CN100513097C - Robot clever hand modular finger - Google Patents
Robot clever hand modular finger Download PDFInfo
- Publication number
- CN100513097C CN100513097C CNB2007100725881A CN200710072588A CN100513097C CN 100513097 C CN100513097 C CN 100513097C CN B2007100725881 A CNB2007100725881 A CN B2007100725881A CN 200710072588 A CN200710072588 A CN 200710072588A CN 100513097 C CN100513097 C CN 100513097C
- Authority
- CN
- China
- Prior art keywords
- housing
- knuckle
- steel wire
- runner
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 71
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 57
- 239000010959 steel Substances 0.000 claims abstract description 57
- 230000005540 biological transmission Effects 0.000 claims abstract description 44
- 230000008878 coupling Effects 0.000 claims abstract description 20
- 238000010168 coupling process Methods 0.000 claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 claims abstract description 20
- 239000003638 chemical reducing agent Substances 0.000 claims description 22
- 210000001145 finger joint Anatomy 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims 3
- 238000003466 welding Methods 0.000 claims 1
- 210000002435 tendon Anatomy 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000036316 preload Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- MFRCZYUUKMFJQJ-UHFFFAOYSA-N 1,4-dioxane-2,5-dione;1,3-dioxan-2-one Chemical compound O=C1OCCCO1.O=C1COC(=O)CO1 MFRCZYUUKMFJQJ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
机器人灵巧手模块化手指,它涉及一种机器人灵巧手手指技术领域。它是为了解决目前机器人领域多指灵巧手存在可靠性差、结构复杂性及可维护性差的问题。它的基关节壳体(1)的内部设置有双驱驱动机构(1-2)、基关节差动机构(1-4),基关节差动机构(1-4)通过U形连接头(1-5)与第一指节壳体(2)活动连接,第一指节壳体(2)中的驱动机构(2-1)与中间指节壳体(3)中的耦合钢丝传动机构(3-1)传动连接,中间指节壳体(3)通过耦合钢丝传动机构(3-1)与末端指节壳体(4)相连接。本发明的手指共有四个关节、三个自由度,整个手指具有独立的控制器。所有的电机、减速、传动、传感以及控制(电气)等都集成在手指中。集成化、模块化的手指增强了灵巧手系统的可靠性、可维护性。
A robot dexterous hand modular finger relates to the technical field of robot dexterous hand fingers. It aims to solve the problems of poor reliability, complex structure and poor maintainability of multi-fingered dexterous hands in the field of robots. The inside of its base joint housing (1) is provided with a double-drive drive mechanism (1-2), a base joint differential mechanism (1-4), and a base joint differential mechanism (1-4) through a U-shaped connector ( 1-5) is movably connected with the first knuckle housing (2), the driving mechanism (2-1) in the first knuckle housing (2) and the coupling steel wire transmission mechanism in the middle knuckle housing (3) (3-1) transmission connection, the middle knuckle shell (3) is connected with the end knuckle shell (4) through the coupling steel wire transmission mechanism (3-1). The finger of the present invention has four joints and three degrees of freedom, and the whole finger has an independent controller. All motors, deceleration, transmission, sensing and control (electrical), etc. are integrated in the finger. The integrated and modular fingers enhance the reliability and maintainability of the dexterous hand system.
Description
技术领域 technical field
本发明涉及一种机器人灵巧手手指技术领域。The invention relates to the technical field of a robot dexterous hand finger.
背景技术 Background technique
机器人灵巧手技术作为机器人技术的一个重要分支,经过几十年的发展取得了很好的成绩,也相继诞生了一些有代表性的灵巧手,比如Stanford/JPL(斯坦福研制的灵巧手)、Utan/M.I.T(麻省理工研制的灵巧手)、DLR(德国宇航中心研制的灵巧手)、NASA(美国宇航局研制的灵巧手)等等。上述这些灵巧手的进步之处主要体现在机械结构、驱动、传感、集成度以及控制等方面。但由于受到电机技术、电子产品制造技术等的限制,以往的灵巧手在集成度方面还没有达到令人满意的程度,比如Stanford/JPL手、Utan/M.I.T手以及商品化的Shadow手等,将驱动器等置于灵巧手的外部(如前臂内),此时传递力的空间距离较远且路径不规则,通过腱(绳索)来实现传动。As an important branch of robotics, robot dexterous hand technology has achieved good results after decades of development, and some representative dexterous hands have been born one after another, such as Stanford/JPL (the dexterous hand developed by Stanford), Utan / M.I.T (dexterous hand developed by MIT), DLR (dexterous hand developed by German Aerospace Center), NASA (dexterous hand developed by NASA), etc. The progress of the above-mentioned dexterous hands is mainly reflected in the aspects of mechanical structure, drive, sensing, integration and control. However, due to the limitations of motor technology and electronic product manufacturing technology, the integration of previous dexterous hands has not reached a satisfactory level, such as Stanford/JPL hands, Utan/M.I.T hands, and commercialized Shadow hands. The driver is placed outside the dexterous hand (such as in the forearm). At this time, the space for transmitting force is far away and the path is irregular, and the transmission is realized through the tendon (rope).
腱传动系统的优点是:可以使驱动器与手指本体分离,有利于减小手指的尺寸和重量;腱传动在结构的紧凑性、研制的灵活性、成本等方面具有最好的综合指标;腱传动是一种零回差的柔顺传动方式,因而可以简化力控制器的设计。但腱传动在实现空间布置自由的同时,有其不可避免的缺陷:由于腱的刚度是有限的,所以驱动系统表现出一定的滞后,从而影响位置精度,甚至引起高增益系统的不稳定;必须对腱进行预紧,这增加了结构的复杂性和装配的难度;同时,预紧程度对驱动系统的性能有很大的影响,较大的预紧力会产生较大的摩擦力,而较小的预紧力会导致腱的松弛,腱的张力和波动如果很大,可能会激发系统的振荡,从而引起腱的不稳定或造成腱的损坏。同时,由于腱连接的路径复杂,端部磨损等隐患的存在,影响了系统的可靠性、可维护性,当某根腱断裂时,必须进行灵巧手整体的拆卸,工作量大。The advantages of the tendon drive system are: the driver can be separated from the finger body, which is beneficial to reduce the size and weight of the finger; the tendon drive has the best comprehensive indicators in terms of compact structure, development flexibility, and cost; tendon drive It is a compliant transmission method with zero backlash, so the design of the force controller can be simplified. But the tendon transmission has its unavoidable defects while realizing the freedom of spatial arrangement: because the stiffness of the tendon is limited, the drive system shows a certain hysteresis, which affects the position accuracy and even causes the instability of the high-gain system; it must Preload the tendon, which increases the complexity of the structure and the difficulty of assembly; at the same time, the degree of preload has a great impact on the performance of the drive system, a larger preload will produce greater friction, and a larger A small preload will lead to relaxation of the tendon, and if the tension and fluctuation of the tendon are large, it may excite the oscillation of the system, thereby causing tendon instability or damage to the tendon. At the same time, due to the complex path of the tendon connection and the existence of hidden dangers such as end wear, the reliability and maintainability of the system are affected. When a tendon breaks, the dexterous hand must be disassembled as a whole, and the workload is heavy.
发明内容 Contents of the invention
本发明的目的是为解决目前机器人领域多指灵巧手存在可靠性差、结构复杂性及可维护性差的问题,而提供了一种机器人灵巧手模块化手指。The purpose of the present invention is to provide a modular finger of a robot dexterous hand to solve the problems of poor reliability, complex structure and poor maintainability of multi-fingered dexterous hands in the field of robots.
本发明由基关节壳体1、基关节主电路板1-1、双驱驱动机构1-2、基关节连接电路板1-3、基关节差动机构1-4、U形连接头1-5、基关节二维力矩传感器1-6、基关节绝对位置传感装置1-7、第一指节壳体2、驱动机构2-1、第一指电路板2-2、中间指节壳体3、耦合钢丝传动机构3-1、末端指节壳体4、手指关节一维位置传感器4-1、一维力矩传感器4-5组成;The present invention consists of a base
基关节主电路板1-1设置在基关节壳体1的下端上,基关节连接电路板1-3设置在基关节壳体1的上侧端上,第一指电路板2-2设置在第一指节壳体2内侧、第一指节的背面;双驱驱动机构1-2设置在基关节壳体1的中下部内,基关节差动机构1-4设置在基关节壳体1的上部内;所述双驱驱动机构1-2包括两个电动机1-2-1、两个谐波减速器1-2-2和两个张紧轮1-2-3;所述基关节差动机构1-4由两个主动锥齿轮1-4-1、两个从动锥齿轮1-4-2和两个皮带轮1-4-3组成;两个电动机1-2-1的输出皮带轮通过皮带分别与两个谐波减速器1-2-2的输入皮带轮传动连接;两个谐波减速器1-2-2的输出皮带轮分别通过皮带与两个张紧轮1-2-3、基关节差动机构1-4上的两个皮带轮1-4-3传动连接;两个主动锥齿轮1-4-1与两个从动锥齿轮1-4-2互相间隔啮合连接,两个主动锥齿轮1-4-1的轴心线重合,两个从动锥齿轮1-4-2的轴心线重合,两个主动锥齿轮1-4-1的轴心线与两个从动锥齿轮1-4-2的轴心线处在同一个平面中,两个皮带轮1-4-3分别套接在两个主动锥齿轮1-4-1的转轴1-8上;U形连接头1-5的U形的一端1-5-1上的轴孔与基关节差动机构1-4的一个从动锥齿轮1-4-2的转轴转动连接,U形连接头1-5的U形的另一端1-5-2上的孔与基关节差动机构1-4的另一个从动锥齿轮1-4-2的转轴固定连接;U形连接头1-5上端十字结构的边缘端面连接在第一指节壳体2的下端上,基关节二维力矩传感器1-6设置在U形连接头1-5上端十字结构的端面上;第一指节壳体2的上端轴孔通过第一轴5与中间指节壳体3的下端轴孔转动连接;所述驱动机构2-1由第一指节电动机2-1-1和第一指节谐波减速器2-1-2组成;所述耦合钢丝传动机构3-1由第一转轮3-1-1、第二转轮3-1-2、第一钢丝3-1-3和第二钢丝3-1-4组成;驱动机构2-1的第一指节电动机2-1-1设置在第一指节壳体2的内部,驱动机构2-1的第一指节谐波减速器2-1-2的输入空心轴套接在第一轴5上,第一指节电动机2-1-1的输出皮带轮通过皮带与第一轴5上的皮带轮2-1-3传动连接;耦合钢丝传动机构3-1的第一转轮3-1-1转动套接在第一轴5上,第一转轮3-1-1的一个侧端面与第一指节壳体2的上侧内端面固定连接,中间指节壳体3内侧壁上的支架3-1-5与驱动机构2-1的第一指节谐波减速器2-1-2的输出转动端固定连接,耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6与中间指节壳体3上端的轴孔转动连接,第一钢丝3-1-3的两端、第二钢丝3-1-4的两端分别固定在第一转轮3-1-1外圆面和第二转轮3-1-2外圆面上,第一转轮3-1-1通过第一钢丝3-1-3、第二钢丝3-1-4与第二转轮3-1-2交叉传动;末端指节壳体4通过内壁上的支架4-2与耦合钢丝传动机构3-1的第二转轮3-1-2的侧端面固定连接;支架4-2平行于耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6轴心线的端面上设置有一维力矩传感器4-5,中间指节壳体3上端内侧面与耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6的一个端面之间设置有手指关节一维位置传感器4-1。The base joint main circuit board 1-1 is arranged on the lower end of the
本发明具有以下有益效果:本发明的手指共有四个关节、三个自由度,其中基关节机构有两个自由度,通过两个电机驱动高速齿形皮带、谐波减速器、低速齿形皮带和四个锥齿轮组成的差动机构实现手指的翘曲和侧摆运动,手指基关节两个自由度的运动通过差动机构的主动锥齿轮的运动合成实现。为了便于皮带的选择,两套驱动系统的电机、减速、传动结构相同,两个电机并排置于框架的底部,两个谐波减速器并排置于两个电机的上方。手指基关节的输出力矩是由两套驱动系统合成的,从而在相同的关节输出力矩下,有利于采用更小的驱动系统,最大限度地减小体积、降低重量,使结构更加紧凑,加工、装配更加容易,整个手指具有独立的控制器。所有的电机、减速、传动、传感以及控制(电气)等都集成在手指中。集成化、模块化的手指增强了灵巧手系统的可靠性、可维护性。The present invention has the following beneficial effects: the finger of the present invention has four joints and three degrees of freedom, wherein the base joint mechanism has two degrees of freedom, and two motors drive the high-speed toothed belt, harmonic reducer, and low-speed toothed belt The differential mechanism composed of four bevel gears realizes the warping and sideways movement of the finger, and the movement of the two degrees of freedom of the finger base joint is realized through the motion synthesis of the active bevel gear of the differential mechanism. In order to facilitate the selection of belts, the motors, deceleration and transmission structures of the two drive systems are the same. The two motors are placed side by side at the bottom of the frame, and the two harmonic reducers are placed side by side above the two motors. The output torque of the finger base joint is synthesized by two sets of drive systems, so that under the same joint output torque, it is beneficial to use a smaller drive system, minimize the size and weight, and make the structure more compact. Assembly is easier, with separate controls for the entire finger. All motors, deceleration, transmission, sensing and control (electrical), etc. are integrated in the finger. The integrated and modular fingers enhance the reliability and maintainability of the dexterous hand system.
附图说明 Description of drawings
图1是本发明整体的立体结构示意图,图2是图1中基关节壳体1内部的双驱驱动机构1-2、基关节差动机构1-4和基关节与第一指节U形连接头1-5的右后视立体结构示意图,图3是图2中基关节绝对位置传感装置1-7的结构示意图,图4是图3的左视图,5是图2中基关节与第一指节U形连接头1-5的立体结构图,图6是图1中第一指节壳体2、中间指节壳体3内部的驱动机构2-1和耦合钢丝传动机构3-1的右后视立体结构示意图,图7是图6的后视立体结构示意图,图8是图6中手指关节一维位置传感器4-1的后视图,图9是图8中支架4-2左侧立体结构示意图。Fig. 1 is a schematic diagram of the overall three-dimensional structure of the present invention, and Fig. 2 is a double-drive driving mechanism 1-2 inside the base
具体实施方式 Detailed ways
具体实施方式一:结合图1~图9说明本实施方式,本实施方式由基关节壳体1、基关节主电路板1-1、双驱驱动机构1-2、基关节连接电路板1-3、基关节差动机构1-4、U形连接头1-5、基关节二维力矩传感器1-6、基关节绝对位置传感装置1-7、第一指节壳体2、驱动机构2-1、第一指电路板2-2、中间指节壳体3、耦合钢丝传动机构3-1、末端指节壳体4、手指关节一维位置传感器4-1、一维力矩传感器4-5组成;Specific Embodiment 1: This embodiment will be described with reference to Figures 1 to 9. This embodiment consists of a
基关节主电路板1-1设置在基关节壳体1的下端上,基关节连接电路板1-3设置在基关节壳体1的上侧端上,第一指电路板2-2设置在第一指节壳体2内侧、第一指节的背面;双驱驱动机构1-2设置在基关节壳体1的中下部内,基关节差动机构1-4设置在基关节壳体1的上部内;所述双驱驱动机构1-2包括两个电动机1-2-1、两个谐波减速器1-2-2和两个张紧轮1-2-3;所述基关节差动机构1-4由两个主动锥齿轮1-4-1、两个从动锥齿轮1-4-2和两个皮带轮1-4-3组成;两个电动机1-2-1的输出皮带轮通过皮带分别与两个谐波减速器1-2-2的输入皮带轮传动连接;两个谐波减速器1-2-2的输出皮带轮分别通过皮带与两个张紧轮1-2-3、基关节差动机构1-4上的两个皮带轮1-4-3传动连接;两个主动锥齿轮1-4-1与两个从动锥齿轮1-4-2互相间隔啮合连接,两个主动锥齿轮1-4-1的轴心线重合,两个从动锥齿轮1-4-2的轴心线重合,两个主动锥齿轮1-4-1的轴心线与两个从动锥齿轮1-4-2的轴心线处在同一个平面中,两个皮带轮1-4-3分别套接在两个主动锥齿轮1-4-1的转轴1-8上;U形连接头1-5的U形的一端1-5-1上的轴孔与基关节差动机构1-4的一个从动锥齿轮1-4-2的转轴转动连接,U形连接头1-5的U形的另一端1-5-2上的孔与基关节差动机构1-4的另一个从动锥齿轮1-4-2的转轴固定连接;U形连接头1-5上端十字结构的边缘端面连接在第一指节壳体2的下端上,基关节二维力矩传感器1-6设置在U形连接头1-5上端十字结构的端面上;当两个主动锥齿轮1-4-1转动方向相同时,实现第一指节壳体2以两个主动锥齿轮1-4-1的转轴1-8为轴心做翘曲运动,运动范围为-20°~+90°;当两个主动锥齿轮1-4-1转动方向相反时,实现第一指节壳体2的侧摆运动,运动范围为-20°~+20°。The base joint main circuit board 1-1 is arranged on the lower end of the
第一指节壳体2的上端轴孔通过第一轴5与中间指节壳体3的下端轴孔转动连接;所述驱动机构2-1由第一指节电动机2-1-1和第一指节谐波减速器2-1-2组成;所述耦合钢丝传动机构3-1由第一转轮3-1-1、第二转轮3-1-2、第一钢丝3-1-3和第二钢丝3-1-4组成;驱动机构2-1的第一指节电动机2-1-1设置在第一指节壳体2的内部,驱动机构2-1的第一指节谐波减速器2-1-2的输入空心轴套接在第一轴5上,第一指节电动机2-1-1的输出皮带轮通过皮带与第一轴5上的皮带轮2-1-3传动连接;耦合钢丝传动机构3-1的第一转轮3-1-1转动套接在第一轴5上,第一转轮3-1-1的一个侧端面与第一指节壳体2的上侧内端面固定连接,中间指节壳体3内侧壁上的支架3-1-5与驱动机构2-1的第一指节谐波减速器2-1-2的输出转动端固定连接,耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6与中间指节壳体3上端的轴孔转动连接,第一钢丝3-1-3的两端、第二钢丝3-1-4的两端分别固定在第一转轮3-1-1外圆面和第二转轮3-1-2外圆面上,第一转轮3-1-1通过第一钢丝3-1-3、第二钢丝3-1-4与第二转轮3-1-2交叉传动;末端指节壳体4通过内壁上的支架4-2与耦合钢丝传动机构3-1的第二转轮3-1-2的侧端面固定连接;支架4-2平行于耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6轴心线的端面上设置有一维力矩传感器4-5,中间指节壳体3上端内侧面与耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6的一个端面之间设置有手指关节一维位置传感器4-1。The upper end shaft hole of the
所述手指关节一维位置传感器4-1由末端指节电路板4-6、末端指节霍尔敏感芯片4-4、末端指节磁钢4-3组成;末端指节电路板4-6设置在中间指节壳体3上,末端指节电路板4-6一端上设置有末端指节霍尔敏感芯片4-4,耦合钢丝传动机构3-1的第二转轮3-1-2的转轴6的一个端面镶嵌有末端指节磁钢4-3,末端指节霍尔敏感芯片4-4与末端指节磁钢4-3之间有间隙L1,L1为0.4mm。The one-dimensional position sensor 4-1 of the finger joint is composed of the terminal knuckle circuit board 4-6, the terminal knuckle Hall sensitive chip 4-4, and the terminal knuckle magnetic steel 4-3; the terminal knuckle circuit board 4-6 Set on the
所述基关节绝对位置传感装置1-7由电路板1-7-1、两个霍尔敏感芯片1-7-2、两个磁钢1-7-3组成;电路板1-7-1的两侧面分别固定装有霍尔敏感芯片1-7-2,双驱驱动机构1-2中的两个张紧轮1-2-3的轴端上分别设置有磁钢1-7-3,两个霍尔敏感芯片1-7-2分别与两个磁钢1-7-3之间有间隙L2,L2为0.4mm。The base joint absolute position sensing device 1-7 is composed of a circuit board 1-7-1, two Hall sensitive chips 1-7-2, and two magnetic steel 1-7-3; the circuit board 1-7- Hall sensitive chips 1-7-2 are respectively fixed on both sides of 1, and magnetic steel 1-7- 3. There is a gap L2 between the two Hall sensitive chips 1-7-2 and the two magnets 1-7-3 respectively, and the L2 is 0.4mm.
所述基关节主电路板1-1上设置有多个弹簧触针1-1-1,弹簧触针1-1-1由盲管1-1-2、螺旋弹簧1-1-3和触头1-1-4组成;盲管1-1-2滑动套接在触头1-1-4的尾端上,螺旋弹簧1-1-3设置在盲管1-1-2内底与触头1-1-4的尾端之间;每个弹簧触针1-1-1的盲管1-1-2的外底端都与基关节主电路板1-1上的焊孔连接。该种电气连接方式具有连接简单、方便,耐反复安装拆卸等优点。The base joint main circuit board 1-1 is provided with a plurality of spring contact pins 1-1-1, and the spring contact pins 1-1-1 are composed of blind tubes 1-1-2, coil springs 1-1-3 and contactors. Head 1-1-4; blind tube 1-1-2 is slidingly sleeved on the tail end of contact 1-1-4, and coil spring 1-1-3 is arranged on the inner bottom of blind tube 1-1-2 and Between the tail ends of the contacts 1-1-4; the outer bottom end of the dead tube 1-1-2 of each spring contact pin 1-1-1 is connected with the soldering hole on the main circuit board 1-1 of the base joint . This electrical connection method has the advantages of simple and convenient connection, and resistance to repeated installation and disassembly.
具有十字梁结构的基关节二维力矩传感器1-6置于基关节连接件U形连接头1-5与手指第一指节壳体2的连接位置,作为传递力矩的唯一通道。一维力矩传感器4-5,置于末端转动关节与末端指节指尖,作为传递力矩的唯一通道。The two-dimensional torque sensor 1-6 of the base joint with a cross beam structure is placed at the connection position between the U-shaped connector 1-5 of the base joint connector and the
电动机1-2-1、第一指节电动机2-1-1的型号都选用maxon(瑞士)公司制造的型号为EC20(盘式)、功率为3W、供电电压为9V、连续输出转矩为4mNm;谐波减速器1-2-2、第一指节谐波减速器2-1-2型号都选用Harmonic Drive(日本)公司制造的型号为HDUC-5-80-2A-BLR,减速比为100:1,最大连续输出转矩为0.5Nm。The models of motor 1-2-1 and first knuckle motor 2-1-1 are EC20 (disc type) manufactured by maxon (Switzerland), with a power of 3W, a supply voltage of 9V, and a continuous output torque of 4mNm; Harmonic reducer 1-2-2, the first knuckle harmonic reducer 2-1-2 models are all selected from Harmonic Drive (Japan) company, the model is HDUC-5-80-2A-BLR, the reduction ratio It is 100:1, and the maximum continuous output torque is 0.5Nm.
本实施方式中的壳体、支架的材质可选用铝合金材料,转动轴的材质可选用不锈钢材料。In this embodiment, the housing and the support can be made of aluminum alloy, and the material of the rotating shaft can be made of stainless steel.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100725881A CN100513097C (en) | 2007-07-31 | 2007-07-31 | Robot clever hand modular finger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100725881A CN100513097C (en) | 2007-07-31 | 2007-07-31 | Robot clever hand modular finger |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101104267A CN101104267A (en) | 2008-01-16 |
CN100513097C true CN100513097C (en) | 2009-07-15 |
Family
ID=38998453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100725881A Expired - Fee Related CN100513097C (en) | 2007-07-31 | 2007-07-31 | Robot clever hand modular finger |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100513097C (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214648B (en) * | 2008-01-18 | 2010-06-02 | 南京航空航天大学 | Five-fingered dexterous hand driven by ultrasonic motor |
CN102114631B (en) * | 2010-01-06 | 2013-10-30 | 深圳华强智能技术有限公司 | Simulated hand |
CN102085666B (en) * | 2010-12-29 | 2013-05-01 | 长春工业大学 | Humanoid manipulator |
CN104339361B (en) * | 2013-07-29 | 2016-06-01 | 上海德致伦电子科技有限公司 | Machinery finger and mechanical manipulator |
CN104999470A (en) * | 2015-03-13 | 2015-10-28 | 山东科技大学 | All-driving three-finger ingenious mechanical arm |
CN104825125B (en) * | 2015-05-08 | 2016-08-31 | 浙江优亿医疗器械有限公司 | Hose laryngoscope coupling head |
CN106903712B (en) * | 2015-12-22 | 2021-05-18 | 上海航天设备制造总厂 | Two-degree-of-freedom collinear mechanical arm joint based on differential rope transmission |
CN105415391A (en) * | 2015-12-22 | 2016-03-23 | 哈尔滨工业大学 | Dexterous robot hand thumb rotating mechanism based on crown gear |
CN106113024B (en) * | 2016-06-30 | 2018-12-14 | 北京空间飞行器总体设计部 | A kind of three freedom degree manipulator of tendon-connecting rod mixed drive refers to and control method |
CN106564063B (en) * | 2016-10-12 | 2019-09-20 | 清华大学 | Indirect self-adaptive robot finger device with rack and rack in the middle of the motor in parallel with flat clamp |
CN106491250B (en) * | 2016-11-08 | 2018-09-07 | 哈尔滨工业大学 | The imitative coupling thumb of electric motor built-in height done evil through another person for disabled person |
DE102017001220A1 (en) * | 2017-02-09 | 2018-08-09 | Günther Zimmer | Gripping device with integrated magnetic field sensor |
CN107336259A (en) * | 2017-08-09 | 2017-11-10 | 江苏木盟智能科技有限公司 | A kind of joint of robot and robot |
CN109807920A (en) * | 2019-03-01 | 2019-05-28 | 上海傲鲨智能科技有限公司 | A kind of gripper structure based on steel wire driving |
CN110202607B (en) * | 2019-04-29 | 2022-06-24 | 天津大学 | A pneumatic double-drive supporting soft hand |
CN110271021A (en) * | 2019-05-29 | 2019-09-24 | 浙江大学 | The bionic mechanical hand of non-jitter |
CN110696026B (en) * | 2019-11-01 | 2022-04-19 | 湖南大学 | Differential drive formula manipulator based on flexible coupling |
CN114102658B (en) * | 2021-12-27 | 2024-06-14 | 佗道医疗科技有限公司 | Robot transmission joint |
CN114888833A (en) * | 2022-05-17 | 2022-08-12 | 哈尔滨工业大学 | Humanoid manipulator |
-
2007
- 2007-07-31 CN CNB2007100725881A patent/CN100513097C/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
基于机电一体化的机器人灵巧手手指的研制. 刘伊威,刘宏,姜力,金明河,魏然.哈尔滨工业大学学报,第37卷第8期. 2005 * |
智能机器人灵巧手的研究. 刘宏,G.Hirzinger.西安交通大学学报,第37卷第4期. 2003 * |
机器人灵巧手手指耦合传动机构的研究. 刘伊威,姜力.机械传动,第28卷第6期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN101104267A (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100513097C (en) | Robot clever hand modular finger | |
CN100522508C (en) | Finger joint for robot clever hand finger | |
CN100496903C (en) | Finger-base joint mechanism for smart robot hand | |
EP0044548B1 (en) | Articulated industrial robot | |
US8833196B2 (en) | Gear unit and robot | |
US8839689B2 (en) | Robot arm assembly | |
CN103495971B (en) | A kind of five degree of freedom Combined robot platform | |
EP0200105A1 (en) | Industrial robot | |
CN103128744A (en) | Humanoid flexible mechanical arm device | |
CN208246811U (en) | A kind of five articulated robots | |
CN110154045A (en) | A cable-driven series four-degree-of-freedom spraying robot arm | |
CN116079690A (en) | A thumb-mounted device and a dexterous hand with built-in driver | |
CN106041921A (en) | Six-degree-of-freedom hybrid robot | |
CN116766239A (en) | Robotic dexterous hands and robots | |
CN104786211B (en) | A kind of Six-DOF industrial robot containing ball screw assembly, | |
CN105666509B (en) | Three Degree Of Freedom surface movable machine finger cell arrangement | |
CN105364910A (en) | Four-freedom-degree parallel sorting robot driven by rotation pairs | |
CN208246812U (en) | A kind of wu-zhi-shan pig | |
CN109434820B (en) | Six-degree-of-freedom industrial robot | |
JPH0726673B2 (en) | Movement mechanism | |
CN202825822U (en) | Space five-freedom-degree mechanism capable of independently controlling rotating movement and translation movement | |
CN101327594A (en) | Robot dexterous hand finger base joint transmission mechanism with adjustable preload and transmission clearance | |
KR20040083738A (en) | Mobile robot with 360° endless rotation type decoupled turret | |
CN113305876B (en) | High-redundancy flexible robot joint, robot and joint structure | |
CN204295689U (en) | Deceleration system four axle robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090715 Termination date: 20100731 |