CN100511746C - Piezoelectric actuator - Google Patents
Piezoelectric actuator Download PDFInfo
- Publication number
- CN100511746C CN100511746C CNB2005800307146A CN200580030714A CN100511746C CN 100511746 C CN100511746 C CN 100511746C CN B2005800307146 A CNB2005800307146 A CN B2005800307146A CN 200580030714 A CN200580030714 A CN 200580030714A CN 100511746 C CN100511746 C CN 100511746C
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- actuator
- displacement
- temperature
- max
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
一种具有在压电陶瓷的表面形成一对电极而构成的压电元件(2)作为驱动源的压电执行元件(1)。压电执行元件(1)满足下述要件(a)~(c)中的至少一个要件。(a)表观动态电容C[F]的随温度变化产生的波动幅WC在-30℃~80℃的特定温度范围内为±11%以内、(b)位移L[μm]的随温度变化产生的波动幅WL在-30℃~80℃的特定温度范围内为±14%以内、(c)表观动态电容设为C[F]、位移设为L[μm]时,L/C的随温度变化产生的波动幅WL/C在-30℃~80℃的特定温度范围内为±12%以内。
A piezoelectric actuator (1) having a piezoelectric element (2) formed by forming a pair of electrodes on the surface of piezoelectric ceramics as a drive source. The piezoelectric actuator (1) satisfies at least one of the following requirements (a) to (c). (a) The fluctuation amplitude W C of the apparent dynamic capacitance C[F] with temperature changes is within ±11% within a specific temperature range of -30°C to 80°C, (b) The variation of the displacement L[μm] with temperature The fluctuation width W L caused by the change is within ±14% within a specific temperature range of -30°C to 80°C. (c) When the apparent dynamic capacitance is set to C[F] and the displacement is set to L[μm], L/ The fluctuation width W L/C of C with temperature changes is within ±12% within a specific temperature range of -30°C to 80°C.
Description
技术领域 technical field
本发明涉及利用了大电场中的反压电效应以及电致伸缩效应的层叠执行元件、压电变压器、超声波发动机、双压电晶片压电元件、超声波声纳、压电超声波振动器、压电蜂鸣器、压电扬声器等的压电执行元件。The present invention relates to laminated actuators, piezoelectric transformers, ultrasonic motors, bimorph piezoelectric elements, ultrasonic sonar, piezoelectric ultrasonic vibrators, piezoelectric Piezoelectric actuators for buzzers, piezoelectric speakers, etc.
背景技术 Background technique
利用了压电陶瓷材料的压电执行元件是利用反压电效应引起的位移将电能转化为机械能的产品,被广泛地应用在电子和机电领域。Piezoelectric actuators using piezoelectric ceramic materials are products that convert electrical energy into mechanical energy by using the displacement caused by the reverse piezoelectric effect, and are widely used in the fields of electronics and electromechanics.
作为上述压电执行元件使用的压电陶瓷,已经知道例如Pb(Zr·Ti)O3系(以下称其为“PZT系”)、BaTiO3等。PZT系的压电陶瓷与其它压电陶瓷相比,具有高的压电特性,占目前已经实用化的压电陶瓷的大部分。但是,由于含有蒸气压较高的氧化铅(PbO),因此存在对环境的负荷大的问题。另一方面,BaTiO3陶瓷尽管不含铅,但是与PZT相比,压电特性较低,而且居里温度低到约120℃,因此存在不能在高温下使用的问题。Pb(Zr·Ti)O 3 -based (hereinafter referred to as "PZT-based"), BaTiO 3 , etc. are known as piezoelectric ceramics used in the piezoelectric actuator. PZT-based piezoelectric ceramics have higher piezoelectric characteristics than other piezoelectric ceramics, and account for most of the piezoelectric ceramics that have been put into practical use. However, since lead oxide (PbO) with a high vapor pressure is contained, there is a problem that the load on the environment is large. On the other hand, although BaTiO 3 ceramics do not contain lead, they have lower piezoelectric properties than PZT and have a Curie temperature as low as about 120°C, so they cannot be used at high temperatures.
上述压电执行元件一般至少由设置了1对电极的压电陶瓷的压电元件和保持该压电元件的保持部件、在该保持部件上保持上述压电元件的粘接构件或弹簧等压接构件、用于对上述压电元件外加电压的引线端子、以及被覆在上述1对电极之间的树脂或硅油等电绝缘构件构成。在上述压电执行元件中,压电陶瓷构成的压电元件通过粘接或浇铸或者弹簧等被压接,因此在不进行外加电压的状态下已经受到机械的拘束力(预设定负荷)。而且,在上述压电执行元件中,对该压电执行元件外加电压时,伴随电压上升,压电元件产生位移,因此上述的机械拘束力增高(负荷升高)。The above-mentioned piezoelectric actuator generally consists of at least a piezoelectric element of piezoelectric ceramics provided with a pair of electrodes, a holding member holding the piezoelectric element, and an adhesive member or spring holding the piezoelectric element on the holding member. member, a lead terminal for applying a voltage to the piezoelectric element, and an electrically insulating member such as resin or silicone oil coated between the pair of electrodes. In the above-mentioned piezoelectric actuators, the piezoelectric element made of piezoelectric ceramics is bonded by bonding, casting, or springs, etc., and therefore receives a mechanical restraint force (preset load) in the state where no voltage is applied. Furthermore, in the piezoelectric actuator described above, when a voltage is applied to the piezoelectric actuator, the piezoelectric element is displaced as the voltage rises, so that the above-mentioned mechanical restraint force increases (load increases).
因此,上述压电执行元件的位移由于预设定负荷和负荷上升,与压电元件本身的位移性能出现不同,而成为更小的值。Therefore, the displacement of the above-mentioned piezoelectric actuator is different from the displacement performance of the piezoelectric element itself due to the preset load and the load increase, and becomes a smaller value.
上述压电执行元件的使用条件以及驱动条件中具有温度、驱动电场强度、驱动波形、驱动频率、连续驱动或间歇驱动等参数。作为上述压电执行元件的一般的使用温度范围,在通常的生活环境使用的场合,最大为—30℃~80℃左右,作为汽车部件使用的场合,最大为—40℃~160℃左右。并且,驱动电场强度的振幅根据压电执行元件的用途的不同有所差异,在压电蜂鸣器、超声波声纳、压电扬声器等中为500V/mm以下,在超声波发动机、压电变压器、压电超声波振动器等中为1000V/mm以下,在层叠执行元件中为3000V/mm以下。另外,驱动波形在共振驱动的场合为正弦(sin)波,除此以外的场合为sin波、梯形波、三角形波、矩形波、脉冲波等各种波形。此外,关于驱动频率,超声波发动机、超声波声纳、压电超声波振动器等为20kHz以上,除此以外为不足20kHz。The operating conditions and driving conditions of the above-mentioned piezoelectric actuator include parameters such as temperature, driving electric field strength, driving waveform, driving frequency, continuous driving or intermittent driving, and the like. The general operating temperature range of the above-mentioned piezoelectric actuator is about -30°C to 80°C at most when it is used in a normal living environment, and about -40°C to 160°C at most when it is used as an automobile part. In addition, the amplitude of the driving electric field strength varies depending on the application of the piezoelectric actuator. It is below 500V/mm in piezoelectric buzzers, ultrasonic sonar, piezoelectric speakers, etc., and in ultrasonic motors, piezoelectric transformers, It is 1000V/mm or less in piezoelectric ultrasonic vibrators, etc., and 3000V/mm or less in laminated actuators. In addition, the drive waveform is a sinusoidal (sinus) wave in the case of resonance driving, and various waveforms such as a sinusoidal wave, a trapezoidal wave, a triangular wave, a rectangular wave, and a pulse wave in other cases. In addition, the driving frequency is 20 kHz or more for ultrasonic motors, ultrasonic sonar, piezoelectric ultrasonic vibrators, and the like, and less than 20 kHz for others.
上述压电执行元件的驱动方式可分类为:(1)以电压作为参数来控制位移以进行驱动的恒电压驱动法、(2)以注入能量作为参数来控制位移以进行驱动的恒能量驱动法、以及(3)以注入电荷作为参数来控制位移以进行驱动的恒电荷驱动法。The driving methods of the above-mentioned piezoelectric actuators can be classified into: (1) constant voltage driving method in which displacement is controlled by using voltage as a parameter, (2) constant energy driving method in which displacement is controlled by injecting energy as a parameter , and (3) a constant charge driving method in which the displacement is controlled by using the injected charge as a parameter for driving.
在此,就各驱动法与压电执行元件的位移的关系,进行说明。Here, the relationship between each driving method and the displacement of the piezoelectric actuator will be described.
对于采用上述恒电压驱动法的压电执行元件的驱动方式,具有下述特征:在外加电压上升时和下降时的位移具有磁滞。在该恒电压驱动法中,存在使用温度范围内的位移的波动幅较大的问题。The driving method of the piezoelectric actuator using the above-mentioned constant voltage driving method has the following feature: the displacement has hysteresis when the applied voltage rises and falls. In this constant voltage driving method, there is a problem that the fluctuation width of the displacement in the operating temperature range is large.
另外,对于采用上述恒能量驱动法的压电执行元件的驱动方式,具有下述特征:在注入能量上升时和下降时的位移具有磁滞。在该恒能量驱动法中,使用温度范围内的位移的波动幅与上述恒电压驱动法相比较小。In addition, the driving method of the piezoelectric actuator using the above-mentioned constant energy driving method has the following characteristics: the displacement has hysteresis when the injected energy rises and falls. In this constant energy driving method, the fluctuation width of the displacement in the temperature range used is smaller than that of the above-mentioned constant voltage driving method.
另一方面,对于采用恒电荷驱动法的执行元件的驱动方式,由于在注入电荷上升时和下降时的位移差几乎为0,因此在能够实现最精密的位移控制这一点上占优。但是存在的问题是:使用温度范围内的位移的波动幅比上述恒电压驱动法和上述恒能量驱动法大。On the other hand, the driving method of the actuator using the constant charge driving method is superior in that it can realize the most precise displacement control because the displacement difference between the rising and falling of the injected charge is almost zero. However, there is a problem that the fluctuation range of the displacement within the operating temperature range is larger than that of the above-mentioned constant voltage driving method and the above-mentioned constant energy driving method.
因此,作为减小压电执行元件和压电陶瓷传感器的温度特性的波动幅的方法,已经开发例如以下的技术。Therefore, as a method of reducing the fluctuation amplitude of the temperature characteristics of the piezoelectric actuator and the piezoelectric ceramic sensor, for example, the following techniques have been developed.
即,在特开昭60-1877号公报中公开了下述压电体:将压电单元的外加电压时的输出的位移相对于温度变化呈增函数变化的压电单元、与呈减函数变化的压电单元组合并进行层叠的压电体。That is, Japanese Unexamined Patent Publication No. 60-1877 discloses the following piezoelectric body: a piezoelectric unit in which the output displacement of the piezoelectric unit changes in an increasing function with respect to a temperature change, and a piezoelectric unit in which the output displacement changes in a decreasing function when a voltage is applied to the piezoelectric unit. The piezoelectric unit is combined and stacked piezoelectric body.
另外,在特开平6-232465号公报中,公开了将位移性能不同的多个压电陶瓷层进行层叠的层叠型压电执行元件。In addition, JP-A-6-232465 discloses a laminated piezoelectric actuator in which a plurality of piezoelectric ceramic layers having different displacement performances are laminated.
在特开平5-284600号公报中,公开了将温度补偿用电容器与压电陶瓷串联或并联电连接的压电元件。Japanese Unexamined Patent Publication No. 5-284600 discloses a piezoelectric element in which a temperature compensation capacitor and piezoelectric ceramics are electrically connected in series or in parallel.
在特开平7-79022号公报中公开了一种根据压力而产生电荷的压电元件,该压电元件由下述材料构成:交替地层叠压电体层和电介体层,电介体层的静电电容大于压电层的静电电容,且电介体层的温度系数具有与压电层的温度系数相反的特性。Japanese Unexamined Patent Application Publication No. 7-79022 discloses a piezoelectric element that generates charges according to pressure. The piezoelectric element is composed of the following materials: piezoelectric layers and dielectric layers are alternately laminated, and the dielectric layer The electrostatic capacitance of the piezoelectric layer is larger than that of the piezoelectric layer, and the temperature coefficient of the dielectric layer has a characteristic opposite to that of the piezoelectric layer.
在特开平7-79023号公报中公开了一种根据压力而产生电荷的压电元件,其中,将压电体材料和具有与压电体材料相反的温度特性而静电电容发生变化的电介体材料进行混合后成形而得到压电元件。Japanese Unexamined Patent Application Publication No. 7-79023 discloses a piezoelectric element that generates charges according to pressure, in which a piezoelectric material and a dielectric that has a temperature characteristic opposite to that of the piezoelectric material and whose capacitance changes are combined The materials are mixed and shaped to obtain piezoelectric elements.
此外,在特开平11-180766号公报中公开了钛酸钡系压电陶瓷,该压电陶瓷是用共振法测定的压电d33常数为300pC/N以上、且于—30℃~85℃的压电d33的温度变化率小的组成物。In addition, Japanese Patent Laid-Open No. 11-180766 discloses barium titanate-based piezoelectric ceramics. The piezoelectric ceramics have a piezoelectric d33 constant of 300 pC/N or more measured by a resonance method and have a temperature range of -30°C to 85°C. Composition with small temperature change rate of piezoelectric d 33 .
在特开2003-128460号公报中公开了钛酸钡系的以Ni为内部电极的层叠型压电元件,其中,从外加1kV/mm的电场强度时的元件的应变率计算的压电d31常数的温度变化率小。Japanese Patent Laid-Open No. 2003-128460 discloses a barium titanate-based multilayer piezoelectric element with Ni as an internal electrode, wherein the piezoelectric d 31 calculated from the strain rate of the element when an electric field intensity of 1 kV/mm is applied is Constant temperature change rate is small.
然而,在这些以前的技术中也不能充分解决由于温度变化引起的压电执行元件的位移特性等的波动。However, fluctuations in the displacement characteristics and the like of the piezoelectric actuator due to temperature changes cannot be adequately resolved in these conventional technologies either.
发明内容 Contents of the invention
本发明是鉴于从前的问题而提出的,旨在提供一种与压电执行元件的驱动方式无关的、位移的温度依存性能够减小的压电执行元件。The present invention has been made in view of the above problems, and aims to provide a piezoelectric actuator in which the temperature dependence of displacement can be reduced regardless of the driving method of the piezoelectric actuator.
第1发明是一种压电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对上述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,上述压电执行元件满足下述要件(a)~(c)中的至少一个要件。The first invention is a piezoelectric actuator comprising a piezoelectric element formed by forming a pair of electrodes on the surface of a piezoelectric ceramic as a driving source, wherein a voltage is applied to the piezoelectric actuator, and the electric field strength is When driven under an electric field driving condition with a constant amplitude of 100 V/mm or more, the piezoelectric actuator satisfies at least one of the following requirements (a) to (c).
(a)下述式(1)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在—30℃~80℃的特定温度范围内为±11%以内(其中,C[F]为该压电执行元件的表观动态电容,当该压电执行元件与电容器串联连接,并对该压电执行元件以及该电容器外加电压时,C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。(a) The fluctuation width WC [%] of the apparent dynamic capacitance C [F] represented by the following formula (1) with temperature changes is within ±11% within a specific temperature range of -30°C to 80°C (where , C[F] is the apparent dynamic capacitance of the piezoelectric actuator, when the piezoelectric actuator is connected in series with the capacitor, and a voltage is applied to the piezoelectric actuator and the capacitor, C[F] can be obtained by using the Calculated by dividing the charge quantity Q[C] accumulated in the capacitor by the voltage V[V] applied to the piezoelectric actuator).
WC(%)=[{2×Cmax/(Cmax+Cmin)}—1]×100 (1)W C (%)=[{2×C max /(C max +C min )}—1]×100 (1)
(其中,Cmax表示在—30℃~80℃的表观动态电容的最大值,Cmin表示在—30℃~80℃的表观动态电容的最小值)。(wherein, C max represents the maximum value of the apparent dynamic capacitance at -30°C to 80°C, and C min represents the minimum value of the apparent dynamic capacitance at -30°C to 80°C).
(b)下述式(2)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在—30℃~80℃的特定温度范围内为±14%以内(其中,L[μm]为该压电执行元件的位移)。(b) The fluctuation width W L [%] of the displacement L [μm] represented by the following formula (2) with temperature changes is within ±14% within a specific temperature range of -30°C to 80°C (wherein, L [μm] is the displacement of the piezoelectric actuator).
WL[%]=[{2×Lmax/(Lmax+Lmin)}—1]×100 (2)W L [%]=[{2×L max /(L max +L min )}—1]×100 (2)
(其中,Lmax表示在—30℃~80℃的位移的最大值,Lmin表示在—30℃~80℃的位移的最小值)。(wherein, L max represents the maximum value of displacement at -30°C to 80°C, and Lmin represents the minimum value of displacement at -30°C to 80°C).
(c)下述式(3)表示的L/C的随温度变化产生的波动幅WL/C(%)在—30℃~80℃的特定温度范围内为±12%以内(其中,C[F]为该压电执行元件的表观动态电容,L[μm]为该压电执行元件的位移,当该压电执行元件与电容器串联连接,并对该压电执行元件以及该电容器外加电压时,该C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。(c) The fluctuation width W L/C (%) of L/C represented by the following formula (3) with temperature changes is within ±12% within a specific temperature range of -30°C to 80°C (wherein, C [F] is the apparent dynamic capacitance of the piezoelectric actuator, L[μm] is the displacement of the piezoelectric actuator, when the piezoelectric actuator is connected in series with the capacitor, and the piezoelectric actuator and the capacitor are externally voltage, the C[F] can be calculated by dividing the voltage V[V] applied to the piezoelectric actuator by the charge quantity Q[C] accumulated in the capacitor).
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}—1]×100 (3)W L/C [%]=[{2×(L/C) max /((L/C) max +(L/C) min )}—1]×100 (3)
(其中,(L/C)max表示在—30℃~80℃的L/C的最大值,(L/C)min表示在—30℃~80℃的L/C的最小值)。(where (L/C) max represents the maximum value of L/C at -30°C to 80°C, and (L/C) min represents the minimum value of L/C at -30°C to 80°C).
另外,第2发明是一种电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对上述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,上述压电执行元件满足下述要件(j)~(1)中的至少一个要件。In addition, the second invention is an electric actuator comprising a piezoelectric element formed by forming a pair of electrodes on the surface of a piezoelectric ceramic as a drive source, wherein a voltage is applied to the piezoelectric actuator, and the electric field intensity When driven under an electric field driving condition with a constant amplitude of 100 V/mm or more, the piezoelectric actuator satisfies at least one of the following requirements (j) to (1).
(j)下述式(5)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在—30℃~160℃的特定温度范围内为±30%以内(其中,C[F]为该压电执行元件的表观动态电容,当该压电执行元件与电容器串联连接、并对该压电执行元件以及该电容器外加电压时,C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。(j) The fluctuation width W C [%] of the apparent dynamic capacitance C [F] represented by the following formula (5) with temperature changes is within ±30% within a specific temperature range of -30°C to 160°C ( Among them, C[F] is the apparent dynamic capacitance of the piezoelectric actuator, when the piezoelectric actuator is connected in series with the capacitor, and a voltage is applied to the piezoelectric actuator and the capacitor, C[F] can be obtained by using The charge amount Q[C] accumulated in the capacitor is calculated by dividing the voltage V[V] applied to the piezoelectric actuator).
WC(%)=[{2×Cmax/(Cmax+Cmin)}—1]×100 (5)W C (%)=[{2×C max /(C max +C min )}—1]×100 (5)
(其中,Cmax表示在—30℃~160℃的表观动态电容的最大值,Cmin表示在—30℃~160℃的表观动态电容的最小值)。(wherein, C max represents the maximum value of the apparent dynamic capacitance at -30°C to 160°C, and C min represents the minimum value of the apparent dynamic capacitance at -30°C to 160°C).
(k)下述式(6)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在—30℃~160℃的特定温度范围内为±14%以内(其中,L[μm]为该压电执行元件的位移)。(k) The fluctuation width W L [%] of the displacement L [μm] represented by the following formula (6) with temperature changes is within ±14% within a specific temperature range of -30°C to 160°C (wherein, L [μm] is the displacement of the piezoelectric actuator).
WL[%]=[{2×Lmax/(Lmax+Lmin)}—1]×100 (6)W L [%]=[{2×L max /(L max +L min )}—1]×100 (6)
(其中,Lmax表示在—30℃~160℃的位移的最大值,Lmin表示在—30℃~160℃的位移的最小值)。(wherein, L max represents the maximum value of displacement at -30°C to 160°C, and L min represents the minimum value of displacement at -30°C to 160°C).
(1)下述式(7)表示的L/C的随温度变化产生的波动幅WL/C(%)在—30℃~160℃的特定温度范围内为±35%以内(其中,C[F]为该压电执行元件的表观动态电容,L[μm]为该压电执行元件的位移,当该压电执行元件与电容呈串联连接,并对该压电执行元件以及该电容器外加电压时,该C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。(1) The fluctuation width W L/C (%) of L/C represented by the following formula (7) with temperature changes is within ±35% within a specific temperature range of -30°C to 160°C (wherein, C [F] is the apparent dynamic capacitance of the piezoelectric actuator, L [μm] is the displacement of the piezoelectric actuator, when the piezoelectric actuator and the capacitor are connected in series, and the piezoelectric actuator and the capacitor When a voltage is applied, the C[F] can be calculated by dividing the voltage V[V] externally applied to the piezoelectric actuator by the charge quantity Q[C] accumulated in the capacitor).
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}—1]×100 (7)W L/C [%]=[{2×(L/C) max /((L/C) max +(L/C) min )}—1]×100 (7)
(其中,(L/C)max表示在—30℃~160℃的L/C的最大值,(L/C)min表示在—30℃~160℃的L/C的最小值)。(where (L/C) max represents the maximum value of L/C at -30°C to 160°C, and (L/C) min represents the minimum value of L/C at -30°C to 160°C).
上述第1发明的压电执行元件,满足上述要件(a)~(c)中的至少一个要件。即,在上述第1发明的压电执行元件中,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在—30℃~80℃的特定温度范围内时在上述特定的范围内。The piezoelectric actuator of the above-mentioned first invention satisfies at least one of the above-mentioned requirements (a) to (c). That is, in the piezoelectric actuator of the first invention described above, the fluctuation width W C of the apparent dynamic capacitance C with temperature change, the fluctuation width W L of the displacement L with temperature change, or the displacement/dynamic At least one of the temperature fluctuation width W L/C of capacitance (L/C) falls within the above-mentioned specific range when it is within the specific temperature range of -30°C to 80°C.
此外,上述第2发明的压电执行元件满足上述要件(j)~(1)中的至少一个要件。即,在上述第2发明的压电执行元件中,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在—30℃~160℃的特定温度范围内时在上述特定的范围内。In addition, the piezoelectric actuator according to the second invention satisfies at least one of the above-mentioned requirements (j) to (1). That is, in the piezoelectric actuator according to the second invention, the fluctuation width W C of the apparent dynamic capacitance C with temperature change, the fluctuation width W L of the displacement L with temperature change, or the displacement/dynamic At least one of the temperature-dependent fluctuation width W L/C of capacitance (L/C) falls within the above-mentioned specific range when it is within the specific temperature range of -30°C to 160°C.
因此,上述第1以及第2发明的压电执行元件随温度变化产生的位移的偏差小。即,上述压电执行元件即使在温度变化剧烈的环境下使用的场合,也能够发挥大致恒定的位移。因此,上述压电执行元件也能够很好地用于例如汽车部件等在温度变化剧烈的环境下使用的产品。Therefore, the piezoelectric actuators according to the above-mentioned first and second inventions have small variations in displacement due to temperature changes. That is, the above-mentioned piezoelectric actuator can exhibit a substantially constant displacement even when it is used in an environment with severe temperature changes. Therefore, the above-mentioned piezoelectric actuator can also be well used in products used in environments with severe temperature changes, such as automobile parts.
通常,压电执行元件的驱动方式如上所述有以下驱动法:(1)以电压作为参数来控制位移以进行驱动的恒电压驱动法、(2)以注入能量作为参数来控制位移以进行驱动的恒能量驱动法、以及(3)以注入电荷作为参数来控制位移以进行驱动的恒电荷驱动法。Generally, the driving method of piezoelectric actuators has the following driving methods as mentioned above: (1) constant voltage driving method in which displacement is controlled by using voltage as a parameter, (2) driving is driven by controlling displacement by injecting energy as a parameter The constant energy driving method, and (3) the constant charge driving method using the injected charge as a parameter to control the displacement for driving.
在此,就压电执行元件的位移的温度依存性,按照压电执行元件的每种驱动方式来进行说明。Here, the temperature dependence of the displacement of the piezoelectric actuator will be described for each driving method of the piezoelectric actuator.
首先,定电压驱动的压电执行元件的位移(ΔL1)以下述的式A1表示。First, the displacement (ΔL1) of the piezoelectric actuator driven by a constant voltage is represented by the following formula A1.
ΔL1=D33×EF×L0 A1ΔL1=D33×EF×L0 A1
式中,D33:动态应变量[m/V]、EF:最大电场强度[V/m]、以及L0:外加电压前的压电陶瓷的长度[m]。另外,动态应变量表示在以恒定的振幅外加电场强度为0~3000V/mm且不破坏绝缘的程度的范围的高压来进行驱动的场合,与外加电压方向相平行的方向上产生的压电陶瓷的位移性能,以下述式A2表示。In the formula, D33: dynamic strain amount [m/V], EF: maximum electric field strength [V/m], and L0: length [m] of the piezoelectric ceramic before voltage is applied. In addition, the amount of dynamic strain refers to the piezoelectric ceramics produced in the direction parallel to the direction of the applied voltage when driven with a constant amplitude applied electric field strength of 0 to 3000V/mm and a high voltage in the range of not destroying the insulation. The displacement performance is represented by the following formula A2.
D33=S/EF=(ΔL1/L0)/(V/L0) A2D33=S/EF=(ΔL1/L0)/(V/L0) A2
式中,S:最大应变量。此外,D33不仅对温度有依存性,对电场强度也有依存性。In the formula, S: maximum strain. In addition, D33 has dependence not only on temperature but also on electric field strength.
从上述式(A1)和(A2)可以知道,压电执行元件的位移(ΔL1)与依存于外加电场强度的动态应变量D33和外加电场强度之积成比例。It can be seen from the above formulas (A1) and (A2) that the displacement (ΔL1) of the piezoelectric actuator is proportional to the product of the dynamic strain D33 dependent on the applied electric field strength and the applied electric field strength.
另外,能量和电荷和表观动态电容和外加电压存在下述式A3和A4的关系。In addition, energy and charge, apparent dynamic capacitance, and applied voltage have the following relationships of A3 and A4.
W=1/2×C×V2 A3W=1/2×C×V 2 A3
Q=C×V A4Q=C×V A4
式中,W:能量[J]、C:表观动态电容[F]、V:外加电压[V]、以及Q:电荷[C]。In the formula, W: energy [J], C: apparent dynamic capacitance [F], V: applied voltage [V], and Q: charge [C].
在此,当通常压电执行元件与电容器串联连接,并以电场强度0~3000V/mm且不破坏绝缘的程度的范围的恒定振幅的电场强度进行驱动时,表观动态电容C[F]定义为用电容器中积蓄的电荷量除以外加到执行元件上的电压而得到的值。表观动态电容C至少包含压电陶瓷的电介质成分、极化反转成分、以及来自极化旋转成分的充电电荷、来自压电陶瓷的直流电阻成分的漏电流。而且,表观动态电容C不仅对温度有依存性,对电场强度也有依存性。Here, when a piezoelectric actuator is generally connected in series with a capacitor and driven with an electric field strength of constant amplitude in the range of 0 to 3000 V/mm without breaking insulation, the apparent dynamic capacitance C[F] is defined as The value obtained by dividing the voltage applied to the actuator by the charge stored in the capacitor. The apparent dynamic capacitance C includes at least a dielectric component of piezoelectric ceramics, a polarization inversion component, charging charges from a polarization rotation component, and leakage current from a DC resistance component of piezoelectric ceramics. Furthermore, the apparent dynamic capacitance C is dependent not only on temperature but also on electric field strength.
因此,恒能量驱动(W:恒定)的场合的压电执行元件的位移(ΔL2)由下述式A5所示,与依存于驱动电场强度的D33/C0.5和驱动电场强度(=驱动电压/L0)之积成比例。Therefore, the displacement (ΔL2) of the piezoelectric actuator in the case of constant energy driving (W: constant) is expressed by the following formula A5, which is related to D33/C 0.5 and the driving electric field strength (=driving voltage/ The product of L0) is proportional.
ΔL2=D33×(2×W/C)0.5A5 ΔL2=D33×(2×W/C) 0.5A5
在此,具有下述特征:由于温度变化而引起表观动态电容C发生波动时,根据上述式A3,驱动电场强度自身也发生波动。Here, there is a feature that when the apparent dynamic capacitance C fluctuates due to temperature changes, the driving electric field intensity itself also fluctuates according to the above-mentioned expression A3.
另外,在恒电荷驱动(Q:恒定)的场合的执行元件的位移(ΔL3)由下述式A6所示,与依存于驱动电场强度的D33/C和驱动电场强度(=驱动电压/L0)之积成比例。In addition, the displacement (ΔL3) of the actuator in the case of constant charge drive (Q: constant) is expressed by the following formula A6, which is related to D33/C and the drive electric field strength (= drive voltage/L0) depending on the drive electric field strength. The product is proportional.
ΔL3=D33×(Q/C) A6ΔL3=D33×(Q/C) A6
在此,具有下述特征:又有温度变化而引起C发生波动时,根据上述式A4,外加电场强度自身也发生波动。Here, there is a feature that when C fluctuates due to temperature changes, the applied electric field intensity itself also fluctuates according to the above-mentioned Equation A4.
因此,为了减小使用温度范围的执行元件的位移波动幅,优选依存于驱动电场强度的D33、D33/C0.5、D33/C等的温度依存性较小。Therefore, in order to reduce the displacement fluctuation amplitude of the actuator in the operating temperature range, it is preferable that the temperature dependence of D33, D33/C 0.5 , D33/C, etc. depending on the driving electric field strength is small.
此外,当然,优选作为位移性能的D33、D33/C0.5、D33/C的绝对值较大。In addition, of course, it is preferable that the absolute values of D33, D33/C 0.5 , and D33/C, which are displacement properties, be large.
其次,就恒能量驱动以及恒电荷驱动的场合的表观动态电容与驱动电压的关系进行说明。Next, the relationship between the apparent dynamic capacitance and the driving voltage in the case of constant energy driving and constant charge driving will be described.
在恒能量驱动(W:恒定)的场合,加载在压电执行元件以及向驱动电路上施加的电压(端子电压)由下述式A7所示,与1/C0.5成比例。In the case of constant energy drive (W: constant), the voltage (terminal voltage) applied to the piezoelectric actuator and to the drive circuit is proportional to 1/C 0.5 as shown in the following formula A7.
V=(2×W/C)0.5 A7V=(2×W/C) 0.5 A7
恒电荷驱动(Q:恒定)的场合的端子电压由下述式A8所示,与1/C成比例。The terminal voltage in the case of constant charge driving (Q: constant) is expressed by the following formula A8, and is proportional to 1/C.
V=Q/C A8V=Q/C A8
在端子电压波动时,为了确保压电执行元件以及驱动电路的耐电压的可靠性,进行端子电压上限的设计是必要的。在执行元件的设计中,为了防止电极之间放电或侧面泄漏或者绝缘破坏而受到正负电极之间距离不能减小的制约。因此,在使用温度范围内的端子电压的下限值的地方,位移特性降低。因此在电路设计中,为了提高电路元件的耐电压性而存在大型化和高成本化的问题。When the terminal voltage fluctuates, in order to ensure the reliability of the withstand voltage of the piezoelectric actuator and the drive circuit, it is necessary to design the upper limit of the terminal voltage. In the design of the actuator, in order to prevent discharge between electrodes or side leakage or insulation damage, the distance between the positive and negative electrodes cannot be reduced. Therefore, the displacement characteristic deteriorates where the lower limit value of the terminal voltage within the temperature range is used. Therefore, in circuit design, there are problems of increasing the size and cost of the circuit element in order to improve the voltage resistance of the circuit element.
因此,为了提高执行元件的位移性能以及使驱动电路小型化和低成本化,优选依存于驱动电场强度的1/C0.5、1/C的温度依存性小。Therefore, in order to improve the displacement performance of the actuator and to reduce the size and cost of the drive circuit, it is preferable that the temperature dependence of 1/C 0.5 and 1/C depending on the drive electric field strength be small.
此外,表观动态电容C如果收敛为一定值,则端子电压也收敛为一定值,因此如果驱动电场强度恒定时的D33/C0.5的温度依存性小,则恒能量控制中的执行元件的位移的温度依存性能够减小。而且,如果驱动电场强度恒定时的D33/C的温度依存性小,则恒电荷控制的执行元件的位移的温度依存性能够减小。In addition, if the apparent dynamic capacitance C converges to a constant value, the terminal voltage will also converge to a constant value. Therefore, if the temperature dependence of D33/C 0.5 is small when the driving electric field strength is constant, the displacement of the actuator in constant energy control The temperature dependence can be reduced. Furthermore, if the temperature dependence of D33/C is small when the driving electric field intensity is constant, the temperature dependence of the displacement of the actuator under constant charge control can be reduced.
这样,为了减小压电执行元件的温度依存性,优选在使用温度范围内,在具有恒定的振幅的电场驱动条件下产生的动态应变量D33、表观动态电容C、D33/C0.5、以及D33/C的波动幅较小。In this way, in order to reduce the temperature dependence of the piezoelectric actuator, it is preferable that the dynamic strain D33, the apparent dynamic capacitance C, D33/C 0.5 , and The fluctuation range of D33/C is small.
在上述第1发明的压电执行元件中,如上述那样,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/表观动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在—30℃~80℃的特定温度范围内分别在±11%以内、±14%以内、以及±12%以内的较小的范围内。In the piezoelectric actuator according to the first invention, as described above, the fluctuation width W C of the apparent dynamic capacitance C due to temperature change, the fluctuation width W L of the displacement L due to temperature change, or the displacement At least one of the fluctuation width W L/ C of the apparent dynamic capacitance (L/C) with temperature changes within a specific temperature range of -30°C to 80°C, within ±11%, within ±14%, respectively and within a smaller range of ±12%.
此外,在上述第2发明的压电执行元件中,如上述那样,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/表观动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在—30℃~160℃的特定温度范围内分别在±30%以内、±14%以内、以及±35%以内的较小的范围内。Furthermore, in the piezoelectric actuator according to the second invention, as described above, the fluctuation width W C of the apparent dynamic capacitance C according to the temperature change, the temperature fluctuation width W L of the displacement L according to the temperature change, or At least one of the fluctuation width W L/C of the above-mentioned displacement/apparent dynamic capacitance (L/C) due to temperature changes is within ±30%, ±14% respectively within the specified temperature range of -30°C to 160°C Within, and within a smaller range within ±35%.
因此,上述第1发明以及第2发明的压电执行元件与恒电压驱动、恒能量驱动、以及恒电荷驱动等驱动方式无关,位移的温度依存性较小。即,即便使用温度发生变化,仍能够发挥大致相等的位移特性。Therefore, the piezoelectric actuators of the above-mentioned first invention and the second invention are independent of driving methods such as constant voltage driving, constant energy driving, and constant charge driving, and the temperature dependence of displacement is small. That is, even if the operating temperature changes, substantially equal displacement characteristics can be exhibited.
如以上所述那样,根据本发明,能够提供与压电执行元件的驱动方式无关的、位移的温度依存性可以减小的压电执行元件。As described above, according to the present invention, it is possible to provide a piezoelectric actuator in which the temperature dependence of displacement can be reduced regardless of the driving method of the piezoelectric actuator.
附图说明 Description of drawings
图1是表示实施例1的压电执行元件的表观动态电容的温度依存性的曲线图。FIG. 1 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Example 1. FIG.
图2是表示实施例1的压电执行元件的位移的温度依存性的曲线图。FIG. 2 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Example 1. FIG.
图3是表示实施例1的压电执行元件的位移/表观动态电容的温度依存性的曲线图。3 is a graph showing the temperature dependence of displacement/apparent dynamic capacitance of the piezoelectric actuator of Example 1. FIG.
图4是表示实施例2的压电执行元件的表观动态电容的温度依存性的曲线图。4 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Example 2. FIG.
图5是表示实施例2的压电执行元件的位移的温度依存性的曲线图。FIG. 5 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Example 2. FIG.
图6是表示实施例2的压电执行元件的位移/表观动态电容的温度依存性的曲线图。6 is a graph showing the temperature dependence of displacement/apparent dynamic capacitance of the piezoelectric actuator of Example 2. FIG.
图7是表示实施例3的压电执行元件的表观动态电容的温度依存性的曲线图。7 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Example 3. FIG.
图8是表示实施例3的压电执行元件的位移的温度依存性的曲线图。FIG. 8 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Example 3. FIG.
图9是表示实施例3的压电执行元件的位移/表观动态电容的温度依存性的曲线图。9 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Example 3. FIG.
图10是表示实施例4的压电执行元件的表观动态电容的温度依存性的曲线图。10 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Example 4. FIG.
图11是表示实施例4的压电执行元件的位移的温度依存性的曲线图。11 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Example 4. FIG.
图12是表示实施例4的压电执行元件的位移/表观动态电容的温度依存性的曲线图。12 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Example 4. FIG.
图13是表示实施例5的压电执行元件的表观动态电容的温度依存性的曲线图。13 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Example 5. FIG.
图14是表示实施例5的压电执行元件的位移的温度依存性的曲线图。14 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Example 5. FIG.
图15是表示实施例5的压电执行元件的位移/表观动态电容的温度依存性的曲线图。15 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Example 5. FIG.
图16是表示比较例1的压电执行元件的表观动态电容的温度依存性的曲线图。16 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 1. FIG.
图17是表示比较例1的压电执行元件的位移的温度依存性的曲线图。17 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Comparative Example 1. FIG.
图18是表示比较例1的压电执行元件的位移/表观动态电容的温度依存性的曲线图。18 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 1. FIG.
图19是表示比较例2的压电执行元件的表观动态电容的温度依存性的曲线图。19 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 2. FIG.
图20是表示比较例2的压电执行元件的位移的温度依存性的曲线图。20 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Comparative Example 2. FIG.
图21是表示比较例2的压电执行元件的位移/表观动态电容的温度依存性的曲线图。21 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 2. FIG.
图22是表示比较例3的压电执行元件的表观动态电容的温度依存性的曲线图。22 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 3. FIG.
图23是表示比较例3的压电执行元件的位移的温度依存性的曲线图。23 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Comparative Example 3. FIG.
图24是表示比较例3的压电执行元件的位移/表观动态电容的温度依存性的曲线图。24 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 3. FIG.
图25是表示比较例4的压电执行元件的表观动态电容的温度依存性的曲线图。25 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 4. FIG.
图26是表示比较例4的压电执行元件的位移的温度依存性的曲线图。26 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Comparative Example 4. FIG.
图27是表示比较例4的压电执行元件的位移/表观动态电容的温度依存性的曲线图。27 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 4. FIG.
图28是表示比较例5的压电执行元件的表观动态电容的温度依存性的曲线图。28 is a graph showing the temperature dependence of the apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 5. FIG.
图29是表示比较例5的压电执行元件的位移的温度依存性的曲线图。29 is a graph showing the temperature dependence of the displacement of the piezoelectric actuator of Comparative Example 5. FIG.
图30是表示比较例5的压电执行元件的位移/表观动态电容的温度依存性的曲线图。30 is a graph showing the temperature dependence of the displacement/apparent dynamic capacitance of the piezoelectric actuator of Comparative Example 5. FIG.
图31是表示实施例6的、压电执行元件(实施例1)的表观动态电容以及动态电容的温度依存性的曲线图。31 is a graph showing the apparent dynamic capacitance of the piezoelectric actuator (Example 1) and the temperature dependence of the dynamic capacitance in Example 6. FIG.
图32是表示实施例6的、压电执行元件(实施例4)的表观动态电容以及动态电容的温度依存性的曲线图。32 is a graph showing the apparent dynamic capacitance of the piezoelectric actuator (Example 4) and the temperature dependence of the dynamic capacitance in Example 6. FIG.
图33是表示实施例6的、压电执行元件(比较例1)的表观动态电容以及动态电容的温度依存性的曲线图。33 is a graph showing the apparent dynamic capacitance and the temperature dependence of the dynamic capacitance of the piezoelectric actuator (Comparative Example 1) according to Example 6. FIG.
图34是表示实施例7中的、由实施例1~实施例5得到的各压电执行元件的电极强度振幅与温度20℃的动态应变量的关系的曲线图。34 is a graph showing the relationship between the electrode strength amplitude and the dynamic strain at a temperature of 20° C. of each piezoelectric actuator obtained in Examples 1 to 5 in Example 7. FIG.
图35是表示实施例8中的、由实施例5制作的单板的d31的温度特性的测定值、实施例5所示的1000~2000V/mm的驱动电场强度时的动态应变量分别以20℃的值标准化后的结果的曲线图。Fig. 35 shows the measured values of the temperature characteristics of d31 of the veneer produced in Example 5 in Example 8, and the dynamic strain at the driving electric field strength of 1000 to 2000 V/mm shown in Example 5, respectively expressed as Graph of the results normalized to the value at 20°C.
图36是表示本发明的压电执行元件的构成的一例的说明图。Fig. 36 is an explanatory diagram showing an example of the configuration of the piezoelectric actuator of the present invention.
图37是表示实施例1的压电执行元件的构成的概要说明图。37 is a schematic explanatory diagram showing the configuration of the piezoelectric actuator of the first embodiment.
图38是表示实施例1的压电元件的构成的说明图。38 is an explanatory view showing the configuration of the piezoelectric element of the first embodiment.
图39是表示实施例1的由一片压电陶瓷构成的压电元件(单板)的构成的说明图。FIG. 39 is an explanatory view showing the configuration of a piezoelectric element (single plate) composed of a single piezoelectric ceramic in Example 1. FIG.
图40是表示实施例1的将压电元件(单板)与内部电极板进行层叠的状态的说明图。40 is an explanatory diagram showing a state in which piezoelectric elements (single plates) and internal electrode plates are stacked in Example 1. FIG.
具体实施方式 Detailed ways
以下,就本发明的实施方案进行说明。Hereinafter, embodiments of the present invention will be described.
上述第1发明的压电执行元件满足上述要件(a)~(c)。The piezoelectric actuator of the above-mentioned first invention satisfies the above-mentioned requirements (a) to (c).
上述要件(a)中,如果上述压电执行元件的表观动态电容设为C[F],则下述式(1)表示的表观动态电容的随温度变化而产生的波动幅WC[%]在—30℃~80℃的特定温度范围内为±11%以内。In the above requirement (a), if the apparent dynamic capacitance of the piezoelectric actuator is C[F], the fluctuation width WC [% of the apparent dynamic capacitance according to the temperature change expressed by the following formula (1) ] within the specified temperature range of -30°C to 80°C within ±11%.
WC(%)=[{2×Cmax/(Cmax+Cmin)}—1]×100 (1)W C (%)=[{2×C max /(C max +C min )}—1]×100 (1)
在上述要件(a)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。In the above-mentioned requirement (a), when the above-mentioned piezoelectric actuator is connected in series with a capacitor set at, for example, a temperature of 25°C, and a voltage is applied to the above-mentioned piezoelectric actuator and the above-mentioned capacitor, the above-mentioned apparent dynamic capacitance can be obtained by using the above-mentioned The amount of charge Q[C] accumulated in the capacitor is calculated by dividing the voltage V[V] externally applied to the piezoelectric actuator.
上述要件(b)中,如果上述压电执行元件的位移设为L[μm],则下述式(2)表示的位移L的随温度变化产生的波动幅WL在—30℃~80℃的特定温度范围内为±14%以内。In the above requirement (b), if the displacement of the piezoelectric actuator is L [μm], the fluctuation width W L of the displacement L according to the temperature change expressed by the following formula (2) is -30°C to 80°C within ±14% over the specified temperature range.
WL[%]=[{2×Lmax/(Lmax+Lmin)}—1]×100 (2)W L [%]=[{2×L max /(L max +L min )}—1]×100 (2)
另外,上述要件(c)中,上述压电执行元件的表观动态电容设为C[F],上述压电执行元件的位移设为L[μm]时,则下述式(3)表示的L/C的随温度变化产生的波动幅WL/C在—30℃~80℃的特定温度范围内为±12%以内。In addition, in the above requirement (c), when the apparent dynamic capacitance of the piezoelectric actuator is C[F] and the displacement of the piezoelectric actuator is L[μm], then the following formula (3) The fluctuation width W L/ C of L/C according to the temperature change is within ±12% within a specific temperature range of -30°C to 80°C.
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}—1]×100 (3)W L/C [%]=[{2×(L/C) max /((L/C) max +(L/C) min )}—1]×100 (3)
在上述要件(c)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。In the above-mentioned requirement (c), when the above-mentioned piezoelectric actuator is connected in series with a capacitor set at a temperature of 25°C, and a voltage is applied to the above-mentioned piezoelectric actuator and the above-mentioned capacitor, the above-mentioned apparent dynamic capacitance can be obtained by using the above-mentioned The amount of charge Q[C] accumulated in the capacitor is calculated by dividing the voltage V[V] externally applied to the piezoelectric actuator.
在上述压电执行元件不满足上述要件(a)~(c)中的任何一项的场合,即在—30℃~80℃时,上述波动幅WC偏离±11%以内的范围、上述波动幅WL偏离±14%以内的范围、以及上述波动幅WL/C偏离±12%以内的范围的场合,温度为—30℃~80℃时的上述压电执行元件的温度依存性有可能增大。When the above-mentioned piezoelectric actuator does not satisfy any of the above-mentioned requirements (a) to (c), that is, at -30°C to 80°C, the above-mentioned fluctuation width W C deviates from the range within ±11%, and the above-mentioned fluctuation When the amplitude W L deviates from the range within ±14%, and the above-mentioned fluctuation amplitude W L/C deviates from the range within ±12%, the temperature dependence of the above-mentioned piezoelectric actuator may occur when the temperature is -30°C to 80°C increase.
上述压电执行元件优选满足上述要件(a)和上述要件(b)这二者。The above-mentioned piezoelectric actuator preferably satisfies both the above-mentioned requirement (a) and the above-mentioned requirement (b).
在这种场合,能够进一步减小上述压电执行元件的温度依存性。In this case, the temperature dependence of the above-mentioned piezoelectric actuator can be further reduced.
另外,上述压电执行元件优选满足上述要件(a)~(c)的全部要件。In addition, the piezoelectric actuator preferably satisfies all of the above-mentioned requirements (a) to (c).
在这种场合,能够更进一步减小上述压电执行元件的温度依存性。In this case, the temperature dependence of the above-mentioned piezoelectric actuator can be further reduced.
此外,在上述压电执行元件中,动态电容的随温度变化产生的上述波动幅WC[%]优选在—40℃~80℃的特定温度范围内为±12%以内。In addition, in the above-mentioned piezoelectric actuator, it is preferable that the above-mentioned fluctuation width WC [%] of the dynamic capacitance due to temperature change is within ±12% within a specific temperature range of -40°C to 80°C.
另外,上述位移L的随温度变化产生的上述波动幅WL优选在—40℃~80℃的特定温度范围内为±14%以内。In addition, it is preferable that the above-mentioned fluctuation width WL of the above-mentioned displacement L due to a temperature change is within ±14% within a specific temperature range of -40°C to 80°C.
此外,L/C的随温度变化产生的上述波动幅WL/C优选在—40℃~80℃的特定温度范围内为±13%以内。In addition, it is preferable that the above-mentioned fluctuation width W L/C of L/C due to temperature change is within ±13% within a specific temperature range of -40°C to 80°C.
这样,在—40℃~80℃的温度范围内,上述波动幅WC、波动幅WL、波动幅WL/C在上述那样特定的范围内时,即使在—40℃~80℃的特定温度范围内,上述压电执行元件的位移的温度依存性也能够减小。In this way, in the temperature range of -40°C to 80°C, when the above-mentioned fluctuation width W C , fluctuation width W L , and fluctuation width W L/C are within the above-mentioned specified ranges, even at the specified temperature range of -40°C to 80°C The temperature dependence of the displacement of the above-mentioned piezo actuator can also be reduced in the temperature range.
上述压电执行元件优选满足下述的要件(d)。The piezoelectric actuator described above preferably satisfies the following requirement (d).
(d)如果上述表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则下述式(4)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5在—30℃~80℃的特定温度范围内为±12%以内(其中,L/C0.5为上述压电执行元件的位移L[μm]与上述表观动态电容C[F]的平方根之比)。(d) If the above-mentioned apparent dynamic capacitance is C[F], and the displacement of the above-mentioned piezoelectric actuator is L[μm], then the fluctuation of L/C 0.5 according to the temperature change represented by the following formula (4) Width W L/C 0.5 is within ±12% within a specific temperature range of -30°C to 80°C (wherein, L/C 0.5 is the displacement L[μm] of the above-mentioned piezoelectric actuator and the above-mentioned apparent dynamic capacitance C[ F] square root ratio).
WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}—1]×100W L/C 0.5 (%)=[{2×(L/C 0.5 ) max /((L/C 0.5 ) max +(L/C 0.5 ) min )}—1]×100
(4)(4)
(式中,(L/C0.5)max表示温度为—30℃~80℃时的L/C0.5的最大值,(L/C0.5)min表示温度为—30℃~80℃时的L/C0.5的最小值)。(In the formula, (L/C 0.5 ) max represents the maximum value of L/C 0.5 at a temperature of -30°C to 80°C, and (L/C 0.5 ) min represents the L/C at a temperature of -30°C to 80°C C 0.5 minimum).
在上述压电执行元件不满足上述要件(d)的场合,即L/C0.5的随温度变化产生的波动幅WL/C 0.5在—30℃~80℃的特定温度范围内超出±12%的场合,上述压电执行元件的位移的温度依存性有可能增大。When the above piezoelectric actuator does not meet the above requirement (d), that is, the fluctuation width W L/C 0.5 of L /C 0.5 with temperature changes exceeds ±12% within the specified temperature range of -30°C to 80°C In this case, the temperature dependence of the displacement of the above-mentioned piezoelectric actuator may increase.
此外,L/C0.5的随温度变化产生的上述波动幅WL/C 0.5优选在—40℃~80℃的特定温度范围内为±12%以内。In addition, it is preferable that the fluctuation width W L/C 0.5 of L/C 0.5 due to a temperature change is within ±12% within a specific temperature range of -40°C to 80°C.
在这种场合,即使在—40℃~80℃的温度范围内也能够减小上述压电执行元件的位移的温度依存性。In this case, the temperature dependence of the displacement of the piezoelectric actuator can be reduced even in the temperature range of -40°C to 80°C.
上述压电执行元件优选满足下述的要件(e)。The piezoelectric actuator described above preferably satisfies the following requirement (e).
(e)通过用上述压电执行元件在外加电场方向的应变除以电场强度计算的动态应变量在—30℃~80℃的特定温度范围内为250pm/V以上。(e) The amount of dynamic strain calculated by dividing the strain of the above-mentioned piezoelectric actuator in the direction of the applied electric field by the strength of the electric field is 250 pm/V or more in the specified temperature range of -30°C to 80°C.
在上述压电执行元件不满足上述要件(e)的场合,即上述动态应变量在—30℃~80℃的特定温度范围内不足250pm/V的场合,上述压电执行元件的位移有可能减小。When the above-mentioned piezoelectric actuator does not satisfy the above-mentioned requirement (e), that is, if the above-mentioned dynamic strain is less than 250pm/V in the specified temperature range of -30°C to 80°C, the displacement of the above-mentioned piezoelectric actuator may decrease. Small.
另外,上述动态应变量优选在—40℃~80℃的特定温度范围内为250pm/V以上。In addition, the above-mentioned dynamic strain amount is preferably 250 pm/V or more in a specific temperature range of -40°C to 80°C.
在这种场合,在—40℃~80℃的温度范围内,上述压电执行元件的位移也能够增大。In this case, the displacement of the piezoelectric actuator can also be increased in the temperature range of -40°C to 80°C.
其次,上述压电执行元件优选满足下述的要件(f)。Next, the piezoelectric actuator described above preferably satisfies the following requirement (f).
(f)上述表观动态电容C的随温度变化产生的上述波动幅WC[%]在—30℃~160℃的特定温度范围内为±35%以内。(f) The above-mentioned fluctuation width WC [%] of the above-mentioned apparent dynamic capacitance C due to temperature change is within ±35% within a specific temperature range of -30°C to 160°C.
另外,上述压电执行元件优选满足下述的要件(g)。In addition, the piezoelectric actuator described above preferably satisfies the following requirement (g).
(g)上述压电执行元件的位移L的随温度变化产生的上述波动幅WL在—30℃~160℃的特定温度范围内为±14%以内。(g) The above-mentioned fluctuation width WL of the displacement L of the above-mentioned piezoelectric actuator due to temperature changes is within ±14% within a specific temperature range of -30°C to 160°C.
此外,上述压电执行元件优选满足下述的要件(h)。In addition, the piezoelectric actuator described above preferably satisfies the following requirement (h).
(h)如果表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则L/C的随温度变化产生的上述波动幅WL/C在—30℃~160℃的特定温度范围内为±35%以内。(h) If the apparent dynamic capacitance is set to C[F], and the displacement of the piezoelectric actuator is set to L[μm], then the above-mentioned fluctuation amplitude W L/C generated by the change of L/C with temperature is at -30°C Within the specified temperature range of ~160°C, it is within ±35%.
另外,上述压电执行元件优选满足下述的要件(i)。In addition, the piezoelectric actuator described above preferably satisfies the following requirement (i).
(i)如果表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则L/C0.5的随温度变化产生的上述波动幅WL/C 0.5在—30℃~160℃的特定温度范围内为±20%以内。(i) If the apparent dynamic capacitance is set to C[F], and the displacement of the above-mentioned piezoelectric actuator is set to L[μm], then the above-mentioned fluctuation width W L/C 0.5 caused by the temperature change of L/C 0.5 is - Within the specified temperature range of 30°C to 160°C, it is within ±20%.
在上述压电执行元件满足上述(f)~(i)要件中的任何一个以上要件的场合,能够进一步提高上述压电执行元件的温度依存性。即在这种场合,能够在温度为—30℃~160℃的更宽广的温度范围内减小上述压电执行元件的位移的温度依存性。When the piezoelectric actuator satisfies any one or more of the requirements (f) to (i) above, the temperature dependence of the piezoelectric actuator can be further improved. That is, in this case, the temperature dependence of the displacement of the piezoelectric actuator can be reduced in a wider temperature range of -30°C to 160°C.
其次,在上述第2发明中,上述压电执行元件满足上述要件(j)~(1)。Next, in the above-mentioned second invention, the piezoelectric actuator satisfies the above-mentioned requirements (j) to (1).
上述要件(j)中,如果上述压电执行元件的表观动态电容设为C[F]时,则下述式(5)表示的表观动态电容的随温度变化产生的波动幅WC[%]在—30℃~160℃的特定温度范围内为±30%以内。In the above requirement (j), if the apparent dynamic capacitance of the piezoelectric actuator is C[F], the fluctuation width W C of the apparent dynamic capacitance according to the temperature change represented by the following formula (5) [ %] is within ±30% within a specific temperature range of -30°C to 160°C.
WC(%)=[{2×Cmax/(Cmax+Cmin)}—1]×100 (5)W C (%)=[{2×C max /(C max +C min )}—1]×100 (5)
(其中,Cmax表示在—30℃~160℃的表观动态电容的最大值,Cmin表示在—30℃~160℃的表观动态电容的最小值)。(wherein, C max represents the maximum value of the apparent dynamic capacitance at -30°C to 160°C, and C min represents the minimum value of the apparent dynamic capacitance at -30°C to 160°C).
在上述要件(j)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。In the above-mentioned requirement (j), when the above-mentioned piezoelectric actuator is connected in series with a capacitor set at a temperature of 25°C, and a voltage is applied to the above-mentioned piezoelectric actuator and the above-mentioned capacitor, the above-mentioned apparent dynamic capacitance can be obtained by using the above-mentioned The amount of charge Q[C] accumulated in the capacitor is calculated by dividing the voltage V[V] externally applied to the piezoelectric actuator.
上述要件(k)中,如果上述压电执行元件的位移设为L[μm]时,则下述式(6)表示的位移L的随温度变化产生的波动幅WL在—30℃~160℃的特定温度范围内为±14%以内。In the above-mentioned requirement (k), if the displacement of the above-mentioned piezoelectric actuator is L [μm], the fluctuation width W L of the displacement L expressed by the following formula (6) with the temperature change is in the range of -30°C to 160°C °C within the specified temperature range within ±14%.
WL[%]=[{2×Lmax/(Lmax+Lmin)}—1]×100 (6)W L [%]=[{2×L max /(L max +L min )}—1]×100 (6)
(式中,Lmax表示在—30℃~160℃的位移的最大值,Lmin表示在—30℃~160℃的位移的最小值)。(In the formula, L max represents the maximum value of the displacement at -30°C to 160°C, and Lmin represents the minimum value of the displacement at -30°C to 160°C).
上述要件(1)中,如果上述压电执行元件的表观动态电容设为C[F],上述压电执行元件的位移设为L[μm]时,则下述式(7)表示的L/C的随温度变化产生的波动幅WL/C在—30℃~160℃的特定温度范围内为±35%以内。In the above requirement (1), if the apparent dynamic capacitance of the piezoelectric actuator is C[F] and the displacement of the piezoelectric actuator is L[μm], then L expressed by the following formula (7) The fluctuation width W L/C of /C due to temperature change is within ±35% within a specific temperature range of -30°C to 160°C.
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}—1]×100 (7)W L/C [%]=[{2×(L/C) max /((L/C) max +(L/C) min )}—1]×100 (7)
(式中,(L/C)max表示在—30℃~160℃的L/C的最大值,(L/C)min表示在—30℃~160℃的L/C的最小值)。(In the formula, (L/C) max represents the maximum value of L/C at -30°C to 160°C, and (L/C) min represents the minimum value of L/C at -30°C to 160°C).
在上述要件(1)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。In the above-mentioned requirement (1), when the above-mentioned piezoelectric actuator is connected in series with a capacitor set at, for example, a temperature of 25°C, and a voltage is applied to the above-mentioned piezoelectric actuator and the above-mentioned capacitor, the above-mentioned apparent dynamic capacitance can be obtained by using the above-mentioned The amount of charge Q[C] accumulated in the capacitor is calculated by dividing the voltage V[V] externally applied to the piezoelectric actuator.
在上述压电执行元件不满足上述要件(j)~(1)中的任何一项的场合,即在温度为—30℃~160℃时,上述波动幅WC偏离±30%以内的范围、上述波动幅WL偏离±14%以内的范围、以及上述波动幅WL/C偏离±35%以内的范围的场合,温度为—30℃~160℃时的上述压电执行元件的温度依存性有可能增大。When the above-mentioned piezoelectric actuator does not satisfy any one of the above-mentioned requirements (j) to (1), that is, when the temperature is -30°C to 160°C, the above-mentioned fluctuation width W C deviates from the range within ±30%, Temperature dependence of the above-mentioned piezoelectric actuator at a temperature of -30°C to 160°C when the above-mentioned fluctuation width W L is within the range of ±14% and the above-mentioned fluctuation width W L/C is within the range of ±35% It is possible to increase.
上述压电执行元件优选满足上述要件(j)和上述要件(k)这二者。The above-mentioned piezoelectric actuator preferably satisfies both the above-mentioned requirement (j) and the above-mentioned requirement (k).
在这种场合,能够进一步减小上述压电执行元件的温度依存性。In this case, the temperature dependence of the above-mentioned piezoelectric actuator can be further reduced.
上述压电执行元件优选满足上述要件(j)~(1)的全部要件。The piezoelectric actuator described above preferably satisfies all of the above-mentioned requirements (j) to (1).
在这种场合,能够更进一步减小上述压电执行元件的温度依存性。In this case, the temperature dependence of the above-mentioned piezoelectric actuator can be further reduced.
另外,在上述压电执行元件中,表观动态电容的随温度变化产生的上述波动幅WC[%]优选在—40℃~160℃的特定温度范围内为±35%以内。In addition, in the above-mentioned piezoelectric actuator, it is preferable that the above-mentioned fluctuation width W C [%] of the apparent dynamic capacitance according to the temperature change is within ±35% within a specific temperature range of -40°C to 160°C.
此外,上述位移L的随温度变化产生的波动幅WL优选在—40℃~160℃的特定温度范围内为±14%以内。In addition, it is preferable that the temperature-dependent fluctuation width W L of the displacement L is within ±14% within a specific temperature range of -40°C to 160°C.
此外,L/C的随温度变化产生的上述波动幅WL/C优选在—40℃~160℃的特定温度范围内为±35%以内。In addition, it is preferable that the above-mentioned fluctuation width W L/C of L/C due to a temperature change is within ±35% within a specific temperature range of -40°C to 160°C.
这样,在—40℃~160℃的温度范围内,上述波动幅WC、波动幅WL、波动幅WL/C在上述那样特定的范围内的场合,即使在—40℃~160℃的温度范围内也能够减小上述压电执行元件的位移的温度依存性。In this way, in the temperature range of -40°C to 160°C, if the above-mentioned fluctuation width W C , fluctuation width W L , and fluctuation width W L/C are within the above-mentioned specified ranges, even at the temperature range of -40°C to 160°C The temperature dependence of the displacement of the above-mentioned piezoelectric actuator can also be reduced in the temperature range.
上述压电执行元件优选满足下述的要件(m)。The piezoelectric actuator described above preferably satisfies the following requirement (m).
(m)如果上述表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则下述式(8)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5在—30℃~160℃的特定温度范围内为±20%以内。(m) If the above-mentioned apparent dynamic capacitance is C[F], and the displacement of the above-mentioned piezoelectric actuator is L[μm], the fluctuation of L/C 0.5 according to the temperature change represented by the following formula (8) Width W L/C 0.5 is within ±20% within a specific temperature range of -30°C to 160°C.
WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}—1]×100 (8)W L/C 0.5 (%)=[{2×(L/C 0.5 ) max /((L/C 0.5 ) max +(L/C 0.5 ) min )}—1]×100 (8)
(式中,(L/C0.5)max表示在—30℃~160℃的特定温度范围内的L/C0.5的最大值,(L/C0.5)min表示在—30℃~160℃的特定温度范围内的L/C0.5的最小值)。(In the formula, (L/C 0.5 ) max represents the maximum value of L/C 0.5 within the specific temperature range of -30°C to 160°C, and (L/C 0.5 ) min represents the specific temperature range of -30°C to 160°C L/C 0.5 minimum over temperature range).
在上述压电执行元件不满足上述要件(m)的场合,即L/C0.5的随温度变化产生的波动幅WL/C 0.5在—30℃~160℃的特定温度范围内超出±20%的场合,上述压电执行元件的位移的温度依存性有可能增大。When the above piezoelectric actuator does not satisfy the above requirement (m), that is, the fluctuation width W L/C 0.5 of L/ C 0.5 with temperature changes exceeds ±20% within the specified temperature range of -30°C to 160°C In this case, the temperature dependence of the displacement of the above-mentioned piezoelectric actuator may increase.
另外,L/C0.5的随温度变化产生的上述波动幅WL/C 0.5优选在—40℃~160℃的特定温度范围内为±20%以内。In addition, it is preferable that the fluctuation width W L/C 0.5 of L/C 0.5 due to temperature change is within ±20% within a specific temperature range of -40°C to 160°C.
在这种场合,即使在—40℃~160℃的温度范围内,也能够减小上述压电执行元件的位移的温度依存性。In this case, even in the temperature range of -40°C to 160°C, the temperature dependence of the displacement of the piezoelectric actuator can be reduced.
上述压电执行元件优选满足下述的要件(n)。The piezoelectric actuator described above preferably satisfies the following requirement (n).
(n)通过用上述压电执行元件在外加电场方向的应变除以电场强度计算的动态应变量在—30℃~160℃的特定温度范围内为250pm/V以上。(n) The amount of dynamic strain calculated by dividing the strain of the piezoelectric actuator in the direction of the applied electric field by the electric field strength is 250 pm/V or more in the specified temperature range of -30°C to 160°C.
在上述压电执行元件不满足上述要件(n)的场合,即上述动态应变量在—30℃~160℃的特定温度范围内不足250pm/V的场合,上述压电执行元件的位移有可能减小。When the above-mentioned piezoelectric actuator does not satisfy the above-mentioned requirement (n), that is, if the above-mentioned dynamic strain is less than 250pm/V in a specific temperature range of -30°C to 160°C, the displacement of the above-mentioned piezoelectric actuator may decrease. Small.
另外,上述动态应变量优选在—40℃~160℃的温度范围内为250pm/V以上。In addition, it is preferable that the above-mentioned dynamic strain amount is 250 pm/V or more in the temperature range of -40°C to 160°C.
在这种场合,即使在—40℃~160℃的温度范围内,上述压电执行元件的位移也能够增大。In this case, even in the temperature range of -40°C to 160°C, the displacement of the piezoelectric actuator can be increased.
另外,在上述第1以及第2发明中,上述压电执行元件具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源。In addition, in the above-mentioned first and second inventions, the piezoelectric actuator includes, as a driving source, a piezoelectric element constituted by forming a pair of electrodes on the surface of piezoelectric ceramics.
上述压电陶瓷优选由含有选自Li、K以及Na中的至少一种的含碱金属压电陶瓷构成。The above piezoelectric ceramic is preferably composed of an alkali metal-containing piezoelectric ceramic containing at least one selected from Li, K, and Na.
在这种场合,在温度为80℃以上的高温环境下驱动时的漏电流更为增加,并且温度为80℃以上的上述“表观动态电容”的波动幅也比温度为80℃以上的“静电电容”以及“动态电容”的波动幅更大。因此,在这种场合,通过使以表观动态电容作为参数来限定的波动幅满足上述第1发明的上述要件(a)和/或(c)、上述第2发明的上述要件(j)和/或(1),能够更显著地发挥例如定能量驱动以及定电荷驱动的位移的温度依存性减小的上述作用效果。In this case, the leakage current increases even more when driven in a high-temperature environment with a temperature of 80°C or higher, and the fluctuation width of the above-mentioned "apparent dynamic capacitance" at a temperature of 80°C or higher is also larger than that of "" Electrostatic capacitance" and "dynamic capacitance" fluctuate even more. Therefore, in this case, the above-mentioned requirements (a) and/or (c) of the above-mentioned first invention, the above-mentioned requirements (j) and And/or (1), for example, the above-mentioned effect of reducing the temperature dependence of displacement in constant energy driving and constant charge driving can be exhibited more remarkably.
此外,上述压电陶瓷优选为:在上述压电执行元件的整个使用温度范围内(例如温度—30℃~160℃),比电阻为1×106Ω·m以上。此时,能够防止由于电阻发热引起的上述压电陶瓷的破坏。更优选为:上述压电陶瓷在上述压电执行元件的上述使用温度范围内,比电阻为1×108Ω·m以上。在这种场合,上述压电执行元件的寿命能够更加延长。In addition, the piezoelectric ceramic preferably has a specific resistance of 1×10 6 Ω·m or more in the entire operating temperature range of the piezoelectric actuator (for example, temperature -30°C to 160°C). In this case, the destruction of the above-mentioned piezoelectric ceramics due to resistance heating can be prevented. More preferably, the piezoelectric ceramic has a specific resistance of 1×10 8 Ω·m or more within the temperature range in which the piezoelectric actuator is used. In this case, the life of the above-mentioned piezoelectric actuator can be further extended.
此外,上述压电陶瓷优选不含铅。In addition, the piezoelectric ceramics described above preferably do not contain lead.
在这种场合,能够制作不含对环境负荷大的铅的上述压电执行元件。即,能够提高上述压电执行元件对环境的安全性。In this case, it is possible to manufacture the above-mentioned piezoelectric actuator that does not contain lead, which has a large environmental load. That is, the environmental safety of the piezoelectric actuator described above can be improved.
另外,上述压电陶瓷优选为:由以通式{Lix(K1-yNay)1-x}{Nb1-z- wTazSbw}O3(式中,0≤x≤0.2、0≤y≤1、0≤z≤0.4、0≤w≤0.2、x+z+w>0)表示的各向同性钙钛矿型化合物作为主相的多晶体构成,同时由构成该多晶体的各晶粒的特定晶面处于取向状态的晶体取向压电陶瓷构成。In addition, the above-mentioned piezoelectric ceramic is preferably: formed by the general formula {Li x (K 1-y Na y ) 1-x }{Nb 1-z- w Ta z Sb w }O 3 (wherein, 0≤x≤ 0.2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 0.4, 0 ≤ w ≤ 0.2, x + z + w > 0) represented by isotropic perovskite-type compounds as the main phase of the polycrystal, and at the same time composed of the It consists of a crystal-oriented piezoelectric ceramic in which a specific crystal plane of each crystal grain of a polycrystal is oriented.
在这种场合,能够容易地实现满足上述要件(a)~(i)的压电执行元件、和满足上述要件(j)~(n)要件的压电执行元件。In this case, a piezoelectric actuator satisfying the above requirements (a) to (i) and a piezoelectric actuator satisfying the above requirements (j) to (n) can be easily realized.
上述晶体取向压电陶瓷由以各向同性钙钛矿型化合物的一种即铌酸钾钠(K1-yNayNbO3)作为基本组成,并且A位元素(K、Na)的一部分被规定量的Li置换、和/或B位元素(Nb)的一部分被规定量的Ta和/或Sb置换而得到的物质构成。在上述通式中,“x+z+w>0”表示作为置换元素含有Li、Ta以及Sb中的至少一种即可。The above-mentioned crystal-oriented piezoelectric ceramic is basically composed of potassium sodium niobate (K 1-y Na y NbO 3 ), one of the isotropic perovskite-type compounds, and a part of the A-site elements (K, Na) is A predetermined amount of Li is substituted, and/or a part of the B-site element (Nb) is substituted by a predetermined amount of Ta and/or Sb. In the above general formula, "x+z+w>0" means that at least one of Li, Ta, and Sb may be contained as a substituting element.
另外,在上述通式中,“y”表示晶体取向压电陶瓷中含有的K与Na之比。在本发明的晶体取向压电陶瓷中,作为A位元素,含有K或Na的至少一个即可。即对K与Na之比y没有特别限制,可以取0以上1以下的任意值。为了得到高的位移特性,y的值优选为0.05以上0.75以下,更优选为0.20以上0.70以下,进一步优选为0.35以上0.65以下,再优选为0.40以上0.60以下,再进一步优选为0.42以上0.60以下。In addition, in the above general formula, "y" represents the ratio of K to Na contained in the crystal-oriented piezoelectric ceramic. In the crystal-oriented piezoelectric ceramic of the present invention, at least one of K and Na may be contained as the A-site element. That is, the ratio y of K to Na is not particularly limited, and can take any value between 0 and 1. In order to obtain high displacement characteristics, the value of y is preferably from 0.05 to 0.75, more preferably from 0.20 to 0.70, still more preferably from 0.35 to 0.65, still more preferably from 0.40 to 0.60, and still more preferably from 0.42 to 0.60.
“x”表示Li置换A位元素的K和/或Na的置换量。K和/或Na的一部分被Li置换时,可以得到提高压电特性等、提高居里温度以及/或促进致密化的效果。X的值具体优选为0以上0.2以下。在x值超过0.2时,位移特性降低,因此并不理想。x值优选为0以上0.15以下,更优选为0以上0.10以下。"x" represents the replacement amount of K and/or Na of the A-site element replaced by Li. When a part of K and/or Na is substituted by Li, effects such as improvement of piezoelectric characteristics, increase of Curie temperature, and/or acceleration of densification can be obtained. The value of X is specifically preferably 0 or more and 0.2 or less. When the value of x exceeds 0.2, the displacement characteristic is deteriorated, which is not preferable. The x value is preferably from 0 to 0.15, and more preferably from 0 to 0.10.
“z”表示Ta置换B位元素的Nb的置换量。Nb的一部分被Ta置换时,可以得到提高位移特性等的效果。z的值具体优选为0以上0.4以下。z值超过0.4时,居里温度降低,作为家用电器和汽车用的压电材料使用较为困难,因此并不理想。z值优选为0以上0.35以下,更优选为0以上0.30以下。"z" represents the amount of substitution of Ta for Nb of the B-site element. When a part of Nb is substituted by Ta, effects such as improvement of displacement characteristics can be obtained. The value of z is specifically preferably from 0 to 0.4. When the z value exceeds 0.4, the Curie temperature decreases, and it is difficult to use as a piezoelectric material for home appliances and automobiles, so it is not preferable. The z value is preferably from 0 to 0.35, and more preferably from 0 to 0.30.
此外,“w”表示Sb置换B位元素的Nb的置换量。Nb的一部分被Sb置换时,可以得到提高位移特性等的效果。w的值具体优选为0以上0.2以下。w值超过0.2时,位移特性以及/或居里温度降低,所以并不理想。w值优选为0以上0.15以下。Also, "w" represents the amount of substitution of Nb in which Sb is substituted for the B-site element. When a part of Nb is substituted by Sb, effects such as improvement of displacement characteristics can be obtained. The value of w is specifically preferably 0 or more and 0.2 or less. When the w value exceeds 0.2, the displacement characteristics and/or the Curie temperature are lowered, which is not preferable. The w value is preferably from 0 to 0.15.
另外,上述晶体取向压电陶瓷中,随着从高温下降到低温,结晶相发生立方晶→正方晶(第1结晶相转变温度=居里温度)、正方晶→斜方晶(第2结晶相转变温度)、斜方晶→菱形晶(第3结晶相转变温度)的变化。在高于第1结晶相转变温度的温度区域,成为立方晶,因此位移特性消失,并且在低于第2结晶相转变温度的温度区域,成为斜方晶,位移以及表观动态静电电容的温度依存性增大。因此,优选通过使第1结晶相转变温度高于使用温度范围且第2结晶相转变温度低于使用温度范围,可以使压电陶瓷在整个使用温度范围为正方晶。In addition, in the above-mentioned crystal-oriented piezoelectric ceramics, as the temperature decreases from high temperature to low temperature, the crystal phase changes from cubic crystal to tetragonal crystal (the first crystal phase transition temperature = Curie temperature), and from tetragonal crystal to orthorhombic crystal (second crystal phase). transition temperature), orthorhombic → rhombohedral (third crystal phase transition temperature). In the temperature region higher than the first crystallization phase transition temperature, the displacement characteristic disappears due to cubic crystal formation, and in the temperature region lower than the second crystallization phase transition temperature, it becomes orthorhombic crystallization, displacement and apparent dynamic capacitance temperature Dependency increases. Therefore, it is preferable that the piezoelectric ceramics can be made tetragonal throughout the entire temperature range of use by making the first crystal phase transition temperature higher than the temperature range of use and the second crystal phase transition temperature lower than the temperature range of use.
但是,作为上述晶体取向压电陶瓷的基本组成的铌酸钾钠(K1- yNayNbO3),根据“美国陶瓷协会杂志:Journal of American CeramicSociety”,美国,1959年,第42卷[9]p.438~443、以及美国专利2976246号说明书,随着从高温下降到低温,结晶相发生立方晶→正方晶(第1结晶相转变温度=居里温度)、正方晶→斜方晶(第2结晶相转变温度)、斜方晶→菱形晶(第3结晶相转变温度)的变化。并且,在“y=0.5”时的第1结晶相转变温度为约420℃、第2结晶相转变温度为约190℃、第3结晶相转变温度为约—150℃。因此,正方晶的温度区域为190~420℃的范围,与工业产品的使用温度范围的—40℃~160℃不一致。However, potassium sodium niobate (K 1- y Na y NbO 3 ), which is a basic constituent of the above-mentioned crystal-oriented piezoelectric ceramics, according to "Journal of American Ceramic Society", USA, 1959, Vol. 42 [ 9] p.438~443, and US Patent No. 2976246 specification, as the temperature drops from high temperature to low temperature, the crystal phase changes from cubic crystal to tetragonal crystal (first crystal phase transition temperature = Curie temperature), tetragonal crystal to orthorhombic crystal (second crystal phase transition temperature), orthorhombic → rhombohedral (third crystal phase transition temperature). In addition, the first crystal phase transition temperature at "y=0.5" is about 420°C, the second crystal phase transition temperature is about 190°C, and the third crystal phase transition temperature is about -150°C. Therefore, the temperature range of the tetragonal crystal is in the range of 190°C to 420°C, which is inconsistent with the operating temperature range of industrial products -40°C to 160°C.
另一方面,上述晶体取向压电陶瓷中,对于基本组成的铌酸钾钠(K1 -yNayNbO3),通过使Li、Ta、Sb的置换元素的量改变,能够自由改变第1结晶相转变温度以及第2结晶相转变温度。On the other hand, in the above-mentioned crystal-oriented piezoelectric ceramics, for the basic composition of potassium sodium niobate (K 1 -y Na y NbO 3 ), by changing the amount of Li, Ta, and Sb substituting elements, the first element can be freely changed. The crystal phase transition temperature and the second crystal phase transition temperature.
对于压电特性为最大时的y=0.4~0.6,进行了Li、Ta、Sb的置换量和结晶相转变温度实测值的多元回归(multiple regression)分析,结果示于下述式B1、式B2。For y = 0.4 to 0.6 when the piezoelectric characteristic is at its maximum, multiple regression analysis was performed on the amount of substitution of Li, Ta, and Sb and the actual measurement value of the crystallization phase transition temperature. The results are shown in the following formulas B1 and B2. .
从式B1和式B2知道,Li置换量具有使第1结晶相转变温度升高、且使第2结晶相转变温度降低的作用。另外,Ta和Sb具有使第1结晶相转变温度降低、且使第2结晶相转变温度降低的作用。From Formula B1 and Formula B2, it is known that the amount of Li substitution has the effect of raising the first crystal phase transition temperature and lowering the second crystal phase transition temperature. In addition, Ta and Sb have the effect of lowering the first crystal phase transition temperature and lowering the second crystal phase transition temperature.
第1结晶相转变温度=(388+9x—5z—17w)±50[℃] (式B1)The first crystalline phase transition temperature = (388+9x—5z—17w)±50[°C] (Formula B1)
第2结晶相转变温度=(190—18.9x—3.9z—5.8w)±50[℃] (式B2)The second crystalline phase transition temperature = (190—18.9x—3.9z—5.8w)±50[°C] (Formula B2)
第1结晶相转变温度是压电性完全消失的温度,且在其附近动态电容急剧增大,因此优选为(产品的使用环境上限温度+60℃)以上。第2结晶相转变温度仅仅是结晶相转变的温度,压电性不消失,因此设定在不会对位移或动态电容的温度依存性产生不良影响的范围内即可,所以优选为(产品的使用环境下限温度+40℃)以下。The first crystal phase transition temperature is the temperature at which the piezoelectricity completely disappears, and the dynamic capacitance increases rapidly in the vicinity thereof, so it is preferably (the upper limit temperature of the product use environment + 60° C.) or higher. The second crystalline phase transition temperature is only the temperature at which the crystalline phase transitions, and the piezoelectricity does not disappear, so it can be set within a range that does not adversely affect the temperature dependence of displacement or dynamic capacitance, so it is preferably (of the product) The lower limit temperature of the operating environment is below +40°C).
另一方面,产品的使用环境上限温度根据用途有所不同,分别为60℃、80℃、100℃、120℃、140℃、160℃等。产品的使用环境下限温度分别为—30℃、—40℃等。On the other hand, the upper limit temperature of the product's operating environment varies depending on the application, and is 60°C, 80°C, 100°C, 120°C, 140°C, 160°C, etc. The lower limit temperature of the product's use environment is -30°C, -40°C, etc.
因此,由于上述式B1所示的第1结晶相转变温度优选为120℃以上,所以“x”、“z”、“w”优选满足(388+9x—5z—17w)+50≥120。Therefore, since the first crystal phase transition temperature represented by the above formula B1 is preferably 120°C or higher, "x", "z", and "w" preferably satisfy (388+9x-5z-17w)+50≥120.
而且,由于式B2所示的第2结晶相转变温度优选为10℃以下,所以“x”、“z”、“w”优选满足(190—18.9x—3.9z—5.8w)—50≤10。Moreover, since the second crystal phase transition temperature shown in formula B2 is preferably below 10°C, "x", "z", and "w" preferably satisfy (190—18.9x—3.9z—5.8w)—50≦10 .
即,在上述晶体取向压电陶瓷中,上述通式:{Lix(K1-yNay)1-x}{Nb1 -z-wTazSbw}O3中的x、y以及z优选满足下述式(9)和式(10)的关系。That is, in the above crystal-oriented piezoelectric ceramic, x, y and z in the above general formula: {Li x (K 1-y Na y ) 1-x }{Nb 1 -zw Ta z Sb w }O 3 are preferably The relationship of the following formula (9) and formula (10) is satisfied.
9x—5z—17w≥—318 (9)9x—5z—17w≥—318 (9)
—18.9x—3.9z—5.8w≤—130 (10)—18.9x—3.9z—5.8w≤—130 (10)
另外,上述晶体取向压电陶瓷存在仅仅由上述通式表示的各向同性钙钛矿型化合物(第一KNN系化合物)构成的场合、以及主动地添加其它元素或被其它元素置换的场合。In addition, the above-mentioned crystal-oriented piezoelectric ceramics may be composed only of the isotropic perovskite compound (first KNN-based compound) represented by the above general formula, or may be actively added or substituted by other elements.
在前者的场合,优选仅仅由第一KNN系化合物构成,但是只要能够保持各向同性钙钛矿型的晶体结构、且对烧结特性、压电特性等各种特性无不良影响,则也可以含有其它元素或其它相。特别在用于制造上述晶体取向压电陶瓷的原料中,在可从市场购入的纯度为99%至99.9%的工业原料中含有的杂质的混入是不可避免的。例如,在上述晶体取向压电陶瓷的原料之一的Nb2O5中,作为来自原料矿石或制造方法的杂质,某些场合含有最多不足0.1wt%的Ta、最多不足0.15wt%的F。另外,在后述的实施例1中将进行叙述,在制造工序使用Bi的场合,其混入是不可避免的。In the case of the former, it is preferable to consist only of the first KNN-based compound, but as long as the isotropic perovskite crystal structure can be maintained and there is no adverse effect on various properties such as sintering characteristics and piezoelectric characteristics, it may also contain other elements or other phases. Especially in the raw materials used to manufacture the above-mentioned crystal-oriented piezoelectric ceramics, the mixing of impurities contained in commercially available commercial raw materials with a purity of 99% to 99.9% is unavoidable. For example, Nb 2 O 5 , one of the raw materials of the above-mentioned crystal-oriented piezoelectric ceramics, sometimes contains less than 0.1 wt% of Ta and less than 0.15 wt% of F as impurities derived from raw material ores or production methods. In addition, as will be described in Example 1 described later, when Bi is used in the manufacturing process, its contamination is unavoidable.
在后者的场合,例如通过添加Mn可具有降低表观动态电容的温度依存性、提高位移的效果,而且还具有减低介质损耗tanδ、提高机械品质系数Qm的效果,因此,作为共振驱动型的执行元件可以得到理想的特性。In the latter case, for example, by adding Mn, it can reduce the temperature dependence of the apparent dynamic capacitance and increase the displacement effect, and it also has the effect of reducing the dielectric loss tanδ and improving the mechanical quality coefficient Qm. Therefore, as a resonance-driven type Actuating components can get ideal characteristics.
另外,在上述晶体取向压电陶瓷中,构成以上述通式表示的各向同性钙钛矿型化合物作为主相的多晶体的各晶粒的特定晶面处于取向状态。其中,上述晶粒中取向的特定晶面优选为拟立方(pseudo-cubic){100}面。In addition, in the above-mentioned crystal-oriented piezoelectric ceramics, specific crystal planes of each crystal grain constituting the polycrystal having the isotropic perovskite-type compound represented by the above-mentioned general formula as a main phase are in an oriented state. Among them, the specific crystal plane oriented in the crystal grains is preferably a pseudo-cubic {100} plane.
另外,所谓“拟立方{HKL}”是指,各向同性钙钛矿型化合物的结构通常为正方晶、斜方晶、三方晶等,与立方晶相比略有变形,但由于该变形只是一点点,因此被当作立方晶并用密勒指数表示。In addition, the so-called "quasi-cubic {HKL}" means that the structure of the isotropic perovskite compound is usually tetragonal, orthorhombic, trigonal, etc., which are slightly deformed compared with the cubic crystal, but because the deformation is only A little bit, so it is regarded as a cubic crystal and expressed by Miller index.
在这种场合,能够进一步增大上述压电执行元件的位移,同时能够减小表观动态电容的温度依存性。In this case, the displacement of the piezoelectric actuator can be further increased, and at the same time, the temperature dependence of the apparent dynamic capacitance can be reduced.
此外,对于拟立方{100}面进行面取向的场合,面取向的程度可以用以下的数学式1表示的基于劳特盖尔丁(Lotgering)法的平均取向度F(HKL)表示。In addition, when plane-orienting a pseudo-cubic {100} plane, the degree of plane orientation can be represented by an average orientation degree F(HKL) based on the Lotgering method represented by the following
数学式1
另外,在数学式1中,∑I(hk1)是对晶体取向压电陶瓷测定的所有晶面(hk1)的X射线衍射强度的总和,∑I0(hk1)是对具有与晶体取向压电陶瓷同样组成的无取向陶瓷测定的所有晶面(hk1)的X射线衍射强度的总和。而且,∑’I(HKL)是对晶体取向压电陶瓷测定的结晶学等价的特定晶面(HKL)的X射线衍射强度的总和。∑’I0(HKL)是对具有与晶体取向压电陶瓷同样组成的无取向陶瓷测定的结晶学等价的特定晶面(HKL)的X射线衍射强度的总和。In addition, in
因此,在构成多晶体的各晶粒为无取向的场合,平均取向度F(HKL)为0%。而在构成多晶体的所有晶粒的(HKL)面相对于测定面平行取向的场合,平均取向度F(HKL)为100%。Therefore, when each crystal grain constituting the polycrystal is non-oriented, the average degree of orientation F(HKL) is 0%. On the other hand, when the (HKL) planes of all crystal grains constituting the polycrystal are oriented parallel to the measurement plane, the average orientation degree F(HKL) is 100%.
一般地,取向的晶粒的比例越多,越能得到高的特性。例如,在使特定晶面进行面取向的场合,为了得到高的压电特性等,由上述数学式1表示的基于劳特盖尔丁(Lotgering)法的平均取向度F(HKL)优选为30%以上,更优选为50%以上,进一步优选为70%以上。另外,使其取向的特定晶面优选是与极化轴垂直的面。例如,在上述钙钛矿型化合物的结晶系为正方晶的场合,使其取向的特定晶面优选为拟立方{100}面。Generally, the higher the ratio of oriented crystal grains, the higher the properties can be obtained. For example, when plane-orienting a specific crystal plane, in order to obtain high piezoelectric properties, etc., the average orientation degree F(HKL) based on the Lotgering method represented by the
即,上述晶体取向压电陶瓷优选为:由劳特盖尔丁法得到的拟立方{100}面的取向度为30%以上,且在10℃~160℃的温度范围内,结晶系为正方晶(权利要求第22项)。That is, it is preferable that the above-mentioned crystal-oriented piezoelectric ceramic has a degree of orientation of a pseudo-cubic {100} plane obtained by the Lautergeldin method of 30% or more, and a crystal system of a square crystal system in a temperature range of 10°C to 160°C. crystal (claim 22).
另外,在使特定晶面进行轴取向的场合,其取向的程度不能用与面取向同样的取向度(数学式1)定义。但是,在对垂直于取向轴的面进行X射线衍射的场合,可以采用涉及(HKL)衍射的Lotgering法的平均取向度(轴取向度)来表示轴取向的程度。另外,特定晶面大致完全进行轴取向的成形体的轴取向度与对特定晶面大致完全进行面取向的成形体所测定的轴取向度为相同程度。In addition, when a specific crystal plane is axially oriented, the degree of orientation cannot be defined by the same degree of orientation (equation 1) as that of plane orientation. However, when performing X-ray diffraction on a plane perpendicular to the orientation axis, the degree of axis orientation can be represented by the average orientation degree (axis orientation degree) of the Lotgering method involving (HKL) diffraction. In addition, the degree of axial orientation of a molded body in which a specific crystal plane is substantially completely axially oriented has the same degree of axial orientation as that measured for a molded body in which a specific crystal plane is substantially completely plane oriented.
其次,就使用上述晶体取向压电陶瓷的压电执行元件的特性进行说明。Next, the characteristics of piezoelectric actuators using the above crystal-oriented piezoelectric ceramics will be described.
在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,能够将在—30℃~160℃的温度范围内、在电场强度为100V/mm以上且在不会破坏绝缘的电场强度以下的具有恒定振幅的电场驱动条件下产生的动态应变量D33控制为250pm/V以上。如果将组成以及工艺进一步优化,则能够控制为300pm/V以上,进而为350pm/V以上,再进一步为400pm/V以上,再进一步为450pm/V以上,更进一步为500pm/V以上。In the piezoelectric actuator using the above-mentioned crystal-oriented piezoelectric ceramic as a driving source, it is possible to control the electric field strength at an electric field strength of 100 V/mm or more without breaking insulation in a temperature range of -30°C to 160°C. The dynamic strain amount D33 generated under the electric field driving condition with a constant amplitude below is controlled to be 250 pm/V or more. If the composition and process are further optimized, it can be controlled to be more than 300 pm/V, further more than 350 pm/V, further more than 400 pm/V, further more than 450 pm/V, and further more than 500 pm/V.
另外,位移的波动幅(=动态应变量的波动幅)如果以(最大值—最小值)/2为基准值,则能够控制为±14%以下。如果将组成以及工艺进一步优化,则能够控制为±12%以下,进而为±10%以下,更进一步为±8%以下。Also, the fluctuation width of the displacement (=the fluctuation width of the dynamic strain amount) can be controlled to be ±14% or less if the reference value is (maximum value−minimum value)/2. If the composition and process are further optimized, it can be controlled to be less than ±12%, further to be less than ±10%, and further to be less than ±8%.
另外,在—30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移的波动幅(=动态应变量的波动幅)如果是以(最大值—最小值)/2为基准值,则能够控制为±14%以下。如果将组成以及工艺进一步优化,则能够控制为±12%以下,进而为±9%以下,进一步为±7%以下,再进一步为±5%以下,再进一步为±4%以下。因此,可以得到定电压驱动的位移的温度依存性小的执行元件。In addition, in the temperature range of -30°C to 80°C, the fluctuation amplitude of the displacement (= the fluctuation amplitude of the dynamic strain amount) generated under the electric field drive condition with a constant amplitude of the electric field strength of 100V/mm or more is expressed as ( Maximum value-minimum value)/2 is the reference value, and it can be controlled to be ±14% or less. If the composition and process are further optimized, it can be controlled to be below ±12%, further below ±9%, further below ±7%, further below ±5%, and further below ±4%. Therefore, it is possible to obtain an actuator with little temperature dependence of displacement driven by constant voltage.
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在—30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的表观动态电容的波动幅如果是以(最大值—最小值)/2为基准值,则能够控制为±35%以下。如果将组成以及工艺进一步优化,则能够控制为±32%以下,进而为±30%以下,进一步为±28%以下。In addition, in the piezoelectric actuator using the above-mentioned crystal-oriented piezoelectric ceramic as the driving source, in the temperature range of -30°C to 160°C, under the electric field driving condition with a constant amplitude of electric field strength of 100V/mm or more The fluctuation width of the generated apparent dynamic capacitance can be controlled to be ±35% or less if the reference value is (maximum value-minimum value)/2. If the composition and process are further optimized, it can be controlled to be less than ±32%, further to be less than ±30%, and further to be less than ±28%.
此外,在—30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的表观动态电容的波动幅如果是以(最大值—最小值)/2为基准值,则能够控制为±11%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下,进一步为±5%以下,再进一步为±4%以下。因此,在定电荷驱动以及定能量驱动的场合,可以得到端子电压的温度依存性小的执行元件。In addition, in the temperature range of -30°C to 80°C, if the fluctuation amplitude of the apparent dynamic capacitance generated under the electric field driving condition with a constant amplitude of electric field strength above 100V/mm is (maximum value - minimum value) /2 is the reference value, and it can be controlled to be ±11% or less. If the composition and process are further optimized, it can be controlled to be less than ±9%, further less than ±7%, further less than ±5%, and further less than ±4%. Therefore, in the case of constant charge drive and constant energy drive, an actuator with little temperature dependence of the terminal voltage can be obtained.
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在—30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/表观动态电容的波动幅如果是以In addition, in the piezoelectric actuator using the above-mentioned crystal-oriented piezoelectric ceramic as the driving source, in the temperature range of -30°C to 160°C, under the electric field driving condition with a constant amplitude of electric field strength of 100V/mm or more The amplitude of the resulting displacement/apparent dynamic capacitance fluctuation is given by
(最大值—最小值)/2为基准值,则能够控制为±35%以下。如果将组成以及工艺进一步优化,则能够控制为±30%以下,进而为±25%以下。(Maximum value-Minimum value)/2 is used as a reference value, and it can be controlled to be ±35% or less. If the composition and process are further optimized, it can be controlled to be less than ±30%, further to be less than ±25%.
此外,在—30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/表观动态电容的波动幅如果以(最大值—最小值)/2为基准值,则能够控制为±12%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下。因此,可以得到定电荷驱动中位移的温度依存性小的执行元件。In addition, in the temperature range of -30°C to 80°C, if the displacement/apparent dynamic capacitance fluctuation amplitude generated under the electric field driving condition with a constant amplitude of electric field strength above 100V/mm is expressed as (maximum value - minimum value )/2 as a reference value, it can be controlled to be ±12% or less. If the composition and process are further optimized, it can be controlled to be less than ±9%, further to be less than ±7%. Therefore, an actuator with little temperature dependence of displacement in constant charge driving can be obtained.
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在—30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/(表观动态电容)0.5的波动幅如果是以(最大值—最小值)/2为基准值,则能够控制为±20%以下。如果将组成以及工艺进一步优化,则能够控制为±15%以下。In addition, in the piezoelectric actuator using the above-mentioned crystal-oriented piezoelectric ceramic as the driving source, in the temperature range of -30°C to 160°C, under the electric field driving condition with a constant amplitude of electric field strength of 100V/mm or more If the fluctuation width of generated displacement/(apparent dynamic capacitance) 0.5 is based on (maximum value-minimum value)/2, it can be controlled to be ±20% or less. If the composition and process are further optimized, it can be controlled to be below ±15%.
此外,在—30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/(表观动态电容)0.5的波动幅如果是以(最大值—最小值)/2为基准值,则能够控制为±12%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下。因此,可以得到定能量驱动中位移的温度依存性小的执行元件。In addition, in the temperature range of -30°C to 80°C, the displacement/(apparent dynamic capacitance) generated under the electric field drive condition with a constant amplitude of electric field strength of 100V/mm or more is 0.5 if the fluctuation amplitude is (maximum value-minimum value)/2 as the reference value, it can be controlled to be ±12% or less. If the composition and process are further optimized, it can be controlled to be less than ±9%, further to be less than ±7%. Therefore, an actuator with little temperature dependence of displacement during constant energy driving can be obtained.
另外,可以使上述压电执行元件的位移发生源的全部由上述晶体取向压电陶瓷构成,但在不影响压电执行元件的位移特性的范围内,也可以将上述通式(1)表示的压电陶瓷与其它压电陶瓷组合来构成压电执行元件。例如,在为层叠执行元件的场合,可以使压电陶瓷中的50%以上的体积由上述通式(1)表示的晶体取向压电陶瓷构成,而剩余的不足50%由钛酸钡系压电陶瓷等构成。In addition, all the displacement generating sources of the piezoelectric actuator may be made of the above-mentioned crystal-oriented piezoelectric ceramics, but within the range that does not affect the displacement characteristics of the piezoelectric actuator, the expression expressed by the above general formula (1) may also be Piezoelectric ceramics are combined with other piezoelectric ceramics to form piezoelectric actuators. For example, in the case of a laminated actuator, more than 50% of the volume of the piezoelectric ceramics can be composed of crystal-oriented piezoelectric ceramics represented by the above general formula (1), and the remaining less than 50% can be made of barium titanate-based piezoelectric ceramics. electric ceramics etc.
其次,就压电陶瓷与具有正的温度特性的半导体元件并联连接而成的执行元件进行叙述。Next, an actuator in which a piezoelectric ceramic and a semiconductor element with a positive temperature characteristic are connected in parallel will be described.
在使用上述压电陶瓷构成的压电执行元件中,在—30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移、表观动态电容、位移/表观动态电容、位移/(表观动态电容)0.5的波动幅较小,能够得到温度特性良好的执行元件。但是,在—30℃~160℃的温度范围内,尽管位移的波动幅较小,但表观动态电容有可能增加一些。In the piezoelectric actuator composed of the above-mentioned piezoelectric ceramics, the displacement and apparent dynamics generated under the driving condition of an electric field with a constant amplitude and an electric field strength of 100 V/mm or more in the temperature range of -30°C to 80°C Capacitance, Displacement/Apparent Dynamic Capacitance, Displacement/(Apparent Dynamic Capacitance) 0.5 has a small fluctuation range, and an actuator with good temperature characteristics can be obtained. However, in the temperature range of -30°C to 160°C, although the fluctuation of the displacement is small, the apparent dynamic capacitance may increase a little.
为了调查其原因,去除压电执行元件的漏电流成分后测定了动态电容,结果动态电容在80℃以上的温度区域也不增加。即可以知道,上述压电陶瓷在高于80℃的温度区域,漏电流有很大增加。这是因为比电阻的值与温度为25℃时的值相比,大约降低2个数量级左右的缘故。温度为25℃的比电阻具有1010Ω·m以上的值。To investigate the cause, the dynamic capacitance was measured after removing the leakage current component of the piezoelectric actuator. As a result, the dynamic capacitance did not increase even in the temperature range above 80°C. That is, it can be seen that the leakage current of the above-mentioned piezoelectric ceramics greatly increases in a temperature region higher than 80°C. This is because the value of the specific resistance is about 2 orders of magnitude lower than the value at a temperature of 25°C. The specific resistance at a temperature of 25° C. has a value of 10 10 Ω·m or more.
从中知道,为了减小—30℃~160℃的温度区域的表观动态电容的波动幅,将在大约80℃以下的温度区域电阻较低、在超过大约80℃的高温区域电阻增大那样的具有正的电阻温度系数的半导体元件与执行元件并联电连接,并且按照PTC电阻器的温度与压电元件的温度大致相等的方式配置即可。这样,在80℃以下时,PTC电阻器中流过较多电流,在80℃以上时,PTC电阻器中几乎不流过电流,因此执行元件的表观动态电容的波动幅能够减小。其结果,能够在—30℃~160℃的宽广的温度范围内,得到定电荷驱动以及定能量驱动中的端子电压的温度依存性小、且位移的温度依存性小的压电执行元件。From this, it is known that in order to reduce the fluctuation width of the apparent dynamic capacitance in the temperature range of -30°C to 160°C, the resistance is lowered in the temperature range below about 80°C, and the resistance is increased in the high temperature range exceeding about 80°C. A semiconductor element having a positive temperature coefficient of resistance may be electrically connected in parallel to the actuator, and the temperature of the PTC resistor may be substantially equal to the temperature of the piezoelectric element. In this way, when the temperature is below 80°C, a large amount of current flows through the PTC resistor, and when the temperature is above 80°C, almost no current flows through the PTC resistor, so the fluctuation width of the apparent dynamic capacitance of the actuator can be reduced. As a result, in a wide temperature range of -30°C to 160°C, a piezoelectric actuator with small temperature dependence of terminal voltage and small temperature dependence of displacement in constant charge drive and constant energy drive can be obtained.
即,上述压电执行元件优选为:包含具有正的电阻温度系数的PTC电阻器,且该PTC电阻器与具有负的电阻温度系数的上述压电陶瓷并联电连接,同时按照上述PTC电阻器的温度与上述压电陶瓷的温度大致相等的位置关系进行配置(权利要求第15项)。That is, the above-mentioned piezoelectric actuator preferably includes a PTC resistor having a positive temperature coefficient of resistance, and the PTC resistor is electrically connected in parallel with the above-mentioned piezoelectric ceramic having a negative temperature coefficient of resistance, and at the same time according to the above-mentioned PTC resistor The temperature is arranged in a positional relationship that is substantially equal to the temperature of the piezoelectric ceramic (claim 15).
在此,所谓大致相等的温度是指,上述压电执行元件在驱动时的上述压电陶瓷(压电元件)与PTC电阻器的温度差为40℃以内,更优选为30℃以内,进一步优选为20℃以内,更进一步优选为10℃以内。Here, the substantially equal temperature means that the temperature difference between the piezoelectric ceramic (piezoelectric element) and the PTC resistor when the piezoelectric actuator is driven is within 40°C, more preferably within 30°C, and even more preferably It is within 20°C, more preferably within 10°C.
另外,配置的位置关系有:上述PTC电阻器与压电陶瓷相接触地配置的场合、在压电执行元件的引线端子之间设置PTC电阻器的场合、以及在与压电执行元件不同的部件即连接器上配置PTC电阻器的场合等。In addition, the positional relationship of the arrangement includes: when the above-mentioned PTC resistor is arranged in contact with the piezoelectric ceramics, when the PTC resistor is provided between the lead terminals of the piezoelectric actuator, and in a part different from the piezoelectric actuator. That is, when a PTC resistor is placed on the connector, etc.
此外,PTC电阻器的电阻温度特性优选是,在超过大约80℃的高温时电阻值急剧上升的钛酸钡系的半导体元件。即,上述PTC电阻器优选是钛酸钡系半导体,且在温度为80℃以上的温度区域中具有正的电阻温度系数。(权利要求第16项)。In addition, the resistance-temperature characteristic of the PTC resistor is preferably a barium titanate-based semiconductor element whose resistance value rises rapidly at a high temperature exceeding about 80°C. That is, the above-mentioned PTC resistor is preferably a barium titanate-based semiconductor, and has a positive temperature coefficient of resistance in a temperature range of 80° C. or higher. (claim 16).
在这种场合,80℃以上的温度下的PTC半导体的绝缘性更加提高,因此执行元件与PTC元件的并联电路中流过的漏电流能够减小。另外,在80℃以上时电阻值急剧上升的钛酸钡系半导体由于不含有居里温度向高温偏移的添加物铅,因此作为执行元件也不会含有铅,所以更加优选。In this case, the insulation of the PTC semiconductor at a temperature of 80° C. or higher is further improved, so that the leakage current flowing in the parallel circuit of the actuator and the PTC element can be reduced. In addition, the barium titanate-based semiconductor whose resistance value rises sharply at 80°C or higher does not contain lead as an additive that shifts the Curie temperature to high temperatures, and therefore does not contain lead as an actuator, so it is more preferable.
进而,在执行元件是气密组件(package)型,且半导体元件设置在气密组件内部的场合,执行元件中使用的绝缘树脂等在长时间使用时会热分解,有可能消耗气密组件内部的氧,所以优选即使在低氧浓度气氛下电阻值也不降低的耐还原性的钛酸钡系的半导体元件。Furthermore, when the actuator is an airtight package type, and the semiconductor element is installed inside the airtight package, the insulating resin used in the actuator will be thermally decomposed when used for a long time, and the inside of the airtight package may be consumed. Therefore, a reduction-resistant barium titanate-based semiconductor element whose resistance value does not decrease even in an atmosphere with a low oxygen concentration is preferable.
另外,PTC电阻器的电阻值如果较低,则外加到执行元件上的电压也降低,因此PTC电阻器的电阻值优选比压电执行元件在驱动时的压电执行元件的阻抗充分大。In addition, if the resistance value of the PTC resistor is low, the voltage applied to the actuator is also reduced, so the resistance value of the PTC resistor is preferably sufficiently larger than the impedance of the piezoelectric actuator when the piezoelectric actuator is driven.
另外,伴随压电执行元件的驱动,PTC电阻器自身发热或不发热都没有关系。在伴随自身发热的场合,例如,通过在容易将热传导给压电元件的部位配置PTC电阻器,能够使其起到温度加热器的作用,使执行元件的使用下限温度升高。即,通过使工作温度范围变窄,能够实质上减小执行元件的表观动态电容等的波动幅。特别是钛酸钡系的半导体元件由于是在其居里温度下电阻值急剧上升的恒温度加热器,所以适合于PTC电阻器。In addition, it does not matter whether the PTC resistor itself generates heat or not due to the drive of the piezoelectric actuator. In the case of self-heating, for example, by arranging a PTC resistor at a position where heat is easily transferred to the piezoelectric element, it can function as a temperature heater and increase the lower limit temperature of the actuator. That is, by narrowing the operating temperature range, it is possible to substantially reduce the fluctuation width of the apparent dynamic capacitance of the actuator and the like. In particular, barium titanate-based semiconductor elements are suitable for PTC resistors because they are constant-temperature heaters whose resistance value rises rapidly at the Curie temperature.
另一方面,在不伴随自身发热的场合,执行元件与半导体元件的并联电路中流过的电流减小,因此能够抑制电路成本的上升。On the other hand, when self-heating is not involved, the current flowing in the parallel circuit of the actuator and the semiconductor element is reduced, so that the increase in circuit cost can be suppressed.
另外,上述压电执行元件优选为:具有由多个压电陶瓷层叠而形成的层叠型压电陶瓷作为上述压电陶瓷,并用于燃料喷射阀(权利要求第17项)。In addition, it is preferable that the piezoelectric actuator has a laminated piezoelectric ceramic formed by laminating a plurality of piezoelectric ceramics as the piezoelectric ceramic and is used for a fuel injection valve (claim 17).
在这种场合,能够最大限度发挥上述压电执行元件的特性。In this case, the characteristics of the above-mentioned piezoelectric actuator can be brought into full play.
其次,关于本发明的压电执行元件的构成的一例,使用图36进行说明。Next, an example of the configuration of the piezoelectric actuator of the present invention will be described using FIG. 36 .
如该图所示那样,压电执行元件1可以由例如具有压电陶瓷的压电元件2、保持压电元件的保持构件4、收容压电元件等的外罩构件3、以及传递压电元件的位移的传递构件5构成。As shown in the figure, the
作为压电元件2,如后述的图38所示那样,可以使用例如将压电陶瓷21与内部电极22和23交替层叠多个而构成的层叠型的压电元件等。As the
另外,作为压电元件,可以使用通过将一片压电陶瓷夹于2片内部电极中而构成的单板的压电元件(图示略)。In addition, as the piezoelectric element, a single-plate piezoelectric element (not shown) configured by sandwiching one piece of piezoelectric ceramic between two internal electrodes can be used.
另外,在压电元件2的侧面形成有1对外部电极25和26,在压电元件2中的相邻的2个内部电极22和23与相互不同的外部电极25和26进行电连接。In addition, a pair of
如图36所示那样,在压电执行元件1中,活塞等传递构件5被配置于压电元件2的层叠方向的一个端部。在外罩3和传递构件5之间配置有碟形弹簧55,对压电元件2施加预设定负荷。传递构件5可随着压电元件2的位移而活动,能够将其位移传递到外部。此外,在外罩3上设置有动通孔31和32。在该动通孔31和32中插入有用于从外部供给电荷的端子(引线)61和62,由垫圈31和32保持外罩3内的气密性。端子61和62与设置在压电元件2上的外部端子25和26进行电连接。As shown in FIG. 36 , in the
又如图36所示那样,在活塞构件5和外罩3之间配置有O形环35,在保持外罩3内的气密性的同时,形成使活塞构件5伸缩可动的结构。As shown in FIG. 36 , an O-
上述压电执行元件能够用于例如燃料喷射阀等。另外,作为上述压电执行元件,有层叠执行元件、压电变压器、超声波发动机、双压电晶片压电元件、超声波声纳、压电超声波振动器、压电蜂鸣器、压电扬声器等。The piezoelectric actuator described above can be used, for example, in a fuel injection valve or the like. In addition, examples of the above-mentioned piezoelectric actuators include laminated actuators, piezoelectric transformers, ultrasonic motors, bimorph piezoelectric elements, ultrasonic sonars, piezoelectric ultrasonic vibrators, piezoelectric buzzers, piezoelectric speakers, and the like.
(实施例1)(Example 1)
其次,就本发明的实施例进行说明。Next, examples of the present invention will be described.
在该例中,制作具有压电陶瓷的压电元件,使用该压电元件制作压电执行元件。In this example, a piezoelectric element including piezoelectric ceramics was produced, and a piezoelectric actuator was produced using this piezoelectric element.
在该例中,作为压电执行元件的模型,如图37所示那样,制作使用夹具8的压电执行元件11。In this example, as a model of the piezoelectric actuator, a
即,该例的压电执行元件11具有以压电陶瓷作为驱动源的层叠型压电元件2,该压电元件2被夹具8固定。That is, the
夹具8具有用于收容压电元件2的外罩81、以及与压电元件2连接的传递压电元件2的位移的活塞(连接构件)82。活塞82通过碟形弹簧85连接在导向装置83上。在外罩81内设置有台座部815,压电元件2配置在台座部815上。台座部815上配置的压电元件2由活塞82的头部821固定。此时,可以从碟形弹簧85对压电元件2施加预设定负荷。另外,活塞82的头部821的相反侧的端部(测定部88)可以随着压电元件2的位移而活动。The
在此,就预设定负荷的施加方法进行说明。预设定负荷可通过下述方法获得:在活塞82和压入螺栓84的空隙中插入圆柱状的压棒(省略图示),用阿姆斯拉(Amsler)型试验机对导向装置83施加正确的负荷。接着,为了保持预设定负荷,在施加了负荷的状态下,将压入螺栓84和外罩81加以固定。然后,去掉上述压棒。Here, the method of applying the preset load will be described. The preset load can be obtained by the following method: Insert a cylindrical pressure rod (not shown) in the gap between the
此外,在该例中,制作压电执行元件的模型的理由是为了评价压电执行元件的位移的温度特性。通过将其形状设置为细长形状,可以将压电元件2设置在恒温槽的内部,且将测定部88设置在恒温槽的外部(=温度约25℃)。在后述的温度特性的评价中,对于图37所示的压电执行元件11,将低于虚线的部分设置在恒温槽的内部。此时,在压电执行元件中,为了防止热量向虚线以上的部分的移动,在压电执行元件中设置有绝热材料86。In addition, in this example, the reason for creating the model of the piezoelectric actuator is to evaluate the temperature characteristic of the displacement of the piezoelectric actuator. By making the shape elongated, the
这样的压电执行元件的模型与图36所示的压电执行元件在功能上是等价的。Such a model of the piezoelectric actuator is functionally equivalent to the piezoelectric actuator shown in FIG. 36 .
另外,如图38所示那样,在该例中,压电元件2由压电陶瓷21与内部电极板22和23交替层叠而形成的层叠型压电元件构成。此外,在压电元件2的层叠方向的两端部上配置有氧化铝板245。In addition, as shown in FIG. 38 , in this example, the
另外,在压电元件2的侧面上按照夹住压电元件的方式形成有两个外部电极25和26,外部电极25和26与引线61和62连接。In addition, two
另外,内部电极板22和23与外部电极25和26之间按照压电元件2内相邻的两个内部电极22和23分别与不同电位的外部电极25和26连接的方式进行电连接。In addition, the
此外,在该例的压电元件2中,由合计40片压电陶瓷21层叠而构成,为了便于作图,在图38所表示的图中,省略了层叠数。In addition, in the
其次,就该例的压电执行元件的制造方法,进行说明。Next, a method of manufacturing the piezoelectric actuator of this example will be described.
首先,按照以下那样制作压电元件。First, a piezoelectric element is fabricated as follows.
(1)NaNbO3片状粉末的合成(1) Synthesis of NaNbO 3 flake powder
称量Bi2O3粉末、Na2CO3粉末、以及Nb2O5粉末,使其以化学计量比计成为Bi2.5Na3.5Nb5O18的组成,将它们进行湿式混合。接着,对该原料添加50wt%的NaCl作为熔剂,进行1小时干式混合。Bi 2 O 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder were weighed so as to have a stoichiometric composition of Bi 2.5 Na 3.5 Nb 5 O 18 , and these were wet-mixed. Next, 50 wt % of NaCl was added as a flux to this raw material, and dry mixing was performed for 1 hour.
其次,将得到的混合物放入白金坩埚,以850℃×1hr的条件加热,使熔剂完全熔化后再于1100℃×2hr的条件下加热,进行Bi2.5Na3.5Nb5O18的合成。另外,升温速度设为200℃/hr,降温设为炉冷。冷却后,通过热水洗涤将熔剂从反应物中去除,得到Bi2.5Na3.5Nb5O18的粉末。得到的Bi2.5Na3.5Nb5O18粉末是以{100}面为发达面(developedplane)的片状粉末。Next, the obtained mixture was put into a platinum crucible and heated at 850°C×1hr to completely melt the flux and then heated at 1100°C×2hr to synthesize Bi 2.5 Na 3.5 Nb 5 O 18 . In addition, the temperature increase rate was set to 200° C./hr, and the temperature drop was set to furnace cooling. After cooling, the flux was removed from the reactant by hot water washing to obtain a powder of Bi 2.5 Na 3.5 Nb 5 O 18 . The obtained Bi 2.5 Na 3.5 Nb 5 O 18 powder is a flaky powder with the {100} plane as the developed plane.
然后,对该Bi2.5Na3.5Nb5O18片状粉末加入合成NaNbO3所必要量的Na2CO3粉末并进行混合,以NaCl作为熔剂,在白金坩埚中进行950℃×8小时的热处理。Then, the Bi 2.5 Na 3.5 Nb 5 O 18 flake powder was added and mixed with Na 2 CO 3 powder necessary for the synthesis of NaNbO 3 , and heat-treated in a platinum crucible at 950°C for 8 hours using NaCl as a flux.
所得到的反应物中除了含有NaNbO3粉末以外还含有Bi2O3,因此从反应物中去除熔剂后,将其放入NHO3(1N)中,使作为多余成分生成的Bi2O3溶解。然后,将该溶液进行过滤以分离NaNbO3粉末,用80℃的离子交换水进行洗涤。得到的NaNbO3粉末是以拟立方{100}面为发达面、粒径为10~30μm、且纵横尺寸比为10~20左右的片状粉末。The obtained reactant contains Bi 2 O 3 in addition to NaNbO 3 powder, so after removing the flux from the reactant, put it in NHO 3 (1N) to dissolve Bi 2 O 3 generated as an excess component . Then, the solution was filtered to separate NaNbO 3 powder, which was washed with ion-exchanged water at 80 °C. The obtained NaNbO 3 powder is a flaky powder with a pseudo-cubic {100} plane as the developed plane, a particle diameter of 10-30 μm, and an aspect ratio of about 10-20.
如以下那样制作具有{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3组成的晶体取向陶瓷。A crystal-oriented ceramic having a composition of {Li 0.07 (K 0.43 Na 0.57 ) 0.93 }{Nb 0.84 Ta 0.09 Sb 0.07 }O 3 was produced as follows.
称量纯度为99.99%以上的Na2CO3粉末、K2CO3粉末、Li2CO3粉末、Nb2O5粉末、Ta2O5粉末、Sb2O5粉末,使其成为从1mol的{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的化学计量组成中减掉0.05mol的NaNbO3而得到的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合。然后,通过在750℃进行5小时预烧,再以有机溶剂作为介质用Zr球进行20小时的湿式粉碎,得到平均粒径约为0.5μm的预烧物粉末。Weigh Na 2 CO 3 powder, K 2 CO 3 powder, Li 2 CO 3 powder, Nb 2 O 5 powder, Ta 2 O 5 powder, Sb 2 O 5 powder with a purity of 99.99% or more to make it from 1 mol The composition obtained by subtracting 0.05 mol of NaNbO 3 from the stoichiometric composition of {Li 0.07 (K 0.43 Na 0.57 ) 0.93 }{Nb 0.84 Ta 0.09 Sb 0.07 }O 3 was carried out for 20 hours with Zr balls in an organic solvent wet mixing. Then, calcined at 750° C. for 5 hours, and then wet pulverized with Zr balls in an organic solvent for 20 hours to obtain calcined powder with an average particle size of about 0.5 μm.
将该预烧物粉末和上述片状的NaNbO3按照预烧物粉末:NaNbO3=0.95mol:0.05mol的比率进行称量,使其成为{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合,得到粉碎浆料。然后,对浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸丁酯)后,再进行2小时混合。The calcined powder and the above flake-shaped NaNbO 3 were weighed at a ratio of calcined powder:NaNbO 3 =0.95 mol:0.05 mol, so that it became {Li 0.07 (K 0.43 Na 0.57 ) 0.93 }{Nb 0.84 The composition of Ta 0.09 Sb 0.07 }O 3 was wet-mixed with Zr balls for 20 hours in an organic solvent as a medium to obtain pulverized slurry. Then, after adding a binder (polyvinyl butyral) and a plasticizer (butyl phthalate) to the slurry, mixing was performed for another 2 hours.
然后,用带状成形装置,将混合的浆料成形为厚度约为100μm的带状。然后通过对该带进行层叠和压接以及轧制,得到厚为1.5mm的片状成形体。接着,在大气中将得到的片状成形体以加热温度为600℃、加热时间为5小时、升温速度为50℃/hr、冷却速度为炉冷的条件进行脱脂。进而,对脱脂后的片状成形体以300MPa的压力施以CIP处理,然后在氧气中于1110℃进行5小时烧结。这样,制作成压电陶瓷(晶体取向压电陶瓷)。Then, the mixed slurry was formed into a ribbon having a thickness of about 100 μm using a ribbon forming apparatus. Then, the strip was laminated and crimped and rolled to obtain a sheet-shaped molded body having a thickness of 1.5 mm. Next, the obtained sheet-shaped molded body was degreased in the air under the conditions of
对于得到的压电陶瓷,算出烧结密度、以及采用上述数学式1对与带面(tape surface)平行的面算出基于劳特盖尔丁法的拟立方{100}面的平均取向度F(100)。For the obtained piezoelectric ceramics, the sintered density was calculated, and the average orientation degree F (100 ).
进而,通过对得到的压电陶瓷进行磨削和研磨以及加工,制作如图39所示的其上下面与带面平行的厚0.485mm、直径11mm的圆盘状试样的压电陶瓷21,对其上下面印刷Au焙烧电极糊(gold baking electrodepaste)(住友金属矿山株式会社制造,ALP3057)并经干燥后,采用网状带式炉进行850℃×10分钟的焙烧,在压电陶瓷21上形成厚0.01mm的电极20。进而,为了去除因印刷而不可避免地形成的电极外周部的数微米的突起部,通过圆筒磨削将得到的圆盘状试样加工成直径8.5mm。随后,在上下方向上施以极化处理,得到在压电陶瓷21上形成了整面电极210的压电元件(单板)20。Furthermore, by grinding and grinding and processing the obtained piezoelectric ceramics, the
在25℃的温度下,采用共振反共振法对得到的压电元件20测定作为压电特性的压电应变常数(d31)、机电耦合系数(kp)、机械品质系数(Qm)、以及作为介质特性的电容率(ε33 t/ε0)、介质损耗(tanδ)。At a temperature of 25° C., the piezoelectric strain constant (d 31 ), electromechanical coupling coefficient (kp), mechanical quality coefficient (Qm), and Permittivity (ε 33 t /ε 0 ) and dielectric loss (tanδ) of dielectric properties.
另外,同样,通过测定电容率的温度特性,求得第1结晶相转变温度(居里温度)和第2结晶相转变温度。另外,在第2结晶相转变温度为0℃以下的场合,由于温度比第2结晶相转变温度高的一侧的电容率的波动幅非常小,因此在电容率的峰位置不能确认的场合,将电容率发生弯曲的温度作为第2结晶相转变温度。In addition, similarly, by measuring the temperature characteristic of the permittivity, the first crystal phase transition temperature (Curie temperature) and the second crystal phase transition temperature are obtained. In addition, when the second crystal phase transition temperature is 0°C or lower, since the fluctuation width of the permittivity is very small on the side where the temperature is higher than the second crystal phase transition temperature, when the peak position of the permittivity cannot be confirmed, The temperature at which the permittivity bends is taken as the second crystal phase transition temperature.
其次,采用上述得到的压电元件制作层叠型的压电元件,使用该压电元件构成压电执行元件,进行评价。Next, a multi-layer piezoelectric element was fabricated using the piezoelectric element obtained above, and a piezoelectric actuator was constructed using the piezoelectric element, and evaluated.
如图40所示那样,首先,将上述那样得到的压电元件20与后述的具有用于连接在外部电极上的突起的厚0.02mm、直径8.4mm的SUS制的内部电极板22(23)进行交替层叠。此时,内部电极板22(23)的突起在层叠方向上以交替不同的方向配置,且每一层都按照相同方向配置内部电极板22(23)。这样,合计40片的压电陶瓷21与合计41片的内部电极板22(23)交替层叠,进而在层叠体的上下面层叠厚2mm、直径8.5mm的氧化铝板(绝缘板),如图38所示那样,制作成层叠型的压电元件2。As shown in FIG. 40, first, the
然后,将长方形的SUS制的外部电极25和26焊接在上述内部电极22和23的突起上,使其与压电元件并联电连接,然后准备引线端子61和62,将外部电极25和26与引线端子61和62进行电连接。Then, the
另外,为了确保内部电极板22和23的突起与相反极性的内部电极板22和23以及相反极性的压电元件的Au电极之间的绝缘状态,在层叠体侧面的极性相同的电极板的突起之间插入配置梳齿状的树脂制绝缘构件(省略图示),在其上面涂敷硅脂,再用绝缘管构成的保持构件4被覆层叠体,制成层叠型的压电元件2。In addition, in order to ensure the insulation state between the protrusions of the
然后,为了提高层叠型的压电元件2的Au电极与电极板之间的密合性,在25℃的温度下对层叠方向施加150MPa的压缩应力30秒钟(加压老化)。再于25℃的温度下对层叠方向施加30MPa的压缩应力,在该状态下,以40Hz的频率施加电场强度为0~1500V/mm的振幅的正弦波30分钟(电压老化)。然后,如图37所示那样,将层叠型的压电元件2固定在夹具8上,在压电元件2的层叠方向上,以16.4Mpa的预设定负荷压接弹簧常数为2.9N/μm的碟形弹簧85。这样,制作图37所示那样的压电执行元件11。Then, in order to improve the adhesion between the Au electrode and the electrode plate of the laminated
接着,对所得到的压电执行元件进行外加电压为485、728、970V(电场强度为0~1000V/mm、0~1500V/mm、0~2000V/mm)的恒定振幅的梯形波驱动,在—40℃~160℃的温度范围内测定位移和表观动态电容的温度特性。Next, the obtained piezoelectric actuator is driven by a trapezoidal wave with a constant amplitude at an applied voltage of 485, 728, 970V (electric field strength 0-1000V/mm, 0-1500V/mm, 0-2000V/mm). - Measure the temperature characteristics of displacement and apparent dynamic capacitance within the temperature range of 40°C to 160°C.
位移的测定采用静电电容式的位移传感器,在频率为0.5Hz以及10Hz、电压上升时间为150μs、电压下降时间为150μs、占空比为50:50的梯形波驱动条件下测定所观测的位移。The measurement of the displacement adopts the capacitance type displacement sensor, and the observed displacement is measured under the trapezoidal wave driving conditions with the frequency of 0.5Hz and 10Hz, the voltage rise time of 150μs, the voltage drop time of 150μs, and the duty ratio of 50:50.
表观动态电容的测定如下,将878μF的电容器在温度一直为25℃的状态下串联连接于压电执行元件,在外加电压为485V、728V、970V、频率为0.05Hz、电压上升时间为1ms、电压下降时间为1ms、电压接通(ON)时间为10s、电压切断(OFF)时间为10s的恒电压的梯形波驱动条件下,测定所观测的电容器的端子电压,通过下述式11计算求出。The apparent dynamic capacitance is measured as follows. A capacitor of 878μF is connected in series to the piezoelectric actuator at a temperature of 25°C. The applied voltage is 485V, 728V, 970V, the frequency is 0.05Hz, and the voltage rise time is 1ms. Under the constant voltage trapezoidal wave drive condition with a voltage drop time of 1 ms, a voltage ON time of 10 s, and a voltage cut-off (OFF) time of 10 s, measure the terminal voltage of the observed capacitor and calculate it by the following
表观动态电容={(V(接通)—(V(切断))×878μF)/{外加电压—(V(接通)—V(切断))}(11)Apparent dynamic capacitance = {(V (on) - (V (off)) × 878μF) / {applied voltage - (V (on) - V (off))} (11)
(式中,表观动态静电电容[F]、外加电压[V]、V(接通):从电压接通开始10s后的电容器端子电压[V]、V(切断):从电压切断开始10s后的电容器端子电压[V])。(In the formula, apparent dynamic electrostatic capacitance [F], applied voltage [V], V(ON): capacitor terminal voltage [V] 10s after voltage ON, V(OFF): 10s after voltage OFF After the capacitor terminal voltage [V]).
即,以电容器的端子电压为基础,求得电容器的积蓄电荷(=执行元件的积蓄电荷+泄漏的电荷),将其除以执行元件的外加电压,即为执行元件的表观动态电容。在此,由于与电容器串联连接而对执行元件施加的电压有所降低,但最大降低幅度为0.3V的很小的值,因此判断为外加电压与施加到执行元件上的电压相同。That is, based on the terminal voltage of the capacitor, the accumulated charge of the capacitor (= accumulated charge of the actuator + leaked charge) is obtained, and divided by the applied voltage of the actuator is the apparent dynamic capacitance of the actuator. Here, the voltage applied to the actuator was lowered by connecting the capacitor in series, but the maximum drop was a small value of 0.3V, so it was determined that the applied voltage was the same as the voltage applied to the actuator.
另外,从所测定的值求出—30℃~80℃的温度范围内的波动幅、以及—30℃~160℃的温度范围内的波动幅。这里,所谓波动幅,是以(最大值—最小值)/2为基准值的值。In addition, the fluctuation width in the temperature range of -30°C to 80°C and the fluctuation width in the temperature range of -30°C to 160°C were obtained from the measured values. Here, the fluctuation range is a value based on (maximum value−minimum value)/2.
在本实施例中得到的晶体取向陶瓷的相对密度为95%以上。此外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到88.5%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为86.5pm/V、机电耦合系数kp为48.8%、机械品质系数Qm为18.2、电容率(ε33 t/ε0)为1042、介质损耗tanδ为6.4%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为282℃、第2结晶相转变温度为—30℃。The relative density of the crystal-oriented ceramics obtained in this example was 95% or more. In addition, the pseudo-cubic {100} planes are oriented parallel to the tape planes, and the average degree of orientation of the pseudo-cubic {100} planes measured by the Lautergelding method is 88.5%. Furthermore, the evaluation results of piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 86.5pm/V, the electromechanical coupling coefficient kp was 48.8%, the mechanical quality coefficient Qm was 18.2, and the permittivity (ε 33 t /ε 0 ) is 1042, and the dielectric loss tanδ is 6.4%. In addition, the first crystal phase transition temperature (Curie temperature) obtained from the temperature characteristic of permittivity was 282°C, and the second crystal phase transition temperature was -30°C.
其次,就本例得到的压电执行元件的特性进行叙述。Next, the characteristics of the piezoelectric actuator obtained in this example are described.
测定的表观动态电容和频率为0.5Hz的位移、以及计算求得的位移/表观动态电容、位移/(表观动态电容)0.5、动态应变量D33示于表1、图1、图2、以及图3。The measured apparent dynamic capacitance and the displacement at a frequency of 0.5 Hz, as well as the calculated displacement/apparent dynamic capacitance, displacement/(apparent dynamic capacitance) 0.5 , and dynamic strain D33 are shown in Table 1, Figure 1, and Figure 2 , and Figure 3.
另外,表观动态电容、频率为0.5Hz的位移、位移/表观动态电容、位移/(表观动态电容)0.5在—30℃~80℃的温度范围内的波动幅、以及在—30℃~160℃的温度范围内的波动幅分别示于表12、表13、表14、表15。In addition, the apparent dynamic capacitance, the displacement at a frequency of 0.5Hz, the displacement/apparent dynamic capacitance, the displacement/(apparent dynamic capacitance) 0.5 , the fluctuation amplitude in the temperature range of -30°C to 80°C, and the fluctuation amplitude at -30°C The fluctuation width in the temperature range of -160 degreeC is shown in Table 12, Table 13, Table 14, and Table 15, respectively.
正如从表1、图1、图2、图3、表11、表12、表13、表14所看到的那样,在本例的压电执行元件中,在—30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from Table 1, Figure 1, Figure 2, Figure 3, Table 11, Table 12, Table 13, and Table 14, in the piezoelectric actuator of this example, at a temperature of -30°C to 80°C The minimum value of the dynamic strain amount D33 within the range and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为—30℃的场合,D33=303pm/V。·The minimum value of the dynamic strain D33 is D33=303pm/V when the amplitude of the driving electric field is 1000V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±3.8%。· The maximum value of the fluctuation width of the displacement is ±3.8% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±3.2%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±3.2% when the driving electric field amplitude was 1000 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±6.9%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance was ±6.9% when the driving electric field amplitude was 1500 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±5.3%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±5.3% when the driving electric field amplitude is 1500 V/mm.
其次,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。Next, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为—30℃的场合,D33=303pm/V。·The minimum value of the dynamic strain D33 is D33=303pm/V when the amplitude of the driving electric field is 1000V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±7.7%。· The maximum value of the fluctuation width of the displacement is ±7.7% when the driving electric field amplitude is 2000 V/mm.
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±28.9%。·The maximum value of the fluctuation width of the dynamic capacitance is ±28.9% when the driving electric field amplitude is 1000V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±27.8%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±27.8% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±13.8%。• The maximum value of the fluctuation width when the displacement/(apparent dynamic capacitance) is 0.5 is ±13.8% when the driving electric field amplitude is 1000 V/mm.
(实施例2)(Example 2)
除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.07(K0.45Na0.55)0.93}{Nb0.82Ta0.10Sb0.08}O3组成的晶体取向陶瓷。对得到的晶体取向陶瓷,在与实施例1同样的条件下评价烧结体密度、平均取向度以及压电特性。另外,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。Except that the firing temperature of the degreased sheet- shaped molded body was set at 1105° C , the same procedure as in Example 1 was followed to produce a Composition of crystal-oriented ceramics. With regard to the obtained crystal-oriented ceramics, the sintered body density, average orientation degree, and piezoelectric properties were evaluated under the same conditions as in Example 1. In addition, a laminated actuator of 40 piezoelectric elements was manufactured in the same procedure as in Example 1, and the characteristics of the actuator were evaluated.
本实施例得到的晶体取向陶瓷的相对密度为95%以上。此外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到94.6%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为88.1pm/V、机电耦合系数kp为48.9%、机械品质系数Qm为16.6、电容率(ε33 t/ε0)为1071、介质损耗tanδ为4.7%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为256℃、第2结晶相转变温度为—35℃。The relative density of the crystal-oriented ceramics obtained in this embodiment is above 95%. In addition, the pseudo-cubic {100} planes are oriented parallel to the tape planes, and the average degree of orientation of the pseudo-cubic {100} planes measured by the Lautergelding method is 94.6%. Furthermore, the evaluation results of the piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 88.1pm/V, the electromechanical coupling coefficient kp was 48.9%, the mechanical quality coefficient Qm was 16.6, and the permittivity (ε 33 t /ε 0 ) is 1071, and the dielectric loss tanδ is 4.7%. In addition, the first crystal phase transition temperature (Curie temperature) obtained from the temperature characteristic of permittivity was 256°C, and the second crystal phase transition temperature was -35°C.
本实施例的压电执行元件的特性示于表2、图4、图5、图6、表11、表12、表13、以及表14。The characteristics of the piezoelectric actuator of this embodiment are shown in Table 2, FIG. 4, FIG. 5, FIG. 6, Table 11, Table 12, Table 13, and Table 14.
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在—30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, in the piezoelectric actuator of this example, the minimum value of the dynamic strain D33 in the temperature range of -30°C to 80°C and the fluctuation width of the above characteristics are as follows .
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为20℃的场合,D33=355pm/V。·The minimum value of dynamic strain D33 is D33=355pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 20°C.
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±8.0%。· The maximum value of the fluctuation width of the displacement is ±8.0% when the driving electric field amplitude is 1000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.3%。· The maximum value of the fluctuation width of the apparent dynamic capacitance is ±6.3% when the driving electric field amplitude is 1000 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm以及1000V/mm的场合,波动幅为±7.8%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±7.8% when the driving electric field amplitude is 1500 V/mm and 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.7%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±6.7% when the driving electric field amplitude is 1000 V/mm.
其次,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。Next, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为20℃的场合,D33=355pm/V。·The minimum value of dynamic strain D33 is D33=355pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 20°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±13.8%。· The maximum value of the fluctuation amplitude of the displacement is ±13.8% when the driving electric field amplitude is 2000 V/mm.
·动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±31.4%。· The maximum value of the fluctuation width of the dynamic capacitance is ±31.4% when the driving electric field amplitude is 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±26.8%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±26.8% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±13.3%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±13.3% when the driving electric field amplitude is 1000 V/mm.
(实施例3)(Example 3)
除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O3组成的晶体取向陶瓷。对得到的晶体取向陶瓷,在与实施例1同样的条件下评价烧结体密度、平均取向度以及压电特性。并且,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。Except that the calcining temperature of the degreased sheet- shaped molded body was set at 1105°C, the same procedure as in Example 1 was followed to produce a Composition of crystal-oriented ceramics. With regard to the obtained crystal-oriented ceramics, the sintered body density, average orientation degree, and piezoelectric properties were evaluated under the same conditions as in Example 1. In addition, a laminated actuator of 40 piezoelectric elements was produced in the same procedure as in Example 1, and the characteristics of the actuator were evaluated.
本实施例得到的晶体取向陶瓷的相对密度为95%以上。另外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到93.9%。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为95.2pm/V、机电耦合系数kp为50.4%、机械品质系数Qm为15.9、电容率(33 t/ε0)为1155、介质损耗tanδ为5.2%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为261℃、第2结晶相转变温度为—12℃。The relative density of the crystal-oriented ceramics obtained in this embodiment is above 95%. In addition, the pseudo-cubic {100} planes were oriented parallel to the tape planes, and the average degree of orientation of the pseudo-cubic {100} planes measured by the Lautergelding method was 93.9%. In addition, the evaluation results of the piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 95.2pm/V, the electromechanical coupling coefficient kp was 50.4%, the mechanical quality coefficient Qm was 15.9, and the permittivity ( 33 t /ε 0 ) is 1155, and the dielectric loss tanδ is 5.2%. In addition, the first crystal phase transition temperature (Curie temperature) obtained from the temperature characteristic of permittivity was 261°C, and the second crystal phase transition temperature was -12°C.
本实例的压电执行元件的特性示于表3、图7、图8、图9、表11、表12、表13、以及表14。The characteristics of the piezoelectric actuator of this example are shown in Table 3, FIG. 7, FIG. 8, FIG. 9, Table 11, Table 12, Table 13, and Table 14.
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在—30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, in the piezoelectric actuator of this example, the minimum value of the dynamic strain D33 in the temperature range of -30°C to 80°C and the fluctuation width of the above characteristics are as follows .
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为80℃的场合,D33=347pm/V。·The minimum value of dynamic strain D33 is D33=347pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 80°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±5.6%。· The maximum value of the fluctuation width of the displacement is ±5.6% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±5.2%。· The maximum value of the fluctuation width of the apparent dynamic capacitance is ±5.2% when the driving electric field amplitude is 1000 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±8.6%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±8.6% when the driving electric field amplitude is 1500 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±6.9%。• The maximum value of the fluctuation width when the displacement/(apparent dynamic capacitance) is 0.5 is ±6.9% when the driving electric field amplitude is 1500 V/mm.
其次,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。Next, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为80℃的场合,D33=347pm/V。·The minimum value of dynamic strain D33 is D33=347pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 80°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±11.5%。· The maximum value of the fluctuation width of the displacement is ±11.5% when the driving electric field amplitude is 1500 V/mm.
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±34.6%。· The maximum value of the fluctuation width of the dynamic capacitance is ±34.6% when the driving electric field amplitude is 1000V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±27.1%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±27.1% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.9%。• The maximum value of the fluctuation width when the displacement/(apparent dynamic capacitance) is 0.5 is ±10.9% when the driving electric field amplitude is 1000 V/mm.
(实施例4)(Example 4)
在本例中,以与实施例1不同的步骤制作与实施例1同样组成的晶体取向压电陶瓷,用该晶体取向压电陶瓷制作压电执行元件。In this example, a crystal-oriented piezoelectric ceramic having the same composition as that of Example 1 was produced by a different procedure from that of Example 1, and a piezoelectric actuator was produced using this crystal-oriented piezoelectric ceramic.
即,首先将实施例1制作的NaNbO3片状粉末、和非片状的NaNbO3粉末、KNbO3粉末、KTaO3粉末、LiSbO3粉末、以及NaSbO3粉末进行称量,使其成为{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的组成,以有机溶剂作为溶剂进行20小时的湿式混合。That is, first, the NaNbO 3 flake powder produced in Example 1, and the non-flaky NaNbO 3 powder, KNbO 3 powder, KTaO 3 powder, LiSbO 3 powder, and NaSbO 3 powder were weighed to make {Li 0.07 (K 0.43 Na 0.57 ) 0.93 }{Nb 0.84 Ta 0.09 Sb 0.07 }O 3 was wet-mixed for 20 hours using an organic solvent as a solvent.
对浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸二丁酯)后,再进行2小时混合。After adding a binder (polyvinyl butyral) and a plasticizer (dibutyl phthalate) to the slurry, mixing was performed for another 2 hours.
而且,NaNbO3片状粉末的配合量设定为,由起始原料合成的第一KNN系固溶体(ABO3)的A位元素的5wt%是从NaNbO3片状粉末供给的量。另外,非片状的NaNbO3粉末、KNbO3粉末、KTaO3粉末、LiSbO3粉末、以及NaSbO3粉末是采用固相法、即将含有规定量的纯度为99.9%的K2CO3粉末、Na2CO3粉末、Nb2O5粉末、Ta2O5粉末以及/或Sb2O5粉末的混合物在750℃加热5小时,然后用球磨机粉碎反应物而制作的。Furthermore, the compounding amount of NaNbO 3 flakes was set such that 5 wt % of the A-site elements of the first KNN-based solid solution (ABO 3 ) synthesized from the starting material was supplied from the NaNbO 3 flakes. In addition, the non-flaky NaNbO 3 powder, KNbO 3 powder, KTaO 3 powder, LiSbO 3 powder, and NaSbO 3 powder are obtained by the solid-phase method, that is, K 2 CO 3 powder with a purity of 99.9%, Na 2 A mixture of CO 3 powder, Nb 2 O 5 powder, Ta 2 O 5 powder, and/or Sb 2 O 5 powder was heated at 750° C. for 5 hours, and then the reactant was pulverized by a ball mill.
其次,用带状成形装置将混合的浆料成形为厚度约为100μm的带状。然后通过对该带进行层叠和压接以及轧制,得到厚1.5mm的片状成形体。其次,在大气中将得到的片状成形体以加热温度为600℃、加热时间为5小时、升温速度为50℃/hr、冷却速度为炉冷的条件进行脱脂。进而,对脱脂后的片状成形体以300MPa的压力施以CIP处理后,在氧气中在烧成温度为1130℃、加热时间为5小时、升温和降温速度为200℃/hr的条件下,在加热时间的过程中进行施加35kg/cm2(3.42MPa)的压力的热压烧结。这样,制作成压电陶瓷(晶体取向压电陶瓷)。Next, the mixed slurry was formed into a ribbon having a thickness of about 100 μm using a ribbon forming apparatus. Then, the strip was laminated, crimped, and rolled to obtain a sheet-shaped molded body with a thickness of 1.5 mm. Next, the obtained sheet-shaped molded body was degreased in air under the conditions of heating temperature of 600°C, heating time of 5 hours, heating rate of 50°C/hr, and cooling rate of furnace cooling. Furthermore, after degreasing the sheet-shaped molded body with a pressure of 300 MPa, after CIP treatment, the sintering temperature in oxygen is 1130 ° C, the heating time is 5 hours, and the heating and cooling rate is 200 ° C / hr. Hot press sintering was performed applying a pressure of 35 kg/cm 2 (3.42 MPa) during the heating time. In this way, piezoelectric ceramics (crystal-oriented piezoelectric ceramics) were fabricated.
本实施例得到的晶体取向陶瓷的相对密度为95%以上。另外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到96%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为96.5pm/V、机电耦合系数kp为51.9%、机械品质系数Qm为15.2、电容率(ε33 t/ε0)为1079、介质损耗tanδ为4.7%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为279℃、第2结晶相转变温度为—28℃。The relative density of the crystal-oriented ceramics obtained in this embodiment is above 95%. In addition, the pseudo-cubic {100} planes are oriented parallel to the tape planes, and the average degree of orientation of the pseudo-cubic {100} planes measured by the Lautergelding method is 96%. Furthermore, the evaluation results of the piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 96.5pm/V, the electromechanical coupling coefficient kp was 51.9%, the mechanical quality coefficient Qm was 15.2, and the permittivity (ε 33 t /ε 0 ) is 1079, and the dielectric loss tanδ is 4.7%. In addition, the first crystal phase transition temperature (Curie temperature) obtained from the temperature characteristic of permittivity was 279°C, and the second crystal phase transition temperature was -28°C.
本实例的压电执行元件的特性示于表4、图10、图11、图12、表11、表12、表13、以及表14。The characteristics of the piezoelectric actuator of this example are shown in Table 4, FIG. 10, FIG. 11, FIG. 12, Table 11, Table 12, Table 13, and Table 14.
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在—30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, in the piezoelectric actuator of this example, the minimum value of the dynamic strain D33 in the temperature range of -30°C to 80°C and the fluctuation width of the above characteristics are as follows .
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃的场合,D33=427pm/V。·The minimum value of dynamic strain D33 is D33=427pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 50°C.
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±7.2%。· The maximum value of the fluctuation width of the displacement is ±7.2% when the driving electric field amplitude is 1000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±6.1%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±6.1% when the driving electric field amplitude was 2000 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±8.0%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±8.0% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.7%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±6.7% when the driving electric field amplitude is 1000 V/mm.
其次,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。Next, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度50℃的场合,D33=427pm/V。·The minimum value of dynamic strain D33 is D33=427pm/V when the driving electric field amplitude is 1000V/mm and the temperature is 50°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±9.4%。· The maximum value of the fluctuation width of the displacement is ±9.4% when the driving electric field amplitude is 2000 V/mm.
·动态电容的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±28.4%。· The maximum value of the fluctuation width of the dynamic capacitance is ±28.4% when the driving electric field amplitude is 2000V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±32.4%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±32.4% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±19.5%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±19.5% when the driving electric field amplitude is 1000 V/mm.
(实施例5)(Example 5)
在本实施例中,制作具有在1mol实施例3的组合物{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O3中外添了Mn0.0005mol的组成的压电陶瓷(晶体取向压电陶瓷),用该压电陶瓷制作压电执行元件。In this example , a piezoelectric ceramic having a composition in which 0.0005 mol of Mn was added to 1 mol of the composition of Example 3 {Li 0.065 (K 0.45 Na 0.55 ) 0.935 }{Nb 0.83 Ta 0.09 Sb 0.08 }O 3 ( Crystal-oriented piezoelectric ceramics), which are used to make piezoelectric actuators.
首先,称量纯度为99.99%以上的Na2CO3粉末、K2CO3粉末、Li2CO3粉末、Nb2O5粉末、Ta2O5粉末、Sb2O5粉末、以及MnO2粉末,使其成为从{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O31mol+Mn 0.0005mol的组成中减掉0.05mol的NaNbO3而得到的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合。然后,通过在750℃进行5小时预烧,再以有机溶剂作为介质用Zr球进行20小时的湿式粉碎,得到平均粒径约为0.5μm的预烧物粉末。First, weigh Na 2 CO 3 powder, K 2 CO 3 powder, Li 2 CO 3 powder, Nb 2 O 5 powder, Ta 2 O 5 powder, Sb 2 O 5 powder, and MnO 2 powder with a purity of 99.99% or more , so that it becomes a composition obtained by subtracting 0.05 mol of NaNbO 3 from the composition of {Li 0.07 (K 0.43 Na 0.57 ) 0.93 }{Nb 0.84 Ta 0.09 Sb 0.07 }O 3 1mol+Mn 0.0005mol, using an organic solvent as Medium, 20 hours of wet mixing with Zr balls. Then, calcined at 750° C. for 5 hours, and then wet pulverized with Zr balls in an organic solvent for 20 hours to obtain calcined powder with an average particle size of about 0.5 μm.
在以后的步骤中,除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O31mol+Mn 0.0005mol的组成的晶体取向陶瓷。In the subsequent steps, except that the firing temperature of the degreased sheet-shaped molded body was set to 1105°C, the same procedure as in Example 1 was followed to produce Crystal-oriented ceramics with a composition of 0.09 Sb 0.08 }O 3 1mol+Mn 0.0005mol.
对于得到的晶体取向陶瓷,以与实施例1同样的条件评价烧结体密度、平均取向度以及电压特性。并且,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。而且,以电场强度的振幅为2V/mm(±1V)、正弦波、频率为1kHz的条件评价执行元件的静电电容。For the obtained crystal-oriented ceramics, the sintered body density, average orientation degree, and voltage characteristics were evaluated under the same conditions as in Example 1. In addition, a laminated actuator of 40 piezoelectric elements was produced in the same procedure as in Example 1, and the characteristics of the actuator were evaluated. Furthermore, the electrostatic capacitance of the actuator was evaluated under the conditions that the amplitude of the electric field intensity was 2 V/mm (±1 V), a sine wave, and a frequency of 1 kHz.
本实施例得到的晶体取向陶瓷的相对密度为95%以上。而且拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到89.6%。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为99.1pm/V、机电耦合系数kp为52.0%、机械品质系数Qm为20.3、电容率(ε33 t/ε0)为1159、介质损耗tanδ为2.7%。从中知道,添加Mn具有提高Qm、降低tanδ的效果。The relative density of the crystal-oriented ceramics obtained in this embodiment is above 95%. Furthermore, the pseudo-cubic {100} planes were oriented parallel to the tape planes, and the average degree of orientation of the pseudo-cubic {100} planes measured by the Lautergelding method was 89.6%. In addition, the evaluation results of the piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 99.1pm/V, the electromechanical coupling coefficient kp was 52.0%, the mechanical quality coefficient Qm was 20.3, and the permittivity (ε 33 t /ε 0 ) is 1159, and the dielectric loss tanδ is 2.7%. It is known from this that the addition of Mn has the effect of increasing Qm and reducing tanδ.
另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为263℃、第2结晶相转变温度为—15℃。In addition, the first crystal phase transition temperature (Curie temperature) obtained from the temperature characteristic of permittivity was 263°C, and the second crystal phase transition temperature was -15°C.
本实施例的压电执行元件的特性示于表5、图13、图14、图15、表11、表12、表13、以及表14。The characteristics of the piezoelectric actuator of this embodiment are shown in Table 5, FIG. 13, FIG. 14, FIG. 15, Table 11, Table 12, Table 13, and Table 14.
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在—30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, in the piezoelectric actuator of this example, the minimum value of the dynamic strain D33 in the temperature range of -30°C to 80°C and the fluctuation width of the above characteristics are as follows .
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃以及80℃的场合,D33=355pm/V。·The minimum value of the dynamic strain D33 is D33=355pm/V when the driving electric field amplitude is 1000V/mm, and the temperature is 50°C and 80°C.
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.4%。· The maximum value of the fluctuation width of the displacement is ±10.4% when the driving electric field amplitude is 1000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±4.9%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±4.9% when the driving electric field amplitude was 1000 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.7%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±10.7% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±7.2%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±7.2% when the driving electric field amplitude is 1000 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃以及80℃的场合,D33=355pm/V。·The minimum value of the dynamic strain D33 is D33=355pm/V when the driving electric field amplitude is 1000V/mm, and the temperature is 50°C and 80°C.
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±11.8%。· The maximum value of the fluctuation width of the displacement is ±11.8% when the driving electric field amplitude is 1000 V/mm.
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±26.9%。·The maximum value of the fluctuation width of the dynamic capacitance is ±26.9% when the driving electric field amplitude is 1000V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±21.3%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±21.3% when the driving electric field amplitude is 1000 V/mm.
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±12.4%。• The maximum value of the fluctuation width of displacement/(apparent dynamic capacitance) 0.5 is ±12.4% when the driving electric field amplitude is 1000 V/mm.
由该结果知道,添加Mn具有减小—30℃~160℃的温度范围内的表观动态电容的波动幅的效果。From this result, it is known that the addition of Mn has the effect of reducing the fluctuation width of the apparent dynamic capacitance in the temperature range of -30°C to 160°C.
此外,对于本例的压电执行元件的静电电容进行说明。In addition, the electrostatic capacitance of the piezoelectric actuator of this example will be described.
本实例的压电执行元件的静电电容在—30℃~160℃的范围内为小于表观动态电容的值。而且,在—30℃~80℃的范围内的波动幅为±4.8%,与电场强度为1000V/mm时的表观动态电容的波动幅大致相同。另一方面,在—30℃~160℃的范围内的波动幅为±5.2%,成为远小于表观动态电容的波动幅的值。可以认为,该动态电容和静电电容的差异是电场强度的差异所决定的。The electrostatic capacitance of the piezoelectric actuator of this example is a value smaller than the apparent dynamic capacitance in the range of -30°C to 160°C. Furthermore, the fluctuation width in the range of -30°C to 80°C was ±4.8%, which was almost the same as the fluctuation width of the apparent dynamic capacitance when the electric field strength was 1000 V/mm. On the other hand, the fluctuation width in the range of −30° C. to 160° C. was ±5.2%, which was a value much smaller than the fluctuation width of the apparent dynamic capacitance. It is considered that the difference between the dynamic capacitance and the electrostatic capacitance is determined by the difference in electric field intensity.
因此可以认为,波动幅的差异的原因是:在80℃以上的高温的温度区域内,在电场强度为1000V/mm以上时,由于漏电流的增加而使表观动态电容增加,但另一方面,在电场强度为2V/mm时,几乎没有漏电流,静电电容不增加。Therefore, it can be considered that the reason for the difference in fluctuation amplitude is: in the high temperature range above 80°C, when the electric field strength is above 1000V/mm, the apparent dynamic capacitance increases due to the increase of leakage current, but on the other hand , when the electric field strength is 2V/mm, there is almost no leakage current, and the electrostatic capacitance does not increase.
从以上知道,在本例的压电执行元件中,通过使驱动电场强度小于1000V/mm,能够在—30℃~160℃的宽广的温度范围内减低表观动态电容的波动幅。可以认为,其可能达成的水平可以达到与单板的动态电容的温度特性相同程度。From the above, in the piezoelectric actuator of this example, by making the driving electric field strength less than 1000V/mm, the fluctuation width of the apparent dynamic capacitance can be reduced in a wide temperature range of -30°C to 160°C. It can be considered that the possible level can reach the same level as the temperature characteristic of the dynamic capacitance of the single board.
(比较例1)(comparative example 1)
该比较例中,是使用软质系和硬质系的中间特性(半硬质)的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于汽车用燃料喷射阀用的层叠执行元件。在此,所谓软质系是指Qm为100以下的材料,所谓硬质系是指Qm为1000以上的材料。燃料喷射阀用的层叠执行元件用于定电压控制或定能量控制或定电荷控制中,并通过梯形波驱动使阀门开闭,从而控制燃料的喷雾。对执行元件的特性要求位移性能高、以及各控制方式中的位移的温度特性小。This comparative example is an example of a laminated actuator using a square PZT material with intermediate characteristics (semi-hard) between soft and hard systems. This laminated actuator is suitable for laminated actuators for automotive fuel injection valves. element. Here, the soft type refers to a material with a Qm of 100 or less, and the so-called hard type refers to a material with a Qm of 1000 or more. Laminated actuators for fuel injection valves are used in constant voltage control, constant energy control or constant charge control, and the valve is driven by trapezoidal waves to open and close, thereby controlling the spray of fuel. The characteristics of the actuator require high displacement performance and small temperature characteristics of displacement in each control method.
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Y2O3粉末、Nb2O5粉末、Mn2O3粉末,使其成为(Pb0.92Sr0.09){(Zr0.543Ti0.457)0.985(Y0.5Nb0.5)0.01Mn0.005}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在790℃进行7小时预烧,再以有机溶剂作为介质,用Zr球进行湿式粉碎,得到平均粒径约为0.7μm的预烧物粉末的浆料。Weigh PbO powder, ZrO 2 powder, TiO 2 powder, SrCO 3 powder, Y 2 O 3 powder, Nb 2 O 5 powder, Mn 2 O 3 powder to make (Pb 0.92 Sr 0.09 ){(Zr 0.543 Ti 0.457 ) 0.985 (Y 0.5 Nb 0.5 ) 0.01 Mn 0.005 }O 3 composition, using water as medium, wet mixing with Zr balls. Then, it was calcined at 790° C. for 7 hours, and wet pulverized with Zr balls using an organic solvent as a medium to obtain a slurry of calcined powder with an average particle size of about 0.7 μm.
对该浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸丁苄酯)后,再用Zr球进行20小时混合。After adding a binder (polyvinyl butyral) and a plasticizer (butyl benzyl phthalate) to this slurry, it mixed with Zr balls for 20 hours.
其次,用带状成形装置将混合的浆料成形为厚度约为100μm的带状,然后通过对该带进行层叠和热压接,得到厚1.2mm的片状成形体,接着,在大气中对得到的片状成形体进行脱脂。进而,将脱脂后的片状成形体配置于氧化铝烧箱中的MgO板上,在大气中于1170℃进行2小时烧结。以后的步骤中,使用Ag糊作为电极材料进行焙烧,除此以外,与实施例1相同。Next, the mixed slurry is formed into a strip with a thickness of about 100 μm by a strip forming device, and then the strip is laminated and thermocompressed to obtain a sheet-shaped molded body with a thickness of 1.2 mm. The obtained sheet-shaped molded body was degreased. Furthermore, the degreased sheet-shaped molded body was placed on a MgO plate in an alumina sinter, and sintered at 1170° C. for 2 hours in the air. In subsequent steps, firing was performed in the same manner as in Example 1 except that Ag paste was used as the electrode material.
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为158.0pm/V、机电耦合系数kp为60.2%、机械品质系数Qm为540、电容率(ε33 t/ε0)为1701、介质损耗tanδ为0.2%。The relative density of the piezoelectric ceramic of this comparative example was 95% or more. In addition, the evaluation results of piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 158.0pm/V, the electromechanical coupling coefficient kp was 60.2%, the mechanical quality coefficient Qm was 540, and the permittivity (ε 33 t /ε 0 ) is 1701, and the dielectric loss tanδ is 0.2%.
该比较例的执行元件特性示于表6、图16、图17、图18、表15、表16、表17、表18。The actuator characteristics of this comparative example are shown in Table 6, FIG. 16, FIG. 17, FIG. 18, Table 15, Table 16, Table 17, and Table 18.
正如从这些表以及图所看到的那样,本比较例的压电执行元件在—30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, the minimum value of the dynamic strain amount D33 and the fluctuation width of the above-mentioned characteristics of the piezoelectric actuator of this comparative example in the temperature range of -30°C to 70°C are as follows.
·动态应变量D33的最小值在驱动电场振幅为2000V/mm以及1500V/mm、温度为—30℃的场合,为553pm/V。· The minimum value of the dynamic strain D33 is 553 pm/V when the driving electric field amplitude is 2000 V/mm and 1500 V/mm, and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±5.6%。· The maximum value of the fluctuation width of the displacement is ±5.6% when the driving electric field amplitude is 2000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.5%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±14.5% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±10.5%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance is ±10.5% when the driving electric field amplitude is 1500 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为2000V/mm以及1500V/mm、温度为—30℃的场合,为553pm/V。· The minimum value of the dynamic strain D33 is 553 pm/V when the driving electric field amplitude is 2000 V/mm and 1500 V/mm, and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±11.1%。· The maximum value of the fluctuation amplitude of the displacement is ±11.1% when the driving electric field amplitude is 2000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±33.5%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±33.5% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±23.7%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance was ±23.7% when the driving electric field amplitude was 1500 V/mm.
(比较例2)(comparative example 2)
该比较例2是使用软质系的菱形晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于环境温度变化较小的半导体制造装置等的位置确定用的层叠执行元件。位置确定用的层叠执行元件是在环境温度变化小的场所使用,因此要求高的位移性能,但不要求温度特性优良。This comparative example 2 is an example of a laminated actuator using a soft rhombohedral PZT material, and this laminated actuator is suitable as a laminated actuator for determining the position of a semiconductor manufacturing device where the ambient temperature changes little. Multilayer actuators for position determination are used in places where the ambient temperature changes little, so high displacement performance is required, but excellent temperature characteristics are not required.
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Y2O3粉末、Nb2O5粉末,使其成为(Pb0.895Sr0.115){(Zr0.57Ti0.43)0.978(Y0.5Nb0.5)0.01Nb0.012}O3的组成,以水作为介质,用Zr球进行20小时湿式混合。然后,在875℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。对该浆料添加粘合剂(聚乙烯醇),使其为预烧粉末的1wt%,然后采用喷雾干燥器进行干燥和造粒。Weigh PbO powder, ZrO 2 powder, TiO 2 powder, SrCO 3 powder, Y 2 O 3 powder, Nb 2 O 5 powder to make (Pb 0.895 Sr 0.115 ) {(Zr 0.57 Ti 0.43 ) 0.978 (Y 0.5 Nb The composition of 0.5 ) 0.01 Nb 0.012 }O 3 was wet mixed with Zr balls for 20 hours in water as medium. Then, it was calcined at 875° C. for 5 hours, and then wet pulverized with Zr balls using water as a medium. A binder (polyvinyl alcohol) was added to the slurry to make it 1% by weight of the calcined powder, followed by drying and granulation with a spray dryer.
其次,用模具通过干式压制成形得到直径φ15mm、厚2mm的成形体。然后,将得到的圆片状成形体在大气中进行脱脂。进而对脱脂后的片状成形体以200MPa的压力施以CIP处理后,配置于氧化铝烧箱中的MgO板上,在大气中于1260℃进行2小时烧结。以后的步骤与比较例1相同。Next, a molded body having a diameter of φ15 mm and a thickness of 2 mm was obtained by dry press molding using a mold. Then, the obtained disc-shaped compact was degreased in the air. Furthermore, the degreased sheet-shaped compact was subjected to CIP treatment at a pressure of 200 MPa, placed on an MgO plate in an alumina sinter, and sintered at 1260° C. for 2 hours in the air. Subsequent steps are the same as in Comparative Example 1.
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为212.7pm/V、机电耦合系数kp为67.3%、机械品质系数Qm为47.5、电容率(ε33 t/ε0)为1943、介质损耗tanδ为2.1%。The relative density of the piezoelectric ceramic of this comparative example was 95% or more. In addition, the evaluation results of piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 212.7pm/V, the electromechanical coupling coefficient kp was 67.3%, the mechanical quality coefficient Qm was 47.5, and the permittivity (ε 33 t /ε 0 ) is 1943, and the dielectric loss tanδ is 2.1%.
该比较例的执行元件特性示于表7、图19、图20、图21、表15、表16、表17、表18。The actuator characteristics of this comparative example are shown in Table 7, FIG. 19, FIG. 20, FIG. 21, Table 15, Table 16, Table 17, and Table 18.
正如从这些表以及图所看到的那样,本例的压电执行元件在—30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, the minimum value of the dynamic strain D33 and the fluctuation width of the above-mentioned characteristics of the piezoelectric actuator of this example in the temperature range of -30°C to 70°C are as follows.
·动态应变量D33的最小值在驱动电场振幅为2000V/mm、温度为—30℃的场合,为482pm/V。·The minimum value of the dynamic strain D33 is 482pm/V when the driving electric field amplitude is 2000V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±23.7%。· The maximum value of the fluctuation amplitude of the displacement is ±23.7% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±37.9%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±37.9% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.5%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance is ±15.5% when the driving electric field amplitude is 1500 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为2000V/mm、温度为—30℃的场合,为482pm/V。·The minimum value of the dynamic strain D33 is 482pm/V when the driving electric field amplitude is 2000V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±38.5%。· The maximum value of the fluctuation amplitude of the displacement is ±38.5% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±63.5%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±63.5% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为2000V/mm以及1500V/mm的场合,为±33.1%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance was ±33.1% when the driving electric field amplitude was 2000 V/mm and 1500 V/mm.
(比较例3)(comparative example 3)
本比较例3是使用软质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于汽车用的爆燃传感器。爆燃传感器是利用压电陶瓷的压电效果将汽油发动机的爆燃转化为电压而进行检测,并没有作为执行元件的功能。This comparative example 3 is an example of a laminated actuator using a soft tetragonal PZT material, and this laminated actuator is suitable for a knock sensor for an automobile. The knock sensor uses the piezoelectric effect of piezoelectric ceramics to convert the knock of the gasoline engine into a voltage for detection, and does not function as an actuator.
称量PbO粉末、ZrO2粉末、TiO2粉末、SrTiO3粉末、Sb2O3粉末,使其成为(Pb0.95Sr0.05){(Zr0.53Ti0.47)0.978Sb0.022}O3的组成,以水作为介质,用Zr球进行20小时湿式混合。然后,在825℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1230℃以外,与比较例2相同。Weigh PbO powder, ZrO 2 powder, TiO 2 powder, SrTiO 3 powder, Sb 2 O 3 powder to make it a composition of (Pb 0.95 Sr 0.05 ){(Zr 0.53 Ti 0.47 ) 0.978 Sb 0.022 }O 3 As a medium, Zr balls were used for 20 hours of wet mixing. Then, pre-calcination was performed at 825° C. for 5 hours, and then wet pulverization was performed with Zr balls using water as a medium. In subsequent steps, it was the same as that of Comparative Example 2 except that the sintering temperature was set to 1230°C.
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为203.4pm/V、机电耦合系数kp为62.0%、机械品质系数Qm为55.8、电容率(ε33 t/ε0)为2308、介质损耗tanδ为1.4%。The relative density of the piezoelectric ceramic of this comparative example was 95% or more. In addition, the evaluation results of piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 203.4pm/V, the electromechanical coupling coefficient kp was 62.0%, the mechanical quality coefficient Qm was 55.8, and the permittivity (ε 33 t /ε 0 ) is 2308, and the dielectric loss tanδ is 1.4%.
该比较例的执行元件特性示于表8、图22、图23、图24、表15、表16、表17、表18。The actuator characteristics of this comparative example are shown in Table 8, Figure 22, Figure 23, Figure 24, Table 15, Table 16, Table 17, and Table 18.
正如从这些表以及图所看到的那样,本比较例的压电执行元件在—30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, the minimum value of the dynamic strain amount D33 and the fluctuation width of the above-mentioned characteristics of the piezoelectric actuator of this comparative example in the temperature range of -30°C to 70°C are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为—30℃的场合,为663pm/V。·The minimum value of the dynamic strain D33 is 663pm/V when the driving electric field amplitude is 1500V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±10.4%。· The maximum value of the fluctuation amplitude of the displacement is ±10.4% when the driving electric field amplitude is 2000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±17.9%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±17.9% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±10.2%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance is ±10.2% when the driving electric field amplitude is 1500 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为—30℃的场合,为663pm/V。·The minimum value of the dynamic strain D33 is 663pm/V when the driving electric field amplitude is 1500V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.8%。· The maximum value of the fluctuation amplitude of the displacement is ±14.8% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±32.3%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±32.3% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±18.4%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance was ±18.4% when the driving electric field amplitude was 1500 V/mm.
(比较例4)(comparative example 4)
本比较例4是使用半硬质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于高输出的超声波发动机。超声波发动机使粘贴在定子上的压电陶瓷环以数10kHz共振驱动,并使压接在定子上的转子旋转。对于执行元件特性,要求较高的位移性能和优良的位移的温度特性。This Comparative Example 4 is an example of a laminated actuator using a semi-rigid tetragonal PZT material, and this laminated actuator is suitable for a high-power ultrasonic motor. The ultrasonic motor drives the piezoelectric ceramic ring pasted on the stator to resonate at several 10 kHz, and rotates the rotor crimped on the stator. For the characteristics of the actuator, high displacement performance and excellent temperature characteristics of displacement are required.
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Sb2O3粉末、MnCO3粉末,使其成为(Pb0.965Sr0.05){(Zr0.5Ti0.5)0.96Sb0.03Mn0.01}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在875℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1230℃以外,与比较例2相同。Weigh PbO powder, ZrO 2 powder, TiO 2 powder, SrCO 3 powder, Sb 2 O 3 powder, MnCO 3 powder to make (Pb 0.965 Sr 0.05 ){(Zr 0.5 Ti 0.5 ) 0.96 Sb 0.03 Mn 0.01 }O The composition of 3 uses water as the medium and performs wet mixing with Zr balls. Then, it was calcined at 875° C. for 5 hours, and then wet pulverized with Zr balls using water as a medium. In subsequent steps, it was the same as that of Comparative Example 2 except that the sintering temperature was set to 1230°C.
该比较例的压电陶瓷的相对密度为95%以上。对温度为25℃的压电特性的评价结果是,压电d31常数为136.9pm/V、机电耦合系数kp为57.9%、机械品质系数Qm为850、电容率(ε33 t/ε0)为1545、介质损耗tanδ为0.2%。The relative density of the piezoelectric ceramic of this comparative example was 95% or more. As a result of the evaluation of the piezoelectric characteristics at a temperature of 25°C, the piezoelectric d 31 constant was 136.9pm/V, the electromechanical coupling coefficient kp was 57.9%, the mechanical quality coefficient Qm was 850, and the permittivity (ε 33 t /ε 0 ) It is 1545, and the dielectric loss tanδ is 0.2%.
该比较例的执行元件特性示于表9、图25、图26、图27、表15、表16、表17、表18。The actuator characteristics of this comparative example are shown in Table 9, FIG. 25 , FIG. 26 , FIG. 27 , Table 15, Table 16, Table 17, and Table 18.
正如从这些表以及图所看到的那样,本比较例的压电执行元件在—30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, the minimum value of the dynamic strain amount D33 and the fluctuation width of the above-mentioned characteristics of the piezoelectric actuator of this comparative example in the temperature range of -30°C to 70°C are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为—30℃的场合,为409pm/V。·The minimum value of the dynamic strain D33 is 409pm/V when the driving electric field amplitude is 1500V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±6.0%。· The maximum value of the fluctuation amplitude of the displacement is ±6.0% when the driving electric field amplitude is 2000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.8%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±15.8% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±11.5%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance is ±11.5% when the driving electric field amplitude is 1500 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为—30℃的场合,为409pm/V。·The minimum value of the dynamic strain D33 is 409pm/V when the driving electric field amplitude is 1500V/mm and the temperature is -30°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.2%。· The maximum value of the fluctuation amplitude of the displacement is ±15.2% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±36.7%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±36.7% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±22.7%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance was ±22.7% when the driving electric field amplitude was 1500 V/mm.
(比较例5)(comparative example 5)
比较例5是使用硬质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于高灵敏度的角速度传感器。角速度传感器具有使压电陶瓷音叉以数kHz频率共振驱动的执行元件功能、以及检测角速度的传感器功能这两者。对于执行元件的特性,位移性能可以较低,但要求位移的温度特性小。Comparative Example 5 is an example of a laminated actuator using a hard-based tetragonal PZT material, and this laminated actuator is suitable for a high-sensitivity angular velocity sensor. The angular velocity sensor has both an actuator function to resonate and drive a piezoelectric ceramic tuning fork at a frequency of several kHz, and a sensor function to detect angular velocity. For the characteristics of the actuator, the displacement performance can be low, but the temperature characteristic of the displacement is required to be small.
称量PbO粉末、ZrO2粉末、TiO2粉末、ZnO粉末、MnCO3粉末、Nb2O5粉末,使其成为Pb{(Zr0.5Ti0.5)0.98(Zn0.33Nb0.67)0.01Mn0.01}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在800℃进行5小时预烧,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1200℃以外,与比较例2相同。Weigh PbO powder, ZrO 2 powder, TiO 2 powder, ZnO powder, MnCO 3 powder, Nb 2 O 5 powder to make Pb{(Zr 0.5 Ti 0.5 ) 0.98 (Zn 0.33 Nb 0.67 ) 0.01 Mn 0.01 }O 3 The composition, using water as the medium, wet mixing with Zr balls. Then, it was calcined at 800° C. for 5 hours, and then wet pulverized with Zr balls using water as a medium. In subsequent steps, it was the same as in Comparative Example 2 except that the sintering temperature was set to 1200°C.
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为103.6pm/V、机电耦合系数kp为54.1%、机械品质系数Qm为1230、电容率(ε33 t/ε0)为1061、介质损耗tanδ为0.2%。The relative density of the piezoelectric ceramic of this comparative example was 95% or more. In addition, the evaluation results of piezoelectric characteristics at a temperature of 25°C showed that the piezoelectric d 31 constant was 103.6pm/V, the electromechanical coupling coefficient kp was 54.1%, the mechanical quality coefficient Qm was 1230, and the permittivity (ε 33 t /ε 0 ) is 1061, and the dielectric loss tanδ is 0.2%.
该比较例的执行元件特性示于表10、图28、图29、图30、表15、表16、表17、表18。The actuator characteristics of this comparative example are shown in Table 10, FIG. 28, FIG. 29, FIG. 30, Table 15, Table 16, Table 17, and Table 18.
正如从这些表以及图所看到的那样,本比较例的压电执行元件在—30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。As can be seen from these tables and figures, the minimum value of the dynamic strain amount D33 and the fluctuation width of the above-mentioned characteristics of the piezoelectric actuator of this comparative example in the temperature range of -30°C to 70°C are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为20℃的场合,为295pm/V。该动态应变量D33的最小值小于实施例1的303pm/V。·The minimum value of the dynamic strain D33 is 295pm/V when the driving electric field amplitude is 1500V/mm and the temperature is 20°C. The minimum value of the dynamic strain D33 is smaller than 303 pm/V in Example 1.
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±3.2%。· The maximum value of the fluctuation amplitude of the displacement is ±3.2% when the driving electric field amplitude is 2000 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.3%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±14.3% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±13.9%。· The maximum value of the fluctuation amplitude of the displacement/apparent dynamic capacitance was ±13.9% when the driving electric field amplitude was 1500 V/mm.
并且,在—30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。In addition, the minimum value of the dynamic strain amount D33 in the temperature range of -30°C to 160°C and the fluctuation width of the above-mentioned characteristics are as follows.
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为20℃的场合,为295pm/V。·The minimum value of the dynamic strain D33 is 295pm/V when the driving electric field amplitude is 1500V/mm and the temperature is 20°C.
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±11.1%。· The maximum value of the fluctuation amplitude of the displacement is ±11.1% when the driving electric field amplitude is 1500 V/mm.
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±32.4%。· The maximum value of the fluctuation width of the apparent dynamic capacitance was ±32.4% when the driving electric field amplitude was 1500 V/mm.
·位移/表观动态电容的波动幅的最大值在驱动电场振幅1500V/mm的场合,为±24.5%。· The maximum value of the fluctuation width of the displacement/apparent dynamic capacitance is ±24.5% when the driving electric field amplitude is 1500 V/mm.
(实施例6)漏电流与电容的分离(Embodiment 6) Separation of Leakage Current and Capacitance
在该例中,为了研究表观动态电容如实施例1~5所示那样在80℃以上上升的原因是否是如实施例5那样由于漏电流的增加引起的,使用实施例1、实施例4、以及比较例1制作的压电陶瓷(单板),评价动态电容的温度特性。In this example, in order to examine whether the increase in apparent dynamic capacitance at 80°C or higher as shown in Examples 1 to 5 is caused by an increase in leakage current as in Example 5, Examples 1 and 4 were used. , and the piezoelectric ceramic (single plate) produced in Comparative Example 1, the temperature characteristics of the dynamic capacitance were evaluated.
在此,动态电容的测定如下,在以频率为1Hz的三角形波外加电场强度为2000V/mm(0~970V)的高电压而进行驱动的场合,由下述的式A9从极化量-电压磁滞回线测定极化量,以此为基础,算出高电场下驱动时的注入电荷量,并作为动态电容。Here, the dynamic capacitance is measured as follows. When driving with a triangular wave with a frequency of 1 Hz and applying a high voltage with an electric field strength of 2000 V/mm (0 to 970 V), the following equation A9 is used to calculate the polarization-voltage The hysteresis loop measures the amount of polarization, and based on this, the amount of injected charge when driving under high electric field is calculated and used as a dynamic capacitance.
动态电容C=Q/V A9Dynamic capacitance C=Q/V A9
式中,V:外加电压(=970V)、Q:最大电荷[C]。In the formula, V: Applied voltage (=970V), Q: Maximum charge [C].
对实施例1和实施例4制作的单板在80℃以上的温度区域中反复外加电压时,由于漏电流而引起了极化量的零点漂移的现象。因此,为了评价磁滞回线,对10次反复地外加电压所观测到的电压-极化量特性进行修正,以使电压=0的时候,极化量=0,而且用并联有线性电阻的模型通过除去漏电流而得到磁滞回线。由该磁滞回线求得的动态电容与表观动态电容不同,是用除去漏电流后的、来自于介质成分和极化反转成分以及极化旋转成分的充电电荷除以外加电压而得到的。反复画10次该磁滞回线,以最大电荷量的平均值作为极化量。When a voltage is repeatedly applied to the single boards produced in Examples 1 and 4 in a temperature range above 80° C., the phenomenon of zero-point shift of the polarization amount occurs due to leakage current. Therefore, in order to evaluate the hysteresis loop, the voltage-polarization characteristic observed by repeatedly applying the
另一方面,即使对比较例1制作的单板反复外加电压,也没有极化量的零点漂移的现象。在磁滞回线的评价中,与上述同样地反复外加电压10次所观测到的最大电荷量的平均值作为极化量。On the other hand, even when voltage was repeatedly applied to the single plate produced in Comparative Example 1, there was no zero-point shift of the polarization amount. In the evaluation of the hysteresis loop, the average value of the maximum charge amount observed after repeating the
另外,对这样求得的单板的动态电容乘以执行元件的元件片数40,与实施例1、实施例4、以及比较例1制作的执行元件的表观动态电容相比较的结果分别示于图31、图32、以及图33。In addition, the dynamic capacitance of the single board obtained in this way is multiplied by the number of elements of the
正如从图31、图32、以及图33所知道的那样,比较例1的(执行元件的表观动态电容)与(单板的动态电容×40)的值大致一致,但是在实施例1和实施例4中,(执行元件的表观动态电容)与(单板的动态电容×40)的值有很大差异。(执行元件的表观动态电容)在80℃以上的高温区域中是上升的,但是(单板的动态电容×40)的值大致恒定。有关在—30℃~160℃的温度范围内的(单板的动态电容×40)的波动幅,在实施例1中为±7.6%、在实施例4中为±2.2%。As can be seen from Fig. 31, Fig. 32, and Fig. 33, the values of (the apparent dynamic capacitance of the actuator) and (the dynamic capacitance of the single board × 40) of Comparative Example 1 are roughly the same, but the values of the comparison example 1 and In Example 4, the values of (the apparent dynamic capacitance of the actuator) and (the dynamic capacitance of the single board×40) are very different. (Apparent dynamic capacitance of the actuator) increases in the high-temperature region above 80°C, but the value of (dynamic capacitance of the single board × 40) is approximately constant. The fluctuation width (dynamic capacitance of the single board×40) in the temperature range of -30°C to 160°C was ±7.6% in Example 1 and ±2.2% in Example 4.
从以上知道,本发明的压电执行元件如果降低大约80℃以上的高温的漏电流、或者相反使80℃以下的漏电流增加,则在—30℃~160℃的宽广的温度范围内,即使是驱动电场强度为2000V/mm的高电场驱动,表观动态电容的波动幅也能够降低。可以认为,其可能达成的水平可以达到与单板的动态电容的温度特性相同程度。From the above, if the piezoelectric actuator of the present invention reduces the leakage current at a high temperature of about 80°C or higher, or conversely increases the leakage current at a temperature below 80°C, in the wide temperature range of -30°C to 160°C, even It is driven by a high electric field with a driving electric field strength of 2000V/mm, and the fluctuation amplitude of the apparent dynamic capacitance can also be reduced. It can be considered that the possible level can reach the same level as the temperature characteristic of the dynamic capacitance of the single board.
(实施例7)动态应变量的下限值的规定(Embodiment 7) Regulation of the lower limit of the dynamic strain
如实施例5所示那样,通过使驱动电场强度小于1000V/mm,在—30℃~160℃的宽广的温度范围内,能够减小表观动态电容的波动幅。但是,如果降低驱动电场强度,动态应变量也减小。在该实施例中,求出本发明的执行元件在降低了驱动电场强度的场合的动态应变量。As shown in Example 5, by making the driving electric field strength less than 1000 V/mm, the fluctuation width of the apparent dynamic capacitance can be reduced in a wide temperature range of -30°C to 160°C. However, if the driving electric field strength is reduced, the amount of dynamic strain is also reduced. In this example, the amount of dynamic strain of the actuator of the present invention was obtained when the intensity of the driving electric field was lowered.
实施例1~5制作的执行元件的驱动电场强度与20℃的动态应变量的关系示于图34。可以知道,在作为执行元件所必要的驱动电场强度的下限值即100V/mm的地方,动态应变量为250pm/V以上。The relationship between the driving electric field intensity and the dynamic strain at 20°C of the actuators produced in Examples 1 to 5 is shown in FIG. 34 . It can be seen that the dynamic strain is 250 pm/V or more at 100 V/mm, which is the lower limit of the driving electric field strength required for the actuator.
(实施例8)动态应变量在低电场中的温度特性的规定(Embodiment 8) Regulation of the temperature characteristics of the dynamic strain amount in a low electric field
在本实施例中,求出低于1000V/mm的低驱动电场强度下,动态应变量小的场合的位移的波动幅。In this example, the fluctuation amplitude of the displacement is obtained when the dynamic strain amount is small at a low driving electric field strength of less than 1000 V/mm.
为此,必须降低对压电执行元件的外加电压来进行测定,对于该实施例制作的压电执行元件,在电场强度不足500V/mm时,位移小,测定精度可能变差。此外,其温度特性的评价更加困难。Therefore, it is necessary to reduce the applied voltage to the piezoelectric actuator for measurement. For the piezoelectric actuator manufactured in this embodiment, when the electric field strength is less than 500V/mm, the displacement is small and the measurement accuracy may deteriorate. In addition, the evaluation of its temperature characteristics is more difficult.
因此,如果测定单板的压电横向应变常数d31,则尽管位移的绝对值的推测困难,但位移的温度特性的推测是可能的,因此在本实施例中,采用共振-反共振法来实施单板的压电横向应变常数d31的测定。Therefore, if the piezoelectric transverse strain constant d 31 of the veneer is measured, although it is difficult to estimate the absolute value of the displacement, it is possible to estimate the temperature characteristic of the displacement. Therefore, in this embodiment, the resonance-anti-resonance method is used to The measurement of the piezoelectric transverse strain constant d 31 of the single plate was carried out.
对实施例5制作的单板的压电d31常数的温度特性的测定值、和实施例5得到的1000~2000V/mm的驱动电场强度下的动态应变量分别以20℃的值标准化后进行比较的结果示于图35。有关在—30℃~80℃的温度范围内的单板的压电d31常数的波动幅,在实施例5中为±7.8%。另外,有关在—30℃~160℃的温度范围内的单板的压电d31常数的波动幅,在实施例5中为±7.8%。该值与1000~2000V/mm的驱动电场强度下的动态应变量的波动幅相同、或者为较小的值。The measured value of the temperature characteristic of the piezoelectric d 31 constant of the single plate produced in Example 5 and the dynamic strain amount obtained in Example 5 at a driving electric field strength of 1000 to 2000 V/mm were normalized to the value at 20°C, respectively. The results of the comparison are shown in FIG. 35 . The fluctuation width of the piezoelectric d31 constant of the single plate in the temperature range of -30°C to 80°C was ±7.8% in Example 5. In addition, the fluctuation width of the piezoelectric d31 constant of the single plate in the temperature range of -30°C to 160°C was ±7.8% in Example 5. This value is the same as or a smaller value than the fluctuation width of the dynamic strain amount at a driving electric field strength of 1000 to 2000 V/mm.
从以上知道,即使使驱动电场强度低于1000V/mm,本发明的执行元件在—30℃~160℃的宽广的温度范围内,也能够降低位移的波动幅。From the above, it is known that even if the driving electric field intensity is lower than 1000V/mm, the actuator of the present invention can reduce the fluctuation amplitude of the displacement in a wide temperature range of -30°C to 160°C.
表11Table 11
表12Table 12
表13Table 13
表14Table 14
表15Table 15
表16Table 16
表17Table 17
表18Table 18
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004266110 | 2004-09-13 | ||
JP266110/2004 | 2004-09-13 | ||
JP228396/2005 | 2005-08-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101019247A CN101019247A (en) | 2007-08-15 |
CN100511746C true CN100511746C (en) | 2009-07-08 |
Family
ID=38727278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005800307146A Expired - Fee Related CN100511746C (en) | 2004-09-13 | 2005-09-13 | Piezoelectric actuator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100511746C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6034493B2 (en) | 2013-11-28 | 2016-11-30 | 京セラ株式会社 | Piezoelectric element, piezoelectric member using the same, liquid discharge head, and recording apparatus |
GB201501923D0 (en) * | 2015-02-05 | 2015-03-25 | Ionix Advanced Technologies Ltd | Piezoelectric transducers |
JP6799859B2 (en) * | 2015-08-21 | 2020-12-16 | 株式会社フジキン | Piezoelectric linear actuator, piezoelectric drive valve and flow control device |
CN105789430B (en) * | 2016-02-02 | 2018-04-24 | 欧明 | A kind of temperature stabilization piezoelectric ceramic vibrator |
CN105826461B (en) * | 2016-03-08 | 2018-08-07 | 欧明 | A kind of temperature stabilization piezoelectric composite ceramics oscillator |
CN110380646A (en) * | 2019-07-25 | 2019-10-25 | 刘金刚 | Obtain transient state energy device |
-
2005
- 2005-09-13 CN CNB2005800307146A patent/CN100511746C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101019247A (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4795748B2 (en) | Piezoelectric actuator | |
US7443085B2 (en) | Piezoelectric actuator | |
US20070176516A1 (en) | Piezoelectric sensor | |
US8529785B2 (en) | Metal oxide | |
JP5967988B2 (en) | Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device | |
KR101235434B1 (en) | Piezoelectric ceramic composition and piezoelectric element made by using the same | |
JP4987815B2 (en) | Method for producing piezoelectric / electrostrictive porcelain composition | |
JP3812936B2 (en) | Ceramic material and piezoelectric element using the same | |
JP5876974B2 (en) | Method for producing piezoelectric / electrostrictive porcelain composition | |
JP4995412B2 (en) | Piezoelectric ceramic composition and piezoelectric element using the same | |
KR20150042075A (en) | Piezoelectric materials for low sintering | |
CN100511746C (en) | Piezoelectric actuator | |
WO2006093043A1 (en) | Multilayer piezoelectric element | |
JP5597368B2 (en) | Multilayer electronic component and manufacturing method thereof | |
JP4877672B2 (en) | Piezoelectric composition | |
JP6357180B2 (en) | Porcelain composition, piezoelectric element, vibrator, and method for manufacturing piezoelectric element | |
JP4688330B2 (en) | Piezoelectric ceramic, multilayer piezoelectric element, and injection device | |
Kumar et al. | Nanocrystalline PNS-PZT-based energy harvester for strategic applications | |
JP5935187B2 (en) | Piezoelectric ceramics and piezoelectric actuator using the same | |
Miclea et al. | Advanced electroceramic materials for electrotechnical applications | |
JP2015096455A (en) | Piezoelectric ceramic composition, piezoelectric element, sensor for internal combustion engine and manufacturing method for piezoelectric ceramic composition | |
JP2002356372A (en) | Piezoelectric ceramic composition and piezoelectric transformer | |
WO2005102957A1 (en) | Piezoelectric porcelain composition and piezoelectric device using it | |
CN101133502A (en) | Piezoelectric element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090708 Termination date: 20200913 |
|
CF01 | Termination of patent right due to non-payment of annual fee |