CN100516546C - Electric blower and electric vacuum cleaner using the electric blower - Google Patents
Electric blower and electric vacuum cleaner using the electric blower Download PDFInfo
- Publication number
- CN100516546C CN100516546C CNB2007100967749A CN200710096774A CN100516546C CN 100516546 C CN100516546 C CN 100516546C CN B2007100967749 A CNB2007100967749 A CN B2007100967749A CN 200710096774 A CN200710096774 A CN 200710096774A CN 100516546 C CN100516546 C CN 100516546C
- Authority
- CN
- China
- Prior art keywords
- impeller
- flow path
- inlet
- hub
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002184 metal Substances 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000007664 blowing Methods 0.000 abstract description 13
- 230000001133 acceleration Effects 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000411 inducer Substances 0.000 abstract 1
- 239000000428 dust Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
- F04D25/082—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Electric Suction Cleaners (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种可望提高叶轮的鼓风效率的电动风机、及使用这种电动风机的电动吸尘器。The present invention relates to an electric blower capable of improving the blowing efficiency of an impeller, and an electric vacuum cleaner using the electric blower.
背景技术 Background technique
至今为止,已经有人提出过旨在提高叶轮鼓风效率的电动风机(其中的一例可参考日本专利公开公报特开2006-9669)。Up to now, electric blowers aiming at improving the blowing efficiency of the impeller have been proposed (for one example, refer to Japanese Patent Laid-Open Publication No. 2006-9669).
上述电动风机中的叶轮40如图10中所示,由前屏蔽面41、后屏蔽面42及设置在两个屏蔽之间的多个叶片43构成。前屏蔽面41的形状被设置成呈倾斜状,使得前屏蔽面41至后屏蔽面(基板)42的距离在距中心越远的位置上(即朝外周缘移动时)越是变得越短(即a>b>c>d),同时前屏蔽面41的径向截面形状呈曲线形状。这样,如图11(a)中所示,流路的圆筒截面积的变化情况将是在从叶轮40的内径至外径(即从流路入口至流路出口)的径向上呈线性增加;且如图11(b)中所示,流速在从流路入口至流路出口的径向上的变化情况将是线性减少。As shown in FIG. 10 , the
但是,在上述的现有装置构成中存在着以下的问题,即由于前屏蔽面在吸入的气流从旋转轴方向拐向径向的曲叶轮40的入口部处设置成开口状,只靠前屏蔽面41和后屏蔽面42之间的距离变化和前屏蔽面41的曲面形状的话,还不能从叶轮外径直至入口都得到直线关系,故无法实现可望充分提高叶轮鼓风效率的流路截面积。However, there is the following problem in the structure of the above-mentioned existing device, that is, since the front shielding surface is arranged in an opening shape at the entrance of the
发明内容 Contents of the invention
本发明旨在解决现有技术中存在的上述问题,其目的在于提供一种可望从入口部至出口部均能充分地提高叶轮鼓风效率的电动风机、及使用这种风机的电动吸尘器。The present invention aims to solve the above-mentioned problems in the prior art, and its purpose is to provide an electric fan that can sufficiently improve the blowing efficiency of the impeller from the inlet to the outlet, and an electric vacuum cleaner using the fan.
为了解决所述现有技术中存在的上述问题,本发明的电动风机叶轮中设有带轮毂的导风轮,前屏蔽面、后屏蔽面及导风轮轮毂形成空气流路,且在从入口至出口之间与流路正交的流路截面中,其流路截面面积在从所述入口至出口之间呈单调增加。In order to solve the above-mentioned problems in the prior art, the electric fan impeller of the present invention is provided with a wind guide wheel with a hub, and the front shielding surface, the rear shielding surface and the wind guide wheel hub form an air flow path, and from the inlet In the cross section of the flow path perpendicular to the flow path between the outlet and the outlet, the cross-sectional area of the flow path increases monotonically from the inlet to the outlet.
这样,由叶轮内部的流量产生的流速会在从入口至出口的整个流路区域中徐徐地减速,不会出现反复加速和紧急减速的情况,可望充分地提高鼓风效率。In this way, the flow velocity generated by the flow inside the impeller gradually decelerates in the entire flow path area from the inlet to the outlet, without repeated acceleration and sudden deceleration, and the blowing efficiency can be sufficiently improved.
另外,采用上述电动风机的电动吸尘器能够提高吸尘性能,可以实现令人舒适的吸尘。In addition, the electric vacuum cleaner using the above-mentioned electric blower can improve dust collection performance, and can realize comfortable dust collection.
本发明产生的技术效果为,本发明的电动风机及采用这种电动风机的电动吸尘器可望充分地提高鼓风效率。The technical effect produced by the present invention is that the electric blower of the present invention and the electric vacuum cleaner adopting the electric blower are expected to fully improve the blowing efficiency.
本发明具体实施方式概述如下。本发明第1方案中的电动风机包括:设有前屏蔽面、后屏蔽面及位于所述的两个屏蔽面之间的多个叶片的叶轮;带有设在所述叶轮的入口内部的轮毂的导风轮;位于所述叶轮的外围的空气引导部件;将所述空气引导部件和叶轮包围在内部、中心设有吸气孔的壳体;和驱动所述叶轮旋转的电动机。在所述前屏蔽面、所述后屏蔽面及所述导风轮的轮毂形成的、从入口至出口的流路中,与流路中心正交的流路截面的面积从所述入口至出口呈单调增加。这样,由叶轮内部的流量产生的流速在从入口至出口的整个流路区域中均会逐渐减速,不会出现反复加速及紧急减速的情况,故可望充分地提高鼓风效率。Specific embodiments of the present invention are summarized as follows. The electric fan in the first solution of the present invention includes: an impeller provided with a front shielding surface, a rear shielding surface and a plurality of blades between the two shielding surfaces; a hub arranged inside the inlet of the impeller The wind deflector wheel; the air guiding part located at the periphery of the impeller; the casing surrounding the air guiding part and the impeller and having an air suction hole in the center; and the motor driving the impeller to rotate. In the flow path from the inlet to the outlet formed by the front shielding surface, the rear shielding surface, and the hub of the wind guide wheel, the cross-sectional area of the flow path perpendicular to the center of the flow path is from the inlet to the outlet monotonically increasing. In this way, the flow velocity generated by the flow inside the impeller will gradually decelerate in the entire flow path area from the inlet to the outlet, and there will be no repeated acceleration and sudden deceleration, so the blowing efficiency can be fully improved.
本发明的第2方案具体为,第1方案中所述的流路截面积的单调增加基本上呈直线状。这样,由叶轮内部的流量引起的流速成分相对于旋转轴截面的流动方向以恒定的比例进行减速,不会发生紧急减速等现象。Specifically, the second aspect of the present invention is that the monotonous increase of the cross-sectional area of the channel described in the first aspect is substantially linear. In this way, the flow velocity component caused by the flow inside the impeller is decelerated at a constant ratio with respect to the flow direction of the cross-section of the rotating shaft, and sudden deceleration and the like do not occur.
第3方案具体为,第1或者第2方案中所述的流路截面积单调增加在从叶轮的入口至轮毂终端部之间、和从轮毂终端部至出口之间各不相同。这样,从入口到轮毂终端部、和从轮毂终端部到出口的二个部分可以分开设计,不但可以使入口一侧的流路截面积实现能够单调增加,从而能够降低吸入的气流从旋转轴方向转至径向时发生的剥离、漩涡及2次流等造成的损失,而且也可以使出口一侧的流路截面积实现能够单调增加,也能降低在径向上到气流排出为止产生的剥离、漩涡及叶轮的表面和空气之间的旋转摩擦(圆板旋转摩擦损失)等造成的损失,从而可望提高鼓风效率。Specifically, the third aspect is that the monotonous increase in the cross-sectional area of the flow path described in the first or second aspect is different between the inlet of the impeller and the end of the hub, and between the end of the hub and the outlet. In this way, the two parts from the inlet to the end of the hub and from the end of the hub to the outlet can be designed separately, which can not only make the cross-sectional area of the flow path on the inlet side increase monotonously, but also reduce the inhaled air flow from the direction of the rotating shaft. Losses caused by peeling, vortex, and secondary flow that occur when turning to the radial direction can also be achieved. The cross-sectional area of the flow path on the outlet side can be increased monotonously, and the peeling that occurs until the airflow is discharged in the radial direction can also be reduced. The loss caused by the rotational friction between the vortex and the surface of the impeller and the air (disc rotational friction loss) can be expected to improve the blowing efficiency.
第4方案具体为,在第3方案中,与从轮毂终端部至出口的流路截面积的单调增加相比,从叶轮的入口至轮毂终端部的流路截面积的单调增加的变化率要大。这样,在吸入的气流受到从旋转轴方向转至径向时发生的剥离、漩涡及2次气流的影响而使实际的空气流动面积变小的情况下,可以使流路截面积的单调增加情况基本上接近于直线状,使因叶轮内部的流量引起的流速成分相对于旋转轴截面的气流方向能以恒定的比例进行减速,从而可以避免出现紧急减速现象。Specifically, the fourth aspect is that in the third aspect, the rate of change of the monotonous increase in the flow path cross-sectional area from the impeller inlet to the hub end portion is smaller than the monotonous increase in the flow path cross-sectional area from the hub end portion to the outlet. big. In this way, when the inhaled air flow is affected by the separation, vortex, and secondary air flow that occur when it is rotated from the direction of the rotation axis to the radial direction, the actual air flow area becomes smaller, and the monotonous increase in the cross-sectional area of the flow path can be minimized. It is basically close to a straight line, so that the flow velocity component caused by the flow inside the impeller can be decelerated at a constant ratio with respect to the airflow direction of the section of the rotating shaft, thereby avoiding the phenomenon of sudden deceleration.
第5方案具体为,第1方案中的流路截面积的单调增加在从叶轮的入口至轮毂终端部之间、和在从轮毂终端部至出口之间互不相同,且基本上分别大致呈直线状;另外,轮毂终端部附近设有将入口侧与出口侧的流路截面积的单调增加加以联接的曲线变化部。这样,流路截面积可以在从叶轮的入口部至轮毂终端部、和从轮毂终端部至出口的范围内顺畅地发生变化,亦即可以使由流量产生的流速成分顺畅地发生减速。Specifically, in the fifth aspect, in the first aspect, the monotonous increase of the cross-sectional area of the flow path in the first aspect is different from the inlet of the impeller to the end of the hub, and from the end of the hub to the outlet, and is basically approximately in the same direction. In addition, there is a curve change part connecting the monotonous increase of the cross-sectional area of the flow path on the inlet side and the outlet side near the terminal part of the hub. In this way, the cross-sectional area of the flow path can be smoothly changed from the impeller inlet to the hub terminal and from the hub terminal to the outlet, that is, the flow velocity component generated by the flow can be smoothly decelerated.
第6方案具体为,在第1~第5的任一方案中,叶轮中的前屏蔽面及和轮毂的入口部分上分别设有与旋转轴方向平行的平行部。这样,在叶轮入口处被吸向旋转轴方向的所有气流都能顺利地中变化成径向气流。Specifically, the sixth aspect is that, in any one of the first to fifth aspects, parallel portions parallel to the direction of the rotation axis are respectively provided on the front shield surface of the impeller and the inlet portion of the hub. In this way, all airflows drawn in the direction of the axis of rotation at the impeller inlet can be smoothly transformed into radial airflows.
第7方案具体为,在第1~第6的任一方案中,所述导风轮由树脂制成,前屏蔽面、后屏蔽面及叶片由金属板制成。这样,制造方法不同的叶轮入口侧亦即导风轮中的流路、和处于出口侧亦即金属板部分中的流路(由前屏蔽面和后屏蔽面夹成的流路)可以分开制成,叶轮的制造可以变得简单。A seventh aspect is specifically that, in any one of the first to sixth aspects, the wind deflector is made of resin, and the front shielding surface, the rear shielding surface, and the blades are made of metal plates. In this way, the flow path on the inlet side of the impeller, that is, the wind guide wheel, and the flow path on the outlet side, that is, the metal plate part (the flow path sandwiched by the front shielding surface and the rear shielding surface) can be manufactured separately. As a result, the manufacture of the impeller can be simplified.
第8方案具体为,本发明的电动吸尘器中设有如第1~7方案中的任一个电动风机。这样,不但可以提高吸引性能,还可以使用户进行舒适的吸尘操作。The eighth aspect is specifically that the electric vacuum cleaner of the present invention is provided with any one of the electric fans in the first to seventh aspects. In this way, not only the suction performance can be improved, but also the user can perform a comfortable vacuuming operation.
附图说明 Description of drawings
图1为本发明实施例1中的电动风机的半截面图,Fig. 1 is a half-sectional view of an electric blower in
图2为该电动风机中的叶轮经部分切除后的俯视图,Figure 2 is a top view of the impeller in the electric fan after being partially cut off,
图3为该电动风机中的叶轮的截面图,Fig. 3 is a sectional view of the impeller in the electric fan,
图4(a)为从该电动风机的叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线相垂直的流路截面积之间的关系图;图4(b)为从该叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线并行的流速之间的关系图,Fig. 4 (a) is the relationship figure between the distance calculated from the inlet on the flow path center curve of the impeller of the electric fan and the flow path cross-sectional area perpendicular to the flow path center curve; Fig. 4 (b) is The relationship between the distance calculated from the inlet on the flow path center curve of the impeller and the flow velocity parallel to the flow path center curve,
图5(a)为从本发明实施例2中的电动风机的叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线相垂直的流路截面积之间的关系图;图5(b)为从该叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线并行的流速之间的关系图,Fig. 5 (a) is the relationship figure between the distance calculated from the inlet on the flow path center curve of the impeller of the electric fan in
图6(a)为另一种叶轮的从流路中心曲线上的入口的距离、和与流路中心曲线相垂直的流路截面积之间的关系图;图6(b)为从该叶轮的流路中心曲线的入口的距离、和与流路中心曲线相并行的流速之间的关系图,Fig. 6 (a) is another kind of impeller from the distance of the inlet on the flow path center curve, and the relationship diagram between the flow path cross-sectional area perpendicular to the flow path center curve; The relationship between the distance of the inlet of the flow path center curve and the flow velocity parallel to the flow path center curve,
图7(a)为本发明实施例3中的电动风机叶轮的截面;图7(b)为从该叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线相垂直的流路截面积之间的关系图,Fig. 7 (a) is the cross-section of the electric fan impeller in the embodiment of the
图8(a)为本发明实施例4中的电动风机叶轮形状的分解截面图;图8(b)为从该叶轮的流路中心曲线上的入口算起的距离、与和流路中心曲线相垂直的流路截面积之间的关系图,Fig. 8 (a) is the exploded cross-sectional view of the shape of the electric fan impeller in
图9为本发明实施例5中的电动吸尘器的截面图,Fig. 9 is a sectional view of the electric vacuum cleaner in
图10为现有电动风机中的叶轮截面图,Fig. 10 is a sectional view of an impeller in an existing electric fan,
图11(a)为其中的叶轮直径和流路圆筒截面积之间的关系图;图11(b)为该叶轮的直径与径向流速之间的关系图。Fig. 11(a) is a graph showing the relationship between the diameter of the impeller and the cross-sectional area of the flow path cylinder; Fig. 11(b) is a graph showing the relationship between the diameter of the impeller and the radial flow velocity.
上述附图中,1为叶轮,2为前屏蔽面,3为后屏蔽面,4为叶片,5为入口,6为轮毂,7为入口引导翼,8为导风轮,9为静翼,10为基板,11为空气引导,12为吸气孔,13为壳体,14为电动机,16为旋转轴,25为出口,26为轮毂终端部,27为曲线变化部,28为平行部,30为电动风机。In the above drawings, 1 is the impeller, 2 is the front shielding surface, 3 is the rear shielding surface, 4 is the blade, 5 is the inlet, 6 is the hub, 7 is the inlet guide wing, 8 is the wind guide wheel, 9 is the static wing, 10 is a base plate, 11 is an air guide, 12 is an air suction hole, 13 is a casing, 14 is a motor, 16 is a rotating shaft, 25 is an outlet, 26 is a hub terminal part, 27 is a curve changing part, 28 is a parallel part, 30 is an electric fan.
具体实施方式 Detailed ways
下面参照附图来对本发明的一些实施例进行详细说明。但需要指出的是,这样的实施例并不具有限定本发明范围的作用。Some embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, it should be pointed out that such examples do not limit the scope of the present invention.
(实施例1)(Example 1)
本发明实施例1中的电动风机如图1~图4中所示。The electric blower in
如图1、图2中所示,本实施例中的电动风机中包括:带有前屏蔽面2、后屏蔽面3及位于两个屏蔽面2、3之间的多个叶片4的叶轮1;带有设置在叶轮1的入口5内部中的呈圆锤形山头状的轮毂6、及具有3维曲面并与叶片4相联接的入口引导翼7的导风轮8;带有位于叶轮1周围的多个静翼9及其基板10的空气引导部件11;将空气引导部件11和叶轮1包在其内部、中心设有与入口5正对着的吸气孔12的壳体13;和用于驱动叶轮1旋转的电动机14。As shown in Figures 1 and 2, the electric fan in this embodiment includes: an
叶轮1的前屏蔽面2、后屏蔽面3及导风轮8中的轮毂6构成从入口5至出口25的空气流路。与所述流路呈直交的流路截面的面积不但不会变小,而是呈不断扩大的构造,即呈广义上的单调增加的构造。The
在本实施例中,构成叶轮1的前屏蔽面2、后屏蔽面3及多个叶片4均由金属板制成,这三种部件通过铆接加工等方式连结在一起。导风轮8由树脂制成,在金属板制成的三种部件(前屏蔽面2、后屏蔽面3和叶片4)进行连结时插入到内部,一起进行连结。导风轮8在其轮毂终端部26处与叶轮1进行联接,各个入口引导翼7与各个叶片4分别互相联接。In this embodiment, the
另外,叶轮1中的后屏蔽面3及轮毂6内的圆环部15在隔上垫片17后由螺母18固定在电动机14的旋转轴16上。In addition, the
前屏蔽面2、后屏蔽面3及导风轮8中的轮毂6在叶轮1中构成从入口5至出口25的空气流路,这一流路在旋转轴16方向上的截面形状(即轴心截面形状)如图3中所示。The
详细说来,上述流路由前面侧曲线19和后面侧曲线20隔成,上述前面侧曲线19为沿着旋转轴16方向截取前屏蔽面2的截面时得到的、位于流路侧的曲线,后面侧曲线20为对轮毂6和从轮毂6上延续出来的后屏蔽面3截取截面时得到的、位于流路侧的曲线。流路中心曲线21基本上从上述2个曲线之间的中心位置穿过。求出与流路中心曲线21垂直的多根流路截面定义直线22后,将所述流路截面定义直线22绕旋转轴16旋转时得到的圆环状曲面的面积即为各个位置上的流路截面积。In detail, the above-mentioned flow path is divided into a
如图4(a)中所示,各个位置上的流路截面积被设置成从入口5至出口25沿着叶轮1的流路中心曲线21单调增加,且使其变化大致呈直线状。这样,从入口5至出口25的流速变化将象图4(b)中所示的那样呈线形下降。As shown in FIG. 4( a ), the cross-sectional area of the flow path at each position is set to increase monotonously along the flow
另外,将前面侧曲线19和后面侧曲线20以相同的份数进行等分,将分别对应的分割点23进行连结,形成分割线24,穿过这些分割线24的中点的曲线即为流路中心曲线21。In addition, the
下面对具有上述构成的电动风机的操作情况和作用进行描述。The operation and effect of the electric blower having the above-mentioned constitution will be described below.
工作时,如图1、图2中所示,与电动机14相联接的叶轮1高速旋转(图2中的箭头A),从壳体13上的吸气孔12吸入空气(图1中的箭头B);再将空气吸入到叶轮1上的入口5中,通过由前屏蔽面2、轮毂6及2个入口引导翼7围成的内部流路使气流从沿着旋转轴16前进的方向转至(如箭头C所示)沿着径向流动;接着,穿过由前屏蔽面2、后屏蔽面3和2个叶片4围成的内部流路(箭头D),从叶轮1的外缘部分排出。During work, as shown in Figure 1 and Figure 2, the
从叶轮1排出的气流从空气引导部件11的静翼9之间穿过,碰上壳体13的外周壁(箭头E)后,再从空气引导部件11的里侧穿过(箭头F);然后,一边从电动机14的内部穿过(箭头G),一边对电动机14进行冷却;最后,从设在电动机14上的排气孔排到电动机14外(箭头H)。The airflow discharged from the
此时,由于与由前屏蔽面2、后屏蔽面3及导风轮8中的轮毂6形成的从入口5至出口25的流路相正交的流路截面的面积呈单调增加,故由叶轮1内部的流量产生的流速成分(即旋转轴16的截面方向的成分)在从入口5至出口25的整个流路区域内将会徐徐地减速(图4(b)),不会发生紧急减速的现象。At this time, since the area of the cross-section of the flow path orthogonal to the flow path from the
如上所述,在本实施例的叶轮1中,通过使与(由前屏蔽面2、后屏蔽面3及导风轮8中的轮毂6构成的从入口5至出口25的)流路相正交的流路截面面积呈单调增加,可以使由叶轮1内部的流量引起的成分(即旋转轴16截面方向的成分)的流速在从入口5至出口25的整个流路区域内逐渐减速,故不会发生紧急减速,可望充分地提高鼓风效率。As mentioned above, in the
另外,通过将流路截面积的单调增加设定为大致如图4(b)中所示的直线状,可以使由叶轮1内部的流量产生的流速成分(即旋转轴16截面方向的成分)在相对于旋转轴16截面的流动方向上以恒定的比例进行减速,从而可以防止紧急减速现象。In addition, by setting the monotonous increase of the cross-sectional area of the flow path to be substantially linear as shown in FIG. The deceleration is performed at a constant ratio in the flow direction with respect to the section of the
(实施例2)(Example 2)
接下来根据图5、图6对本发明的实施例2进行描述。其中,电动风机的基本构成与实施例1中相同,故在此就省略对其的重复描述。Next,
在本实施例中,如图5(a)中所示,叶轮1的流路截面积变化在从叶轮的入口5至轮毂终端部26的范围内和从轮毂终端部26至出口25的范围内互不相同。这样,与叶轮1的流路中心曲线21并行的、从入口5至出口25的流速将如图5(b)中所示的那样发生变化。In this embodiment, as shown in FIG. 5( a ), the flow path cross-sectional area of the
采用本实施例的话,从入口5至轮毂终端部26的部分和从轮毂终端部26至出口25的部分可以分开设计,不但可以使入口5一侧的流路截面积实现能够降低吸入气流从旋转轴16方向转至径向时发生的剥离、漩涡及2次流等造成的损失的单调增加,而且也可以使出口25一侧的流路截面积实现能够降低到在径向上排出为止产生的剥离、漩涡及叶轮1的表面和空气之间的旋转摩擦(圆板旋转摩擦损失)等造成的损失的单调增加,可望提高鼓风效率。If this embodiment is adopted, the part from the
本实施例中从叶轮1的入口5至轮毂终端部26的流路截面积单调增加的变化率要大于轮毂终端部26至出口25的流路截面积的单调增加的变化率。In this embodiment, the change rate of the monotonically increasing cross-sectional area of the flow path from the
这样,在吸入的气流受到从旋转轴16方向转至径向时发生的剥离、漩涡及2次气流的影响而使实际的空气流动面积变小的情况下,可以使流路截面积的单调增加情况基本上接近于直线状,使因叶轮1内部的流量引起的流速成分(沿旋转轴16截面方向的成分)相对于旋转轴16截面的气流方向以恒定的比例进行减速,从而可以避免出现紧急减速现象的发生。In this way, when the inhaled air flow is affected by the separation, vortex, and secondary air flow that occur when it turns from the direction of the
另外,如图6(a)(b)中所示,本实施例的叶轮1中的流路截面积的单调增加也可以设定成这样,即从叶轮1的入口5至轮毂终端部26的部分与从轮毂终端部26至出口25的部分可以互不相同,且分别大致呈直线状;另外,在轮毂终端部26的附近设有曲线变化部27,这一曲线变化部27将位于入口5一侧和出口25一侧的大致呈直线状的流路截面积单调增加部分加以连接。In addition, as shown in Fig. 6 (a) (b), the monotonous increase of the cross-sectional area of the flow path in the
这样,流路截面积将在从叶轮1的入口部5至轮毂终端部26、以及在从轮毂终端部26至出口25的范围内顺畅地单调增加,从而可以使因流量引起的流速成分(沿着旋转轴16截面方向的成分)顺畅地进行减速。In this way, the cross-sectional area of the flow path will increase smoothly and monotonously from the
(实施例3)(Example 3)
下面通过图7对本发明的实施例3进行描述。其中,电动风机的基本构成与实施例1中相同,故在此省略对其的重复描述。
如图7(a)(b)中所示,本实施例的叶轮1中的前屏蔽面2及轮毂6在入口5的端部附近各自设有与旋转轴16基本平行的平行部28,形成与旋转轴16平行的圆环状吸气通道。As shown in Figure 7(a)(b), the
这样,气流在被朝旋转轴16方向吸引时产生的紊流可以在叶轮1的入口处得到降低,且处于旋转轴16方向上的所有气流其后可以顺畅地拐至径向方向。In this way, the turbulent flow generated when the airflow is attracted towards the
(实施例4)(Example 4)
接下来根据图8对本发明实施例3进行描述。其中,电动风机的基本构成与实施例1中相同,故在此省略对其的重复描述。Next,
图8(a)中上面的图示出了导风轮,下面的图示出了叶轮未插入所述导风轮中时的状态。The upper figure in Fig. 8(a) shows the wind deflector, and the lower figure shows the state when the impeller is not inserted into the wind deflector.
在本实施例中,构成叶轮1的导风轮8由树脂制成,前屏蔽面2、后屏蔽面3及叶片4由金属板制成。这样,在叶轮插入到所述导风轮中之后,从与旋转轴16的方向平行的截面就可以得到轮毂终端部26处的流路截面积。换句话说,在后屏蔽面3和旋转轴16呈垂直的位置关系的情况下,轮毂终端部26中的流路截面定义直线22(入口引导翼7一侧和叶片4一侧两个方面)呈与后屏蔽面3垂直的构成。In this embodiment, the
这样一来,材料及制造方法均不同的叶轮1的入口5侧亦即导风轮8中的流路、和处于出口25一侧亦即金属板部分中的流路(由前屏蔽面2和后屏蔽面3夹成的流路)可以分开制成,从而可以简单、方便地制成叶轮1。In this way, the
(实施例5)(Example 5)
图9中示出了本发明的实施例5中的电动吸尘器。FIG. 9 shows an electric vacuum cleaner in
如图9中所示,吸尘器主机体29内设有电动风机30,通过吸头31吸入气流和灰尘,并使灰尘蓄积在集尘室32中。As shown in FIG. 9 , the
另外,这里的电动风机30采用的是上面所示的实施例1~4种的任一个中所示的电动风机,从而实现一种既能提高吸尘性能、又可以抑制能耗的电动吸尘器。In addition, the
综上所述,由于本发明中的电动风机可望充分地提高鼓风效率,故不但可以用在电动吸尘器中,也可以广泛地适用在其它家电设备、工业设备等场合下。此外,从与电动风机相类似的观点出发,本发明还可以适用在压缩机、汽轮机及液体泵等中。To sum up, since the electric blower in the present invention is expected to fully improve the blowing efficiency, it can not only be used in electric vacuum cleaners, but also be widely used in other household appliances, industrial equipment and other occasions. In addition, the present invention can also be applied to compressors, steam turbines, liquid pumps, and the like from a viewpoint similar to that of an electric fan.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006307424A JP4867596B2 (en) | 2006-11-14 | 2006-11-14 | Electric blower and electric vacuum cleaner using the same |
JP2006307424 | 2006-11-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101182851A CN101182851A (en) | 2008-05-21 |
CN100516546C true CN100516546C (en) | 2009-07-22 |
Family
ID=38596185
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100967749A Expired - Fee Related CN100516546C (en) | 2006-11-14 | 2007-04-12 | Electric blower and electric vacuum cleaner using the electric blower |
CNU2007201396980U Expired - Lifetime CN201037473Y (en) | 2006-11-14 | 2007-04-12 | Electric motor and electric dust collector using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007201396980U Expired - Lifetime CN201037473Y (en) | 2006-11-14 | 2007-04-12 | Electric motor and electric dust collector using the same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1923572B1 (en) |
JP (1) | JP4867596B2 (en) |
KR (1) | KR101287250B1 (en) |
CN (2) | CN100516546C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010196694A (en) * | 2009-01-30 | 2010-09-09 | Sanyo Electric Co Ltd | Centrifugal blower and air conditioning device |
JP5107306B2 (en) * | 2009-06-10 | 2012-12-26 | 三菱重工業株式会社 | Manufacturing method of impeller of centrifugal rotating machine and impeller of centrifugal rotating machine |
JP5520550B2 (en) * | 2009-09-09 | 2014-06-11 | 日立アプライアンス株式会社 | Electric blower and vacuum cleaner provided with the same |
WO2011102120A1 (en) * | 2010-02-17 | 2011-08-25 | パナソニック株式会社 | Impeller, electric air blower using same, and electric cleaner using electric air blower |
CN104279185B (en) * | 2014-06-12 | 2018-01-30 | 莱克电气股份有限公司 | A kind of impeller |
CN104279182B (en) * | 2014-06-12 | 2018-01-30 | 莱克电气股份有限公司 | A kind of blade wheel structure |
CN104279188B (en) * | 2014-10-29 | 2017-08-01 | 珠海格力电器股份有限公司 | Centrifugal fan and air conditioner with same |
WO2017141758A1 (en) * | 2016-02-15 | 2017-08-24 | パナソニックIpマネジメント株式会社 | Electrically driven blower |
US11333163B2 (en) * | 2016-05-25 | 2022-05-17 | Mitsubishi Electric Corporation | Electric blower, electric vacuum cleaner, and hand dryer |
JP6765278B2 (en) * | 2016-10-19 | 2020-10-07 | 日立グローバルライフソリューションズ株式会社 | Electric blower and vacuum cleaner equipped with it |
CN111173762B (en) * | 2020-01-07 | 2021-06-25 | 李红 | Domestic multifunctional ceiling fan |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE958147C (en) * | 1955-05-01 | 1957-02-14 | Siemens Ag | Paddle wheel for blowers, especially for vacuum cleaners |
GB8611643D0 (en) * | 1986-05-13 | 1986-06-18 | Sauter R J | Centrifugal impellers |
JPH0460196A (en) * | 1990-06-29 | 1992-02-26 | Matsushita Electric Ind Co Ltd | Motor-driven blower |
JP3617095B2 (en) * | 1995-01-18 | 2005-02-02 | 松下電器産業株式会社 | Electric blower |
JP2001032792A (en) * | 1999-07-21 | 2001-02-06 | Matsushita Electric Ind Co Ltd | Electric blower, and vacuum cleaner |
JP2006009669A (en) * | 2004-06-24 | 2006-01-12 | Nidec Shibaura Corp | Centrifugal blower |
JP4556884B2 (en) * | 2006-03-01 | 2010-10-06 | パナソニック株式会社 | Electric blower |
-
2006
- 2006-11-14 JP JP2006307424A patent/JP4867596B2/en not_active Expired - Fee Related
-
2007
- 2007-04-12 CN CNB2007100967749A patent/CN100516546C/en not_active Expired - Fee Related
- 2007-04-12 CN CNU2007201396980U patent/CN201037473Y/en not_active Expired - Lifetime
- 2007-06-29 EP EP07012832.7A patent/EP1923572B1/en not_active Not-in-force
- 2007-07-04 KR KR1020070066813A patent/KR101287250B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP4867596B2 (en) | 2012-02-01 |
EP1923572B1 (en) | 2015-07-29 |
EP1923572A2 (en) | 2008-05-21 |
JP2008121589A (en) | 2008-05-29 |
KR20080043684A (en) | 2008-05-19 |
CN101182851A (en) | 2008-05-21 |
KR101287250B1 (en) | 2013-07-17 |
CN201037473Y (en) | 2008-03-19 |
EP1923572A3 (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100516546C (en) | Electric blower and electric vacuum cleaner using the electric blower | |
US7244099B2 (en) | Multi-vane centrifugal fan | |
KR20120061512A (en) | Brower for air conditioner | |
JP2008121589A5 (en) | ||
WO2022217957A1 (en) | Axial radial flow blower and air conditioning device | |
WO2014097627A1 (en) | Centrifugal fan | |
JP2010281231A (en) | Electric blower and electric vacuum cleaner using the same | |
KR100421382B1 (en) | Turbo fan | |
CN101608630A (en) | Electric blower and electric vacuum cleaner equipped with the same | |
CN103967833A (en) | Composite impeller and its air supply device | |
JP2000145690A (en) | Electric blower and vacuum cleaner with the same | |
JP2000110783A (en) | Centrifugal fan | |
CN110494654B (en) | Telecentric fan, molding die and fluid delivery device | |
JP4980415B2 (en) | Electric vacuum cleaner | |
CN101509505B (en) | electric blower | |
KR100272540B1 (en) | structure of bellmouth for sirocco fan | |
GB2615971A (en) | Blower | |
CN113708561A (en) | Brushless motor and impeller thereof | |
JP4140086B2 (en) | Electric blower | |
CN221442878U (en) | Fan and cleaning equipment | |
JPH0337398A (en) | Multiblade fan | |
JP2019178616A (en) | Electric blower and vacuum cleaner employing the same | |
EP3315786A1 (en) | Turbofan and air conditioner in which same is used | |
KR100469259B1 (en) | Blade of turbo fan | |
KR100459191B1 (en) | turbo fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090722 |
|
CF01 | Termination of patent right due to non-payment of annual fee |