[go: up one dir, main page]

CN100507038C - Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide - Google Patents

Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide Download PDF

Info

Publication number
CN100507038C
CN100507038C CNB200610018177XA CN200610018177A CN100507038C CN 100507038 C CN100507038 C CN 100507038C CN B200610018177X A CNB200610018177X A CN B200610018177XA CN 200610018177 A CN200610018177 A CN 200610018177A CN 100507038 C CN100507038 C CN 100507038C
Authority
CN
China
Prior art keywords
inhibitor
sintering
powder
pressure
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200610018177XA
Other languages
Chinese (zh)
Other versions
CN1804067A (en
Inventor
邵刚勤
熊震
史晓亮
段兴龙
李勇
孙鹏
王天国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CNB200610018177XA priority Critical patent/CN100507038C/en
Publication of CN1804067A publication Critical patent/CN1804067A/en
Application granted granted Critical
Publication of CN100507038C publication Critical patent/CN100507038C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种碳化钨—抑制剂复合粉末及其超细硬质合金的制备方法。首先制备含碳和抑制剂的氧化物粉末,然后采用直接还原碳化法合成碳化钨—抑制剂复合粉末,添加金属粉末后进行球磨混合、干燥、成型、真空烧结或氢气烧结后热处理,或直接低压烧结,得到超细或纳米碳化钨基硬质合金。本发明解决了已有技术存在抑制剂后期添加不均匀或抑制剂在前期添加时只能采用碳化温度低的抑制剂的缺陷,可使多种抑制剂在前期引入并保证其在碳化钨基体中的均匀分散,所用原料都采用环保性化合物,制备温度低于传统制备方法,工艺简捷安全,生产成本低,易实现产业化。

Figure 200610018177

The invention relates to a preparation method of tungsten carbide-inhibitor composite powder and ultrafine hard alloy thereof. First prepare the oxide powder containing carbon and inhibitor, then synthesize tungsten carbide-inhibitor composite powder by direct reduction carbonization method, add metal powder and then carry out ball mill mixing, drying, forming, heat treatment after vacuum sintering or hydrogen sintering, or direct low pressure Sintering to obtain ultrafine or nanometer tungsten carbide-based hard alloy. The invention solves the defects of the prior art that the inhibitors are added unevenly in the later stage or that the inhibitors with low carbonization temperature can only be used when the inhibitors are added in the early stage, so that various inhibitors can be introduced in the early stage and ensure that they are in the tungsten carbide matrix The uniform dispersion, the raw materials used are all environmentally friendly compounds, the preparation temperature is lower than the traditional preparation method, the process is simple and safe, the production cost is low, and it is easy to realize industrialization.

Figure 200610018177

Description

碳化钨—抑制剂复合粉末及其超细硬质合金的制备方法 Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide

技术领域 technical field

本发明属于一种碳化钨基超细硬质合金的制备方法。The invention belongs to a preparation method of tungsten carbide-based ultrafine hard alloy.

背景技术 Background technique

超细晶碳化钨(以下简称“WC”)基硬质合金具有高强度、高硬度的“双高”性能,可应用于制作印刷电路板微型钻头、点阵打印机打印针头、精密工模具、难加工材料刀具等。当WC晶粒度减小、粘结相钴的分布高度均匀时,缺陷数目和尺寸会随之减少甚至为零,合金的力学性能就能远高于普通硬质合金。超细晶WC基硬质合金制备的关键工艺有两点:一是晶粒细小且粒度分布均匀的WC或WC-Co原料粉末的制备;二是WC晶粒在烧结过程中的生长抑制。Ultra-fine-grained tungsten carbide (hereinafter referred to as "WC")-based cemented carbide has the "double high" performance of high strength and high hardness, and can be applied to the production of micro-drills for printed circuit boards, printing needles for dot-matrix printers, precision molds, difficult Processing materials, knives, etc. When the grain size of WC is reduced and the distribution of cobalt in the binder phase is highly uniform, the number and size of defects will be reduced or even zero, and the mechanical properties of the alloy can be much higher than that of ordinary cemented carbide. There are two key processes in the preparation of ultrafine-grained WC-based cemented carbide: one is the preparation of WC or WC-Co raw material powder with fine grains and uniform particle size distribution; the other is the growth inhibition of WC grains during sintering.

目前,国际上对于超细或纳米晶的WC粉末或WC基复合粉末的制备主要通过气、液相合成技术和低温快速碳化工艺来实现(S.D.Dunmead,et al.,Method for makingsubmicrometer carbides,submicrometer solid solution carbides,and the material resultingtherefrom,US Pat.5380688,Jan.10,1995;L.E.McCandlish et al.,Spray conversion processfor the production of nanophase composite powders,World Pat.WO 91/07244,May30,1991)。At present, the preparation of ultrafine or nanocrystalline WC powder or WC-based composite powder is mainly realized by gas and liquid phase synthesis technology and low-temperature rapid carbonization process in the world (S.D.Dunmead, et al., Method for making submicrometer carbides, submicrometer solid solution carbides, and the material resulting therefrom, US Pat.5380688, Jan.10, 1995; L.E.McCandlish et al., Spray conversion process for the production of nanophase composite powders, World Pat.WO 91/07244, May30, 1991).

对于WC晶粒在烧结过程中的生长抑制,研究者们主要通过在液相合成WC基复合粉末时或在WC粉末与钴(Co)、镍(Ni)、铁(Fe)等金属粉末混合时添加晶粒生长抑制剂(如碳化钒(VC)、碳化铬(Cr3C2)、碳化钽(TaC)、碳化铌(NbC)等)来实现。如:For the growth inhibition of WC grains during the sintering process, the researchers mainly synthesized WC-based composite powders in the liquid phase or when WC powders were mixed with metal powders such as cobalt (Co), nickel (Ni), and iron (Fe). Add grain growth inhibitors (such as vanadium carbide (VC), chromium carbide (Cr 3 C 2 ), tantalum carbide (TaC), niobium carbide (NbC), etc.) to achieve. like:

(1)超细或纳米WC粉末加金属粉末(Co粉、或Ni粉、或Fe粉)和抑制剂球磨混合、成型、烧结后热处理,或直接低压烧结,得到超细WC基硬质合金(A.Grearson,et al.,Method of making ultrafine WC-Co alloys,US Pat.6413293,July2,2002)。该法是目前普遍采用的硬质合金生产方法,存在的突出问题是少量的抑制剂在后期添加时通过球磨混合方式难以在WC基体中达到高度均匀分散;(1) Ultrafine or nanometer WC powder plus metal powder (Co powder, or Ni powder, or Fe powder) and inhibitor ball milling, molding, heat treatment after sintering, or direct low-pressure sintering to obtain ultrafine WC-based cemented carbide ( A. Grearson, et al., Method of making ultrafine WC-Co alloys, US Pat.6413293, July2, 2002). This method is currently widely used in the production of cemented carbide. The outstanding problem is that it is difficult to achieve a high degree of uniform dispersion in the WC matrix by ball milling when a small amount of inhibitor is added in the later stage;

(2)超细或纳米WC-Co复合粉末加抑制剂球磨混合、成型、烧结后热处理,或直接低压烧结,得到超细WC基硬质合金(Seung I..Cha et al.,Mechanical properties of WC-10Cocemented carbides sintered from nanocrystalline spray conversion processed powders,International Journal of Refractory Metals and Hard Materials,2001,19(4-6):397-403)。该法为近十几年来发展起来的制备超细WC-Co硬质合金的新方法,先进性在于采用了复合粉末,但抑制剂仍然在后期添加,未从根本上解决其难以均匀分散的问题。(2) Ultrafine or nanometer WC-Co composite powder plus inhibitor ball milling, molding, heat treatment after sintering, or direct low-pressure sintering to obtain ultrafine WC-based cemented carbide (Seung I..Cha et al., Mechanical properties of WC-10 Cocemented carbides sintered from nanocrystalline spray conversion processed powders, International Journal of Refractory Metals and Hard Materials, 2001, 19(4-6): 397-403). This method is a new method for preparing ultra-fine WC-Co cemented carbide developed in the past ten years. The advanced method lies in the use of composite powder, but the inhibitor is still added in the later stage, which has not fundamentally solved the problem that it is difficult to uniformly disperse. .

(3)超细或纳米WC-Co(含抑制剂)的复合粉末经过球磨、成型、烧结后热处理,或直接低压烧结,得到超细/纳米WC-Co硬质合金(邵刚勤等,无η相碳化钨-钴纳米复合粉末的工业化制备方法,中国发明专利ZL 99 1 16597.7,1999年8月13日;G.Q.Shao,et al.,Properties of superfine tungsten carbide sintered from nanocrystalline powder by spraypyrogenation-continuous reduction carburization process,Proceedings of 16thInternationalPlansee Seminar,Reutte,Austria,pp.519-526,2005)。该法的先进性在于前期引入抑制剂的可溶性盐,但由于钴的存在限制了后续的碳化温度,它较适合于碳化温度低(如碳化钒等)的抑制剂的引入,而对于铬、钽等则难以碳化完全,WC基体中仍会存在少量氧化物或缺碳相,必须运用其它方式。(3) The composite powder of ultrafine or nano WC-Co (containing inhibitor) is subjected to ball milling, molding, heat treatment after sintering, or direct low-pressure sintering to obtain ultrafine/nano WC-Co cemented carbide (Shao Gangqin et al., without η phase Industrial preparation method of tungsten carbide-cobalt nanocomposite powder, Chinese invention patent ZL 99 1 16597.7, August 13, 1999; GQShao, et al., Properties of superfine tungsten carbide sintered from nanocrystalline powder by spraypyrogenation-continuous reduction carburization process, Proceedings of 16th International Plansee Seminar, Reutte, Austria, pp.519-526, 2005). The advancement of this method lies in the introduction of soluble salts of inhibitors in the early stage, but because the presence of cobalt limits the subsequent carbonization temperature, it is more suitable for the introduction of inhibitors with low carbonization temperatures (such as vanadium carbide, etc.), while for chromium, tantalum It is difficult to completely carbonize, and there will still be a small amount of oxide or carbon-deficient phase in the WC matrix, so other methods must be used.

发明内容 Contents of the invention

本发明的目的是针对已有技术的不足,提出一种WC-抑制剂复合粉末及其超细硬质合金的制备方法。该方法用钨氧化物(或盐)和抑制剂氧化物(或盐)为原料一步还原并碳化出WC-抑制剂复合粉末,产物均为碳化物,工艺易控不受原料种类限制。The purpose of the present invention is to propose a preparation method of WC-inhibitor composite powder and its ultrafine hard alloy aiming at the deficiencies of the prior art. The method uses tungsten oxide (or salt) and inhibitor oxide (or salt) as raw materials to reduce and carbonize WC-inhibitor composite powder in one step, and the products are all carbides, and the process is easy to control and is not limited by the type of raw materials.

下面对上述方法作详细的说明:The above method is described in detail below:

本方法首先制备含碳和抑制剂的氧化物粉末,然后采用直接还原碳化法(邵刚勤等,碳化钨—钴纳米复合粉末的直接还原碳化制备方法,中国发明专利200410012902.3,2004年3月26日申请)合成WC-抑制剂复合粉末,添加金属粉末(Co粉、或Ni粉、或Fe粉)后进行球磨混合、干燥、成型、真空烧结或氢气烧结后热处理,或直接低压烧结,得到超细或纳米WC基硬质合金。This method first prepares the oxide powder containing carbon and inhibitor, and then adopts the direct reduction carbonization method (Shao Gangqin et al., the direct reduction carbonization preparation method of tungsten carbide-cobalt nanocomposite powder, Chinese invention patent 200410012902.3, applied on March 26, 2004 ) Synthesize WC-inhibitor composite powder, add metal powder (Co powder, or Ni powder, or Fe powder) and then carry out ball milling, drying, molding, vacuum sintering or hydrogen sintering and heat treatment, or direct low-pressure sintering to obtain ultrafine or Nano WC-based cemented carbide.

含碳和抑制剂的氧化物粉末可通过以下三种方法之一获得:(1)直接采用商业化氧化物粉末和碳粉球磨混合;(2)将可溶性的钨盐、抑制剂的盐按比例溶解,经喷雾热解或喷雾干燥加煅烧制得含抑制剂的氧化物粉末,再与碳粉球磨混合;(3)将可溶性的钨盐、抑制剂的盐、碳源按比例溶解,经喷雾热解或喷雾干燥加煅烧制得含碳和抑制剂的氧化物粉末。Oxide powders containing carbon and inhibitors can be obtained by one of the following three methods: (1) directly using commercial oxide powders and carbon powders for ball milling; (2) mixing soluble tungsten salts and inhibitor salts in proportion Dissolve, spray pyrolysis or spray drying plus calcination to obtain inhibitor-containing oxide powder, and then mix with carbon powder ball mill; (3) Dissolve soluble tungsten salt, inhibitor salt, and carbon source in proportion, and spray Pyrolysis or spray drying plus calcination to produce oxide powders containing carbon and inhibitors.

本发明所述的WC-抑制剂复合粉末及其超细硬质合金的制备方法,包括:The preparation method of WC-inhibitor composite powder and ultrafine cemented carbide thereof of the present invention comprises:

1、WC-抑制剂复合粉末的制备方法1. Preparation method of WC-inhibitor composite powder

将含碳和抑制剂的氧化物粉末放入气氛炉或真空炉中进行直接还原碳化。其中:Put the oxide powder containing carbon and inhibitor into the atmosphere furnace or vacuum furnace for direct reduction carbonization. in:

(1)配比(1) ratio

含碳和抑制剂的氧化物粉末以及WC-抑制剂复合粉末原料配比的成分按重量百分比为:钨为91.26~93.39wt%,碳为6.17~6.50wt%,抑制剂的金属元素为0.44~2.25wt%。The oxide powder containing carbon and inhibitor and the raw material ratio of WC-inhibitor composite powder are as follows: 91.26-93.39wt% tungsten, 6.17-6.50wt% carbon, and 0.44-6.50wt% metal element of the inhibitor 2.25 wt%.

钨化合物可选取下列中的一种:偏钨酸铵AMT((NH4)6(H2W12O40)·4H2O)、仲钨酸铵APT((NH4)10(H2W12O42)·4H2O)、正钨酸铵(NH4)2WO4、钨酸H2WO4、偏钨酸H6(H2W12O40)、黄钨WO3、蓝钨WO2.9、紫钨WO2.72、褐钨WO2等钨的氧化物或含钨的盐;Tungsten compound can choose one of the following: ammonium metatungstate AMT ((NH 4 ) 6 (H 2 W 12 O 40 )·4H 2 O), ammonium paratungstate APT ((NH 4 ) 10 (H 2 W 12 O 42 )·4H 2 O), ammonium orthotungstate (NH 4 ) 2 WO 4 , tungstic acid H 2 WO 4 , metatungstic acid H 6 (H 2 W 12 O 40 ), yellow tungsten WO 3 , blue tungsten WO 2.9 , Violet tungsten WO 2.72 , brown tungsten WO 2 and other tungsten oxides or tungsten-containing salts;

抑制剂原料可选择下列的一种或几种:钒(V)、铬(Cr)、钼(Mo)、钽(Ta)、铌(Nb)、钛(Ti)等的酸、铵盐、硝酸盐、乙酸盐、氯盐、硫酸盐、草酸盐、氧化物;Inhibitor raw materials can choose one or more of the following: vanadium (V), chromium (Cr), molybdenum (Mo), tantalum (Ta), niobium (Nb), titanium (Ti) and other acids, ammonium salts, nitric acid Salts, acetates, chlorides, sulfates, oxalates, oxides;

可溶性碳源可选择下列中的一种或几种:乙二铵(en)、纤维、纸浆、聚丙烯、糖浆、蔗糖;Soluble carbon source can choose one or more of the following: ethylene diammonium (en), fiber, pulp, polypropylene, syrup, sucrose;

(2)球磨工艺、喷雾热解、喷雾干燥、煅烧工艺按“碳化钨—钴纳米复合粉末的直接还原碳化制备方法”(邵刚勤等,中国发明专利200410012902.3,2004年3月26日申请);(2) The ball milling process, spray pyrolysis, spray drying, and calcination processes are based on the "direct reduction carbonization preparation method of tungsten carbide-cobalt nanocomposite powder" (Shao Gangqin et al., Chinese invention patent 200410012902.3, applied on March 26, 2004);

(3)WC-抑制剂复合粉末的合成:(3) Synthesis of WC-inhibitor composite powder:

反应在普通加热炉、或微波炉、或管式炉、或固定床、或回转炉、或流化炉、或气氛炉、或真空炉中进行,环境气氛为惰性气体、或氢气、或含碳气体、或惰性气体和氢气、或惰性气体和含碳气体、或氢气和含碳气体、或几种含碳气体的混合气体、或真空,温度控制在1000~1350℃,反应时间为0.5~12小时;The reaction is carried out in an ordinary heating furnace, or a microwave oven, or a tube furnace, or a fixed bed, or a rotary furnace, or a fluidized furnace, or an atmosphere furnace, or a vacuum furnace, and the ambient atmosphere is an inert gas, or hydrogen, or a carbon-containing gas , or inert gas and hydrogen, or inert gas and carbon-containing gas, or hydrogen and carbon-containing gas, or a mixture of several carbon-containing gases, or vacuum, the temperature is controlled at 1000-1350 ° C, and the reaction time is 0.5-12 hours ;

2、超细WC基硬质合金的制备方法2. Preparation method of ultrafine WC-based cemented carbide

将制得的WC-抑制剂复合粉末和粒径不大于1.0μm的金属粉(Co粉、或Ni粉、或Fe粉)球磨混合、干燥造粒、成型、真空烧结或氢气烧结后热处理,或直接低压烧结。The prepared WC-inhibitor composite powder and metal powder (Co powder, or Ni powder, or Fe powder) with a particle size of not more than 1.0 μm are ball milled and mixed, dried and granulated, shaped, vacuum sintered or hydrogen sintered, and then heat treated, or Direct low pressure sintering.

(1)配比:(1) ratio:

超细WC基硬质合金的配比按重量百分比为:WC-抑制剂复合粉末为70~97wt%,金属粉为3~30wt%;配料后再外掺成型剂和表面活性剂,其中成型剂外掺0.5~12wt%,表面活性剂外掺0.1~0.3wt%;The proportion of ultra-fine WC-based hard alloy is as follows: 70-97wt% of WC-inhibitor composite powder, 3-30wt% of metal powder; 0.5-12wt% externally added, 0.1-0.3wt% surfactant externally added;

成型剂:Forming agent:

可选择下列中的一种或几种:固体石蜡、液体石蜡、凡士林、合成橡胶、聚乙二醇、聚乙烯醇;One or more of the following can be selected: solid paraffin, liquid paraffin, vaseline, synthetic rubber, polyethylene glycol, polyvinyl alcohol;

表面活性剂:Surfactant:

可选择硬脂酸、或油酸;You can choose stearic acid or oleic acid;

(2)球磨工艺(2) Ball milling process

使用乙醇、丙酮、己烷中的一种或几种作为介质进行湿磨,料∶球∶液(质量比)=1∶2~20∶0.5~10;或干磨,料∶球(质量比)=1∶2~20,球磨时间1~72小时,环境气氛为惰性气体、或真空;Use one or more of ethanol, acetone, and hexane as a medium for wet grinding, material: ball: liquid (mass ratio) = 1: 2~20: 0.5~10; or dry grinding, material: ball (mass ratio )=1:2~20, the ball milling time is 1~72 hours, and the ambient atmosphere is inert gas or vacuum;

(3)烧结工艺(3) Sintering process

烧结温度为1300~1500℃,保温时间为1~3小时,烧结方式为真空烧结,或氢气烧结,或低压烧结。其中真空烧结时压力为1×10-5~1×10-6MPa;氢气烧结时压力为常压,氢气的含水量为0~0.5g/m3,浓度为10~100%vol(剩余气体为氩气、或氮气);低压烧结时真空阶段压力为1×10-5~1×10-6MPa,加压阶段压力为3~7MPa,气体为氩气、或氮气;The sintering temperature is 1300-1500°C, the holding time is 1-3 hours, and the sintering method is vacuum sintering, hydrogen sintering, or low-pressure sintering. The pressure during vacuum sintering is 1×10 -5 ~ 1×10 -6 MPa; the pressure during hydrogen sintering is normal pressure, the water content of hydrogen is 0-0.5g/m 3 , and the concentration is 10-100% vol (residual gas argon, or nitrogen); during low-pressure sintering, the pressure in the vacuum stage is 1×10 -5 ~ 1×10 -6 MPa, and the pressure in the pressurized stage is 3 ~ 7MPa, and the gas is argon or nitrogen;

(4)热处理工艺(4) heat treatment process

热处理方式为热等静压、或低压,其中热等静压处理的气氛为氩气、或氮气,温度为1200~1350℃,压力为100~200MPa;低压热处理的气氛为氩气、或氮气,温度为1250~1400℃,压力为3~7MPa。The heat treatment method is hot isostatic pressing or low pressure, wherein the atmosphere of hot isostatic pressing treatment is argon or nitrogen, the temperature is 1200-1350 ° C, and the pressure is 100-200 MPa; the atmosphere of low-pressure heat treatment is argon or nitrogen, The temperature is 1250-1400°C, and the pressure is 3-7MPa.

本发明解决了已有技术存在抑制剂后期添加不均匀或抑制剂在前期添加时只能采用碳化温度低的抑制剂的缺陷,可使多种抑制剂在前期引入并保证其在WC基体中的均匀分散,所用原料都采用环保性化合物,制备温度低于传统制备方法,工艺简捷安全,生产成本低,易实现产业化。本发明可以推广到制备各种复式碳化物、碳化钛基硬质合金、金属陶瓷等研究和生产领域。The invention solves the defects of the prior art that the inhibitors are added unevenly in the later stage or that the inhibitors with low carbonization temperature can only be used when the inhibitors are added in the early stage. Evenly dispersed, the raw materials used are all environmentally friendly compounds, the preparation temperature is lower than the traditional preparation method, the process is simple and safe, the production cost is low, and it is easy to realize industrialization. The invention can be extended to the research and production fields of preparing various compound carbides, titanium carbide-based hard alloys, cermets and the like.

附图说明 Description of drawings

图1:WC-抑制剂复合粉末及其超细硬质合金的制备方法工艺流程图。Figure 1: Process flow chart of the preparation method of WC-inhibitor composite powder and its ultrafine cemented carbide.

图2:实施例1中制得的碳化物粉末的XRD谱图。Fig. 2: XRD pattern of the carbide powder prepared in Example 1.

其中:(a)WO3/V2O5/Cr2O3+C原料;Among them: (a) WO 3 /V 2 O 5 /Cr 2 O 3 +C raw material;

(b)WO3+C原料;(b) WO 3 +C raw material;

(c)V2O5+C原料;(c) V 2 O 5 +C raw material;

(d)Cr2O3+C原料;(d) Cr 2 O 3 +C raw material;

●—WC;★—VC;

Figure C200610018177D00071
  
Figure C200610018177D00072
●—WC;★—VC;
Figure C200610018177D00071
Figure C200610018177D00072

图3:实施例1所得粉末的SEM照片;Fig. 3: the SEM photograph of the powder gained in embodiment 1;

图4:实施例1所得粉末的TEM照片;Fig. 4: the TEM photograph of the powder gained in embodiment 1;

图5:实施例1所得合金的SEM照片;Fig. 5: the SEM photograph of the alloy obtained in embodiment 1;

图6:实施例1所得合金的TEM照片;Fig. 6: the TEM photograph of the alloy obtained in embodiment 1;

图7:实施例2所得合金的TEM照片。Fig. 7: TEM photo of the alloy obtained in Example 2.

具体实施方案specific implementation plan

实施例1:偏钨酸铵AMT((NH4)6(H2W12O40)·4H2O)、偏钒酸铵(NH4VO3)、重铬酸铵((NH4)2Cr2O7)按质量比为100∶0.66∶0.74在蒸馏水中混溶,经喷雾热解制成氧化物粉末。将此氧化物粉与碳粉按质量比W∶C=3.83∶1、V∶C=1.21∶1、Cr∶C=2.00∶1称取,放入滚筒球磨机中干磨72小时(料∶球=1∶2),得到的混合粉末在氩气氛的管式炉中经1350℃碳化0.5小时,随后在氩气中冷却至室温。同时在该炉中进行对比实验:使用WO3+C、V2O5+C、Cr2O3+C三种另配制的原料,其中钨、钒、铬与碳的配比均遵循本实施例的比例。碳化后粉末的XRD图见说明书附图2,结果表明:在1350℃碳化温度下,抑制剂氧化物原料均能被碳化成所需的抑制剂碳化物;对比所制得的WC-抑制剂复合粉末与纯WC粉末,二者的特征峰完全相同,只是抑制剂由于量少而未能检出。检测制成的WC-抑制剂复合粉末的特性参数为:钨含量W=92.86wt%,总碳Ct=6.18wt%,游离碳Cf=0.04wt%,氧含量O=0.11wt%,其它金属元素含量=0.81wt%,比表面积BET=2.52m2/g。该粉末的扫描电镜(SEM)和透射电镜(TEM)照片分别如图3、图4所示,可看出,粉末粒度均匀,大小约为100~200nm。在该WC-抑制剂复合粉末中加入钴粉(Fess=0.8μm,按12wt%计)和适量的碳粉、成型剂进行球磨、干燥、成型、真空烧结(1400℃,1h)、低压热处理(1400℃,1h,5MPa),由此制得超细WC-12Co-0.4VC-0.4Cr3C2硬质合金,其SEM和TEM照片分别如图5、图6所示。可看出,硬质合金中的晶粒大小均匀,无大孔、钴池、缺碳或渗碳区,大部分晶粒的截面呈长为0.3~0.5μm、宽为0.1~0.2μm的矩形状。Example 1: Ammonium metatungstate AMT ((NH 4 ) 6 (H 2 W 12 O 40 )·4H 2 O), ammonium metavanadate (NH 4 VO 3 ), ammonium dichromate ((NH 4 ) 2 Cr 2 O 7 ) is miscible in distilled water at a mass ratio of 100:0.66:0.74, and is made into oxide powder by spray pyrolysis. The oxide powder and carbon powder were weighed according to the mass ratio W: C=3.83:1, V: C=1.21:1, Cr: C=2.00:1, and put into a roller mill for dry grinding for 72 hours (material: ball =1:2), the resulting mixed powder was carbonized in a tube furnace in an argon atmosphere at 1350°C for 0.5 hours, and then cooled to room temperature in argon. At the same time, a comparative experiment was carried out in this furnace: using WO 3 +C, V 2 O 5 +C, and Cr 2 O 3 +C three additional raw materials, in which the proportions of tungsten, vanadium, chromium and carbon all follow this implementation example ratio. The XRD diagram of the powder after carbonization is shown in the accompanying drawing 2 of the specification. The results show that: at the carbonization temperature of 1350 ° C, the inhibitor oxide raw materials can be carbonized into the desired inhibitor carbide; compared with the prepared WC-inhibitor compound The characteristic peaks of the powder and pure WC powder are exactly the same, but the inhibitor cannot be detected due to the small amount. The characteristic parameters of the prepared WC-inhibitor composite powder are: tungsten content W=92.86wt%, total carbon Ct =6.18wt%, free carbon Cf =0.04wt%, oxygen content O=0.11wt%, other Metal element content = 0.81wt%, specific surface area BET = 2.52m 2 /g. The scanning electron microscope (SEM) and transmission electron microscope (TEM) photos of the powder are shown in Fig. 3 and Fig. 4, respectively. It can be seen that the particle size of the powder is uniform, and the size is about 100-200nm. Add cobalt powder (Fess=0.8μm, by 12wt%) and appropriate amount of carbon powder and forming agent to the WC-inhibitor composite powder for ball milling, drying, molding, vacuum sintering (1400°C, 1h), low-pressure heat treatment ( 1400°C, 1h, 5MPa), thus producing ultra-fine WC-12Co-0.4VC-0.4Cr 3 C 2 cemented carbide, and its SEM and TEM photos are shown in Figure 5 and Figure 6, respectively. It can be seen that the grain size in the cemented carbide is uniform, there are no macropores, cobalt pools, carbon deficiency or carburized areas, and the cross-section of most grains is a matrix with a length of 0.3-0.5 μm and a width of 0.1-0.2 μm. shape.

实施例2:仲钨酸铵APT((NH4)10(H2W12O42)·4H2O)、偏钒酸铵(NH4VO3)、重铬酸铵((NH4)2Cr2O7)按质量比100∶0.44∶0.50在蒸馏水中混溶,经离心压力式喷雾干燥制成氧化物粉末,放入250℃真空炉中保温8小时后,将此氧化物粉和碳粉按质量比W∶C=3.83∶1、V∶C=1.21∶1、Cr∶C=2.00∶1称取,放入滚筒球磨机中,以无水酒精作为介质湿磨48小时(料∶球∶液=1∶3∶0.8),干燥后得到的混合粉末在氮气氛的回转炉中经1000℃碳化12小时,随后在氮气中冷却至室温。检测制成的WC-抑制剂复合粉末的特性参数为:钨含量W=93.27wt%,Ct=6.15wt%,Cf=0.05wt%,O=0.10wt%,其它金属元素含量=0.43wt%,BET=2.62m2/g。在WC-抑制剂复合粉末中加入钴粉(Fess=0.6μm,10wt%)和适量的碳粉、成型剂进行球磨、干燥、成型、氢气烧结(1500℃,1h)、热等静压热处理(1350℃,1h,100MPa),由此制得超细WC-10Co-0.3VC-0.3Cr3C2硬质合金。所得合金的TEM照片如说明书图7所示,从图中可看出大部分晶粒的截面呈长为0.3~0.5μm、宽为0.1~0.2μm的矩形状。测得其力学性能参数为:洛氏硬度HRA=92.5,抗弯强度TRS=4080MPa。Example 2: Ammonium paratungstate APT ((NH 4 ) 10 (H 2 W 12 O 42 )·4H 2 O), ammonium metavanadate (NH 4 VO 3 ), ammonium dichromate ((NH 4 ) 2 Cr 2 O 7 ) Miscible in distilled water at a mass ratio of 100:0.44:0.50, spray-dried by centrifugal pressure to make oxide powder, put it in a vacuum furnace at 250°C for 8 hours, and mix the oxide powder and carbon powder by mass Ratio W:C=3.83:1, V:C=1.21:1, Cr:C=2.00:1 weighed, put into roller ball mill, wet mill with absolute alcohol as medium for 48 hours (material: ball: liquid = 1:3:0.8), the mixed powder obtained after drying was carbonized at 1000°C for 12 hours in a rotary furnace in a nitrogen atmosphere, and then cooled to room temperature in a nitrogen atmosphere. The characteristic parameters of the prepared WC-inhibitor composite powder are: tungsten content W=93.27wt%, C t =6.15wt%, Cf =0.05wt%, O=0.10wt%, other metal element content=0.43wt %, BET=2.62m 2 /g. Add cobalt powder (Fess=0.6 μm, 10wt%) and appropriate amount of carbon powder and forming agent to the WC-inhibitor composite powder for ball milling, drying, molding, hydrogen sintering (1500 ° C, 1 h), hot isostatic pressing heat treatment ( 1350°C, 1h, 100MPa), thus producing ultra-fine WC-10Co-0.3VC-0.3Cr 3 C 2 cemented carbide. The TEM photo of the obtained alloy is shown in Fig. 7 of the specification, and it can be seen from the figure that most of the crystal grains have a rectangular cross-section with a length of 0.3-0.5 μm and a width of 0.1-0.2 μm. The measured mechanical performance parameters are: Rockwell hardness HRA=92.5, bending strength TRS=4080MPa.

实施例3:偏钨酸铵AMT((NH4)6(H2W12O40)·4H2O)、偏钒酸铵(NH4VO3)按质量比100∶1.03在蒸馏水中混溶,经离心压力式喷雾干燥制成氧化物粉末,放入600℃微波炉中煅烧10分钟后,将此氧化物粉和碳粉按质量比W∶C=3.83∶1、V∶C=1.21∶1称取,放入球磨机中,以丙酮作为介质湿磨48小时(料∶球∶液=1∶4∶0.8),干燥后得到的混合粉末在真空炉中经1300℃碳化2小时,随后随炉冷却至室温。检测制成的WC-抑制剂复合粉末的特性参数为:钨含量W=91.23wt%,Ct=6.45wt%,Cf=0.04wt%,O=0.13wt%,其它金属元素含量=2.15wt%,BET=2.66m2/g。在WC-抑制剂复合粉末中加入钴粉(Fess=1.0μtm,30wt%)和适量的碳粉、成型剂进行球磨、干燥、成型、真空烧结(1250℃,3h)、热等静压处理(1200℃,1h,200MPa),由此制得超细WC-30Co-2VC硬质合金。Example 3: Ammonium metatungstate AMT ((NH 4 ) 6 (H 2 W 12 O 40 )·4H 2 O) and ammonium metavanadate (NH 4 VO 3 ) are miscible in distilled water at a mass ratio of 100:1.03 , through centrifugal pressure spray drying to make oxide powder, put it in a microwave oven at 600°C for 10 minutes and calcinate, then mix the oxide powder and carbon powder according to the mass ratio W:C=3.83:1, V:C=1.21:1 Weigh it, put it into a ball mill, and use acetone as a medium for wet grinding for 48 hours (material: ball: liquid = 1:4:0.8), and the mixed powder obtained after drying is carbonized in a vacuum furnace at 1300 ° C for 2 hours, and then the Cool to room temperature. The characteristic parameters of the prepared WC-inhibitor composite powder are: tungsten content W=91.23wt%, Ct=6.45wt%, Cf =0.04wt%, O=0.13wt%, other metal element content=2.15wt% , BET=2.66m 2 /g. Add cobalt powder (Fess=1.0μtm, 30wt%) and appropriate amount of carbon powder and molding agent to WC-inhibitor composite powder for ball milling, drying, molding, vacuum sintering (1250°C, 3h), hot isostatic pressing ( 1200°C, 1h, 200MPa), thus producing ultra-fine WC-30Co-2VC cemented carbide.

实施例4:偏钨酸铵AMT((NH4)6(H2W12O40)·4H2O)、重铬酸铵((NH4)2Cr2O7)、葡萄糖(C6H12O6)原料按质量比100∶0.84∶48.00在蒸馏水中混溶,经喷雾热解制成含碳的氧化物粉末,将该粉末在通入了氢气和甲烷的混合气(甲烷占2vol%)的回转炉中经1350℃碳化3小时,在氩气中随炉冷却。检测制成的WC-抑制剂复合粉末的特性参数为:钨含量W=93.32wt%,Ct=6.13wt%,Cf=0.06wt%,O=0.10wt%,其它金属元素含量=0.39wt%,BET=2.56m2/g。在WC-抑制剂复合粉末中加入钴粉(Fess=0.8μm,3wt%)、成型剂进行球磨、干燥、成型、真空烧结(1450℃,1h)、低压热处理(1400℃,1h,7MPa),由此制得超细WC-3Co-0.5Cr3C2硬质合金。Example 4: Ammonium metatungstate AMT ((NH 4 ) 6 (H 2 W 12 O 40 )·4H 2 O), ammonium dichromate ((NH 4 ) 2 Cr 2 O 7 ), glucose (C 6 H 12 O 6 ) raw materials are miscible in distilled water at a mass ratio of 100:0.84:48.00, and are sprayed and pyrolyzed to produce carbon-containing oxide powder. ) in a rotary furnace at 1350°C for 3 hours, and then cooled with the furnace in argon. The characteristic parameters of the prepared WC-inhibitor composite powder are: tungsten content W=93.32wt%, C t =6.13wt%, Cf =0.06wt%, O=0.10wt%, other metal element content=0.39wt %, BET=2.56m 2 /g. Add cobalt powder (Fess=0.8μm, 3wt%) and forming agent to the WC-inhibitor composite powder for ball milling, drying, molding, vacuum sintering (1450°C, 1h), low-pressure heat treatment (1400°C, 1h, 7MPa), In this way, ultra-fine WC-3Co-0.5Cr 3 C 2 cemented carbide is obtained.

实施例5:WO3、V2O5、Cr2O3原料按质量比100∶0.41∶0.59在蒸馏水中配制成悬浮液,经离心压力式喷雾干燥制成氧化物粉末,放入干燥箱中经200℃干燥2小时后,将此粉末和碳粉按质量比W∶C=3.83∶1、V∶C=1.21∶1、Cr∶C=2.00∶1称取,放入球磨机中,以己烷作为介质湿磨48小时(料∶球∶液=1∶3.5∶0.8),干燥后得到的混合粉末在真空炉中经1300℃碳化2小时,随炉冷却至室温。检测制成的WC-抑制剂复合粉末的特性参数为:钨含量W=92.98wt%,Ct=6.19wt%,Cf=0.05wt%,O=0.09wt%,其它金属元素含量=0.69wt%,BET=2.68m2/g。在WC-抑制剂复合粉末中加入钴粉(Fess=0.6μm,10wt%)、成型剂进行球磨、干燥、成型、真空烧结(1380℃,1h)、低压热处理(1250℃,1h,3MPa),由此制得超细WC-10Co-0.3VC-0.5Cr3C2硬质合金。测得其力学性能参数为:洛氏硬度HRA=93.0,抗弯强度TRS=3910MPa。Example 5: WO 3 , V 2 O 5 , and Cr 2 O 3 raw materials were formulated into a suspension in distilled water at a mass ratio of 100:0.41:0.59, and were spray-dried by centrifugal pressure to make oxide powder, which was then placed in a drying oven After drying at 200°C for 2 hours, weigh the powder and carbon powder according to the mass ratio W:C=3.83:1, V:C=1.21:1, Cr:C=2.00:1, put them into a ball mill, and Alkane was used as a medium for wet milling for 48 hours (material:ball:liquid=1:3.5:0.8), and the mixed powder obtained after drying was carbonized in a vacuum furnace at 1300°C for 2 hours, and then cooled to room temperature with the furnace. The characteristic parameters of the prepared WC-inhibitor composite powder are: tungsten content W=92.98wt%, C t =6.19wt%, Cf =0.05wt%, O=0.09wt%, other metal element content=0.69wt %, BET=2.68m 2 /g. Add cobalt powder (Fess=0.6μm, 10wt%) and forming agent to the WC-inhibitor composite powder for ball milling, drying, molding, vacuum sintering (1380°C, 1h), low-pressure heat treatment (1250°C, 1h, 3MPa), In this way, ultra-fine WC-10Co-0.3VC-0.5Cr 3 C 2 cemented carbide was prepared. The measured mechanical performance parameters are: Rockwell hardness HRA=93.0, flexural strength TRS=3910MPa.

Claims (2)

1.一种碳化钨—抑制剂复合粉末的制备方法,其特征在于将含碳和抑制剂的氧化物粉末放入气氛炉或真空炉中进行直接还原碳化,其中:碳化钨—抑制剂复合粉末原料配比的成分按重量百分比为:钨为91.26~93.39wt%,碳为6.17~6.50wt%,抑制剂的金属元素为0.44~2.25wt%;碳化钨—抑制剂复合粉末的合成温度控制在1000~1350℃,反应时间为0.5~12小时;1. A preparation method of tungsten carbide-inhibitor composite powder, characterized in that the oxide powder containing carbon and inhibitor is put into an atmosphere furnace or a vacuum furnace for direct reduction carbonization, wherein: tungsten carbide-inhibitor composite powder The composition of the raw material ratio is as follows: 91.26-93.39wt% tungsten, 6.17-6.50wt% carbon, 0.44-2.25wt% inhibitor metal elements; the synthesis temperature of the tungsten carbide-inhibitor composite powder is controlled at 1000~1350℃, the reaction time is 0.5~12 hours; 含碳和抑制剂的氧化物粉末通过以下三种方法之一获得:Oxide powders containing carbon and inhibitors are obtained by one of three methods: (1)直接采用商业化氧化物粉末和碳粉球磨混合;(1) Directly adopt commercial oxide powder and carbon powder ball milling; (2)将可溶性的钨盐、抑制剂的盐按比例溶解,经喷雾热解或喷雾干燥加煅烧制得含抑制剂的氧化物粉末,再与碳粉球磨混合;(2) dissolving the soluble tungsten salt and the salt of the inhibitor in proportion, spray pyrolysis or spray drying and calcining to obtain the oxide powder containing the inhibitor, and then mix it with carbon powder; (3)将可溶性的钨盐、抑制剂的盐、碳源按比例溶解,经喷雾热解或喷雾干燥加煅烧制得含碳和抑制剂的氧化物粉末。(3) Dissolve soluble tungsten salt, inhibitor salt, and carbon source in proportion, and prepare oxide powder containing carbon and inhibitor through spray pyrolysis or spray drying plus calcination. 2.一种超细碳化钨基硬质合金的制备方法,其特征在于将按照权利要求1所述方法制得的碳化钨—抑制剂复合粉末和粒径不大于1.0μm的钴、镍或铁金属粉球磨混合、干燥造粒、成型、真空烧结或氢气烧结后热处理,或直接低压烧结,其中:2. A preparation method of ultrafine tungsten carbide-based cemented carbide, characterized in that the tungsten carbide-inhibitor composite powder and particle diameter are no more than 1.0 μm of cobalt, nickel or iron prepared according to the method claimed in claim 1 Metal powder ball milling, drying granulation, molding, heat treatment after vacuum sintering or hydrogen sintering, or direct low-pressure sintering, of which: (1)超细碳化钨基硬质合金的配比按重量百分比为:碳化钨—抑制剂复合粉末为70~97wt%,金属粉为3~30wt%;配料后再外掺成型剂和表面活性剂,其中成型剂外掺0.5~12wt%,表面活性剂外掺0.1~0.3wt%;(1) The ratio of ultra-fine tungsten carbide-based cemented carbide is by weight percentage: tungsten carbide-inhibitor composite powder is 70-97wt%, metal powder is 3-30wt%; agent, wherein 0.5 to 12 wt% of the forming agent is added, and 0.1 to 0.3 wt% of the surfactant is added; 成型剂选择下列中的一种或几种:固体石蜡、液体石蜡、凡士林、合成橡胶、聚乙二醇、聚乙烯醇;The molding agent is selected from one or more of the following: solid paraffin, liquid paraffin, vaseline, synthetic rubber, polyethylene glycol, polyvinyl alcohol; 表面活性剂选择硬脂酸或油酸;Surfactant selects stearic acid or oleic acid; (2)球磨工艺为:使用乙醇、丙酮、己烷中的一种或几种作为介质进行湿磨,质量比为料∶球∶液=1∶2~20∶0.5~10;或干磨,质量比为料∶球=1∶2~20,球磨时间1~72小时,环境气氛为惰性气体或真空;(2) The ball milling process is: use one or more of ethanol, acetone, and hexane as a medium for wet milling, and the mass ratio is material: ball: liquid=1: 2~20: 0.5~10; or dry milling, The mass ratio is material:ball=1:2~20, the ball milling time is 1~72 hours, and the ambient atmosphere is inert gas or vacuum; (3)烧结工艺为:烧结温度为1300~1500℃,保温时间为1~3小时,烧结方式为真空烧结、氢气烧结、低压烧结中的一种,其中真空烧结时压力为1×10-5~1×10-6MPa;氢气烧结时压力为常压,氢气的含水量为0~0.5g/m3,浓度为10~100%vol,剩余气体为氩气或氮气;低压烧结时真空阶段压力为1×10-5~1×10-6MPa,加压阶段压力为3~7MPa,气体为氩气或氮气;(3) The sintering process is as follows: the sintering temperature is 1300-1500°C, the holding time is 1-3 hours, the sintering method is one of vacuum sintering, hydrogen sintering, and low-pressure sintering, and the pressure during vacuum sintering is 1×10 -5 ~1×10 -6 MPa; the pressure during hydrogen sintering is normal pressure, the water content of hydrogen is 0~0.5g/m 3 , the concentration is 10~100% vol, and the remaining gas is argon or nitrogen; vacuum stage during low pressure sintering The pressure is 1×10 -5 ~ 1×10 -6 MPa, the pressure in the pressurization stage is 3 ~ 7MPa, and the gas is argon or nitrogen; (4)热处理工艺为:热处理方式为热等静压或低压,其中热等静压处理的气氛为氩气或氮气,温度为1200~1350℃,压力为100~200MPa;低压热处理的气氛为氩气或氮气,温度为1250~1400℃,压力为3~7MPa。(4) The heat treatment process is: the heat treatment method is hot isostatic pressing or low pressure, wherein the atmosphere of hot isostatic pressing treatment is argon or nitrogen, the temperature is 1200-1350 ° C, and the pressure is 100-200 MPa; the atmosphere of low-pressure heat treatment is argon gas or nitrogen, the temperature is 1250-1400°C, and the pressure is 3-7MPa.
CNB200610018177XA 2006-01-17 2006-01-17 Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide Expired - Fee Related CN100507038C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200610018177XA CN100507038C (en) 2006-01-17 2006-01-17 Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200610018177XA CN100507038C (en) 2006-01-17 2006-01-17 Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide

Publications (2)

Publication Number Publication Date
CN1804067A CN1804067A (en) 2006-07-19
CN100507038C true CN100507038C (en) 2009-07-01

Family

ID=36866212

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610018177XA Expired - Fee Related CN100507038C (en) 2006-01-17 2006-01-17 Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide

Country Status (1)

Country Link
CN (1) CN100507038C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427245C (en) * 2006-08-28 2008-10-22 苏州江钻新锐硬质合金有限公司 Control method of powder oxygen content in manufacturing process of ultrafine hard alloy
CN100469919C (en) * 2007-07-10 2009-03-18 株洲钻石切削刀具股份有限公司 Hard alloy material powder dispersing agent
CN102343438A (en) * 2010-08-06 2012-02-08 浙江东钨实业有限公司 Method for preparing hard alloy mixture by attritor milling process
CN102181679A (en) * 2011-04-21 2011-09-14 华南理工大学 Preparation method of inhibitor-containing W-C-Co powder and hard alloy thereof
CN103008666A (en) * 2012-12-27 2013-04-03 遵义中铂硬质合金有限责任公司 Production technique for hard alloy cold heading die
CN103436759B (en) * 2013-09-10 2015-09-16 株洲硬质合金集团有限公司 The WC-Ni that a kind of Zr element is toughness reinforcing 3al Wimet and preparation method thereof
CN103567438B (en) * 2013-11-22 2015-11-18 合肥工业大学 The preparation method of a kind of W coated TiC nanometer grade composit powder body
CN104190913B (en) * 2014-05-30 2017-02-15 株洲硬质合金集团有限公司 WC mixed powder production method used for producing fine-particle alloy
CN111283341B (en) * 2018-12-10 2022-06-07 株洲楚天硬质合金股份有限公司 Wolf tooth stick welding rod hard alloy particle mixed material wet grinding process method
CN109898004A (en) * 2019-03-20 2019-06-18 莱芜职业技术学院 A kind of high tough titanium carbide-high manganese steel bonded carbide and preparation method and application
CN112359259A (en) * 2020-11-24 2021-02-12 江西理工大学 Non-uniform bicrystal hard alloy containing grain inhibiting element and having carbon uniformly distributed and preparation method thereof
CN112941352B (en) * 2021-01-27 2022-06-21 崇义章源钨业股份有限公司 Hard alloy and preparation method thereof
CN114574727B (en) * 2022-03-09 2022-09-30 自贡中兴耐磨新材料有限公司 Preparation method of chromium-vanadium-tungsten compound carbide strengthening and toughening WC-Ni hard alloy
CN114990405B (en) * 2022-06-15 2022-12-06 李凌祥 High-performance superfine hard alloy and preparation method thereof
CN115044795B (en) * 2022-06-21 2023-09-26 株洲硬质合金集团有限公司 Nanometer WC-Co hard alloy and preparation method thereof
CN115055674B (en) * 2022-06-29 2024-06-04 中南大学 A feed material suitable for additive manufacturing of tungsten-cobalt cemented carbide parts and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882376A (en) * 1997-05-16 1999-03-16 Korea Institute Of Machinery & Materials Mechanochemical process for producing fine WC/CO composite powder
CN1082551C (en) * 1998-07-09 2002-04-10 浙江大学 Smelting method and equipment for nanometer hard tungsten-cobalt carbide alloy
US6413293B1 (en) * 1997-09-05 2002-07-02 Sandvik Ab Method of making ultrafine wc-co alloys
CN1091665C (en) * 1999-08-13 2002-10-02 武汉工业大学 Industrilized process for preparing nm-class non-eta-phase compound powder of tungsten carbide and cobalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882376A (en) * 1997-05-16 1999-03-16 Korea Institute Of Machinery & Materials Mechanochemical process for producing fine WC/CO composite powder
US6413293B1 (en) * 1997-09-05 2002-07-02 Sandvik Ab Method of making ultrafine wc-co alloys
CN1082551C (en) * 1998-07-09 2002-04-10 浙江大学 Smelting method and equipment for nanometer hard tungsten-cobalt carbide alloy
CN1091665C (en) * 1999-08-13 2002-10-02 武汉工业大学 Industrilized process for preparing nm-class non-eta-phase compound powder of tungsten carbide and cobalt

Also Published As

Publication number Publication date
CN1804067A (en) 2006-07-19

Similar Documents

Publication Publication Date Title
CN100507038C (en) Preparation method of tungsten carbide-inhibitor composite powder and ultrafine cemented carbide
CN100444997C (en) A Simple and Rapid Preparation Method of Ultrafine WC-Co Composite Powder
WO2015161732A1 (en) Method for preparing cobalt-coated nanometer wc crystal composite powder and ultra-fine grain cemented carbide
DE69406659T2 (en) COMPACTED FINE-GRAIN FIRE-RESISTANT METAL CARBIDE OR CARBIDE CERAMICS FROM SOLID SOLUTION (MIXED METAL)
CN101428344B (en) A kind of nanoscale tungsten carbide composite powder and its preparation method
CN109487141B (en) Preparation method of platy carbide solid solution toughened mixed crystal Ti (C, N) -based metal ceramic
CN109576545B (en) A Ti(C,N)-based cermet with mixed crystal structure and preparation method thereof
CN103924111B (en) The preparation method of a kind of Wimet nanometer particle size powder and high performance sintered block materials
WO2006106873A1 (en) Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
CN1293215C (en) Method for preparing composite powder of nano tungsten carbide-coblt through direct reducition and carbonization
CN1091665C (en) Industrilized process for preparing nm-class non-eta-phase compound powder of tungsten carbide and cobalt
Wang et al. Microstructure and preparation of an ultra-fine-grained W-Al2O3 composite via hydrothermal synthesis and spark plasma sintering
Wu et al. Preparation technology of ultra-fine tungsten carbide powders: an overview
KR20140081149A (en) Manufacturing method of super hard metal containing carbon nanotube, the super hard metal manufactured using the same and cutting tools comprising the super hard metal
CN109665848B (en) A kind of ultra-high temperature SiC-HfB2 composite ceramic and its preparation method and application
KR101113489B1 (en) Solid-solution carbide/carbonitride powder and method for preparing thereof
CN106350721B (en) A kind of preparation method of plate crystal structure high-performance WC-Co hard alloy
CN102674844A (en) Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method
CN112430770A (en) Multi-scale structure non-uniform hard alloy and preparation method thereof
KR102607076B1 (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
CN107116227B (en) A kind of preparation method of ultrafine WC-Ni composite powder
CN111893339A (en) A method for preparing high-performance WC-8Co-Y2O3 cemented carbide by wet chemical method
CN1943926A (en) Process for preparing cobalt-inhibitor super fine composite powder
JP5618364B2 (en) Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder
Yu et al. Production of high-property Cr3C2-based cermet with Cr3C2–10WC composite powder as starting material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090701

Termination date: 20130117