CN100511881C - Four-time harmonic solid laser - Google Patents
Four-time harmonic solid laser Download PDFInfo
- Publication number
- CN100511881C CN100511881C CNB2006100365260A CN200610036526A CN100511881C CN 100511881 C CN100511881 C CN 100511881C CN B2006100365260 A CNB2006100365260 A CN B2006100365260A CN 200610036526 A CN200610036526 A CN 200610036526A CN 100511881 C CN100511881 C CN 100511881C
- Authority
- CN
- China
- Prior art keywords
- harmonic
- laser
- solid
- state laser
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/109—Frequency multiplication, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
一种四次谐波固体激光器,包括二次谐波产生腔体、四次谐波产生腔体,二次谐波产生腔体和四次谐波产生腔体模块化独立设计,在四次谐波产生腔体内四次谐波所经过的光学器件对应安装有电机,这些电机与电脑相连,当四次谐波激光使其经过的光学器件表面的膜层开始降解时,电脑控制电机移动各光学器件,使四次谐波激光通过光学器件的其余膜层的未降解处。二次谐波激光产生部件和四次谐波激光产生部件模块化设计,使装调简单,维修替换容易。四次谐波经过的光学元器件采用电脑控制电机位移技术,位移轨迹包括直线移动、旋转移动,当四次谐波激光使其经过的光学元器件表面的膜层开始降解时,电脑控制各器件移动,使四次谐波激光通过光学器件其余的膜层未降解处,使得激光器最终寿命等于光学元器件单点使用寿命乘以可移动点的总数。
A fourth harmonic solid-state laser, including a second harmonic generation cavity, a fourth harmonic generation cavity, a modular independent design of the second harmonic generation cavity and the fourth harmonic generation cavity, in the fourth harmonic The optical devices that the fourth harmonic passes through in the wave generation cavity are equipped with motors, and these motors are connected to the computer. When the fourth harmonic laser makes the film on the surface of the optical device that it passes through begin to degrade, the computer controls the motor to move each optical device. Device, pass the fourth harmonic laser through the undegraded part of the remaining film layers of the optical device. The modular design of the second harmonic laser generating part and the fourth harmonic laser generating part makes the installation and adjustment simple and the maintenance and replacement easy. The optical components passed by the fourth harmonic adopt computer-controlled motor displacement technology. The displacement trajectory includes linear movement and rotational movement. Move to make the fourth harmonic laser pass through the undegraded part of the remaining film layers of the optical device, so that the final life of the laser is equal to the service life of a single point of the optical component multiplied by the total number of movable points.
Description
所属技术领域 Technical field
本发明涉及一种四次谐波固体激光器。The invention relates to a fourth harmonic solid laser.
背景技术 Background technique
近几年来,随着激光加工产业的高速发展,激光加工已渗透进各种领域。特别是在激光精细加工方面,对比于机械加工设备,激光加工过程中的无耗材,无震动,无需冷却液,可加工任意形状等优点,使得在精细加工方面激光加工设备正在一步一步的取代传统的机械加工设备。而短波长高功率紫外激光由于具有高分辨率和高吸收,冷加工等特点,成为了激光精细加工的重要发展方向。In recent years, with the rapid development of the laser processing industry, laser processing has penetrated into various fields. Especially in laser fine processing, compared with mechanical processing equipment, laser processing has no consumables, no vibration, no cooling fluid, and can process any shape. In fine processing, laser processing equipment is replacing traditional laser processing equipment step by step. mechanical processing equipment. The short-wavelength high-power ultraviolet laser has become an important development direction of laser fine processing due to its high resolution, high absorption, and cold processing.
美国Coherent公司研发了激光平均功率为1~3wNd:YAG调Q四倍频激光器,主要用于激光打标和TFT切割;研发了激光功率200mw连续四倍频激光器,主要用于半导体硅园片的质量检验和微光刻。Coherent Corporation of the United States has developed a Nd:YAG Q-switched quadruple frequency laser with an average laser power of 1-3w, which is mainly used for laser marking and TFT cutting; a continuous quadruple frequency laser with a laser power of 200mw has been developed, which is mainly used for semiconductor silicon wafers. Quality inspection and microlithography.
美国Spectra-Physics公司研发了激光平均功率1~2w调Q Nd:YVO4和1w连续四倍频激光器,可用于晶园片切割、宝石基片划片、鑚微孔、FBG制造和DVD光碟刻制。American Spectra-Physics company has developed laser average power 1~2w Q-switched Nd:YVO 4 and 1w continuous quadruple frequency laser, which can be used for wafer cutting, gem substrate scribing, micro-hole, FBG manufacturing and DVD disc engraving system.
为了产生高功率四次谐波激光通常采用在激光谐振腔外把谐波聚焦到四倍频非线性晶体上,获得足够的二次谐波功率密度来提高倍频效率,如sony公司美国专利第US 6249371号和Acuhighr公司美国专利第US 6741620 B2号所示,同时Spectra-Physics公司和Coherent公司也采用这种腔外单程倍频率的方法,这种方法简单稳定,但为了达到较高的四倍频转换效率,必须用二次谐波重聚焦在四倍频非线性晶体上,因此在四倍频非线性晶体上产生的高功率密度的四次谐波激光易导致非线性介质破坏。另外,未被转换为四次谐波的二次谐波将透过非线性晶体被浪费掉,因此,四次谐波激光的转换效率也受到一定的限制。In order to generate high-power fourth harmonic laser, it is usually used to focus the harmonics onto the quadruple frequency nonlinear crystal outside the laser cavity to obtain sufficient second harmonic power density to improve the frequency doubling efficiency, such as Sony's US patent No. As shown in US 6249371 and Acuhighr US Patent No. US 6741620 B2, Spectra-Physics and Coherent also use this method of extracavity one-way frequency doubling. This method is simple and stable, but in order to achieve a higher four times The frequency conversion efficiency must be refocused on the quadruple frequency nonlinear crystal with the second harmonic, so the high power density fourth harmonic laser generated on the quadruple frequency nonlinear crystal is easy to cause the damage of the nonlinear medium. In addition, the second harmonic that is not converted to the fourth harmonic will be wasted through the nonlinear crystal, so the conversion efficiency of the fourth harmonic laser is also limited.
另一种激光调Q四次谐波产生方法为基波谐振腔内谐波晶体串联方法。Lightwave Electronics公司美国专利第US 6697391 B2号和Photonics IndustriesInternational公司美国专利第US 6229829号所示。这种方法利用了腔内基波高功率密度,提高了谐波的转换效率,为了避免紫外光对腔内元件的损坏,用棱镜或磨斜非线性晶体端面,把四次谐波激光导出腔外,该方法是基于单向谐波作用,存在未被转换为四次谐波的二次谐波激光仍然被浪费掉,从而限制了四次谐波输出功率。为了提高效率达到高功率输出,Kigre公司美国专利第US5278852号和Quantronix公司美国专利第US 5943351号分别提出了腔内子腔和多次反射法。利用腔内二次谐波倍频光在四次谐波晶体上多次往返倍频,产生高效率、高功率四次谐波激光输出,这种方法的问题是紫外激光输出为双光束,使输出功率和激光模式受限。Another method for generating the fourth harmonic of laser Q-switching is the method of cascading harmonic crystals in the fundamental resonator cavity. Lightwave Electronics US Patent No. US 6697391 B2 and Photonics Industries International Company US Patent No. US 6229829. This method takes advantage of the high power density of the fundamental wave in the cavity and improves the conversion efficiency of harmonics. In order to avoid damage to components in the cavity by ultraviolet light, a prism or oblique nonlinear crystal end face is used to guide the fourth harmonic laser out of the cavity. , the method is based on one-way harmonic action, and the second harmonic laser that has not been converted to the fourth harmonic is still wasted, thus limiting the fourth harmonic output power. In order to improve efficiency and achieve high power output, Kigre Company US Patent No. US5278852 and Quantronix Company US Patent No. US 5943351 proposed intra-cavity sub-cavity and multiple reflection methods respectively. The second harmonic frequency doubling light in the cavity is used to double the frequency on the fourth harmonic crystal multiple times to generate high-efficiency and high-power fourth harmonic laser output. The problem with this method is that the ultraviolet laser output is a double beam, so that Output power and laser mode are limited.
上述常用四次谐波晶体为BBO,二次谐波激光在BBO上再倍频得到紫外波段。sony公司美国专利第US 6249371号用基波和三次谐波在LBO晶体上混频也获得四次谐波激光输出;另外新非线性晶体CLBO有很高的谐波转换效率和优良的深紫外透光性能,日本Research Development利用CLBO产生了四次谐波和五次谐波深紫外激光。但是CLBO易潮解且材料松软易碎,需逐渐提高后可用于工业产品。The commonly used fourth harmonic crystal mentioned above is BBO, and the second harmonic laser is frequency-multiplied on BBO to obtain the ultraviolet band. US Patent No. US 6249371 of sony company uses the fundamental wave and the third harmonic to mix on the LBO crystal to obtain the fourth harmonic laser output; in addition, the new nonlinear crystal CLBO has high harmonic conversion efficiency and excellent deep ultraviolet transparency Optical performance, Japan Research Development uses CLBO to produce fourth harmonic and fifth harmonic deep ultraviolet laser. However, CLBO is easy to deliquescence and the material is soft and fragile, so it can be used in industrial products after gradually increasing.
国内四次谐波紫外激光尚处于基础研究阶段,南京大学和山东师范大学合作研究用腔外聚焦倍频法得到63mw/266nm激光输出(《物理学报》,何京良等人著,第49卷,第10期,2000年,第2106~2108页)。西安光机所用外腔共振法探测到连续266nm激光信号(《光子学报》,陈国夫等人著,第28卷,第8期,1999年,第684~687页)。清华大学和北京大学联合共同研究用CLBO非线性晶体倍频得到78mw/266nm激光(《人工晶体学报》,孙同庆等人著,第33卷,第2期,2004年,第133~135页)。The fourth harmonic ultraviolet laser in China is still in the basic research stage. Nanjing University and Shandong Normal University jointly researched and obtained 63mw/266nm laser output by using extracavity focusing frequency doubling method ("Acta Physica", He Jingliang et al., Vol. 49, No. 10, 2000, pp. 2106-2108). Xi'an Institute of Optics and Mechanics detected continuous 266nm laser signals by the external cavity resonance method ("Acta Photonica Sinica", by Chen Guofu et al., Vol. 28, No. 8, 1999, pp. 684-687). Tsinghua University and Peking University jointly researched and used CLBO nonlinear crystal frequency doubling to obtain 78mw/266nm laser ("Journal of Synthetic Crystals", Sun Tongqing et al., Vol. 33, No. 2, 2004, pp. 133-135).
发明内容 Contents of the invention
本发明所欲解决的技术问题是提供一种可以获得稳定四次谐波固体激光输出,并且光转换效率高、四次谐波腔体与二次谐波腔体设计成独立模块,方便装调替换、且紫外器件使用寿命长的四次谐波固体激光器。The technical problem to be solved by the present invention is to provide a stable fourth harmonic solid-state laser output with high light conversion efficiency, the fourth harmonic cavity and the second harmonic cavity are designed as independent modules, which is convenient for installation and adjustment Replacement fourth harmonic solid-state lasers with long UV device life.
本发明解决其技术问题所采用的技术方案是:一种四次谐波固体激光器,包括二次谐波产生腔体、四次谐波产生腔体,二次谐波产生腔体和四次谐波产生腔体模块化独立设计,在四次谐波产生腔体内四次谐波所经过的光学器件对应安装有电机,这些电机与电脑相连,当四次谐波激光使其经过的光学器件表面的膜层开始降解时,电脑控制电机移动各光学器件,使四次谐波激光通过光学器件的其余膜层的未降解处。The technical solution adopted by the present invention to solve the technical problem is: a fourth harmonic solid-state laser, including a second harmonic generation cavity, a fourth harmonic generation cavity, a second harmonic generation cavity and a fourth harmonic The wave generation cavity is modular and independently designed. In the fourth harmonic generation cavity, the optical devices that the fourth harmonic passes through are equipped with motors. These motors are connected to the computer. When the fourth harmonic laser makes it pass through the surface of the optical device When the film layer begins to degrade, the computer controls the motor to move each optical device, so that the fourth harmonic laser passes through the undegraded part of the remaining film layers of the optical device.
二次谐波腔体包括泵浦模块、Q开关、二倍频非线性晶体,端反射镜,角度反射镜及整形系统,泵浦模块产生高功率密度基波光,基波光经端反射镜反射后入射至二倍频非线性晶体,产生二次谐波激光经角度反射镜和整形系统透射输出。The second harmonic cavity includes a pump module, Q switch, double frequency nonlinear crystal, end reflector, angle reflector and shaping system. The pump module generates high power density fundamental wave light, which is reflected by the end reflector Incident to the double-frequency nonlinear crystal, the second harmonic laser is transmitted through the angle mirror and the shaping system to output.
四次谐波腔体包括角度反射镜、端反射镜、四倍频非线性晶,被整形系统整形后的二次谐波激光射入四倍频非线性晶体上,在端反射镜的多次反射下由角度反射镜输出多次累积的四次谐波固体激光。The fourth harmonic cavity includes an angle reflector, an end reflector, and a quadruple frequency nonlinear crystal. The second harmonic laser shaped by the shaping system is injected into the quadruple frequency nonlinear crystal. Under the reflection, the fourth harmonic solid-state laser is output by the angle reflector for multiple accumulations.
所使用的二倍频非线性晶体可以为LBO、BBO或CLBO非线性晶体。The double frequency nonlinear crystal used can be LBO, BBO or CLBO nonlinear crystal.
所使用的四倍频非线性晶体可以为I类LBO、I类BBO或I类CLBO非线性晶体。The frequency quadrupling nonlinear crystal used may be a type I LBO, a type I BBO or a type I CLBO nonlinear crystal.
泵浦模块所使用的基波固体激光介质可以为:Nd:YAG、Nd:YVO4、Nd:YLF、Nd:Glass、Yb:YAG或Er:YAG。The fundamental solid-state laser medium used in the pump module can be: Nd:YAG, Nd:YVO4, Nd:YLF, Nd:Glass, Yb:YAG or Er:YAG.
使用的Q开关可以为声光开关、电光开关或饱和激收型被动Q开关。The Q switch used can be an acousto-optic switch, an electro-optic switch or a saturated excitation type passive Q switch.
采用的泵浦光源可以为大功率半导体激光二极管端面泵浦、二极管侧面泵浦、或氪灯、氙灯侧面泵浦。The pumping light source used can be high-power semiconductor laser diode end pumping, diode side pumping, or krypton lamp or xenon lamp side pumping.
二次谐波产生腔体采用45°角折叠腔结构、小角度折叠腔结构或布鲁斯特角折叠腔结构。The second harmonic generation cavity adopts a 45° angle folded cavity structure, a small angle folded cavity structure or a Brewster angle folded cavity structure.
四次谐波产生腔体采用45°角折叠腔结构、小角度折叠腔结构或布鲁斯特角折叠腔结构。The fourth harmonic generation cavity adopts a 45° angle folded cavity structure, a small angle folded cavity structure or a Brewster angle folded cavity structure.
移动四次谐波激光器件的电机可以是步进电机、伺服电机、压电电机。The motor that moves the fourth harmonic laser device can be a stepper motor, a servo motor, a piezoelectric motor.
移动四次谐波激光器件的移动轨迹可以是直线或旋转。The moving track of moving the fourth harmonic laser device can be straight line or rotation.
四次谐波激光器件的移动可以是单独移动或同时移动。The movement of the fourth harmonic laser device can be independent movement or simultaneous movement.
本发明所产生的技效果是:本发明四次谐波固体激光器中,红外基波谐振腔设计为与激光介质热透镜平衡高功率密度稳定腔结构,形成了高线偏振激光振荡,在这两个条件下,产生高功率密度基波。The technical effect produced by the present invention is: in the fourth harmonic solid-state laser of the present invention, the infrared fundamental wave resonant cavity is designed to balance the high power density stable cavity structure with the laser medium thermal lens, forming a high linearly polarized laser oscillation. Under these conditions, a high power density fundamental wave is generated.
采用矩阵光学设计了高功率密度基波的半导体泵浦固体激光谐振腔及高效的谐波转换效率。将高功率密度基波作用到二倍频非线性晶体上产生二次谐波,二次谐波输出后进行光束整形射入四倍频非线性晶体上,采用二次谐波腔内-腔外多次反射方法,使二次谐波构成闭路多次全反射,产生多次累积的四次谐波固体激光输出,未被转换为四次谐波的二次谐波多次通过非线性晶体进行倍频,充分利用了二次谐波功率,达到高转换效率;采用光束整形后非聚焦光束的方法延长四次谐波光学元器件表面单点膜层的使用寿命。A semiconductor-pumped solid-state laser resonator with high power density fundamental wave and high harmonic conversion efficiency are designed by matrix optics. The high power density fundamental wave is applied to the double frequency nonlinear crystal to generate the second harmonic. After the second harmonic is output, the beam is shaped and injected into the quadruple frequency nonlinear crystal. The multiple reflection method makes the second harmonic form a closed-circuit multiple total reflection, and generates multiple accumulated fourth harmonic solid-state laser output, and the second harmonic that has not been converted into the fourth harmonic passes through the nonlinear crystal for many times. Frequency doubling makes full use of the second harmonic power to achieve high conversion efficiency; the method of unfocused beam after beam shaping is used to prolong the service life of the single-point coating on the surface of fourth harmonic optical components.
本发明四次谐波固体激光器对二次谐波和四次谐波腔体在机械上进行模块化设计,使得装调简单,维修替换容易。The fourth harmonic solid-state laser of the present invention carries out mechanical modular design on the second harmonic and the fourth harmonic cavity, so that the installation and adjustment are simple, and the maintenance and replacement are easy.
本发明四次谐波固体激光器对所有四次谐波经过的光学元器件采用电脑控制电机位移技术,其中机械设计稳定小巧,电脑控制精准,包括直线、旋转等位移轨迹,且具有位移记录功能,使得激光器最终寿命等于光学元器件单点使用寿命乘以可移动点的总数。The fourth harmonic solid-state laser of the present invention adopts computer-controlled motor displacement technology for all optical components passing by the fourth harmonic, wherein the mechanical design is stable and compact, and the computer control is precise, including linear and rotational displacement tracks, and has displacement recording functions. Make the final life of the laser equal to the life of a single point of optical components multiplied by the total number of movable points.
附图说明 Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1为本发明四次谐波固体激光器光路原理示意图。Fig. 1 is a schematic diagram of the principle of the optical path of the fourth harmonic solid-state laser of the present invention.
图2为本发明四次谐波固体激光器光机电总原理示意图。Fig. 2 is a schematic diagram of the general opto-mechanical principle of the fourth harmonic solid-state laser of the present invention.
图3为本发明四次谐波固体激光器的实验中,不同输入电流所对应的四次谐波固体激光功率和脉冲宽度变化曲线的实验结果图(F=14KHZ)。Fig. 3 is an experimental result diagram of the fourth harmonic solid-state laser power and pulse width variation curves corresponding to different input currents in the experiment of the fourth harmonic solid-state laser of the present invention (F=14KHZ).
图4为本发明四次谐波固体激光器的实验中,不同重复频率对应的四次谐波固体激光功率和脉冲宽度变化曲线的实验结果图(I=34A)。Fig. 4 is an experiment result diagram (I=34A) of fourth harmonic solid-state laser power and pulse width variation curves corresponding to different repetition frequencies in the experiment of the fourth harmonic solid-state laser of the present invention.
图5为本发明四次谐波固体激光产生方法的实验中,产生的四次谐波固体激光的脉冲波形图(F=14KHZ,I=34A)。Fig. 5 is a pulse waveform diagram (F=14KHZ, I=34A) of the fourth harmonic solid-state laser generated in the experiment of the fourth harmonic solid-state laser generation method of the present invention.
具体实施方式 Detailed ways
本发明四次谐波固体激光器的光学原理如图1所示,采用基波振荡器,该振荡器包括大功率激光二极管列阵端面泵浦模块3、Q开关2、端全反射镜1、5、10、非线性晶体4、9、角度镜6、8及整形系统7,其中角度镜6、8为腔内45度反射镜。通过计算和测量在不同泵浦功率下,泵浦模块3的热透镜效应,以及用光学矩阵方法计算腔内高斯模传递的空间分布,设计腔长和端面反射镜曲率,使红外激光腔在热透镜大范围变化下仍然保持稳定的振荡。在靠近端全反射镜5的光腰处放置二倍频非线性晶体4。由于红外激光腔为封闭内全反射振荡,且与高功率泵浦的热透镜效应平衡,因此可以达到很高的腔内功率密度。The optical principle of the fourth harmonic solid-state laser of the present invention is shown in Figure 1, using a fundamental wave oscillator, which includes a high-power laser diode array
产生二次谐波的元件包括非线性晶体4、端全反射镜1、端全反射镜5、角度镜6,其中,非线性晶体4作为二倍频晶体。角度镜6镀基波高反射和二次谐波高透射双色膜。二次谐波构成封闭低耗偏振耦合内全反射,形成过程如下:从端全反射镜5方向来的基波光,在二倍频晶体4中产生水平偏振二次谐波光,二次谐波光经角度镜6输出。The components for generating the second harmonic include a nonlinear crystal 4, a total end reflection mirror 1, a total
产生四次谐波的元件包括非线性晶体9、角度镜8和端全反射镜10,为单端开式反射腔结构,具有低损耗、单光束输出特点,其中,非线性晶体9作为四倍频晶体。四次谐波的形成过程如下:从角度镜6方向来的水平偏振二次谐波光经整形系统7和角度镜8透射后入射到四倍频晶体9上,产生垂直偏振的四次谐波激光,该四倍频谐波激光经端全反射镜10反射从原路返回,经角度镜8输出,未被转换的二次谐波由整形系统7、角度镜6、端全反射镜5再次反射后作用至四倍频晶体9,再次产生的四次谐波光通过角度镜8耦合输出,这样,多次往返在四倍频晶体9中倍频,因此产生很高效率的四次谐波激光输出。The components that generate the fourth harmonic include a
根据本发明四次谐波固体激光器,采用大功率二极管激光列阵端面泵浦激光腔内四倍频实验装置进行试验。图3为不同输入电流所对应的四次谐波激光功率和脉冲宽度变化曲线的实验结果(F=14KHZ),图4为不同重复频率对应的四次谐波固体激光功率和脉冲宽度变化曲线的实验结果图,图5为四次谐波激光的脉冲波形图(F=14KHZ,I=34A)。According to the fourth harmonic solid-state laser of the present invention, a high-power diode laser array end-pumped laser cavity quadruple frequency experimental device is used for testing. Fig. 3 is the experimental result of the fourth harmonic laser power and pulse width variation curve corresponding to different input currents (F=14KHZ), and Fig. 4 is the fourth harmonic solid-state laser power and pulse width variation curve corresponding to different repetition frequencies Figure 5 shows the pulse waveform of the fourth harmonic laser (F=14KHZ, I=34A).
本发明四次谐波固体激光器光机电原理如图2,其包括产生二次谐波激光的二次谐波激光产生模块11,产生四次谐波的四次谐波激光产生模块12,还包括电控位移电机13、15、16,以及连接四倍频晶体9和端全反射镜10的机械连接架14,工控机17控制电控位移电机13、15、16的移动。The optomechanical principle of the fourth harmonic solid-state laser of the present invention is as shown in Figure 2, which includes a second harmonic laser generating module 11 for generating second harmonic laser, a fourth harmonic laser generating module 12 for generating fourth harmonic, and also includes Electrically controlled displacement motors 13, 15, 16, and a mechanical connection frame 14 connecting quadruple
首先二次谐波激光产生模块11输出被整形系统7整形后的二次谐波激光,然后四次谐波激光产生模块12通过机械装置耦合在二次谐波激光产生模块11上,此时便能得到四次谐波激光输出。First, the second harmonic laser generation module 11 outputs the second harmonic laser after being shaped by the
四次谐波固体激光器的长时间运行会导致角度镜8、四倍频晶体9和端全反射镜10的表面膜层降解,引致四次谐波激光功率下降。此时通过软件发送命令给工控机17,工控机17发送信号并控制电控位移电机13、15、16运行,使角度镜8和机械连接架14移动一个位置,其中机械连接架14的移动带动了四倍频晶体9和端全反射镜10的同时移动。移动后,四次谐波激光通过了角度镜8、四倍频晶体9和端全反射镜10的全新位置,避开了膜层已降解的点,因此四次谐波激光功率重新回升至最高功率。The long-term operation of the fourth harmonic solid-state laser will cause the degradation of the surface film layers of the
为保证四次谐波激光输出光路不变,角度镜8的移动为垂直、旋转或沿角度镜8放置的角度方向横向移动。由于四倍频晶体9和端全反射镜10的位置为平行关系,所以电控位移电机15、16控制四倍频晶体9和端全反射镜10同时在垂直和横向方向移动。In order to ensure that the output optical path of the fourth harmonic laser remains unchanged, the movement of the
根据本发明四次谐波固体激光器原理,不难推断,所使用的二倍频非线性晶体可以为LBO、BBO或CLBO非线性晶体;所使用的四倍频非线性晶体可以为I类LBO、I类BBO或I类CLBO非线性晶体;所使用的基波固体激光介质可以为:Nd:YAG,Nd:YVO4、Nd:YLF、Nd:Glass、Yb:YAG或Er:YAG;使用的Q开关可以为声光开关、电光开关或饱和激收型被动Q开关。另外,采用的泵浦光源可以为大功率半导体激光二极管端面泵浦、二极管侧面泵浦、或氪灯、氙灯侧面泵浦。可以采用小角度折叠腔结构、45°角折叠腔结构或布鲁斯特角折叠腔结构。所使用的位移电机可以是步进电机、伺服电机、压电电机等。角度镜的移动为垂直、旋转或沿角度镜放置的角度方向横向移动。四倍频晶体和端全反射镜可同时在垂直和横向方向移动,或单独各自进行移动,单独移动时,端全反射镜可旋转移动。According to the principle of the fourth harmonic solid-state laser of the present invention, it is not difficult to infer that the double frequency nonlinear crystal used can be LBO, BBO or CLBO nonlinear crystal; the used quadruple frequency nonlinear crystal can be Class I LBO, Type I BBO or Type I CLBO nonlinear crystal; the fundamental solid-state laser medium used can be: Nd:YAG, Nd:YVO4, Nd:YLF, Nd:Glass, Yb:YAG or Er:YAG; the Q switch used It can be an acousto-optic switch, an electro-optic switch or a saturated excitation type passive Q switch. In addition, the pumping light source used can be high-power semiconductor laser diode end pumping, diode side pumping, or krypton lamp or xenon lamp side pumping. Small-angle folded cavity structures, 45°-angle folded cavity structures, or Brewster-angle folded cavity structures can be used. The displacement motor used may be a stepper motor, a servo motor, a piezoelectric motor, or the like. The movement of the angle mirror is vertical, rotating or moving laterally along the angle direction where the angle mirror is placed. The frequency quadrupling crystal and the total end reflection mirror can move vertically and laterally at the same time, or move separately. When moving independently, the end total reflection mirror can rotate and move.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100365260A CN100511881C (en) | 2006-07-08 | 2006-07-08 | Four-time harmonic solid laser |
PCT/CN2006/002077 WO2008014640A1 (en) | 2006-07-08 | 2006-08-16 | Fourth harmonic generating solid laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100365260A CN100511881C (en) | 2006-07-08 | 2006-07-08 | Four-time harmonic solid laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101102033A CN101102033A (en) | 2008-01-09 |
CN100511881C true CN100511881C (en) | 2009-07-08 |
Family
ID=38996849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100365260A Expired - Fee Related CN100511881C (en) | 2006-07-08 | 2006-07-08 | Four-time harmonic solid laser |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100511881C (en) |
WO (1) | WO2008014640A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110019701A1 (en) * | 2008-01-31 | 2011-01-27 | Nkt Photonics A/S | System, device and method for extending the life-time of an optical system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201214856D0 (en) * | 2012-08-21 | 2012-10-03 | Powerlase Ltd | A laser module |
CN103872567B (en) * | 2014-03-24 | 2016-08-17 | 哈尔滨工业大学 | Laser frequency conversion system and alternative approach outside chamber |
CN105591274A (en) * | 2016-02-23 | 2016-05-18 | 北京工业大学 | Experimental device used for improving sum frequency conversion efficiency |
CN106711749B (en) * | 2017-01-10 | 2023-11-10 | 鞍山紫玉激光科技有限公司 | End-pumped ultraviolet laser with long service life |
US10312659B1 (en) * | 2018-03-20 | 2019-06-04 | Coherent Lasersystems Gmbh & Co. Kg | Controlling laser beam parameters by crystal shifting |
CN109142300A (en) * | 2018-09-15 | 2019-01-04 | 海南师范大学 | A kind of Y type 228nm laser beam emitting device |
CN109830884B (en) * | 2019-03-28 | 2021-05-14 | 上海交通大学 | Modular vacuum ultraviolet laser device |
CN113517624B (en) * | 2021-04-25 | 2025-06-17 | 广东卓劼激光科技有限公司 | A laser extra-cavity frequency doubling system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145777A (en) * | 1989-10-31 | 1991-06-20 | Hoya Corp | Harmonic generating laser device |
JPH03248588A (en) * | 1990-02-27 | 1991-11-06 | Ushio Inc | Generator of fourth harmonic of yag laser |
JPH07193310A (en) * | 1993-12-27 | 1995-07-28 | Topcon Corp | Laser adjusting device |
JP3997450B2 (en) * | 1998-03-13 | 2007-10-24 | ソニー株式会社 | Wavelength converter |
US7242700B2 (en) * | 2004-10-05 | 2007-07-10 | Coherent, Inc. | Stabilized frequency-converted laser system |
-
2006
- 2006-07-08 CN CNB2006100365260A patent/CN100511881C/en not_active Expired - Fee Related
- 2006-08-16 WO PCT/CN2006/002077 patent/WO2008014640A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110019701A1 (en) * | 2008-01-31 | 2011-01-27 | Nkt Photonics A/S | System, device and method for extending the life-time of an optical system |
US8619823B2 (en) * | 2008-01-31 | 2013-12-31 | Nkt Photonics A/S | System, device and method for extending the life-time of an optical system |
Also Published As
Publication number | Publication date |
---|---|
WO2008014640A1 (en) | 2008-02-07 |
CN101102033A (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100511881C (en) | Four-time harmonic solid laser | |
US8331415B2 (en) | Laser light source device and laser irradiation apparatus using the same | |
CN100499297C (en) | Method for generating third harmonic laser | |
CN101574697A (en) | Portable all solid state dual wavelength laser cleaner | |
CN113451870B (en) | High-power laser suitable for extreme environment and laser generation method thereof | |
CN1162945C (en) | High-efficiency high power third harmonic wave laser generating technique | |
CN1829011A (en) | Thermal depolarization compensation resonant cavity of high-power electro-optical Q-switched solid laser | |
CN101373883B (en) | Frequency tripling laser | |
CN103036141A (en) | Novel type mode-locked laser | |
CN101276126A (en) | Double Brewster's Angle Nonlinear Optical Crystal and Its Cutting Method | |
CN103762495A (en) | Method for increasing laser thermal response speed and multi-terminal pump solid state laser | |
CN102882116A (en) | Pulse green laser system for minuteness welding of copper | |
CN107946891B (en) | A kind of high-power ultraviolet solid-state laser | |
CN118448971A (en) | A high-power nanosecond ultraviolet laser | |
CN104269728A (en) | Semiconductor laser of solid-state ultraviolet laser | |
CN217720243U (en) | All-optical device integrated high-efficiency annular cavity optical parametric oscillator | |
CN100421316C (en) | Generation of solid laser with biquadratic harmonic wave | |
WO2008017214A1 (en) | A method for generating a fourth harmonic solid laser | |
CN102946043B (en) | Electric light and optically-active thermal effect compensation complex function callium-lanthanum silicate crystal Q-switched laser | |
CN1870361A (en) | Semiconductor laser pumping double-channel passive Q regulation pulse sum frequency laser | |
CN101212117A (en) | Single end face pump triple-frequency solid laser | |
CN102157897A (en) | Pulse width-adjustable solid laser | |
CN116937312A (en) | Saturable absorber device based on structure dielectric constant near-zero film, preparation method and application | |
CN110829172B (en) | Laser output method with repetition frequency 2 times electro-optic Q-switched frequency and laser | |
CN110932069B (en) | Ultra-high repetition frequency narrow pulse single-wavelength alternately Q-switched laser output method and laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 518051 Dazu laser building, 9 new West Road, North Nanshan District high tech park, Shenzhen, Guangdong Patentee after: HANS LASER TECHNOLOGY INDUSTRY GROUP CO., LTD. Address before: No. 5 road 518057 in Guangdong province Shenzhen city Nanshan District high tech park of Pine Hill Factory District No. 8 Patentee before: Dazu Laser Sci. & Tech. Co., Ltd., Shenzhen |
|
CP03 | Change of name, title or address | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090708 Termination date: 20200708 |
|
CF01 | Termination of patent right due to non-payment of annual fee |