弯半径约为0.5m,最高转弯速度为120°/s。通过遥控器模式或自动控制模式,机器海豚能逼真地实现海豚典型的背腹式推进和基本的转弯运动。According to the above structural description, the applicant took the Chinese white dolphin known as "national treasure" as a prototype to make a robotic dolphin of 550mm×70mm×80mm. The robot dolphin model has a streamlined bionic dolphin head made of glass casting left and right parts, an aluminum skeleton is used to connect the turning mechanism and the dorsal-ventral propulsion mechanism, and the elastic soft body is supported outside. The microcontroller selects the 90 series AVR microcontroller ATmega162 launched by ATMEL Company, uses two ATmega162 to drive the DC servo motor and the stepping motor respectively, and realizes the wireless remote control with the frequency of 433MHz. Each joint is driven by a miniature digital FUTUBA motor with small size, fast speed and high torque, and the stepper motor is 24BYJ48 with high torque. The maximum swimming speed of the robot dolphin can reach 0.45m/s, the minimum turning radius is about 0.5m, and the maximum turning speed is 120°/s. Through the remote control mode or automatic control mode, the robot dolphin can realistically realize the typical dolphin dorso-ventral propulsion and basic turning movements.
本发明并不受以上各实施例的限制,本技术领域的普通技术人员不用创造性劳动就可以得出的部件更换和改进,均应包括在本发明的保护范围之内。The present invention is not limited by the above embodiments, and the replacement and improvement of parts that can be obtained by those skilled in the art without creative work shall be included in the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100642019A CN100519331C (en) | 2005-04-12 | 2005-04-12 | Intelligent robot dolphin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100642019A CN100519331C (en) | 2005-04-12 | 2005-04-12 | Intelligent robot dolphin |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1663881A CN1663881A (en) | 2005-09-07 |
CN100519331C true CN100519331C (en) | 2009-07-29 |
Family
ID=35035235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100642019A Expired - Fee Related CN100519331C (en) | 2005-04-12 | 2005-04-12 | Intelligent robot dolphin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100519331C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202017106352U1 (en) | 2017-10-20 | 2017-10-25 | Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel | buoy |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE532755C2 (en) | 2007-04-04 | 2010-04-06 | Dolprop Ind Ab | Watercraft and propulsion device for watercraft |
CN100431919C (en) * | 2007-08-07 | 2008-11-12 | 哈尔滨工程大学 | Electromagnetic drive multi-joint bionic fishtail propulsion device |
JP2011506174A (en) * | 2007-12-10 | 2011-03-03 | エー.ピー.モーラー−メルスク エー/エス | Fin propellant seal |
CN102180249B (en) * | 2011-04-11 | 2013-08-07 | 中国科学院深圳先进技术研究院 | Intelligent biomimetic robotic dolphin |
CN102303700B (en) * | 2011-05-26 | 2013-09-04 | 中国科学院自动化研究所 | Multiple control surface robotic fish with embedded vision |
CN102490885B (en) * | 2011-11-30 | 2014-02-19 | 中国科学院自动化研究所 | A rolling motion control method of a multi-joint robot dolphin |
CN102962843B (en) * | 2012-12-03 | 2014-12-10 | 中国科学院自动化研究所 | Porpoising robotic dolphin |
CN106390487B (en) * | 2015-07-31 | 2018-10-26 | 北京秀域科技文化有限公司 | Dolphin performance appts in water |
CN105292418B (en) * | 2015-11-23 | 2017-12-12 | 南京信息工程大学 | The skeleton structure of electromagnetic mechanical fish |
CN105460190A (en) * | 2015-12-01 | 2016-04-06 | 黑龙江科技大学 | Bionic under-actuated underwater robot capable of being remotely controlled through computer and control method |
CN106275336B (en) * | 2016-08-24 | 2018-03-06 | 合肥凌翔信息科技有限公司 | A kind of Biomimetic Fish motion |
CN106828841B (en) * | 2017-02-06 | 2018-08-14 | 佛山市三水区希望火炬教育科技有限公司 | A kind of dedicated South Pole scientific investigation bathyscaph of teenager's research in defense-related science and technology |
CN106864712A (en) * | 2017-03-29 | 2017-06-20 | 西北工业大学 | Bionic mechanical dolphin |
CN108945363B (en) * | 2018-08-10 | 2020-07-10 | 江阴航源航空科技有限公司 | Flexible connection's unmanned submarine of multisection |
CN109131809A (en) * | 2018-08-28 | 2019-01-04 | 西北工业大学 | It is a kind of to swing the unmanned vehicles promoted based on tail bone |
CN109677577B (en) * | 2018-12-30 | 2024-04-02 | 上海海洋大学 | Bionic flexible body line-driven large-deformation dolphin |
CN109760810B (en) * | 2019-01-08 | 2020-01-07 | 东南大学 | Dolphin pectoral fin butterfly flapping mechanism that can realize elliptical trajectory |
CN109745711A (en) * | 2019-03-04 | 2019-05-14 | 沈阳航天新光集团有限公司 | Streamlined robot for viewing |
CN110723270B (en) * | 2019-10-10 | 2022-07-12 | 上海交通大学 | Stratospheric airship with large-scale rigid-flexible integrated structure |
US10935986B1 (en) | 2019-11-28 | 2021-03-02 | Institute Of Automation, Chinese Academy Of Sciences | Gliding depth control method, system and device for biomimetic gliding robotic dolphin |
CN110758698B (en) * | 2019-11-28 | 2020-10-02 | 中国科学院自动化研究所 | Glide depth control method, system and device for bionic gliding robot dolphin |
CN113184153B (en) * | 2021-05-28 | 2023-03-28 | 西安交通大学 | Soft mechanical fish capable of being bent and moving quickly |
CN114371698A (en) * | 2021-12-09 | 2022-04-19 | 沈阳航天新光集团有限公司 | Autonomous obstacle-avoiding swimming bionic robot fish |
CN114954863B (en) * | 2022-07-05 | 2024-09-03 | 中国农业大学 | Autonomous patrol early warning bionic robot dolphin system and control method |
-
2005
- 2005-04-12 CN CNB2005100642019A patent/CN100519331C/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
仿生机器鱼研究的进展鱼分析. 喻俊志,陈尔奎,王硕,谭民.控制理论与应用,第20卷第4期. 2003 |
仿生机器鱼研究的进展鱼分析. 喻俊志,陈尔奎,王硕,谭民.控制理论与应用,第20卷第4期. 2003 * |
多关节仿鱼运动推进结构的设计与实现. 张志刚,喻俊志,王硕,桑海泉,谭民.中国造船,第46卷第1期. 2005 |
多关节仿鱼运动推进结构的设计与实现. 张志刚,喻俊志,王硕,桑海泉,谭民.中国造船,第46卷第1期. 2005 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202017106352U1 (en) | 2017-10-20 | 2017-10-25 | Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel | buoy |
Also Published As
Publication number | Publication date |
---|---|
CN1663881A (en) | 2005-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100519331C (en) | Intelligent robot dolphin | |
CN106828848B (en) | The skeleton more strings of one kind affecting underwater fish | |
CN102962843B (en) | Porpoising robotic dolphin | |
CN100423987C (en) | A bionic robot fish | |
CN100465065C (en) | A modular bionic robotic fish | |
CN100493990C (en) | Small Bionic Robot Fish | |
CN100491197C (en) | Two body robot fish | |
CN102180249B (en) | Intelligent biomimetic robotic dolphin | |
CN108839783A (en) | A kind of flexibility submerged floating bionic machine fish and its control method | |
CN108438182B (en) | Variable volume bionic fish main body structure and bionic fish and motion control method | |
CN101348165A (en) | 3D Motion Bionic Robot Fish | |
CN101767642A (en) | Underwater biomimetic robotic fish | |
CN115535195B (en) | Underwater robot based on hybrid driving of bionic swing and propeller and working method thereof | |
CN205668636U (en) | A kind of bionical underwater propeller | |
CN114537629B (en) | Self-swimming biomimetic robotic fish propelled by caudal fin based on compound linkage mechanism | |
CN2868840Y (en) | A bionic robot fish | |
CN109204744A (en) | A kind of bionic coatings underwater glider | |
Cui et al. | Review of research and control technology of underwater bionic robots | |
CN209905022U (en) | An ornamental bionic squid based on aquarium | |
CN212738470U (en) | Serial-type flexible drive's bionical machine fish | |
CN113525638A (en) | Six-freedom-degree bionic robotic dolphin with image transmission function | |
CN106864712A (en) | Bionic mechanical dolphin | |
CN206417164U (en) | A kind of Biomimetic Fish humanoid robot | |
CN114655405A (en) | Underwater multi-degree-of-freedom motion mechanism for bionic cuttlefish | |
CN115158617A (en) | Bionic robot fish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090729 Termination date: 20120412 |