CN100505577C - Method and apparatus for utilizing channel state information in a wireless communication system - Google Patents
Method and apparatus for utilizing channel state information in a wireless communication system Download PDFInfo
- Publication number
- CN100505577C CN100505577C CNB028085582A CN02808558A CN100505577C CN 100505577 C CN100505577 C CN 100505577C CN B028085582 A CNB028085582 A CN B028085582A CN 02808558 A CN02808558 A CN 02808558A CN 100505577 C CN100505577 C CN 100505577C
- Authority
- CN
- China
- Prior art keywords
- channel
- matrix
- state information
- data
- channel state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 114
- 238000004891 communication Methods 0.000 title claims abstract description 51
- 230000005540 biological transmission Effects 0.000 claims abstract description 102
- 238000012545 processing Methods 0.000 claims description 94
- 239000011159 matrix material Substances 0.000 claims description 90
- 230000008569 process Effects 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims 1
- 239000013598 vector Substances 0.000 description 64
- 238000010586 diagram Methods 0.000 description 11
- 230000000295 complement effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000003044 adaptive effect Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 241000404883 Pisa Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/0848—Joint weighting
- H04B7/0854—Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0891—Space-time diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/021—Estimation of channel covariance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
- H04L25/0244—Channel estimation channel estimation algorithms using matrix methods with inversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
- H04L25/0248—Eigen-space methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03375—Passband transmission
- H04L2025/03414—Multicarrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03426—Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03777—Arrangements for removing intersymbol interference characterised by the signalling
- H04L2025/03802—Signalling on the reverse channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signalling for the administration of the divided path, e.g. signalling of configuration information
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Transmitters (AREA)
Abstract
Description
技术领域 technical field
本发明一般涉及数据通信,更特定地是涉及一种新颖的经改进的利用(全部或部分)信道状态信息以提供无线通信系统改善的性能的方法和装置。The present invention relates generally to data communications, and more particularly to a novel and improved method and apparatus for utilizing (in whole or in part) channel state information to provide improved performance in wireless communication systems.
背景技术 Background technique
无线通信系统被广泛采用,以提供不同类型的通信诸如语音、数据等。这些系统可能是根据码分多址(CDMA)、时分多址(TDMA)、正交频分调制(OFDM)或一些其它调制技术。OFDM系统能提供一些信道环境下的高性能。Wireless communication systems are widely employed to provide different types of communication such as voice, data, and so on. These systems may be based on Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Modulation (OFDM), or some other modulation technique. OFDM systems can provide high performance in some channel environments.
在陆地通信系统中(例如蜂窝系统、广播系统、多信道多点分布系统(MMDS)以及其它),从发射机单元来的RF已调信号可能通过多个传输路径到达接收机单元。传输路径的特征由于多种因素诸如衰落和多径一般随时间而变化。In terrestrial communication systems (such as cellular systems, broadcast systems, multi-channel multi-point distribution systems (MMDS), and others), an RF modulated signal from a transmitter unit may arrive at a receiver unit via multiple transmission paths. The characteristics of a transmission path generally vary over time due to factors such as fading and multipath.
为提供对抗恶化的路径效应并改善性能的分集,可能使用多个发射和接收天线。如果发射和接收天线间的传输路径是线性独立的(即在一个路径上的传输不形成为其它路径上的传输的线性组合),这一般在一定程度上是成立的,则正确接收发射的信号的概率随天线数目的增加而增加。一般,随着发射和接收天线的数目增加分集也增加且性能得到改善。To provide diversity against degrading path effects and improve performance, multiple transmit and receive antennas may be used. If the transmission paths between the transmit and receive antennas are linearly independent (that is, transmissions on one path do not form a linear combination of transmissions on the other path), which is generally true to some extent, then the transmitted signal is correctly received The probability of increases with the number of antennas. In general, diversity increases and performance improves as the number of transmit and receive antennas increases.
多输入多输出(MIMO)通信系统使用多个(NT)发射天线和多个NR接收天线用于数据传输。MIMO信道可能被分解为NC个独立信道,其中NC≤min{NT,NR}。NC个独立信道的每个还被称为MIMO信道的空间子信道,并对应维数。如果使用由多个发射和接收天线建立的附加维数,则MIMO系统能提供改进的性能。A Multiple-Input Multiple-Output (MIMO) communication system uses multiple ( NT ) transmit antennas and multiple NR receive antennas for data transmission. A MIMO channel may be decomposed into N C independent channels, where N C ≤ min{N T , NR }. Each of the NC independent channels is also referred to as a spatial sub-channel of the MIMO channel and corresponds to a dimension. MIMO systems can provide improved performance if the additional dimension created by the multiple transmit and receive antennas is used.
因此本领域内需要一种技术以利用信道状态信息(CSI)来利用MIMO系统建立的附加维数提供经改进的系统性能。There is therefore a need in the art for a technique to utilize channel state information (CSI) to take advantage of the additional dimensionality created by MIMO systems to provide improved system performance.
发明内容 Contents of the invention
本发明的各方面提供技术以处理在多输入多输出(MIMO)通信系统内接收到的信号以恢复发射的信号,并估计MIMO信道的特征。不同的接收机处理方案可能用于导出指明用于数据传输的传输信道的特征的信道状态信息(CSI)。CSI然后被报告回发射机系统并用于调节信号处理(例如,编码、调制等)。这样,根据确定的信道条件获得高性能。Aspects of this disclosure provide techniques to process received signals within a multiple-input multiple-output (MIMO) communication system to recover transmitted signals and estimate characteristics of the MIMO channel. Different receiver processing schemes may be used to derive channel state information (CSI) that characterizes the transmission channel used for data transmission. The CSI is then reported back to the transmitter system and used to adjust signal processing (eg, coding, modulation, etc.). In this way, high performance is obtained depending on the determined channel conditions.
本发明的特定实施例提供了一种在MIMO通信系统中从发射机单元将数据发射到接收机单元的方法。根据本方法,在接收机单元,许多信号通过多个接收机天线被接收,从每个接收天线接收的信号包括从发射机单元发射的一个或多个信号的组合。接收到的信号经处理(例如,通过信道相关矩阵逆(CCMI)方案、无偏最小均方误差方案(UMMSE)、或一些其它接收机处理方案)以导出信道状态信息,它指明用于数据传输的多个传输信道特征,其中被报告的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计。信道状态信息经编码并被发射回发射机单元。在发射机单元,从接收机单元来的信道状态信息被接收,且传输到接收机单元的数据根据接收到的CSI被处理。Certain embodiments of the present invention provide a method of transmitting data from a transmitter unit to a receiver unit in a MIMO communication system. According to the method, at the receiver unit a number of signals are received via a plurality of receiver antennas, the signal received from each receiving antenna comprising a combination of one or more signals transmitted from the transmitter unit. The received signal is processed (e.g., by a Channel Correlation Matrix Inverse (CCMI) scheme, an Unbiased Minimum Mean Square Error scheme (UMMSE), or some other receiver processing scheme) to derive channel state information, which specifies The plurality of transmission channel characteristics, wherein the reported channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of the plurality of transmission channels. Channel state information is encoded and transmitted back to the transmitter unit. At the transmitter unit, channel state information from the receiver unit is received, and data transmitted to the receiver unit is processed according to the received CSI.
被报告的CSI可能包括全CSI或部分CSI。全CSI包括所有发射和接收天线对间的传播路径的充分的全带宽特性(例如,在可用带宽上的幅度和相位)。部分CSI可能包括例如传输信道的信号对噪声加干扰(SNR)。在发射单元,每个传输信道的数据可能根据传输信道的SNR估计而被编码,且每个传输信道的经编码数据可能根据由SNR估计选择的调制方案而被调制。对全CSI处理,调制码元根据接收到的CSI在传输前经预处理。The reported CSI may include full CSI or partial CSI. Full CSI includes sufficient full bandwidth characteristics (eg, magnitude and phase over the available bandwidth) of the propagation paths between all transmit and receive antenna pairs. Part of the CSI may include, for example, the signal-to-noise-plus-interference (SNR) of the transport channel. At the transmit unit, the data for each transport channel may be encoded according to the SNR estimate of the transport channel, and the encoded data for each transport channel may be modulated according to the modulation scheme selected by the SNR estimate. For full CSI processing, the modulation symbols are pre-processed according to the received CSI before transmission.
本发明另一方面提供了一种多输入多输出通信系统,包括:接收机单元,接收机单元包括:多个前端处理器,用于通过多个接收天线接收多个信号并处理接收到的信号以提供接收到的调制码元;至少一个接收多输入多输出处理器,耦合到前端处理器并用于接收并处理接收到的调制码元以导出信道状态信息,它指示用于数据传输的多个传输信道的特征,以及发射数据处理器,操作上耦合到接收多输入多输出处理器并配置成处理信道状态信息以将其发送回发射机单元。所述通信系统还包括发射机单元,它包括:至少一个解调器,配置为接收并处理一个或多个从接收机单元来的信号以恢复发射的信道状态信息,以及发射数据处理器,配置为根据恢复的信道状态信息对用于传输到接收机单元的数据处理,其中,被报告的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计。Another aspect of the present invention provides a multiple-input multiple-output communication system, including: a receiver unit, the receiver unit includes: multiple front-end processors, used to receive multiple signals through multiple receiving antennas and process the received signals to provide received modulation symbols; at least one receive multiple-input multiple-output processor coupled to the front-end processor and used to receive and process received modulation symbols to derive channel state information, which indicates multiple channels for data transmission A transmit channel characteristic, and a transmit data processor, is operatively coupled to the receive MIMO processor and configured to process channel state information for sending it back to the transmitter unit. The communication system also includes a transmitter unit including at least one demodulator configured to receive and process one or more signals from the receiver unit to recover transmitted channel state information, and a transmit data processor configured to Data for transmission to the receiver unit is processed based on recovered channel state information, wherein the reported channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of a plurality of transmission channels.
本发明的再一方面提供了一种多输入多输出通信系统中的接收机单元,包括:多个前端处理器,配置为通过多个接收天线接收多个发射的信号,并处理接收到的信号以提供接收到的调制码元;滤波器,操作上耦合到多个前端处理器并配置为根据第一矩阵对接收到的调制码元滤波以提供经滤波调制码元,其中第一矩阵代表用于数据传输的多个发射天线和接收天线间的信道特征估计;乘法器,耦合到滤波器并配置为将经滤波的调制码元与第二矩阵相乘以提供对发射的调制码元的估计,其中所述第二矩阵是基于所述第一矩阵导出的逆矩阵;信道质量估计器,耦合到乘法器并配置为估计用于数据传输的多个传输信道的特征,并提供指明多个发射天线和多个接收天线间的多个传输信道的信号对噪声加干扰比估计的信道状态信息,以及发射数据处理器,用于接收和处理从接收机单元来的用于传输的信道状态信息。Still another aspect of the present invention provides a receiver unit in a multiple-input multiple-output communication system, comprising: a plurality of front-end processors configured to receive a plurality of transmitted signals through a plurality of receiving antennas, and process the received signals to provide received modulation symbols; a filter operatively coupled to a plurality of front-end processors and configured to filter the received modulation symbols according to a first matrix to provide filtered modulation symbols, wherein the first matrix represents the Estimation of channel characteristics between a plurality of transmit antennas and receive antennas for data transmission; a multiplier coupled to the filter and configured to multiply the filtered modulation symbols with a second matrix to provide an estimate of the transmitted modulation symbols , wherein the second matrix is an inverse matrix derived based on the first matrix; a channel quality estimator, coupled to the multiplier and configured to estimate the characteristics of a plurality of transmission channels for data transmission, and provide a number of transmit channel state information for signal-to-noise-and-interference ratio estimation for a plurality of transmission channels between the antenna and the plurality of receive antennas, and a transmit data processor for receiving and processing the channel state information for transmission from the receiver unit.
本发明还提供实现本发明各个方面、实施例和特征的方法、系统以及装置,将如下详述。The present invention also provides methods, systems and devices for realizing various aspects, embodiments and features of the present invention, which will be described in detail as follows.
附图说明 Description of drawings
通过下面提出的结合附图的详细描述,本发明的特征、性质和优点将变得更加明显,附图中相同的符号具有相同的标识,其中:The characteristics, properties and advantages of the present invention will become more apparent through the detailed description proposed below in conjunction with the accompanying drawings, in which the same symbols have the same identification, wherein:
图1是能实现本发明不同方面和实施例的多输入多输出(MIMO)通信系统的图;1 is a diagram of a multiple-input multiple-output (MIMO) communication system that can implement various aspects and embodiments of the present invention;
图2A和2B是能实现部分CSI处理以及全CSI处理的MIMO发射机系统的实施例的相应方框图;2A and 2B are respective block diagrams of embodiments of MIMO transmitter systems capable of partial CSI processing as well as full CSI processing;
图3是使用正交频分调制(OFDM)的MIMO发射机系统的实施例方框图;3 is a block diagram of an embodiment of a MIMO transmitter system using Orthogonal Frequency Division Modulation (OFDM);
图4是能提供对不同传输类型不同处理且使用OFDM的MIMO系统的部分的框图;Figure 4 is a block diagram of parts of a MIMO system that can provide different handling for different transmission types and uses OFDM;
图5和图6是两个有多个(NR)接收天线并能根据信道相关矩阵逆(CCMI)技术以及无偏最小均方误差(UMMSE)而处理数据传输的接收机系统的实施例相应的方框图;Figures 5 and 6 are two corresponding embodiments of receiver systems having multiple ( NR ) receiving antennas and capable of processing data transmissions according to Channel Correlation Matrix Inverse (CCMI) techniques and Unbiased Minimum Mean Square Error (UMMSE) block diagram of
图7A示出三个接收机处理技术和不同SNR值的MIMO系统的平均吞吐量;以及Figure 7A shows the average throughput of a MIMO system for three receiver processing techniques and different SNR values; and
图7B示出根据数据直方图产生的三个接收机处理技术的累积概率分布函数(CDF)。Figure 7B shows the cumulative probability distribution functions (CDFs) for the three receiver processing techniques generated from the data histograms.
具体实施方式 Detailed ways
图1是能实现本发明各个方面和实施例的多输入多输出(MIMO)通信系统100的图。系统100包括与第二系统150通信的第一系统110。系统100能用于使用天线、频率和时间分集(以下描述)的组合以增加频谱效率、改善性能并增加灵活性。在一方面,系统150可能用于确定通信链路的特征并将信道状态信息(CSI)报告回系统110,且系统110可能用于根据报告的CSI调整对要发射的数据处理(例如编码和调制)。1 is a diagram of a multiple-input multiple-output (MIMO)
在系统110内,数据源112提供数据(即信息比特)到发射(TX)数据处理器114,它根据特定编码方案对数据进行编码,根据特定交织方案对经编码的数据进行交织(即重排序),并将经交织比特映射为一个或多个用于发射数据的传输信道的调制码元。交织提供了对编码比特的时间分集,允许数据根据用于数据传输的传输信道的平均信号对噪声加干扰(SNR)比而被发射,减少衰落,并去除用于形成每个调制码元的经编码比特之间的相关。如果经编码比特在多个频率子信道上被发射,则交织还可能提供频率分集。根据本发明的一方面,编码、交织以及码元映射(或以上的组合)根据系统110可用的全CSI或部分CSI而被实现,如图1指明。Within
在发射系统110处的编码、交织以及码元映射可能根据多个方案而实现。一个特定的方案在美国专利号09776073内得到描述,题为“CODING SCHEME FORA WIRELESS COMMUNICATION SYSTEM”提交于2001年2月1日,被转让给本发明的受让人,并通过引用被结合于此。Coding, interleaving, and symbol mapping at
MIMO系统100在通信链路的发射和接收端使用多个天线。这些发射和接收天线可能用于提供空间分集的各种形式,包括发射分集和接收分集。空间分集特征是使用多个发射天线和一个或多个接收天线。发射分集的特征是在多个发射天线上传输数据。一般,附加处理在从发射天线发射来的数据上实现以获得期望的分集。例如,从不同发射天线发射而来的数据可能经时延或在时间上重排序、在可用的发射天线上经编码和交织等。接收分集的特征是在多个接收天线上对发射的信号的接收,分集是通过简单地接收经不同信号路径的信号而实现。MIMO
系统100可能用于多个不同的通信模式,每个通信模式使用天线、频率或时间分集或以上的组合。通信模式可能包括例如“分集”通信模式以及“MIMO”通信模式。分集通信模式使用分集以改善通信链路的可靠性。在分集通信模式,这还被称为“纯”分集通信模式,的一般应用中数据从所有可用的发射天线发射到接收接收机系统。纯分集通信模式可能用于当数据速率要求较低或当SNR较低或两者皆是情况下。MIMO通信模式在通信链路的两端使用天线分集(即多个发射天线和多个接收天线)并一般用于改善可靠性以及增加通信链路的容量。MIMO通信模式可能还使用频率和/或时间分集结合天线分集。
系统100还可能利用正交频分调制(OFDM),这有效地将操作频带分成多个(L)频率子信道(即频率箱)。在每个时隙(即特定的取决于频率子信道的带宽的时间间隔),调制码元可能在L频率子信道的每个上被发射。
系统100可能用于通过多个传输信道发射数据。如上所述,MIMO信道可能被分解为NC个独立的信道,NC≤min{NT,NR}。NC个独立的信道的每个还被称为MIMO信道的空间子信道。对不使用OFDM的MIMO系统,可能只有一个频率子信道且每个空间子信道可能被称为“传输信道”。对使用OFDM的MIMO系统,每个频率子信道的每个空间子信道可能被称为一个传输信道。对不以MIMO通信模式操作的OFDM系统,只有一个空间子信道且每个频率子信道可能被称为传输信道。
如果使用由多个发射和接收天线建立的附加维数,则MIMO系统可以提供改善的性能。这并不一定需要在发射机处已知CSI,当发射机配备有CSI时,可能会增加系统效率和改善性能,CSI描述从发射天线到接收天线的传输特征。CSI可能被归为“全CSI”或“部分CSI”。MIMO systems can provide improved performance if the additional dimension created by the multiple transmit and receive antennas is used. This does not necessarily require the CSI to be known at the transmitter, which may increase system efficiency and improve performance when the transmitter is equipped with CSI, which describes the characteristics of the transmission from the transmit antenna to the receive antenna. CSI may be classified as "full CSI" or "partial CSI".
全CSI包括在NT×NRMIMO矩阵内的每个发射接收天线对间的传播路径的整个系统频带(即每个频率子信道)的足够特征。全CSI处理指(1)信道特征在发射机和接收机端都可利用,(2)发射机计算MIMO信道的特征模量(如下描述),确定以特征模量发射的调制码元,对调制码元线性预调节(滤波),并发射经预调节的调制码元,以及(3)接收机根据信道特征实现线性发射处理的互补操作(例如空间匹配滤波器)以计算每个传输信道(即每个特征模量)所需的NC个空间匹配滤波器系数。全CSI处理还包括根据信道的特征值(以下描述)处理每个传输信道的数据(例如选择合适的编码和调制方案)以导出调制码元。Full CSI includes sufficient characterization of the entire system frequency band (ie, each frequency subchannel) of the propagation path between each transmit-receive antenna pair within the NT x NR MIMO matrix. Full CSI processing refers to (1) channel characteristics are available at both the transmitter and receiver, (2) the transmitter calculates the characteristic modulus of the MIMO channel (described below), determines the modulation symbols transmitted with the characteristic modulus, and modulates The symbols are linearly pre-adjusted (filtered), and the pre-adjusted modulation symbols are transmitted, and (3) the receiver implements a complementary operation of linear transmit processing (such as a spatial matched filter) according to the channel characteristics to calculate each transmission channel (ie N C spatial matched filter coefficients required for each eigenmodulus). Full CSI processing also includes processing the data for each transport channel (eg selecting an appropriate coding and modulation scheme) according to the channel's eigenvalues (described below) to derive modulation symbols.
部分CSI可能包括,例如传输信道的信号对噪声加干扰比(SNR)(即无OFDM的MIMO系统的每个空间子信道的SNR,或有OFDM的MIMO系统的每个空间子信道的每个频率子信道的SNR)。部分CSI处理可能指根据信道的SNR处理每个传输信道的数据(例如,选择合适的编码和调制方案)。Part of the CSI may include, for example, the signal-to-noise-plus-interference ratio (SNR) of the transport channel (i.e., the SNR per spatial subchannel for a MIMO system without OFDM, or per frequency per spatial subchannel for a MIMO system with OFDM SNR of the subchannel). Part of the CSI processing may refer to processing the data of each transport channel (eg, selecting an appropriate coding and modulation scheme) according to the channel's SNR.
参考图1,TX MIMO处理器120接收并处理从TX数据处理器114来的调制码元以提供适合在MIMO信道上传输的码元。由TX MIMO处理器120实现的处理取决于是否使用全或部分CSI处理,这将在以下详述。1,
对全CSI处理,TX MIMO处理器120可能对调制码元解多路复用并预调节。对部分CSI处理,TX MIMO处理器120可能简单地对调制码元解复用。以下将详述全和部分CSI MIMO处理。对使用全CSI处理而不使用OFDM的MIMO系统而言,TX MIMO处理器120为每个发射天线提供经预调节的调制码元流,每个时隙一个经预调节的调制码元。每个经预调节的调制码元是对NC个空间子信道的给定时隙的NC个调制码元的线性(以及加权)组合,如下将详述。对使用全CSI处理和OFDM的MIMO系统,TX MIMO处理器120提供对每个发射天线的经预调节的调制码元向量流,每个向量包括对给定时隙的L个频率子信道的L个经预调节的调制码元。对使用部分CSI处理但不使用OFDM的MIMO系统,TX MIMO处理器120提供每个发射天线的调制码元流,每个时隙一个调制码元。对使用OFDM和部分CSI处理的MIMO系统而言,TX MIMO处理器120提供用于每个发射天线的调制码元向量流,每个向量包括对给定时隙的L个频率子信道的L个调制码元。对上述的所有情况,每个调制码元或调制码元向量的流(或经预调节或未经预调节)由相应的调制器(MOD)122接收并调制,并通过相关的天线124发射。For full CSI processing, the
在图1示出的实施例中,接收机系统150包括许多接收发射的信号并提供接收的信号给相应的解调器(DEMOD)154的接收天线152。每个解调器154实现与调制器122处互补的处理。从所有解调器154来的已调码元提供给接收(RX)MIMO处理器156并以以下描述的方式经处理。传输信道的接收调制码元然后提供给RX数据处理器158,它实现与TX数据处理器114互补的处理。在特定设计中,RX数据处理器158提供比特值,指明接收到的调制码元,对比特值解交织,并对解交织的值解码以生成已解码比特,然后提供给数据宿160。接收到的码元的解映射、解交织和解码是与发射机系统110处的码元映射、交织以及编码互补的。接收机系统150的处理将在以下详述。In the embodiment shown in FIG. 1 ,
MIMO系统的空间子信道(或更一般地,带有或没有OFDM的MIMO系统的传输信道)一般经历不同的链路条件(例如,不同衰减和多径效应)且可能获得不同的SNR。相应地,传输信道的容量可能在信道与信道间有所不同。该容量可能由对于特定性能级别在每个传输信道上发射的信息比特速率(即每调制码元的信息比特数)量化。而且,链路条件一般随时间变化。确定描述链路条件的CSI其结果,对传输信道所支持的特率也随时间而变化。为更充分利用传输信道的容量,可能(一般在接收单元处)且提供给发射单元使得能相应地调整(或适应)处理。本发明的方面提供确定和利用(全或部分)CSI的技术以提供经改善的系统性能。The spatial subchannels of a MIMO system (or more generally, the transport channel of a MIMO system with or without OFDM) typically experience different link conditions (eg, different fading and multipath effects) and may achieve different SNRs. Accordingly, the capacity of the transmission channel may vary from channel to channel. This capacity may be quantified by the information bit rate (ie the number of information bits per modulation symbol) transmitted on each transport channel for a particular performance level. Also, link conditions typically change over time. As a result of determining the CSI describing link conditions, the supported bit rates for the transport channel also vary over time. To more fully utilize the capacity of the transmission channel, it is possible (typically at the receiving unit) and provided to the transmitting unit so that the processing can be adjusted (or adapted) accordingly. Aspects of the invention provide techniques for determining and utilizing (full or partial) CSI to provide improved system performance.
带有部分CSI处理的MIMO发射机系统MIMO Transmitter System with Partial CSI Processing
图2A是MIMO发射机系统110a的实施例的方框图,这是图1中系统110的发射机部分的实施例。发射机系统110a(不使用OFDM)能根据接收机系统150报告的部分CSI调整其处理。系统110a包括(1)接收并处理信息比特以提供调制码元的TX数据处理器114a以及(2)对NT个发射天线的调制码元解复用的TXMIMC处理器120a。FIG. 2A is a block diagram of an embodiment of a MIMO transmitter system 110a, which is an embodiment of the transmitter portion of
TX数据处理器114a是图1中的TX数据处理器114的一实施例,且许多其它设计还可能用于TX数据处理器114并在本发明的范围内。在图2A示出的特定实施例中,TX数据处理器114a包括编码器202、信道交织器204、截短器206以及码元映射元件208。编码器202接收并根据特定编码方案对信息比特编码以提供经编码比特。信道交织器204根据特定交织方案对经编码的比特进行交织以提供分集。截短器206截去零个或多个经交织经编码的比特以提供期望的经编码比特。码元映射元件208将未被截去的经编码比特映射为一个或多个用于发射数据的传输信道的调制码元。TX data processor 114a is one embodiment of
虽然为简洁缘故未在图2A中示出,导频数据(例如已知模式的数据)可能与经处理的信息比特一起经编码和复用。经处理的导频数据可能在所有或一组用于发射信息比特的传输信道的子集上发射(例如以时分多路复用方式)。如在在领域内已知的且将在以下详述的,导频数据可能在接收机处用于实现信道估计。Although not shown in FIG. 2A for the sake of brevity, pilot data (eg, data of a known pattern) may be encoded and multiplexed with the processed information bits. The processed pilot data may be transmitted (eg in a time division multiplexed fashion) on all or a subset of the set of transport channels used to transmit the information bits. As is known in the art and will be detailed below, pilot data may be used at the receiver to enable channel estimation.
如图2A示出,可能根据接收机系统150报告的部分CSI而调整编码和调制。在一实施例中,通过使用固定的基本码(例如速率1/3的Turbo码)以及调整截短以获得期望的码率来实现自适应编码的,如由用于发射数据的传输信道的SNR支持的。或者,可能根据报告的部分CSI而使用不同的编码方案(如由虚线箭头指向方框202所指)。例如,传输信道的每个可能用独立的码而实现编码。用该编码方案,可能使用相继“零化/均衡以及干扰对消”接收机处理方案以检测并对数据流解码以导出对发射的数据流更可靠的估计。一种该种接收机处理方案由P.W.Wolniansky,et al在论文中描述,题为“V-BLAST:An Architecture for AchievingVery High Data Rates over the Rich-Scattering WirelessChannel”,Proc.ISSSE-98,Pisa,Italy。被转让给本发明的受让人,并通过引用被结合于此。As shown in FIG. 2A , the coding and modulation may be adjusted based on the partial CSI reported by the
对每个传输信道,码元映射元件208可能设计成将未被截去的经编码的比特分组成集以形成非二进制码元,并将非二进制码元映射成对应的为该传输信道选择的特定调制方案(例如QPSK、M-PSK、M-QAM或一些其它方案)的信号星座图内的点。每个经映射的点对应调制码元。对某特定性能级别(例如百分之一分组误差率)为每个调制码元可能发射的信息比特数取决于传输信道的SNR。因此,每个传输信道的编码方案以及调制方案可能根据报告的部分CSI而被选择。信道交织可能根据报告的部分CSI而被调整(由指向方框204的虚线箭头指明)。For each transport channel, the symbol mapping element 208 may be designed to group the untruncated coded bits into groups to form non-binary symbols, and to map the non-binary symbols into corresponding A point within a signal constellation diagram of a particular modulation scheme (eg, QPSK, M-PSK, M-QAM, or some other scheme). Each mapped point corresponds to a modulation symbol. The number of information bits that may be transmitted per modulation symbol for a particular level of performance (eg, one percent packet error rate) depends on the SNR of the transport channel. Therefore, the coding scheme as well as the modulation scheme for each transport channel may be selected according to the reported partial CSI. Channel interleaving may be adjusted according to the reported partial CSI (indicated by the dashed arrow pointing to block 204).
表1列出可能用于一定数目的SNR范围的不同编码速率和调制方案的组合。每个传输信道支持的比特速率可能使用多个可能的编码速率和调制方案的组合中的任何一个而获得。例如,每码元一信息比特可能通过使用以下方式获得(1)编码速率为1/2,以及QPSK调制(2)编码速率为1/3,以及8-PSK调制,(3)编码速率为1/4,以及16-QAM调制或一些其它码率和调制方案的组合。在表1中,QPSK、16-QAM以及64-QAM用于列出的SNR范围。其它调制方案诸如8-PSK、32-QAM、128-QAM等,还可能被使用并在本发明的范围内。Table 1 lists different coding rate and modulation scheme combinations possible for a certain number of SNR ranges. The bit rate supported by each transport channel may be obtained using any of a number of possible combinations of coding rates and modulation schemes. For example, one information bit per symbol may be obtained by using (1) a coding rate of 1/2, and QPSK modulation (2) a coding rate of 1/3, and 8-PSK modulation, (3) a coding rate of 1 /4, and 16-QAM modulation or some other combination of code rate and modulation scheme. In Table 1, QPSK, 16-QAM, and 64-QAM are used for the listed SNR ranges. Other modulation schemes, such as 8-PSK, 32-QAM, 128-QAM, etc., may also be used and are within the scope of the present invention.
表1Table 1
从TX数据处理器114a来的调制码元被提供给TX MIMO处理器120a,这是图1内的TX MIMO处理器120的一个实施例。在TX MIM0处理器120a内,解复用器214将接收到的调制码元解复用为多个(NT)调制码元流,对用于发射调制码元的每个天线一个流。每个调制码元流提供给相应的调制器122。每个调制器122将调制码元转变为模拟信号,且进一步放大、滤波、正交调制并将信号上变频以生成适合在无线链路上传输的已调信号。The modulation symbols from TX data processor 114a are provided to TX MIMO processor 120a, which is one embodiment of
如果空间子信道数小于可用的发射天线数(即NC<NT),则可能使用各种方案用于数据传输。在一种方案中,NC调制码元流在可用发射天线的子集(即NC上生成并发射。剩余的NT-NC个发射天线并不用于数据传输。在另一方案中,由(NT-NC)附加发射天线提供的附加的自由度用于改善数据传输的可靠性。对该方案,一个或多个数据流的每个可被编码、可能经交织并在多个发射天线上发射。对数据流使用多个发射天线增加了分集并改善了恶化的路径效应的可靠性。If the number of spatial sub-channels is less than the number of available transmit antennas (ie, N C < N T ), various schemes may be used for data transmission. In one approach, NC modulated symbol streams are generated and transmitted on a subset of the available transmit antennas, namely NC . The remaining NT - NC transmit antennas are not used for data transmission. In another approach, The additional degrees of freedom provided by ( NT - NC ) additional transmit antennas are used to improve the reliability of data transmission. To this scheme, each of one or more data streams can be encoded, possibly interleaved and distributed between multiple Transmit on Transmit Antennas. Using multiple transmit antennas for data streams increases diversity and improves reliability against degraded path effects.
带全CSI处理的MIMO发射机系统MIMO Transmitter System with Full CSI Processing
图2B是MIMO发射机系统110b(未使用OFDM)的实施例模块图,它能根据由接收机系统150报告的全CSI处理数据。信息比特经编码、交织并经TX数据处理器114码元映射以生成调制码元。编码和调制可能根据由接收机系统报告的可用全CSI而经调整,且可能如同上述MIMO发射机系统110a所描述地实行。2B is a block diagram of an embodiment of a MIMO transmitter system 110b (not using OFDM) capable of processing data based on the full CSI reported by the
在TX MIMO处理器120b内,信道MIMO处理器212对接收到的调制码元解复用成多个(NC)调制码元流,每个用于发射调制码元的空间子信道(即特征模是)一个流。对全CSI处理,信道MIMO处理器212对NC个在每个时隙处的调制码元进行预调节以生成NT个经预调节的调制码元,如下:Within TX MIMO processor 120b,
其中,b1,b2...以及是相应的空间子信道1、2...的调制码元,其中NC个调制码元的每个可能使用例如M-PSK、M-QAM或一些其它调制方案生成;where b 1 , b 2 ... and are the corresponding
eij是与从发射天线到接收天线的传输特征相关的特征向量矩阵E的元素;以及e ij are the elements of the matrix E of eigenvectors related to the characteristics of the transmission from the transmitting antenna to the receiving antenna; and
是经预调节的调制码元,这可以表达为: is the preconditioned modulation symbol, which can be expressed as:
特征向量矩阵E可能由发射机计算或由接收机提供给发射机。The eigenvector matrix E may be calculated by the transmitter or provided to the transmitter by the receiver.
对于全CSI处理,每个经预调节的调制码元xi,对特定的发射天线表示多达NC个空间子信道的(加权)调制码元的线性组合。对每个调制码元xi使用的调制方案是基于该特征模量的有效SNR且与特征值λi成正比(以下描述)。NC个用于生成每个经预调节的调制码元的调制码元的每个可能与不同的信号星座图相关。对每个时隙,NT个由信道MIMO处理器212生成的经预调节的调制码元由解复用器214解复用并提供给NT个调制器122。For full CSI processing, each preconditioned modulation symbol xi represents a linear combination of (weighted) modulation symbols of up to NC spatial subchannels for a particular transmit antenna. The modulation scheme used for each modulation symbol x i is based on the effective SNR of the eigenmodulus and is proportional to the eigenvalue λ i (described below). Each of the NC modulation symbols used to generate each preconditioned modulation symbol may be associated with a different signal constellation. NT preconditioned modulation symbols generated by
全CSI处理可能根据可用的CSI以及经选择的发射天线而实现。全CSI处理还可能选择性并动态地启用和停用。例如,全CSI处理可能为特定的数据传输而启用,并为其它一些数据传输停用。全CSI处理可能在一定条件下启用,例如当通信链路有足够的SNR时。Full CSI processing is possible depending on available CSI and selected transmit antennas. Full CSI processing may also be selectively and dynamically enabled and disabled. For example, full CSI processing may be enabled for certain data transfers and disabled for others. Full CSI processing may be enabled under certain conditions, such as when the communication link has sufficient SNR.
带有OFDM的MIMO发射机系统MIMO Transmitter System with OFDM
图3是MIMO发射机系统110c的实施例的方框图,它使用OFDM并能根据全或部分CSI调整其处理。信息比特经编码、经交织、经截短,并由TX数据处理器114码元映射以生成调制码元。编码和调制可能根据接收机系统报告的可用的全或偏CSI而调整。对有OFDM的MIMO系统,调制码元可能在多个频率子信道上从多个发射天线发射。当操作在纯MIMO通信模式时,在每个频率子信道上以及从每个发射天线来的发射代表非复制数据。Figure 3 is a block diagram of an embodiment of a MIMO transmitter system 110c that uses OFDM and can adjust its processing based on full or partial CSI. The information bits are encoded, interleaved, truncated, and symbol mapped by a
在MIMO处理器120c内,解复用器(DEMUX)310接收并对调制码元解复用为多个子信道码元流S1到SL,一个子信道码元流对应每个用于发射码元的频率子信道。Within the MIMO processor 120c, a demultiplexer (DEMUX) 310 receives and demultiplexes the modulation symbols into a plurality of sub-channel symbol streams S 1 to S L , one sub-channel symbol stream for each transmitted code The frequency subchannel of the element.
对全CSI处理,每个子信道码元流被提供给相应的子信道MIMO处理器312。每个子信道MIMO处理器312对接收到的子信道码元流解复用为多个(多达到NC个)码元子流,每个用于发射调制码元的空间子信道一个码元子流。对OFDM系统内的全CST处理,导出特征模式并在每频率子信道的基础上被应用。因此,每个子信道MIMO处理器312根据等式(1)可以对多达NC的调制码元进行预调节以生成经预调节的调制码元。每个对特定频率子信道的特定发射天线的经预调节的调制码元代表多达NC个空间子信道的(加权)调制码元的线性组合。For full CSI processing, each sub-channel symbol stream is provided to a corresponding sub-channel MIMO processor 312 . Each subchannel MIMO processor 312 demultiplexes the received subchannel symbol stream into multiple (up to N C ) symbol substreams, one symbol substream for each spatial subchannel used to transmit modulation symbols flow. For full CST processing within OFDM systems, eigenmodes are derived and applied on a per-frequency subchannel basis. Accordingly, each subchannel MIMO processor 312 can precondition up to Nc modulation symbols according to equation (1) to generate preconditioned modulation symbols. Each preconditioned modulation symbol for a particular transmit antenna for a particular frequency subchannel represents a linear combination of (weighted) modulation symbols for up to NC spatial subchannels.
对全CSI处理,每个时隙的由每个MIMO处理器312生成的(可达)NT个经预调节的调制码元由相应的解复用器314解复用,且被提供给(可达)NT个码元组合器316a到316t。例如,分配给频率子信道1的子信道MIMO处理器312a可能提供用于天线1到NT的频率子信道1的多达NT个经预调节的调制码元。同样地,分配给频率子信道L的子信道MIMO处理器3121可能提供天线1到NT的频率子信道L的多达NT个码元。For full CSI processing, the (up to) NT preconditioned modulation symbols per slot generated by each MIMO processor 312 are demultiplexed by the corresponding demultiplexer 314 and provided to ( up to) NT symbol combiners 316a through 316t. For example, subchannel MIMO processor 312a assigned to
对部分CSI处理,每个子信道码元流S,由相应的解复用器314解复用并提供给(多达)NT个码元组合器316a到316t。子信道MIMO处理器312的处理对部分CSI处理被旁路了。For partial CSI processing, each subchannel symbol stream, S, is demultiplexed by a corresponding demultiplexer 314 and provided to (up to) NT symbol combiners 316a through 316t. The processing of the sub-channel MIMO processor 312 is bypassed for part of the CSI processing.
每个组合器316为多达L个频率子信道接收调制码元,将每个时隙的码元组合成调制码元向量V,并将调制码元向量提供给下一处理级(即调制器122)。Each combiner 316 receives modulation symbols for up to L frequency subchannels, combines the symbols for each slot into a modulation symbol vector V, and provides the modulation symbol vector to the next processing stage (i.e. modulator 122).
因此MIMO处理器120c接收并处理调制码元以提供NT个调制码元向量V1到VT,每个发射天线一个调制码元向量。每个调制码元向量V占用单一一个时隙,且调制码元向量V的每个元素都与特定带有唯一子载波的频率子信道相关,调制码元在此载波上传输。如果不以“纯”MIMO通信模式操作,调制码元向量中一些可能对不同发射天线在特定的频率子信道上有重复或冗余信息。The modulation symbols are thus received and processed by MIMO processor 120c to provide NT modulation symbol vectors V1 through VT , one modulation symbol vector for each transmit antenna. Each modulation symbol vector V occupies a single time slot, and each element of the modulation symbol vector V is associated with a specific frequency subchannel with a unique subcarrier on which the modulation symbol is transmitted. If not operating in a "pure" MIMO communication mode, some of the modulation symbol vectors may have duplicate or redundant information on specific frequency sub-channels for different transmit antennas.
图3还示出了OFDM的解调器122的实施例。从MIMO处理器120c来得调制码元向量V1到VT被提供给相应的调制器122a到122t。在图3示出的实施例中,每个调制器122包括反快速傅立叶变换(IFFT)320,循环前缀发生器322以及上变频器324。FIG. 3 also shows an embodiment of the demodulator 122 for OFDM. Modulation symbol vectors V1 through VT from MIMO processor 120c are provided to corresponding modulators 122a through 122t. In the embodiment shown in FIG. 3 , each modulator 122 includes an inverse fast Fourier transform (IFFT) 320 , a cyclic prefix generator 322 and an upconverter 324 .
IFFT 320使用IFFT将每个接收到的调制码元向量转换为其时域表示(被称为OFDM码元)。IFFT 320能设计成在任何数量的频率子信道上实现IFFT(例如8、16、32等)。在一实施例中,对每个被转变成OFDM码元的调制码元向量而言,循环前缀发生器322重复OFDM码元的时域表示的一部分以形成对特定发射天线的传输码元。循环前缀保证传输码元在有多径时延扩展时保留它的正交性,因此改善了恶化路径效应。IFFT 320的实现以及循环前缀发生器在技术领域内是已知的,在此不作详细描述。IFFT 320 converts each received modulation symbol vector to its time-domain representation (referred to as an OFDM symbol) using an IFFT. IFFT 320 can be designed to perform IFFT on any number of frequency sub-channels (eg, 8, 16, 32, etc.). In one embodiment, for each modulation symbol vector that is converted into an OFDM symbol, cyclic prefix generator 322 repeats a portion of the time domain representation of the OFDM symbol to form a transmission symbol to a particular transmit antenna. The cyclic prefix ensures that the transmitted symbols retain their orthogonality when multipath delay spreads, thus improving the degradation path effects. Implementations of IFFT 320 and cyclic prefix generators are known in the art and will not be described in detail here.
每个循环前缀发生器322的时域表示(即每个天线的传输码元)然后经上变频器324处理(例如转变为模拟信号、经调制、经放大以及经滤波)以生成已调信号,然后从相应的天线124发射。The time-domain representation of each CP generator 322 (i.e., the transmitted symbols for each antenna) is then processed (e.g., converted to analog, modulated, amplified, and filtered) by an upconverter 324 to generate a modulated signal, It is then transmitted from the corresponding antenna 124 .
OFDM调制在下述论文中得到详细描述,题为“Multicarrier Modulation forDataTransmission:An Idea Whose Time Has Come”,作者为John A.C Bingham,IEEE通信杂志,1990年五月,在此引入作为参考。OFDM modulation is described in detail in the paper entitled "Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come" by John A.C Bingham, IEEE Journal of Communications, May 1990, which is incorporated herein by reference.
许多不同类型的传输(例如语音、信令、数据、导频等)可能由通信系统发射。这些传输的每种可能需要不同处理。Many different types of transmissions (eg, voice, signaling, data, pilot, etc.) may be transmitted by a communication system. Each of these transfers may require different handling.
图4是能提供不同传输类型的不同处理并使用OFDM的MIMO发射机系统的部分的方框图。集合输入数据,包括所有由系统110d发射的信息比特,提供给解复用器408。解复用器408将输入数据解复用为多个(K)信道数据流B1到BK。每个信道数据流可能对应例如信令信道、广播信道、语音呼叫或分组数据传输。每个信道数据流提供给相应的TX数据处理器114,它用为该信道数据流选择的特定编码方案对数据编码,根据特定交织方案对经编码的数据交织,并将经交织比特映射为用于发射该信道数据流的一个或多个传输信道的调制码元。Figure 4 is a block diagram of a portion of a MIMO transmitter system capable of providing different processing of different transmission types and using OFDM. The aggregated input data, including all information bits transmitted by system 110d, is provided to
编码可能在每个传输基础上实现(即在如图4示出的信道数据流上)。然而,编码也可能实现在集合输入数据上(如图1示出)、在多个信道数据流上、在信道数据流的一部分上、跨过一组频率子信道、跨过一组空间子信道、跨过一组频率子信道和空间子信道、跨过每个频率子信道、在每个调制码元上、或在一些其它的时间、空间以及频率单元上。Encoding may be done on a per-transmission basis (ie on a channel stream as shown in Figure 4). However, encoding may also be implemented on aggregate input data (as shown in Figure 1), on multiple channel data streams, on a portion of a channel data stream, across a set of frequency subchannels, across a set of spatial subchannels , across a set of frequency subchannels and spatial subchannels, across each frequency subchannel, over each modulation symbol, or over some other time, space, and frequency unit.
从每个TX数据处理器114来的调制码元流可能在一个或多个频率子信道上发射,且通过每个频率子信道的一个或多个空间子信道。TX MIMO处理器120d从TX数据处理器114接收调制码元流。根据用于每个调制码元流的通信模式,TX MIMO处理器120d可能将调制码元流解复用为多个子信道码元流。在图4示出的实施例中,调制码元流S1在一个频率子信道上发射且调制码元流SK在L个频率子信道上发射。每个频率子信道的调制流由相应的子信道MIMO处理器412处理、由解复用器414解复用,且由组合器416组合(例如以与图3描述的类似的方式)以形成每个发射天线的调制码元向量。Modulation symbol streams from each
一般而言,发射机系统根据描述该信道传输容量的信息对每个传输信道的数据编码并调制。该信息一般是以上述的全CSI或部分CSI形式。用于数据传输的传输信道的全/部分CSI一般在接收机系统处被确定并报告回发射机系统,它然后使用该信息以相应地调整编码和调制。在此描述的技术可应用于多个能支持多个平行传输信道的MIMO、OFDM或其它任何通信方案(例如CDMA方案)支持的平行传输信道。In general, the transmitter system encodes and modulates the data for each transmission channel according to information describing the transmission capacity of that channel. This information is generally in the form of full CSI or partial CSI as described above. The full/partial CSI of the transport channel used for data transmission is typically determined at the receiver system and reported back to the transmitter system, which then uses this information to adjust coding and modulation accordingly. The techniques described herein are applicable to multiple parallel transmission channels supported by MIMO, OFDM, or any other communication scheme (eg, a CDMA scheme) capable of supporting multiple parallel transmission channels.
MIMO处理在美国专利序列号09532492内进一步得到描述,题为“HIGHEFFICIENCY,HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-CARRIERMODULATION”,提交于2000年3月,被转让给本发明的受让人,并通过引用被结合于此。MIMO processing is further described in U.S. Patent Serial No. 09532492, entitled "HIGHEFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-CARRIERMODULATION," filed March 2000, assigned to the assignee of the present invention, and incorporated by reference here.
MIMO接收系统MIMO receiving system
本发明的各方面提供在MIMO系统内处理接收到信号以恢复发射的数据的技术,并估计MIMO信道特性。估计的信道特性然后可能报告回发射机系统并用于调整信号处理(例如,编码、调制等)。这样,可以根据确定的信道条件获得高性能。在此描述的接收机处理技术包括信道相关矩阵逆(CCMI)技术、无偏最小均方误差(UMMSE)技术以及全CSI技术,所有的这些将在下面详述。还可能使用其它接收机处理技术并在本发明范围内。Aspects of the invention provide techniques for processing received signals within a MIMO system to recover transmitted data and estimate MIMO channel characteristics. The estimated channel characteristics may then be reported back to the transmitter system and used to adjust signal processing (eg, coding, modulation, etc.). In this way, high performance can be achieved depending on the determined channel conditions. Receiver processing techniques described herein include channel correlation matrix inverse (CCMI) techniques, unbiased minimum mean square error (UMMSE) techniques, and full CSI techniques, all of which are detailed below. It is also possible to use other receiver processing techniques and be within the scope of the present invention.
图1示出带有多个(NR)接收天线并能处理数据传输的接收机系统150。从多达NT个发射天线来的发射信号由NR个天线152a到152r接收并路由到相应的解调器(DEMOD)154(也被称为前端处理器)。例如,接收天线152a还可能接收从多个发射天线来的多个发射信号,并且接收天线152r可能类似地接收多个发射信号。每个解调器154将接收信号条件化(例如过滤和放大),将经条件化的信号下变频到中频或基带,并将经下变频的信号数字化。每个解调器154还可能用接收的导频对数字化的采样解调以生成接收到的调制码元,提供给RXMIMO处理器156。Figure 1 shows a
如果OFDM用于数据传输,每个解调器154还实现与图3示出的调制器122实现的互补的处理。在这种情况下,每个解调器154包括FFT处理器(未示出),它生成采样的变换后的表示并提供调制码元向量流,每个向量包括L个频率子信道的L个调制码元。从所有解调器的FFT处理器来的调制码元向量流然后提供给解复用器/组合器(未在图5示出),它首先将从每个FFT处理器来的调制码元向量流“信道化”为多个(多达L)个子信道码元流。每个(多达)L个子信道码元流然后可能提供给相应的RX MIMO处理器156。Each demodulator 154 also implements complementary processing to that implemented by modulator 122 shown in FIG. 3 if OFDM is used for data transmission. In this case, each demodulator 154 includes an FFT processor (not shown) that generates a transformed representation of the samples and provides a stream of modulation symbol vectors, each vector comprising L of the L frequency subchannels modulation symbols. The streams of modulation symbol vectors from the FFT processors of all demodulators are then provided to a demultiplexer/combiner (not shown in Figure 5), which first combines the modulation symbol vectors from each FFT processor The stream is "channelized" into multiple (up to L) sub-channel symbol streams. Each (up to) L subchannel symbol streams may then be provided to a corresponding
对不使用OFDM的MIMO系统,一个RX MIMO处理器156可能用于实现对NR个接收天线来的调制信号的MIMO处理。对使用OFDM的MIMO系统,一个RX MIMO处理器156可能用于实现对用于数据传输的L个频率子信道的每个的NR个接收天线来的调制信号的MIMO处理。For MIMO systems that do not use OFDM, one
在有NT个发射天线和NR个接收天线的MIMO系统内,在NR个接收天线输出处的接收到的信号可表示为:In a MIMO system with NT transmit antennas and NR receive antennas, the received signal at the output of NR receive antennas can be expressed as:
r=Hx+n 等式(2) r = H x + n Equation (2)
其中r是接收码元向量(即从MIMO信道来的NR×1向量输出,在接收天线处被测量)。H是给出在某特定时刻NT个发射天线和NR个接收天线的信道响应的NR×NT信道系数矩阵,x是发射码元向量(即输入到MIMO信道的NT×1向量),以及n是代表噪声加干扰的NR×1的向量。接收码元向量r包括在特定时间通过NR个接收天线接收到的NR个信号的NR个调制码元。同样地,发射的码元向量x包括在特定时间通过NT个发射天线发射的NT个信号的NT个调制码元。where r is the received symbol vector (ie the NR × 1 vector output from the MIMO channel, measured at the receiving antenna). H is the NR ×N T channel coefficient matrix giving the channel responses of N T transmit antennas and NR receive antennas at a specific moment, and x is the transmit symbol vector (i.e., the NT ×1 vector input to the MIMO channel ), and n is an NR
利用CCMI技术的MIMO接收机MIMO Receiver Using CCMI Technology
对CCMI技术,接收机系统首先先对接收到的码元向量r实现信道匹配滤波操作,且滤波后的输出可表示为:For CCMI technology, the receiver system first implements the channel matching filtering operation on the received symbol vector r , and the filtered output can be expressed as:
HH r=HHHx+HH n 等式(3)H H r = H H H x + H H n Equation (3)
其中上标″H″代表转置以及复数共轭。方阵R可能用于表示信道系数矩阵H与其共轭转置HH的积(即R=HHH)。where the superscript "H" stands for transpose and complex conjugation. The square matrix R may be used to represent the product of the channel coefficient matrix H and its conjugate transpose H H (ie R=H H H).
信道系数矩阵H可能从例如与数据一起发送的导频码元导出。为了实现最佳接收并估计传输信道的SNR,最方便的是在发射数据流内插入一些已知码元,并将已知码元在一个或多个传输信道上发射。这种已知码元还被称为导频码元或导频信号。根据导频信号或数据传输估计单一传输信道的方法在技术领域内的许多论文内均有论述。一种该种信道估计方法在F.Ling的论文中有描述,题为“OptimalReception,Performance Bound,and Cutoff-RateAnalysis ofReferneces-Assisted Coherent CDMA Communications with Applications”,IEEETransaction On Communication.1999年十月。这个或一些其它信道估计方法可能扩展到矩阵形式以导出信道系数矩阵H。The channel coefficient matrix H may be derived, for example, from pilot symbols sent with the data. In order to achieve optimal reception and estimate the SNR of the transmission channels, it is most convenient to insert some known symbols in the transmitted data stream and transmit the known symbols on one or more transmission channels. Such known symbols are also called pilot symbols or pilot signals. Methods for estimating a single transmission channel from pilot signals or data transmissions are described in many papers in the art. One such channel estimation method is described in a paper by F. Ling entitled "Optimal Reception, Performance Bound, and Cutoff-Rate Analysis of Referneces-Assisted Coherent CDMA Communications with Applications", IEEE Transaction On Communication. October 1999. This or some other channel estimation method may be extended to matrix form to derive the matrix H of channel coefficients.
发射码元向量的估计x′可能通过将信号向量HH r与R的逆(或伪逆)相乘而得到,可表示为:An estimate x ′ of the transmitted symbol vector may be obtained by multiplying the signal vector H H r by the inverse (or pseudo-inverse) of R, which can be expressed as:
x″=R-1HH r x″=R -1 H H r
=x+R-1HH n = x + R -1 H H n
=x+n′ 等式(4)= x + n ′ Equation (4)
从以上等式,可以得出发射码元向量x可能通过对接收到的码元向量r匹配滤波而被恢复(即乘以矩阵HH),然后将滤波结果乘以逆方阵R-1。From the above equations, it can be concluded that the transmitted symbol vector x may be recovered by matching filtering the received symbol vector r (ie multiplying by the matrix H H ), and then multiplying the filtered result by the inverse square matrix R −1 .
传输信道的SNR可能按如下确定。噪声向量n的自相关矩阵φnn首先从接收到的信号被计算。一般,φnn是Hermitian矩阵,即它是复共轭对称。如果信道噪声的分量是不相关的且独立且相同分布(iid),则噪声向量n的自相关矩阵φnn可以表示如下:The SNR of the transport channel may be determined as follows. The autocorrelation matrix φ nn of the noise vector n is first calculated from the received signal. In general, φ nn is a Hermitian matrix, ie it is complex conjugate symmetric. If the components of the channel noise are uncorrelated and independent and identically distributed (iid), the autocorrelation matrix φnn of the noise vector n can be expressed as follows:
其中,I是单位阵(即沿对角线为一,其余为零)且是接收到信号的噪声方差。处理后噪声向量n′的自相关矩阵φn′n′(即在匹配滤波和与矩阵R-1左乘后)可表达为:where I is the identity matrix (i.e. ones along the diagonal and zeros elsewhere) and is the noise variance of the received signal. The autocorrelation matrix φ n′n′ of the processed noise vector n ′ (i.e. after matched filtering and left multiplication with matrix R −1 ) can be expressed as:
从等式(6),处理后噪声n′的第i个元素的噪声方差等于于其中,是R-1的第i个对角元素。对不使用OFDM的MIMO系统,第i个元素代表第i个接收天线。且如果使用OFDM,则下标“i”可分解为下标“jk”,其中,“j”代表第j个频率子信道,而“k”代表对应第k个接收天线的第k个空间子信道。From equation (6), the noise variance of the i-th element of the processed noise n ′ equal to in, is the ith diagonal element of R -1 . For MIMO systems that do not use OFDM, the i-th element represents the i-th receive antenna. And if OFDM is used, the subscript "i" can be decomposed into the subscript "jk", where "j" represents the jth frequency subchannel, and "k" represents the kth spatial subchannel corresponding to the kth receiving antenna channel.
对CCMI技术,处理后接收到的码元向量的第i个元素(即x′的第i个元素)的SNR可表示为:For CCMI technology, the SNR of the i-th element (i.e. the i-th element of x ') of the symbol vector received after processing can be expressed as:
如果第i个发射的码元的方差平均等于一(1.0),接收码元向量的SNR可表示为:If the ith transmitted symbol The variance of is equal to one (1.0) on average, and the SNR of the received symbol vector can be expressed as:
噪声方差可通过对接收到的码元向量的第i个元素缩放比例而归一化。The noise variance can be scaled by the ith element of the received symbol vector And normalized.
从NR个接收天线来的经缩放的信号可能被加在一起以形成组合信号,这可能表示为:The scaled signals from the NR receive antennas may be summed together to form a combined signal, which may be expressed as:
等式(8) Equation (8)
组合信号的SNR,SNRtotal会有等于从NR个接收天线来的信号的SNR之和的最大组合SNR。组合SNR可能表示为:The SNR of the combined signal, SNR total, will have a maximum combined SNR equal to the sum of the SNRs of the signals from NR receiving antennas. The combined SNR might be expressed as:
等式(9) Equation (9)
图5示出RX MIMO处理器156a的实施例,它能实现上述的CCMI处理。在RX MIMO处理器156a内,从NR个接收天线来的调制码元有多路复用器512多路复用以形成接收调制码元向量r的流。信道系数矩阵H可能根据类似于常规的导频辅助单一和多载波系统的导频信号而被估计,如在领域内已知的。矩阵R然后根据以上示出的R=HHH而经计算。接收到的调制码元向量r然后经匹配滤波器514滤波,它将每个向量r与共轭转置的信道系数矩阵HH左乘,如在等式(3)中所示。经滤波的向量还由乘法器516与逆方阵R-1左乘以得到发射的调制码元矩阵x的估计x’,如在等式(4)中所示。Figure 5 shows an embodiment of the RX MIMO processor 156a that enables the CCMI processing described above. Within RX MIMO processor 156a, the modulation symbols from the NR receive antennas are multiplexed by a
对一些通信模式,从所有用于信道数据流的传输的天线来的子信道码元流可能被提供给组合器518,它包括在时间、空间以及频率上的重复信息。组合的调制码元x"然后提供给RX数据处理器158。对一些其它的通信模式,估计的调制码元x′可能直接被提供给RX数据处理器158(未在图5中示出)。For some communication modes, subchannel symbol streams from all antennas used for transmission of the channel data stream may be provided to
RX MIMO处理器156a因此生成多个独立对应在发射机系统处使用的传输信道数目的码元流。每个码元流包括处理后调制码元,这对应在发射机系统处全/部分-CSI处理前的调制码元。(处理后)码元流然后提供给RX数据处理器158。The RX MIMO processor 156a thus generates a plurality of symbol streams independently corresponding to the number of transport channels used at the transmitter system. Each symbol stream includes processed modulation symbols, which correspond to modulation symbols before full/partial-CSI processing at the transmitter system. The (processed) symbol stream is then provided to an
在RX数据处理器158内,每个调制码元的处理后码元流提供给相应的实现解调方案(例如M-PSK、M-QAM)的解调元件,该方案与在发射机系统处使用的被处理的传输信道的调制方案互补。对于MIMO通信模式,从所有分配的解调器来的已调数据可能被独立解码或经多路复用为一个信道数据流然后再被解码,这取决于在发射机单元处使用的编码和调制方法。每个信道数据流然后可能提供给相应的实现与为信道数据流在发射机单元处使用的互补的解码方案的解码器。从每个解码器来的经解码的数据代表该信道数据流的经发射的数据的估计。Within the
估计的调制码元x′和/或组合的调制码元x"还被提供给CSI处理器520,这确定了传输信道的全或部分CSI,并提供该全/部分CSI以被报告回发射机系统110。例如,CSI处理器520可能根据接收到的导频信号估计第i个传输信道的噪声协方差矩阵φnn′,并根据等式(7)和(9)计算SNR。可能用类似的常规的导频辅助单一和多载波系统估计SNR,如在本领域内所知的。传输信道的SNR包括报告回发射机系统的部分CSI。调制码元还被提供给相应地估计信道系数矩阵H并导出方阵R的信道估计器522以及矩阵处理器524。控制器530耦合到RX MIMO处理器156a以及RX数据处理器158,并引导这些单元的操作。The estimated modulation symbols x ' and/or the combined modulation symbols x " are also provided to the
利用UMMSE的MIMO接收机MIMO Receiver Using UMMSE
对UMMSE技术,接收机系统实现将接收到的码元向量r与矩阵M相乘以导出发射的码元向量x的初始MMSE估计可表示为:For the UMMSE technique, the receiver system implementation multiplies the received symbol vector r by the matrix M to derive an initial MMSE estimate of the transmitted symbol vector x Can be expressed as:
选择矩阵M使得初始MMSE估计和发射码元向量x间(即)的误差向量e的均方误差最小化。Choose matrix M such that the initial MMSE estimate and the transmitted symbol vector x (ie ) to minimize the mean square error of the error vector e .
为确定M,代价函数ε首先可表示为:To determine M, the cost function ε can first be expressed as:
ε=E{e H e}ε=E{ e H e }
=E{[r HMH-x H][Mr-x]}=E{[ r H M H - x H ][M r - x ]}
=E{r HMHMr-2Re[x HMr]+x H x}=E{ r H M H M r -2Re[ x H M r ]+ x H x }
为最小化代价函数ε,可以求出与M相关的代价函数的导数,且其结果可被设为零,如下:To minimize the cost function ε, the derivative of the cost function related to M can be found, and the result can be set to zero, as follows:
由E{xx H}=I、E{rr H}=HHH+φnn,且E{rx H}=H,获得以下关系:From E{ xx H }=I, E{ rr H }=HH H +φ nn , and E{ rx H }=H, the following relations are obtained:
2(HHH+φnn)MH=2H2(HH H +φ nn )M H =2H
因此,矩阵M可表示为:Therefore, the matrix M can be expressed as:
M=HH(HHH+φnn)-1 等式(11)M=H H (HH H +φ nn ) -1Equation (11)
根据等式(10)和(11),发射码元向量x的初始MMSE估计可以确定为:According to equations (10) and (11), the initial MMSE estimate of the transmitted symbol vector x can be determined as:
为确定UMMSE技术的传输信道的SNR,信号分量可以首先根据给定x时的均值而被确定,在加性噪声上取平均,这可以表示为:In order to determine the SNR of the transmission channel of the UMMSE technique, the signal component can first be based on the given time x is determined by the mean of , averaged over the additive noise, which can be expressed as:
其中矩阵V被定义为where the matrix V is defined as
V={vij}V={v ij }
=MH=MH
=HH(HHH+φnn)-1H=H H (HH H +φ nn ) -1 H
使用等式use the equation
矩阵V可被表示为:Matrix V can be expressed as:
初始MMSE估计的第i个元素可被表示为:Initial MMSE estimatethe ith element of can be expressed as:
如果的所有元素都不相关且均值为零,则的第i个元素期望值可表示为:if All elements of are uncorrelated and have a mean of zero, then The expected value of the i-th element of can be expressed as:
如在等式(14)中示出,是xi的有偏估计。可以根据UMMSE技术除去有偏以获得改善的接收机性能。xi的无偏估计可以通过用vii除而获得。因此,x的无偏最小均方误差估计可通过将有偏估计乘以对角矩阵而获得,如下:As shown in equation (14), is a biased estimate of xi . The bias can be removed according to the UMMSE technique for improved receiver performance. An unbiased estimate of x i can be obtained by dividing vi by And get. Therefore, the unbiased minimum mean square error estimate of x can be biased by estimating Multiply the diagonal matrix And get, as follows:
其中in
为确定噪声加干扰,无偏估计以及发射的码元向量之间的误差可以表达为:To determine noise-plus-interference, an unbiased estimate and the transmitted symbol vector error between can be expressed as:
误差向量的自相关矩阵可表示为error vector The autocorrelation matrix of can be expressed as
误差向量的第i个元素的方差等于uu。误差向量的元素是相关的。然而,可能使用足够的交织使得可以忽略误差向量的元素间的相关性,只有方差影响系统性能。error vectorThe variance of the ith element of is equal to u u . error vectorelements are related. However, it is possible to use enough interleaving such that the error vectorThe correlation among the elements, only the variance affects the system performance.
如果信道噪声的分量是不相关且相同分布,则信道噪声的相关矩阵可以表达为等式(5)。在该情况下,误差向量的自相关矩阵可表示为:If the components of the channel noise are uncorrelated and equally distributed, the correlation matrix of the channel noise can be expressed as Equation (5). In this case, the error vectorThe autocorrelation matrix of can be expressed as:
且如果信道噪声的分量是不相关的,则And if the components of the channel noise are uncorrelated, then
等式(17)Equation (17)
对应第i个发射码元的解调器输出的SNR可表示为:The SNR of the demodulator output corresponding to the ith transmitted symbol can be expressed as:
如果处理的接收到的码元xi的方差|xi|2平均值等于一(1.0),接收码元向量的SNR可能表达为:If the variance | xi | 2 of the processed received symbols xi is equal to one (1.0) on average, the SNR of the received symbol vector may be expressed as:
图6示出RX MIMO处理器156b的实施例,它能实现上述的UMMSE处理。类似于CCMI方法,首先根据接收到的导频信号和/或数据传输估计矩阵H和φnn。然后根据等式(11)计算加权系数矩阵M。在RX MIMO处理器156b内,从NR个接收天线来的调制码元由多路复用器612多路复用形成接收到的调制码元向量r流。接收到的调制码元向量r然后由乘法器614左乘矩阵M以得到发射码元向量x的估计如等式(10)示出。估计进一步由乘法器616左乘对角矩阵得到发射码元向量x的无偏估计如等式(15)示出。Figure 6 shows an embodiment of the RX MIMO processor 156b, which enables the UMMSE processing described above. Similar to the CCMI method, the matrices H and φ nn are first estimated from received pilot signals and/or data transmissions. The weighting coefficient matrix M is then calculated according to equation (11). Within RX MIMO processor 156b, the modulation symbols from the NR receive antennas are multiplexed by a
同样地,根据特定的实现通信模式,从所有用于信道数据流传输的天线来的子信道码元流可能提供给组合器618,它将在时间、空间和频率上的冗余信息组合。经组合的调制码元然后提供给RX数据处理器158。对一些其它的通信模式,估计的调制码元可能直接提供给RX处理器158。Likewise, depending on the particular implementation communication mode, the sub-channel symbol streams from all antennas used for channel data stream transmission may be provided to
无偏估计的调制码元和/或组合调制码元还可以提供给CSI处理器620,它确定传输信道的全或部分CSI,并提供全/部分CSI以被报告回发射机系统110。例如,CSI处理器620可能根据等式(16)到(18)估计第i个传输信道的SNR。传输信道的SNR还包括报告回发射机系统的部分CSI。在等式(11)内计算的最优M应该已经最小化误差向量的范数。Dv是根据等式(16)计算的。unbiased estimated modulation symbolsand/or combined modulation symbols It may also be provided to a CSI processor 620 that determines full or partial CSI for the transport channel and provides full/partial CSI to be reported back to the
使用全CSI技术的MIMO接收机MIMO Receiver Using Full CSI Technology
对全CSI技术,在NR个接收天线的输出处接收到的信号可能表示为以上等式(2),即For the full CSI technique, the signal received at the output of NR receive antennas may be expressed as equation (2) above, namely
r=Hx+n r = H x + n
由信道矩阵与其共轭转置的积形成的Hermitian矩阵的特征向量分解可表示为:The eigenvector decomposition of the Hermitian matrix formed by the product of the channel matrix and its conjugate transpose can be expressed as:
HHH=EΛ.EH H H H = EΛ.E H
其中E是特征向量矩阵,Λ是特征值的对角矩阵,两个的维数均为NT×NT。发射机使用特征向量矩阵E对一组NT个调制码元b进行预调节,如上述等式(1)示出。从NT个发射天线来的发射的(经预调节的)调制码元可表示为:Where E is an eigenvector matrix, Λ is a diagonal matrix of eigenvalues, and both dimensions are N T ×N T . The transmitter preconditions a set of NT modulation symbols b using the eigenvector matrix E, as shown in equation (1) above. The transmitted (preconditioned) modulation symbols from the NT transmit antennas can be expressed as:
x=Eb x = Eb
由于HHH是Hermitian的,特征向量矩阵是酉矩阵。因此,如果b的元素为等幂,则x的元素也为等幂。接收到的信号可能表示为:Since H H H is Hermitian, the eigenvector matrix is unitary. Thus, if the elements of b are idempotent, the elements of x are also idempotent. A received signal may be represented as:
r=HEb+n 等式(19) r = HE b + n Equation (19)
接收机实现信道匹配滤波操作,接着乘以右特征向量。信道匹配滤波和乘法操作的结果是向量z,可表示为:The receiver implements a channel matched filter operation followed by multiplication by the right eigenvector. The result of the channel matched filtering and multiplication operations is a vector z that can be expressed as:
z=EHHHHEb+EHHH n=Λb+n′ 等式(20) z = E H H H HE b + E H H H n = Λ b + n ′ Equation (20)
其中,新噪声项的协方差可表示为:where the covariance of the new noise term can be expressed as:
即,噪声项独立于由特征值给出的方差。z的第i个分量的SNR是Λ的第i个对角线元素 That is, the noise term is independent of the variance given by the eigenvalues. The SNR of the ith component of z is the ith diagonal element of Λ
全CSI处理在上述的美国专利申请序列号09532492内有进一步描述。Full CSI processing is further described in the aforementioned US Patent Application Serial No. 09532492.
图5示出的接收机实施例可能还用于实现全CSI技术。接收到的调制码元向量r由匹配滤波器514滤波,它将每个向量r与共轭转置信道系数矩阵HH左乘,如上等式(20)示出。经滤波的向量还由乘法器516与右特征向量EH左乘以形成对调制码元向量b的估计z,如在等式(20)中所示。对全CSI技术,矩阵处理器524用于提供右特征向量EH。相继的处理(例如组合器518和RX数据处理器158进行的)可能按上述进行。The receiver embodiment shown in Figure 5 may also be used to implement full CSI techniques. The received modulation symbol vectors r are filtered by a matched
对全CSI技术,发射机单元能根据由特征值给出的SNR为特征向量的每个选择编码方案以及调制方案(即信号星座图)。如果信道条件在CSI在接收机处测量并被报告且用于对发射机处的传输预调节这段时间间隔不变,则通信系统的性能可能等效于一组带有已知SNRs的独立AWGN信道的性能。For the full CSI technique, the transmitter unit can select the coding scheme and the modulation scheme (ie signal constellation) for each of the eigenvectors according to the SNR given by the eigenvalues. If the channel conditions are constant at the time interval during which CSI is measured and reported at the receiver and used to precondition the transmission at the transmitter, the performance of the communication system may be equivalent to a set of independent AWGNs with known SNRs channel performance.
将全或部分CSI报告回发射机系统Report full or partial CSI back to transmitter system
使用在此描述的部分CSI(例如CCMI或UMMSE)或全CSI技术,可能为接收到的信道获得每个传输信道的SNR。确定的传输信道的SNR可能通过反向信道报告回发射机系统。通过反馈传输信道的发射调制码元的SNR值(即对每个空间子信道,在使用OFDM时可能对每个频率子信道),可能实现自适应处理(例如自适应编码和调制)以改善MIMO信道的使用。对部分CSI反馈技术,自适应处理可能在没有完全的CSI情况下获得。对全CSI反馈技术,足够信息(不一定显式的特征值和特征模量)被返回到发射机以方便每个所使用的频率子信道的特征值和特征模式的计算。Using partial CSI (such as CCMI or UMMSE) or full CSI techniques described herein, it is possible to obtain the SNR for each transmitted channel for the received channel. The determined SNR of the transport channel may be reported back to the transmitter system via a back channel. By feeding back the SNR values of the transmitted modulation symbols of the transport channel (i.e. for each spatial subchannel and possibly for each frequency subchannel when using OFDM), it is possible to implement adaptive processing (e.g. adaptive coding and modulation) to improve MIMO Channel usage. For partial CSI feedback techniques, adaptive processing may be obtained without full CSI. For the full CSI feedback technique, enough information (not necessarily explicit eigenvalues and eigenmoduli) is returned to the transmitter to facilitate the calculation of eigenvalues and eigenmodes for each used frequency subchannel.
对CCMI技术,接收到调制码元的SNR值(例如,
报告回发射机的CSI可能或以完整的或以差别的或以上的组合送回。在一实施例中,全或部分CSI被周期性地报告,且根据先前发送的CSI送回不同的更新。作为全CSI的一例,更新可能是对报告的特征模量的纠正(根据误差信号)。特征值一般不及特征模量改变得那么快,所以能以较低速率更新。在另一实施例中,CSI只在有变化时才被发送(例如如果改变超过一特定阈值),这可能降低反馈信道的有效速率。作为部分CSI的例子,SNRs可能只在它们有所改变时才送回(例如有差别地)。对OFDM系统(有或没有MIMO),频域内的相关可能用于减少要反馈的CSI量。作为使用部分CSI的OFDM系统的一例,如果对应M频率子信道的特定空间子信道的SNR相同,则SNR和该条件为真的第一和最后频率子信道可能被汇报。还可能使用其它用于减少反馈回CSI数据量的压缩和反馈信道差错恢复技术,且在本发明范围内。The CSI reported back to the transmitter may be returned either in full or in differential or a combination of the above. In one embodiment, full or partial CSI is reported periodically and different updates are sent back depending on previously sent CSI. As an example of full CSI, the update may be a correction (from the error signal) to the reported characteristic modulus. The eigenvalues generally do not change as quickly as the eigenmoduli, so can be updated at a slower rate. In another embodiment, CSI is only sent when there is a change (eg, if the change exceeds a certain threshold), which may reduce the effective rate of the feedback channel. As an example of partial CSI, SNRs may only be sent back if they have changed (eg differentially). For OFDM systems (with or without MIMO), correlation in the frequency domain may be used to reduce the amount of CSI to be fed back. As an example of an OFDM system using partial CSI, if the SNR of a particular spatial subchannel corresponding to M frequency subchannels is the same, then the SNR and the first and last frequency subchannel for which this condition is true may be reported. It is also possible to use other compression and feedback channel error recovery techniques to reduce the amount of CSI data fed back and are within the scope of the present invention.
参考回图1,由RX MIMO处理器156确定的全或部分CSI(例如信道SNR)提供给TX数据处理器162,它处理CSI并提供被处理的数据给一个或多个调制器154。调制器154进一步对被处理的数据条件化并通过反信道将CSI发射回发射机系统。Referring back to FIG. 1 , full or partial CSI (eg, channel SNR) determined by
在系统110处,发射的反馈信号由天线124接收,由解调器122解调,并提供给RX数据处理器132。RX数据处理器132实现与TX数据处理器162实现的互补的处理并恢复被报告的全/部分CSI,该CSI然后提供给TX数据处理器114以及TXMIMO处理器120用于调整由它们进行的处理。At
发射机系统110可能根据从接收机系统150的全/部分CSI(即SNR信息)调整(即适应)其处理。例如,每个传输信道的编码可能被调整使得信息比特速率与信道SNR支持的传输能力匹配。另外,传输信道的调制方案可能根据信道SNR而选择。其它处理(例如交织)还可能被调整并在本发明的范围内。根据每个信道确定的SNR而调整每个传输信道的处理使得MIMO系统能获得高性能(即高吞吐量或特定性能级别的比特速率)。自适应处理能应用于单载波MIMO系统或基于多载波的MIMO系统(例如使用OFDM的MIMO系统)。The
在发射机系统处的编码的调整和调制方案的选择可能根据许多技术而进行,其中一个在前述的美国专利申请序列号09776073内有描述。The adjustment of the encoding and the selection of the modulation scheme at the transmitter system may be performed according to a number of techniques, one of which is described in the aforementioned US Patent Application Serial No. 09776073.
部分(例如CCMI和UMMSE)以及全CSI技术为接收机处理技术,允许MIMO系统使用由使用多个发射和接收天线而建立的附加维数,这是对于使用MIMO的主要优点。CCMI和UMMSE技术可能如同使用全CSI的MIMO系统允许对每个时隙发射同样数目的调制码元,然而,其它接收机处理技术还可能连同在此描述的全/部分CSI反馈技术一起使用且在本发明范围内。可类比地,图5和图6代表能处理MIMO传输、确定传输信道的特性(即SNR)以及将全或部分CSI报告回发射机系统的接收机系统的两个实施例。可以考虑根据在此表出的技术的其它设计和其它接收机处理技术,且这是在本发明范围内的。Partial (such as CCMI and UMMSE) as well as full CSI techniques are receiver processing techniques that allow MIMO systems to use the additional dimensionality created by using multiple transmit and receive antennas, which is a major advantage for using MIMO. CCMI and UMMSE techniques may allow the same number of modulation symbols to be transmitted per slot as MIMO systems using full CSI, however, other receiver processing techniques may also be used in conjunction with the full/partial CSI feedback techniques described here and in within the scope of the present invention. Analogously, Figures 5 and 6 represent two embodiments of receiver systems capable of handling MIMO transmissions, determining the characteristics of the transmission channel (ie, SNR), and reporting full or partial CSI back to the transmitter system. Other designs and other receiver processing techniques in accordance with the techniques presented here are contemplated and are within the scope of the invention.
只有当总的接收到的信号SNR或根据SNR估计的能达到的总吞吐量被反馈回时,还可能直接使用部分CSI技术(例如CCMI和UMMSE技术)而不需要在发射机处的自适应处理。在一实施例中,调制格式根据接收到的SNR估计或估计的吞吐量而被确定,且同样的调制格式被用于所有的传输信道。该方法可能减少整个系统的吞吐量但可以大大减少在反向链路上送回的信息量。It is also possible to directly use partial CSI techniques (such as CCMI and UMMSE techniques) without adaptive processing at the transmitter, only when the total received signal SNR or the total achievable throughput estimated from the SNR is fed back . In one embodiment, the modulation format is determined from the received SNR estimate or the estimated throughput, and the same modulation format is used for all transport channels. This approach may reduce overall system throughput but can greatly reduce the amount of information sent back on the reverse link.
可能使用本发明的全/部分CSI反馈技术实现系统性能的改善。带有部分CSI反馈的系统吞吐量可以被计算并与全CSI反馈的吞吐量相比。系统吞吐量可以定义为:It is possible to achieve system performance improvement using the full/partial CSI feedback technique of the present invention. System throughput with partial CSI feedback can be calculated and compared to that of full CSI feedback. System throughput can be defined as:
其中,γi是部分CSI技术的每个接收到调制码元的SNR或全CSI技术的每个传输信道的SNR。不同处理器技术的SNR可归纳如下:where γi is the SNR per received modulation symbol for partial CSI techniques or the SNR per transport channel for full CSI techniques. The SNR of different processor technologies can be summarized as follows:
对CCMI技术: For CCMI technology:
对UMMSE技术:
对全CSI技术:
图7A和7B示出使用部分CSI和全CSI反馈技术的4 x 4MIMO系统的性能。结果是由计算机仿真得到的。在仿真中,每个信道系统矩阵H的元素模型化为带有零均值和单位方差的独立的高斯随机变量。对每次计算,生成多个随机矩阵实现且为实现所计算的吞吐量经平均以生成平均吞吐量。Figures 7A and 7B illustrate the performance of a 4x4 MIMO system using partial CSI and full CSI feedback techniques. The results are obtained by computer simulation. In the simulation, each element of the channel system matrix H is modeled as an independent Gaussian random variable with zero mean and unit variance. For each computation, multiple random matrix realizations are generated and the computed throughputs for the realizations are averaged to generate an average throughput.
图7A示出对不同SNR值的全CSI、部分CSICCMI以及部分CSIUMMSE技术的MIMO系统的吞吐量。可以从图7A看出,部分CSI UMMSE技术的吞吐量在高SNR值时大约是全SI输出的75%,在低SNR值时接近全CSI吞吐量。部分CSI CCMI技术的吞吐量在高SNR值时大约是部分CSI UMMSE技术的吞吐量的75%到90%,且在低SNR值处大约比UMMSE的吞吐量少了30%。Figure 7A shows the throughput of a MIMO system for full CSI, partial CSI CCMI and partial CSI U MSE techniques for different SNR values. It can be seen from Fig. 7A that the throughput of the partial CSI UMMSE technique is about 75% of the full SI output at high SNR values and close to the full CSI throughput at low SNR values. The throughput of the partial CSI CCMI technique is about 75% to 90% of the throughput of the partial CSI UMMSE technique at high SNR values, and is about 30% less than that of UMMSE at low SNR values.
图7B根据数据直方图生成的三种技术的累加概率分布函数(CDF)。图7B示出每传输信道平均16dB的SNR时,对CCMI技术大约有5%的情况吞吐量小于2bps/Hz。另一方面,在同一SNR处,UMMSE技术的吞吐量在所有情况下均在7.5bps/Hz以上。因此,UMMSE技术比CCMI技术的中止概率低。Figure 7B Cumulative probability distribution functions (CDFs) for the three techniques generated from the histograms of the data. Figure 7B shows that at an average SNR of 16dB per transmission channel, the throughput is less than 2bps/Hz for about 5% of the cases for the CCMI technique. On the other hand, at the same SNR, the throughput of the UMMSE technique is above 7.5bps/Hz in all cases. Therefore, the UMMSE technique has a lower outage probability than the CCMI technique.
发射机和接收机系统的元件可能使用一个或多个数字信号处理器(DSP)、应用专用集成电路(ASIC)、处理器、微处理器、控制器、微控制器、现场可编程门阵列(FGPA)、可编程逻辑设备、其它电子单元或以上的任何组合。在此描述的一些函数和处理还可能用在处理器上执行的软件实现。Elements of the transmitter and receiver systems may use one or more digital signal processors (DSPs), application-specific integrated circuits (ASICs), processors, microprocessors, controllers, microcontrollers, field-programmable gate arrays ( FGPA), programmable logic devices, other electronic units, or any combination of the above. Some of the functions and processes described herein may also be implemented in software executing on a processor.
本发明的各方面可用软件和应用的组合实现。例如,对CCMI和UMMSE技术的码元估计的计算以及信道SNR的导出可能根据在处理器上(图5和图6相应的控制器530和650)执行的程序代码实现。Aspects of the invention can be implemented with a combination of software and applications. For example, calculation of symbol estimates for CCMI and UMMSE techniques and derivation of channel SNR may be implemented according to program code executing on a processor (
上述优选实施例的描述使本领域的技术人员能制造或使用本发明。这些实施例的各种修改对于本领域的技术人员来说是显而易见的,这里定义的一般原理可以被应用于其它实施例中而不使用创造能力。因此,本发明并不限于这里示出的实施例,而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。The above description of the preferred embodiment enables any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without the exercise of inventiveness. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (38)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/816,481 US6771706B2 (en) | 2001-03-23 | 2001-03-23 | Method and apparatus for utilizing channel state information in a wireless communication system |
US09/816,481 | 2001-03-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1552132A CN1552132A (en) | 2004-12-01 |
CN100505577C true CN100505577C (en) | 2009-06-24 |
Family
ID=25220738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB028085582A Expired - Lifetime CN100505577C (en) | 2001-03-23 | 2002-03-22 | Method and apparatus for utilizing channel state information in a wireless communication system |
Country Status (15)
Country | Link |
---|---|
US (5) | US6771706B2 (en) |
EP (4) | EP1371147B1 (en) |
JP (2) | JP4593878B2 (en) |
KR (2) | KR20090040929A (en) |
CN (1) | CN100505577C (en) |
AT (1) | ATE360288T1 (en) |
AU (1) | AU2002306798A1 (en) |
BR (1) | BR0208312A (en) |
DE (1) | DE60219605T2 (en) |
DK (2) | DK2256952T3 (en) |
ES (4) | ES2734517T3 (en) |
PT (2) | PT2256953T (en) |
TR (1) | TR201908292T4 (en) |
TW (1) | TWI230525B (en) |
WO (1) | WO2002078211A2 (en) |
Families Citing this family (505)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7952511B1 (en) | 1999-04-07 | 2011-05-31 | Geer James L | Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns |
US6865237B1 (en) | 2000-02-22 | 2005-03-08 | Nokia Mobile Phones Limited | Method and system for digital signal transmission |
US8363744B2 (en) | 2001-06-10 | 2013-01-29 | Aloft Media, Llc | Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks |
US8064188B2 (en) | 2000-07-20 | 2011-11-22 | Paratek Microwave, Inc. | Optimized thin film capacitors |
US7865154B2 (en) | 2000-07-20 | 2011-01-04 | Paratek Microwave, Inc. | Tunable microwave devices with auto-adjusting matching circuit |
AU2001276986A1 (en) | 2000-07-20 | 2002-02-05 | Paratek Microwave, Inc. | Tunable microwave devices with auto-adjusting matching circuit |
US8744384B2 (en) | 2000-07-20 | 2014-06-03 | Blackberry Limited | Tunable microwave devices with auto-adjusting matching circuit |
US7295509B2 (en) | 2000-09-13 | 2007-11-13 | Qualcomm, Incorporated | Signaling method in an OFDM multiple access system |
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
FI20011357A0 (en) * | 2001-06-25 | 2001-06-25 | Nokia Corp | Shipping method |
FI20002845A7 (en) * | 2000-12-22 | 2002-06-23 | Nokia Corp | Sending a digital signal |
US7342875B2 (en) * | 2000-11-06 | 2008-03-11 | The Directv Group, Inc. | Space-time coded OFDM system for MMDS applications |
US6771706B2 (en) * | 2001-03-23 | 2004-08-03 | Qualcomm Incorporated | Method and apparatus for utilizing channel state information in a wireless communication system |
JP2002290367A (en) * | 2001-03-26 | 2002-10-04 | Hitachi Kokusai Electric Inc | Band division demodulation method and OFDM receiver |
US8290098B2 (en) * | 2001-03-30 | 2012-10-16 | Texas Instruments Incorporated | Closed loop multiple transmit, multiple receive antenna wireless communication system |
US7379508B1 (en) * | 2001-04-09 | 2008-05-27 | At&T Corp. | Frequency-domain method for joint equalization and decoding of space-time block codes |
US7092450B1 (en) * | 2001-04-09 | 2006-08-15 | At&T Corp. | Frequency-domain method for joint equalization and decoding of space-time block codes |
KR100510434B1 (en) * | 2001-04-09 | 2005-08-26 | 니폰덴신뎅와 가부시키가이샤 | OFDM signal transmission system, OFDM signal transmission apparatus and OFDM signal receiver |
US7706458B2 (en) * | 2001-04-24 | 2010-04-27 | Mody Apurva N | Time and frequency synchronization in Multi-Input, Multi-Output (MIMO) systems |
US7310304B2 (en) * | 2001-04-24 | 2007-12-18 | Bae Systems Information And Electronic Systems Integration Inc. | Estimating channel parameters in multi-input, multi-output (MIMO) systems |
GB0110125D0 (en) | 2001-04-25 | 2001-06-20 | Koninkl Philips Electronics Nv | Radio communication system |
US7133459B2 (en) * | 2001-05-01 | 2006-11-07 | Texas Instruments Incorporated | Space-time transmit diversity |
US7889759B2 (en) * | 2001-05-04 | 2011-02-15 | Entropic Communications, Inc. | Broadband cable network utilizing common bit-loading |
EP1255369A1 (en) * | 2001-05-04 | 2002-11-06 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Link adaptation for wireless MIMO transmission schemes |
US7594249B2 (en) * | 2001-05-04 | 2009-09-22 | Entropic Communications, Inc. | Network interface device and broadband local area network using coaxial cable |
FI20010963A0 (en) * | 2001-05-08 | 2001-05-08 | Nokia Corp | Adaptive Symbol Description in a Mobile System |
US6785341B2 (en) * | 2001-05-11 | 2004-08-31 | Qualcomm Incorporated | Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information |
DE02769734T1 (en) * | 2001-05-14 | 2004-05-19 | Interdigital Technology Corp., Wilmington | CHANNEL QUALITY MEASUREMENTS FOR DOWNLOADING OPERATING APPARATUS |
US6856992B2 (en) | 2001-05-15 | 2005-02-15 | Metatomix, Inc. | Methods and apparatus for real-time business visibility using persistent schema-less data storage |
US7058637B2 (en) | 2001-05-15 | 2006-06-06 | Metatomix, Inc. | Methods and apparatus for enterprise application integration |
US6925457B2 (en) | 2001-07-27 | 2005-08-02 | Metatomix, Inc. | Methods and apparatus for querying a relational data store using schema-less queries |
US6662024B2 (en) | 2001-05-16 | 2003-12-09 | Qualcomm Incorporated | Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system |
US7688899B2 (en) * | 2001-05-17 | 2010-03-30 | Qualcomm Incorporated | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion |
US7072413B2 (en) | 2001-05-17 | 2006-07-04 | Qualcomm, Incorporated | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion |
US8291457B2 (en) | 2001-05-24 | 2012-10-16 | Vixs Systems, Inc. | Channel selection in a multimedia system |
US20090031419A1 (en) | 2001-05-24 | 2009-01-29 | Indra Laksono | Multimedia system and server and methods for use therewith |
US6999472B2 (en) * | 2001-05-30 | 2006-02-14 | Nokia Mobile Phones Limited | Apparatus, and associated method, for space-time encoding, and decoding, data at a selected code rate |
DE60224672T2 (en) * | 2001-06-21 | 2009-01-22 | Koninklijke Philips Electronics N.V. | TRANSMISSION METHOD AND DEVICE IN A RADIO COMMUNICATION NETWORK |
US7027523B2 (en) * | 2001-06-22 | 2006-04-11 | Qualcomm Incorporated | Method and apparatus for transmitting data in a time division duplexed (TDD) communication system |
DE10132492A1 (en) * | 2001-07-03 | 2003-01-23 | Hertz Inst Heinrich | Adaptive signal processing method for bidirectional radio transmission in a MIMO channel and MIMO system for performing the method |
US7359466B2 (en) * | 2001-08-24 | 2008-04-15 | Lucent Technologies Inc. | Signal detection by a receiver in a multiple antenna time-dispersive system |
US7024163B1 (en) * | 2001-09-28 | 2006-04-04 | Arraycomm Llc | Method and apparatus for adjusting feedback of a remote unit |
US7061854B2 (en) * | 2001-10-15 | 2006-06-13 | Nortel Networks Limited | Efficient OFDM communications with interference immunity |
US7327798B2 (en) | 2001-10-19 | 2008-02-05 | Lg Electronics Inc. | Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements |
US20030125040A1 (en) | 2001-11-06 | 2003-07-03 | Walton Jay R. | Multiple-access multiple-input multiple-output (MIMO) communication system |
US7012883B2 (en) * | 2001-11-21 | 2006-03-14 | Qualcomm Incorporated | Rate selection for an OFDM system |
US6754169B2 (en) * | 2001-12-13 | 2004-06-22 | Motorola, Inc. | Method and system of operation for a variable transmission mode multi-carrier communication system |
ITMI20012685A1 (en) * | 2001-12-19 | 2003-06-19 | Cit Alcatel | METHOD AND SYSTEM TO DOUBLE THE SPECTRAL EFFICIENCY INHUN RADIO TRANSMISSION SYSTEMS |
US7173990B2 (en) * | 2001-12-27 | 2007-02-06 | Dsp Group Inc. | Joint equalization, soft-demapping and phase error correction in wireless system with receive diversity |
US7573805B2 (en) * | 2001-12-28 | 2009-08-11 | Motorola, Inc. | Data transmission and reception method and apparatus |
KR100463526B1 (en) * | 2002-01-04 | 2004-12-29 | 엘지전자 주식회사 | Method for allocating power in multiple input multiple output system |
US7020110B2 (en) * | 2002-01-08 | 2006-03-28 | Qualcomm Incorporated | Resource allocation for MIMO-OFDM communication systems |
US7020482B2 (en) * | 2002-01-23 | 2006-03-28 | Qualcomm Incorporated | Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems |
US7076263B2 (en) | 2002-02-19 | 2006-07-11 | Qualcomm, Incorporated | Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems |
US6862271B2 (en) * | 2002-02-26 | 2005-03-01 | Qualcomm Incorporated | Multiple-input, multiple-output (MIMO) systems with multiple transmission modes |
JP3913575B2 (en) * | 2002-02-28 | 2007-05-09 | 三洋電機株式会社 | Wireless device, wireless communication system, space path control method, and space path control program |
JP4166026B2 (en) | 2002-03-22 | 2008-10-15 | 三洋電機株式会社 | Wireless device, space path control method, and space path control program |
US7103325B1 (en) * | 2002-04-05 | 2006-09-05 | Nortel Networks Limited | Adaptive modulation and coding |
EP1502364A4 (en) | 2002-04-22 | 2010-03-31 | Ipr Licensing Inc | Multiple-input multiple-output radio transceiver |
KR100548312B1 (en) * | 2002-06-20 | 2006-02-02 | 엘지전자 주식회사 | Signal Processing Method in Multiple Input / Output Mobile Communication System |
US7436757B1 (en) * | 2002-06-21 | 2008-10-14 | Nortel Networks Limited | Scattered pilot and filtering for channel estimation |
ES2318176T3 (en) * | 2002-07-30 | 2009-05-01 | Ipr Licensing Inc. | RADIO COMMUNICATION SYSTEM AND METHOD WITH MULTIPLE MULTIPLE INPUT OUTPUT (MIMO). |
TWI334739B (en) * | 2002-08-07 | 2010-12-11 | Interdigital Tech Corp | Closed loop transmit diversity of point to multipoint physical channels |
US6961595B2 (en) | 2002-08-08 | 2005-11-01 | Flarion Technologies, Inc. | Methods and apparatus for operating mobile nodes in multiple states |
US7363039B2 (en) * | 2002-08-08 | 2008-04-22 | Qualcomm Incorporated | Method of creating and utilizing diversity in multiple carrier communication system |
EP1392004B1 (en) * | 2002-08-22 | 2009-01-21 | Interuniversitair Microelektronica Centrum Vzw | Method for multi-user MIMO transmission and apparatuses suited therefore |
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US7260153B2 (en) * | 2002-09-09 | 2007-08-21 | Mimopro Ltd. | Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels |
US7889819B2 (en) * | 2002-10-04 | 2011-02-15 | Apurva Mody | Methods and systems for sampling frequency offset detection, correction and control for MIMO OFDM systems |
KR100484447B1 (en) * | 2002-10-09 | 2005-04-20 | 텔레시스 인코포레이티드 | Transmitting/receiving apparatus and method for improving peak-to-average power ratio in an orthogonal frequency division multiplexing system |
JP4602641B2 (en) * | 2002-10-18 | 2010-12-22 | 株式会社エヌ・ティ・ティ・ドコモ | Signal transmission system, signal transmission method and transmitter |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US7151809B2 (en) | 2002-10-25 | 2006-12-19 | Qualcomm, Incorporated | Channel estimation and spatial processing for TDD MIMO systems |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US8134976B2 (en) | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US8218609B2 (en) * | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US8570988B2 (en) | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
JP4197482B2 (en) * | 2002-11-13 | 2008-12-17 | パナソニック株式会社 | Base station transmission method, base station transmission apparatus, and communication terminal |
EP1511189B1 (en) * | 2002-11-26 | 2017-09-06 | Wi-Fi One, LLC | Communication method, transmitter apparatus and receiver apparatus |
US7154960B2 (en) * | 2002-12-31 | 2006-12-26 | Lucent Technologies Inc. | Method of determining the capacity of each transmitter antenna in a multiple input/multiple output (MIMO) wireless system |
US7813440B2 (en) | 2003-01-31 | 2010-10-12 | Ntt Docomo, Inc. | Multiple-output multiple-input (MIMO) communication system, MIMO receiver and MIMO receiving method |
US7058367B1 (en) * | 2003-01-31 | 2006-06-06 | At&T Corp. | Rate-adaptive methods for communicating over multiple input/multiple output wireless systems |
US8099099B2 (en) * | 2003-02-19 | 2012-01-17 | Qualcomm Incorporated | Methods and apparatus related to assignment in a wireless communications system |
AU2004214003C1 (en) * | 2003-02-19 | 2010-09-16 | Qualcomm Incorporated | Controlled superposition coding in multi-user communication systems |
JP2004266586A (en) | 2003-03-03 | 2004-09-24 | Hitachi Ltd | Data transmission / reception method for mobile communication system |
US7428279B2 (en) * | 2003-03-03 | 2008-09-23 | Interdigital Technology Corporation | Reduced complexity sliding window based equalizer |
US7042967B2 (en) * | 2003-03-03 | 2006-05-09 | Interdigital Technology Corporation | Reduced complexity sliding window based equalizer |
US7822140B2 (en) * | 2003-03-17 | 2010-10-26 | Broadcom Corporation | Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining |
US7983355B2 (en) | 2003-07-09 | 2011-07-19 | Broadcom Corporation | System and method for RF signal combining and adaptive bit loading for data rate maximization in multi-antenna communication systems |
US8185075B2 (en) | 2003-03-17 | 2012-05-22 | Broadcom Corporation | System and method for channel bonding in multiple antenna communication systems |
US7391832B2 (en) * | 2003-03-17 | 2008-06-24 | Broadcom Corporation | System and method for channel bonding in multiple antenna communication systems |
US7130580B2 (en) * | 2003-03-20 | 2006-10-31 | Lucent Technologies Inc. | Method of compensating for correlation between multiple antennas |
US7885228B2 (en) | 2003-03-20 | 2011-02-08 | Qualcomm Incorporated | Transmission mode selection for data transmission in a multi-channel communication system |
US7099678B2 (en) * | 2003-04-10 | 2006-08-29 | Ipr Licensing, Inc. | System and method for transmit weight computation for vector beamforming radio communication |
JP4490368B2 (en) * | 2003-04-21 | 2010-06-23 | 三菱電機株式会社 | Wireless communication apparatus, wireless communication system, and wireless communication method |
US7532600B2 (en) * | 2003-04-25 | 2009-05-12 | Alcatel-Lucent Usa Inc. | Method and system for using hybrid ARQ in communication systems that use multiple input multiple output antenna systems |
US20040218519A1 (en) * | 2003-05-01 | 2004-11-04 | Rong-Liang Chiou | Apparatus and method for estimation of channel state information in OFDM receivers |
JP3799030B2 (en) * | 2003-05-09 | 2006-07-19 | 松下電器産業株式会社 | CDMA transmitter and CDMA transmission method |
US8593932B2 (en) * | 2003-05-16 | 2013-11-26 | Qualcomm Incorporated | Efficient signal transmission methods and apparatus using a shared transmission resource |
US8064528B2 (en) | 2003-05-21 | 2011-11-22 | Regents Of The University Of Minnesota | Estimating frequency-offsets and multi-antenna channels in MIMO OFDM systems |
WO2005006638A2 (en) * | 2003-06-18 | 2005-01-20 | University Of Florida | Wireless lan compatible multi-input multi-output system |
CN1751465B (en) * | 2003-06-18 | 2011-11-09 | 日本电信电话株式会社 | Radio packet communication method and radio packet communication apparatus |
US7606217B2 (en) | 2003-07-02 | 2009-10-20 | I2 Telecom International, Inc. | System and method for routing telephone calls over a voice and data network |
US8391322B2 (en) | 2003-07-09 | 2013-03-05 | Broadcom Corporation | Method and system for single weight (SW) antenna system for spatial multiplexing (SM) MIMO system for WCDMA/HSDPA |
JP4212976B2 (en) * | 2003-07-23 | 2009-01-21 | 富士通株式会社 | MIMO wireless communication system and wireless communication apparatus |
EP2523382A3 (en) | 2003-07-29 | 2013-01-16 | Broadcom Corporation | Frequency selective transmit signal weighting for multiple antenna communication systems |
US7187940B2 (en) * | 2003-07-31 | 2007-03-06 | Motorola, Inc. | Decorrelating rake receiver apparatus and method |
US7394858B2 (en) * | 2003-08-08 | 2008-07-01 | Intel Corporation | Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system |
US7213197B2 (en) * | 2003-08-08 | 2007-05-01 | Intel Corporation | Adaptive bit loading with low density parity check forward error correction |
US7925291B2 (en) | 2003-08-13 | 2011-04-12 | Qualcomm Incorporated | User specific downlink power control channel Q-bit |
US7065144B2 (en) * | 2003-08-27 | 2006-06-20 | Qualcomm Incorporated | Frequency-independent spatial processing for wideband MISO and MIMO systems |
US20050047517A1 (en) * | 2003-09-03 | 2005-03-03 | Georgios Giannakis B. | Adaptive modulation for multi-antenna transmissions with partial channel knowledge |
US7379506B2 (en) * | 2003-09-23 | 2008-05-27 | Nokia Corporation | Apparatus, and associated method, for assigning data to transmit antennas of a multiple transmit antenna transmitter |
US7724838B2 (en) * | 2003-09-25 | 2010-05-25 | Qualcomm Incorporated | Hierarchical coding with multiple antennas in a wireless communication system |
KR100713403B1 (en) * | 2003-09-30 | 2007-05-04 | 삼성전자주식회사 | Apparatus and method for controlling transmission method according to channel state in communication system |
US7349436B2 (en) * | 2003-09-30 | 2008-03-25 | Intel Corporation | Systems and methods for high-throughput wideband wireless local area network communications |
US7742546B2 (en) * | 2003-10-08 | 2010-06-22 | Qualcomm Incorporated | Receiver spatial processing for eigenmode transmission in a MIMO system |
US8284752B2 (en) | 2003-10-15 | 2012-10-09 | Qualcomm Incorporated | Method, apparatus, and system for medium access control |
US8842657B2 (en) | 2003-10-15 | 2014-09-23 | Qualcomm Incorporated | High speed media access control with legacy system interoperability |
US8462817B2 (en) | 2003-10-15 | 2013-06-11 | Qualcomm Incorporated | Method, apparatus, and system for multiplexing protocol data units |
US8233462B2 (en) | 2003-10-15 | 2012-07-31 | Qualcomm Incorporated | High speed media access control and direct link protocol |
US8483105B2 (en) | 2003-10-15 | 2013-07-09 | Qualcomm Incorporated | High speed media access control |
US9226308B2 (en) | 2003-10-15 | 2015-12-29 | Qualcomm Incorporated | Method, apparatus, and system for medium access control |
US8472473B2 (en) | 2003-10-15 | 2013-06-25 | Qualcomm Incorporated | Wireless LAN protocol stack |
US7120395B2 (en) * | 2003-10-20 | 2006-10-10 | Nortel Networks Limited | MIMO communications |
US7616698B2 (en) | 2003-11-04 | 2009-11-10 | Atheros Communications, Inc. | Multiple-input multiple output system and method |
KR100520159B1 (en) * | 2003-11-12 | 2005-10-10 | 삼성전자주식회사 | Apparatus and method for interference cancellation of ofdm system using multiple antenna |
KR100981554B1 (en) * | 2003-11-13 | 2010-09-10 | 한국과학기술원 | In a mobile communication system having multiple transmit / receive antennas, a method of transmitting signals by grouping transmit antennas |
KR100996080B1 (en) * | 2003-11-19 | 2010-11-22 | 삼성전자주식회사 | Apparatus and Method for Adaptive Modulation and Coding Control in Communication System Using Orthogonal Frequency Division Multiplexing |
US7746800B2 (en) * | 2003-11-21 | 2010-06-29 | Nokia Corporation | Flexible rate split method for MIMO transmission |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US7286606B2 (en) * | 2003-12-04 | 2007-10-23 | Intel Corporation | System and method for channelization recognition in a wideband communication system |
US8983467B2 (en) * | 2003-12-09 | 2015-03-17 | Lsi Corporation | Method and apparatus for access point selection using channel correlation in a wireless communication system |
KR100560386B1 (en) * | 2003-12-17 | 2006-03-13 | 한국전자통신연구원 | Transmitter and Method of Orthogonal Frequency Division Multiple Access for Coherent Detection in Uplink of Wireless Communication System |
US8204149B2 (en) | 2003-12-17 | 2012-06-19 | Qualcomm Incorporated | Spatial spreading in a multi-antenna communication system |
KR100580843B1 (en) * | 2003-12-22 | 2006-05-16 | 한국전자통신연구원 | V―Channel transfer function matrix processing apparatus and processing method thereof in BSL |
US8369790B2 (en) * | 2003-12-30 | 2013-02-05 | Intel Corporation | Communication overhead reduction apparatus, systems, and methods |
US7450489B2 (en) * | 2003-12-30 | 2008-11-11 | Intel Corporation | Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices |
US7336746B2 (en) | 2004-12-09 | 2008-02-26 | Qualcomm Incorporated | Data transmission with spatial spreading in a MIMO communication system |
EP1709752B1 (en) * | 2004-01-20 | 2016-09-14 | LG Electronics, Inc. | Method for transmitting/receiving signals in a mimo system |
JP4130191B2 (en) * | 2004-01-28 | 2008-08-06 | 三洋電機株式会社 | Transmitter |
US8903440B2 (en) | 2004-01-29 | 2014-12-02 | Qualcomm Incorporated | Distributed hierarchical scheduling in an ad hoc network |
CN101854188B (en) | 2004-01-29 | 2013-03-13 | 桥扬科技有限公司 | Methods and apparatus for multi-carrier, multi-cell wireless communication networks |
US7818018B2 (en) | 2004-01-29 | 2010-10-19 | Qualcomm Incorporated | Distributed hierarchical scheduling in an AD hoc network |
US7864725B2 (en) | 2004-01-29 | 2011-01-04 | Neocific, Inc. | Methods and apparatus for overlaying multi-carrier and direct sequence spread spectrum signals in a broadband wireless communication system |
US11152971B2 (en) * | 2004-02-02 | 2021-10-19 | Charles Abraham | Frequency modulated OFDM over various communication media |
CN1898924B (en) * | 2004-02-05 | 2011-09-07 | 英特尔股份公司 | Method and apparatus to perform channel estimation for communication system |
WO2005076554A1 (en) * | 2004-02-05 | 2005-08-18 | Zakrytoe Aktsionernoe Obschestvo Intel | Method and apparatus to reduce crosstalk in a mimo communication system |
EP1710929B1 (en) * | 2004-02-13 | 2008-12-03 | Panasonic Corporation | MIMO system with eigenvalues feedback information |
KR20050081528A (en) * | 2004-02-14 | 2005-08-19 | 삼성전자주식회사 | Channel state information feedback method for multi-carrier communication system |
US8169889B2 (en) | 2004-02-18 | 2012-05-01 | Qualcomm Incorporated | Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system |
US7206354B2 (en) * | 2004-02-19 | 2007-04-17 | Qualcomm Incorporated | Calibration of downlink and uplink channel responses in a wireless MIMO communication system |
WO2005093982A1 (en) * | 2004-03-26 | 2005-10-06 | Nec Corporation | Radio communication device |
US8315271B2 (en) | 2004-03-26 | 2012-11-20 | Qualcomm Incorporated | Method and apparatus for an ad-hoc wireless communications system |
US10277290B2 (en) | 2004-04-02 | 2019-04-30 | Rearden, Llc | Systems and methods to exploit areas of coherence in wireless systems |
US8170081B2 (en) | 2004-04-02 | 2012-05-01 | Rearden, LLC. | System and method for adjusting DIDO interference cancellation based on signal strength measurements |
US9826537B2 (en) * | 2004-04-02 | 2017-11-21 | Rearden, Llc | System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters |
US11394436B2 (en) | 2004-04-02 | 2022-07-19 | Rearden, Llc | System and method for distributed antenna wireless communications |
US7711030B2 (en) * | 2004-07-30 | 2010-05-04 | Rearden, Llc | System and method for spatial-multiplexed tropospheric scatter communications |
US7636381B2 (en) * | 2004-07-30 | 2009-12-22 | Rearden, Llc | System and method for distributed input-distributed output wireless communications |
US10200094B2 (en) * | 2004-04-02 | 2019-02-05 | Rearden, Llc | Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems |
US8542763B2 (en) | 2004-04-02 | 2013-09-24 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US11309943B2 (en) | 2004-04-02 | 2022-04-19 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US7599420B2 (en) * | 2004-07-30 | 2009-10-06 | Rearden, Llc | System and method for distributed input distributed output wireless communications |
US10985811B2 (en) | 2004-04-02 | 2021-04-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11451275B2 (en) | 2004-04-02 | 2022-09-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10886979B2 (en) * | 2004-04-02 | 2021-01-05 | Rearden, Llc | System and method for link adaptation in DIDO multicarrier systems |
US9819403B2 (en) * | 2004-04-02 | 2017-11-14 | Rearden, Llc | System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client |
US8654815B1 (en) | 2004-04-02 | 2014-02-18 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10187133B2 (en) * | 2004-04-02 | 2019-01-22 | Rearden, Llc | System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network |
US7418053B2 (en) | 2004-07-30 | 2008-08-26 | Rearden, Llc | System and method for distributed input-distributed output wireless communications |
US8571086B2 (en) * | 2004-04-02 | 2013-10-29 | Rearden, Llc | System and method for DIDO precoding interpolation in multicarrier systems |
US9312929B2 (en) | 2004-04-02 | 2016-04-12 | Rearden, Llc | System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS) |
US7885354B2 (en) * | 2004-04-02 | 2011-02-08 | Rearden, Llc | System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding |
US8160121B2 (en) * | 2007-08-20 | 2012-04-17 | Rearden, Llc | System and method for distributed input-distributed output wireless communications |
US7633994B2 (en) * | 2004-07-30 | 2009-12-15 | Rearden, LLC. | System and method for distributed input-distributed output wireless communications |
US10749582B2 (en) | 2004-04-02 | 2020-08-18 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US10425134B2 (en) | 2004-04-02 | 2019-09-24 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US7564814B2 (en) * | 2004-05-07 | 2009-07-21 | Qualcomm, Incorporated | Transmission mode and rate selection for a wireless communication system |
US8923785B2 (en) | 2004-05-07 | 2014-12-30 | Qualcomm Incorporated | Continuous beamforming for a MIMO-OFDM system |
KR100754722B1 (en) | 2004-05-12 | 2007-09-03 | 삼성전자주식회사 | Apparatus and method for data transmission/receiving using channel state information in a wireless communication system |
JP4447372B2 (en) * | 2004-05-13 | 2010-04-07 | 株式会社エヌ・ティ・ティ・ドコモ | RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION DEVICE, RADIO RECEPTION DEVICE, RADIO COMMUNICATION METHOD, AND CHANNEL ESTIMATION METHOD |
US8233555B2 (en) | 2004-05-17 | 2012-07-31 | Qualcomm Incorporated | Time varying delay diversity of OFDM |
US7665063B1 (en) | 2004-05-26 | 2010-02-16 | Pegasystems, Inc. | Integration of declarative rule-based processing with procedural programming |
US7746802B2 (en) * | 2004-06-01 | 2010-06-29 | Samsung Electronics Co., Ltd. | Method and apparatus for channel state feedback using arithmetic coding |
US8401018B2 (en) | 2004-06-02 | 2013-03-19 | Qualcomm Incorporated | Method and apparatus for scheduling in a wireless network |
JP4616338B2 (en) * | 2004-06-14 | 2011-01-19 | サムスン エレクトロニクス カンパニー リミテッド | Apparatus, system and method for controlling transmission mode in a mobile communication system using multiple transmit / receive antennas |
GB2415336B (en) * | 2004-06-18 | 2006-11-08 | Toshiba Res Europ Ltd | Bit interleaver for a mimo system |
JP2006050573A (en) | 2004-06-28 | 2006-02-16 | Sanyo Electric Co Ltd | Transmitting method and apparatus, and receiving method and apparatus |
KR100887006B1 (en) * | 2004-06-28 | 2009-03-04 | 산요덴키가부시키가이샤 | Sending method and device |
US7978649B2 (en) | 2004-07-15 | 2011-07-12 | Qualcomm, Incorporated | Unified MIMO transmission and reception |
US9294218B2 (en) * | 2004-07-16 | 2016-03-22 | Qualcomm Incorporated | Rate prediction in fractional reuse systems |
US7830976B2 (en) * | 2004-07-16 | 2010-11-09 | Qualcomm Incorporated | Iterative channel and interference estimation with dedicated pilot tones for OFDMA |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US7684753B2 (en) * | 2004-07-21 | 2010-03-23 | Nokia Corporation | Method and device for transmission parameter selection in mobile communications |
US7567621B2 (en) * | 2004-07-21 | 2009-07-28 | Qualcomm Incorporated | Capacity based rank prediction for MIMO design |
US9148256B2 (en) * | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
JP4068600B2 (en) * | 2004-07-27 | 2008-03-26 | 株式会社東芝 | Wireless transmission device and wireless reception device |
US9685997B2 (en) | 2007-08-20 | 2017-06-20 | Rearden, Llc | Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems |
US7864659B2 (en) * | 2004-08-02 | 2011-01-04 | Interdigital Technology Corporation | Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems |
US7583982B2 (en) * | 2004-08-06 | 2009-09-01 | Interdigital Technology Corporation | Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas |
MX2007001710A (en) | 2004-08-11 | 2007-04-16 | Interdigital Tech Corp | Channel sounding for improved system performance. |
AU2005272789B2 (en) | 2004-08-12 | 2009-02-05 | Interdigital Technology Corporation | Method and apparatus for implementing space frequency block coding |
US7978778B2 (en) | 2004-09-03 | 2011-07-12 | Qualcomm, Incorporated | Receiver structures for spatial spreading with space-time or space-frequency transmit diversity |
FR2875658B1 (en) * | 2004-09-21 | 2007-03-02 | Commissariat Energie Atomique | ESTIMATING THE MOST NOISE INTERFERENCE SIGNAL RATIO AT THE OUTPUT OF AN OFDM-CDMA RECEIVER. |
US7882412B2 (en) * | 2004-10-05 | 2011-02-01 | Sanjiv Nanda | Enhanced block acknowledgement |
US20060114974A1 (en) * | 2004-11-05 | 2006-06-01 | Interdigital Technology Corporation | Normalized least mean square chip-level equalization advanced diversity receiver |
US8130855B2 (en) * | 2004-11-12 | 2012-03-06 | Interdigital Technology Corporation | Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system |
JP2006186991A (en) * | 2004-12-03 | 2006-07-13 | Nagoya Institute Of Technology | Packet transmission method using adaptive modulation |
US7623490B2 (en) * | 2004-12-22 | 2009-11-24 | Qualcomm Incorporated | Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication |
KR100617835B1 (en) * | 2005-01-05 | 2006-08-28 | 삼성전자주식회사 | Apparatus and method for transmitting/receiving a channel quality information in a communication system |
US20060209970A1 (en) * | 2005-01-11 | 2006-09-21 | Emmanuel Kanterakis | Adaptive transmission rate communication system |
CN1805305A (en) * | 2005-01-13 | 2006-07-19 | 松下电器产业株式会社 | Adaptive space-time transmit diversity method and apparatus by means of antenna selection |
JP4541165B2 (en) * | 2005-01-13 | 2010-09-08 | 富士通株式会社 | Wireless communication system and transmitter |
DE112006000201B4 (en) * | 2005-01-14 | 2015-12-17 | Cambium Networks Ltd. | Dual payload and adaptive modulation |
US7522555B2 (en) * | 2005-01-21 | 2009-04-21 | Intel Corporation | Techniques to manage channel prediction |
US8335704B2 (en) | 2005-01-28 | 2012-12-18 | Pegasystems Inc. | Methods and apparatus for work management and routing |
US7535821B2 (en) * | 2005-02-02 | 2009-05-19 | Electronics And Telecommunications Research Institute | Method for generating two-dimensional orthogonal variable spreading code and MIMO system using the same |
US7839819B2 (en) * | 2005-02-07 | 2010-11-23 | Broadcom Corporation | Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system |
US20060182207A1 (en) * | 2005-02-11 | 2006-08-17 | In-Kyu Lee | Hybrid STBC receiver |
US7471702B2 (en) * | 2005-03-09 | 2008-12-30 | Qualcomm Incorporated | Methods and apparatus for implementing, using, transmitting, and/or receiving signals at least some of which include intentional null tones |
US8325826B2 (en) * | 2005-03-09 | 2012-12-04 | Qualcomm Incorporated | Methods and apparatus for transmitting signals facilitating antenna control |
US7826807B2 (en) | 2005-03-09 | 2010-11-02 | Qualcomm Incorporated | Methods and apparatus for antenna control in a wireless terminal |
US9246560B2 (en) * | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US8995547B2 (en) | 2005-03-11 | 2015-03-31 | Qualcomm Incorporated | Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates |
US8724740B2 (en) | 2005-03-11 | 2014-05-13 | Qualcomm Incorporated | Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US20060234642A1 (en) * | 2005-03-14 | 2006-10-19 | Motorola, Inc. | Low feedback scheme for link quality reporting based on the exp esm technique |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) * | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
KR100975730B1 (en) | 2005-03-29 | 2010-08-13 | 삼성전자주식회사 | Random Beamforming Method for Multiple Input and Output Systems |
WO2006107230A1 (en) * | 2005-03-30 | 2006-10-12 | Intel Corporation | Multiple-input multiple-output multicarrier communication system with joint transmitter and receiver adaptive beamforming for enhanced signal-to-noise ratio |
US7583735B2 (en) * | 2005-03-31 | 2009-09-01 | Adc Telecommunications, Inc. | Methods and systems for handling underflow and overflow in a software defined radio |
US7593450B2 (en) * | 2005-03-31 | 2009-09-22 | Adc Telecommunications, Inc. | Dynamic frequency hopping |
US20060223514A1 (en) * | 2005-03-31 | 2006-10-05 | Adc Telecommunications, Inc. | Signal enhancement through diversity |
US20060227805A1 (en) * | 2005-03-31 | 2006-10-12 | Adc Telecommunications, Inc. | Buffers handling multiple protocols |
US20060222020A1 (en) * | 2005-03-31 | 2006-10-05 | Adc Telecommunications, Inc. | Time start in the forward path |
US7398106B2 (en) * | 2005-03-31 | 2008-07-08 | Adc Telecommunications, Inc. | Dynamic readjustment of power |
US7640019B2 (en) * | 2005-03-31 | 2009-12-29 | Adc Telecommunications, Inc. | Dynamic reallocation of bandwidth and modulation protocols |
US7423988B2 (en) * | 2005-03-31 | 2008-09-09 | Adc Telecommunications, Inc. | Dynamic reconfiguration of resources through page headers |
US9184870B2 (en) * | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US9408220B2 (en) * | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US7466749B2 (en) | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US7872981B2 (en) * | 2005-05-12 | 2011-01-18 | Qualcomm Incorporated | Rate selection for eigensteering in a MIMO communication system |
EP1889436A4 (en) * | 2005-05-26 | 2012-01-25 | Nokia Corp | METHOD AND APPARATUS FOR SPECIFYING CHANNEL STATUS INFORMATION FOR MULTIPLE CARRIERS |
US8879511B2 (en) * | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8565194B2 (en) * | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8611284B2 (en) * | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8462859B2 (en) * | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US8358714B2 (en) * | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
US9179319B2 (en) * | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US8599945B2 (en) * | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US8064837B2 (en) | 2005-06-16 | 2011-11-22 | Qualcomm Incorporated | Method and apparatus for optimum selection of MIMO and interference cancellation |
KR101154979B1 (en) * | 2005-07-22 | 2012-06-18 | 엘지전자 주식회사 | apparatus for receiving and transmitting data of multi-carrier system and method for receiving and transmitting data using the same |
EP1912362B1 (en) | 2005-08-02 | 2011-04-20 | Mitsubishi Electric Corporation | Communication device, and radio communication system |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
KR100770909B1 (en) * | 2005-08-12 | 2007-10-26 | 삼성전자주식회사 | Apparatus and method for estimating and reporting received signal-to-noise interference ratio in multi-antenna system |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US7551648B2 (en) * | 2005-08-22 | 2009-06-23 | Nec Laboratories America, Inc. | Superimposed training for multiple antenna communications |
US20070041457A1 (en) | 2005-08-22 | 2007-02-22 | Tamer Kadous | Method and apparatus for providing antenna diversity in a wireless communication system |
US8073068B2 (en) | 2005-08-22 | 2011-12-06 | Qualcomm Incorporated | Selective virtual antenna transmission |
KR101276797B1 (en) * | 2005-08-24 | 2013-06-20 | 한국전자통신연구원 | Base station tranmitter for mobile telecommunication system, method for that system |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
WO2007024324A2 (en) * | 2005-08-25 | 2007-03-01 | Beceem Communications Inc. | Subcarrier allocation in ofdma with imperfect channel state information at the transmitter |
US9136974B2 (en) * | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US8600336B2 (en) | 2005-09-12 | 2013-12-03 | Qualcomm Incorporated | Scheduling with reverse direction grant in wireless communication systems |
US7706455B2 (en) * | 2005-09-26 | 2010-04-27 | Intel Corporation | Multicarrier transmitter for multiple-input multiple-output communication systems and methods for puncturing bits for pilot tones |
US7590184B2 (en) * | 2005-10-11 | 2009-09-15 | Freescale Semiconductor, Inc. | Blind preamble detection for an orthogonal frequency division multiplexed sample stream |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US8693405B2 (en) * | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US9088384B2 (en) * | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US9225416B2 (en) * | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US8582509B2 (en) * | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US9406444B2 (en) | 2005-11-14 | 2016-08-02 | Blackberry Limited | Thin film capacitors |
US7782573B2 (en) * | 2005-11-17 | 2010-08-24 | University Of Connecticut | Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US7623599B2 (en) * | 2005-11-21 | 2009-11-24 | Freescale Semiconductor, Inc. | Blind bandwidth detection for a sample stream |
US7409015B1 (en) * | 2005-11-29 | 2008-08-05 | The United States As Represented By The Secretary Of The Army | Adaptive modulation scheme based on cutoff rate with imperfect channel state information |
US8200164B2 (en) * | 2005-12-01 | 2012-06-12 | Intel Corporation | Wireless communication system, associated methods and data structures |
US8831607B2 (en) * | 2006-01-05 | 2014-09-09 | Qualcomm Incorporated | Reverse link other sector communication |
RU2319304C2 (en) * | 2006-01-10 | 2008-03-10 | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" | Complex of onboard digital communication instruments |
US8811369B2 (en) | 2006-01-11 | 2014-08-19 | Qualcomm Incorporated | Methods and apparatus for supporting multiple communications modes of operation |
JP5027155B2 (en) | 2006-01-11 | 2012-09-19 | クゥアルコム・インコーポレイテッド | Method and apparatus for generating, transmitting and / or using wireless terminal beacon signals |
US20070160007A1 (en) * | 2006-01-11 | 2007-07-12 | Li-Chun Wang | Method and device for cost-function based handoff determination using wavelet prediction in vertical networks |
EP1808989A1 (en) * | 2006-01-12 | 2007-07-18 | Siemens Aktiengesellschaft | Method of digital wireless communication on a wideband mobile radio channel |
US7711337B2 (en) | 2006-01-14 | 2010-05-04 | Paratek Microwave, Inc. | Adaptive impedance matching module (AIMM) control architectures |
US8325097B2 (en) | 2006-01-14 | 2012-12-04 | Research In Motion Rf, Inc. | Adaptively tunable antennas and method of operation therefore |
US8125399B2 (en) | 2006-01-14 | 2012-02-28 | Paratek Microwave, Inc. | Adaptively tunable antennas incorporating an external probe to monitor radiated power |
US7675844B2 (en) * | 2006-02-24 | 2010-03-09 | Freescale Semiconductor, Inc. | Synchronization for OFDM signals |
US20100226415A1 (en) * | 2006-02-28 | 2010-09-09 | Mitsubishi Electric Research Laboratories, Inc. | Mapping for MIMO Communication Apparatus |
US7818013B2 (en) * | 2006-03-20 | 2010-10-19 | Intel Corporation | Downlink channel parameters determination for a multiple-input-multiple-output (MIMO) system |
US8924335B1 (en) | 2006-03-30 | 2014-12-30 | Pegasystems Inc. | Rule-based user interface conformance methods |
US20100290568A1 (en) * | 2006-03-31 | 2010-11-18 | Hajime Suzuki | Decoding frequency channelised signals |
US7804800B2 (en) * | 2006-03-31 | 2010-09-28 | Intel Corporation | Efficient training schemes for MIMO based wireless networks |
US8543070B2 (en) | 2006-04-24 | 2013-09-24 | Qualcomm Incorporated | Reduced complexity beam-steered MIMO OFDM system |
US7783293B2 (en) * | 2006-04-26 | 2010-08-24 | Beceem Communications Inc. | Method of training a communication system |
JP4775288B2 (en) | 2006-04-27 | 2011-09-21 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, and wireless communication method |
JP4356756B2 (en) | 2006-04-27 | 2009-11-04 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, and wireless communication method |
JP4924106B2 (en) | 2006-04-27 | 2012-04-25 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, and wireless communication method |
JP4924107B2 (en) | 2006-04-27 | 2012-04-25 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, and wireless communication method |
US7751368B2 (en) * | 2006-05-01 | 2010-07-06 | Intel Corporation | Providing CQI feedback to a transmitter station in a closed-loop MIMO system |
WO2007130963A1 (en) * | 2006-05-01 | 2007-11-15 | Intel Corporation | Providing cqi feedback with common code rate to a transmitter station |
US7830977B2 (en) * | 2006-05-01 | 2010-11-09 | Intel Corporation | Providing CQI feedback with common code rate to a transmitter station |
US8290089B2 (en) | 2006-05-22 | 2012-10-16 | Qualcomm Incorporated | Derivation and feedback of transmit steering matrix |
US7974360B2 (en) | 2006-05-24 | 2011-07-05 | Qualcomm Incorporated | Multi input multi output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system |
JP4838353B2 (en) * | 2006-06-16 | 2011-12-14 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method for obtaining channel quality measurements in multi-antenna systems |
WO2008002224A1 (en) * | 2006-06-26 | 2008-01-03 | Telefonaktiebolaget L M Ericsson (Publ) | A method and apparatus to optimize the choice of communication link in a wireless network with mimo |
US7724853B2 (en) * | 2006-07-14 | 2010-05-25 | Qualcomm Incorporated | Enabling mobile switched antennas |
US8225186B2 (en) | 2006-07-14 | 2012-07-17 | Qualcomm Incorporated | Ecoding and decoding methods and apparatus for use in a wireless communication system |
US7720485B2 (en) * | 2006-07-14 | 2010-05-18 | Qualcomm Incorporated | Methods and apparatus related to assignment in a wireless communications system |
US20080025197A1 (en) * | 2006-07-28 | 2008-01-31 | Mccoy James W | Estimating frequency error of a sample stream |
KR100839243B1 (en) * | 2006-08-03 | 2008-06-17 | 자크리토에 악치오네르노에 오브쉐스트보 인텔 | Crosstalk Reduction Methods, Devices, Products, and Multiple Input Multiple Output Systems |
TWI479822B (en) | 2006-08-17 | 2015-04-01 | Intel Corp | Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system |
US7944985B2 (en) * | 2006-08-24 | 2011-05-17 | Interdigital Technology Corporation | MIMO transmitter and receiver for supporting downlink communication of single channel codewords |
EP2060022B1 (en) | 2006-09-06 | 2016-02-17 | Qualcomm Incorporated | Codeword permutation and reduced feedback for grouped antennas |
ES2901556T3 (en) | 2006-09-26 | 2022-03-22 | Optis Wireless Technology Llc | Communications scheme for channel quality information |
TWI337462B (en) * | 2006-09-26 | 2011-02-11 | Realtek Semiconductor Corp | Receiver of mimo multi-carrier system and associated apparatus and method for receive antenna selection |
US20080080635A1 (en) * | 2006-10-02 | 2008-04-03 | Nokia Corporation | Advanced feedback signaling for multi-antenna transmission systems |
JP5001375B2 (en) * | 2006-10-19 | 2012-08-15 | クゥアルコム・インコーポレイテッド | Beacon coding in wireless communication systems |
US7924957B2 (en) * | 2006-10-24 | 2011-04-12 | Cisco Technology, Inc. | Method for creating beamformed multiple-input-multiple-output channels with partial nulling |
US7535312B2 (en) | 2006-11-08 | 2009-05-19 | Paratek Microwave, Inc. | Adaptive impedance matching apparatus, system and method with improved dynamic range |
US7714676B2 (en) | 2006-11-08 | 2010-05-11 | Paratek Microwave, Inc. | Adaptive impedance matching apparatus, system and method |
US8299867B2 (en) | 2006-11-08 | 2012-10-30 | Research In Motion Rf, Inc. | Adaptive impedance matching module |
KR100961889B1 (en) * | 2006-11-17 | 2010-06-09 | 삼성전자주식회사 | Apparatus and Method for Sequential Scheduling of Multiple Input Multiple Output System |
US20080132173A1 (en) | 2006-11-30 | 2008-06-05 | Korea Advanced Institute Of Science And Technology | Channel estimation apparatus and channel estimation method |
CN101197798B (en) | 2006-12-07 | 2011-11-02 | 华为技术有限公司 | Signal processing system, chip, circumscribed card, filtering and transmitting/receiving device and method |
CN101197592B (en) | 2006-12-07 | 2011-09-14 | 华为技术有限公司 | Far-end cross talk counteracting method and device, signal transmission device and signal processing system |
US7813777B2 (en) * | 2006-12-12 | 2010-10-12 | Paratek Microwave, Inc. | Antenna tuner with zero volts impedance fold back |
CN101202552B (en) * | 2006-12-15 | 2012-01-25 | 华为技术有限公司 | Crossfire counteract apparatus, signal processing system and crossfire counteract method |
US7822102B2 (en) * | 2007-01-09 | 2010-10-26 | Broadcom Corporation | Method and system for an efficient channel quantization method for MIMO pre-coding systems |
US7983322B2 (en) * | 2007-01-09 | 2011-07-19 | Broadcom Corporation | Method and system for codebook design of MIMO pre-coders with finite rate channel state information feedback |
WO2008086532A1 (en) * | 2007-01-11 | 2008-07-17 | Qualcomm Incorporated | Using dtx and drx in a wireless communication system |
US20080207258A1 (en) * | 2007-02-26 | 2008-08-28 | Broadcom Corporation, A California Corporation | Multimode transmitter with digital up conversion and methods for use therewith |
US8250525B2 (en) | 2007-03-02 | 2012-08-21 | Pegasystems Inc. | Proactive performance management for multi-user enterprise software systems |
EP2835924B1 (en) | 2007-03-19 | 2017-03-08 | Telefonaktiebolaget LM Ericsson (publ) | Channel state feedback delivery in a telecommunication system |
US7813371B2 (en) * | 2007-03-21 | 2010-10-12 | Kapsch Trafficcom Ag | System and method for short range communication using adaptive channel intervals |
US8676115B2 (en) | 2007-03-29 | 2014-03-18 | Qualcomm Incorporated | Apparatus and methods for testing using modulation error ratio |
KR101276851B1 (en) | 2007-04-06 | 2013-06-18 | 엘지전자 주식회사 | Apparatus and Method for transmitting Digital broadcasting signal |
TWI362843B (en) * | 2007-04-14 | 2012-04-21 | Realtek Semiconductor Corp | A method for receiving signal and apparatus thereof |
US7917104B2 (en) | 2007-04-23 | 2011-03-29 | Paratek Microwave, Inc. | Techniques for improved adaptive impedance matching |
KR101484460B1 (en) * | 2007-04-25 | 2015-01-20 | 코닌클리케 필립스 엔.브이. | A method for transmitting a channel quality report to a primary station and a secondary station using a discontinuous transmission scheme |
US20080274706A1 (en) * | 2007-05-01 | 2008-11-06 | Guillaume Blin | Techniques for antenna retuning utilizing transmit power information |
US8213886B2 (en) | 2007-05-07 | 2012-07-03 | Paratek Microwave, Inc. | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
GB2449935A (en) * | 2007-06-08 | 2008-12-10 | Fujitsu Ltd | Closed loop MIMO communication system using SISO r.m.s. delay spread to estimate eigen coherence bandwidth. |
WO2008157620A2 (en) * | 2007-06-19 | 2008-12-24 | Interdigital Technology Corporation | Constant modulus mimo precoding for constraining transmit antenna power for differential feedback |
JP5134018B2 (en) * | 2007-06-23 | 2013-01-30 | パナソニック株式会社 | Method and system for communication channel optimization in a multiple-input multiple-output (MIMO) communication system |
EP2163019B1 (en) * | 2007-07-02 | 2012-09-12 | Telefonaktiebolaget LM Ericsson (publ) | Adaptive modulation scheme for multipath wireless channels |
US8630281B2 (en) | 2007-07-10 | 2014-01-14 | Qualcomm Incorporated | Coding methods of communicating identifiers in peer discovery in a peer-to-peer network |
US9848372B2 (en) | 2007-07-10 | 2017-12-19 | Qualcomm Incorporated | Coding Methods of communicating identifiers in peer discovery in a peer-to-peer network |
US8494007B2 (en) | 2007-07-10 | 2013-07-23 | Qualcomm Incorporated | Coding methods of communicating identifiers in peer discovery in a peer-to-peer network |
US8520704B2 (en) | 2007-07-10 | 2013-08-27 | Qualcomm Incorporated | Coding methods of communicating identifiers in peer discovery in a peer-to-peer network |
US20090022049A1 (en) * | 2007-07-16 | 2009-01-22 | Honeywell International Inc. | Novel security enhancement structure for mimo wireless network |
US8842702B2 (en) * | 2007-07-17 | 2014-09-23 | Qualcomm Incorporated | Control indications for slotted wireless communication |
US7907677B2 (en) * | 2007-08-10 | 2011-03-15 | Intel Corporation | Open loop MU-MIMO |
US8989155B2 (en) | 2007-08-20 | 2015-03-24 | Rearden, Llc | Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems |
US7499515B1 (en) * | 2007-08-27 | 2009-03-03 | Harris Corporation | System and method for automated link quality measurement for adaptive modulation systems using noise level estimates |
WO2009045139A1 (en) * | 2007-10-02 | 2009-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Including in the uplink grant an indication of specific amount of cqi to be reported |
KR101329145B1 (en) * | 2007-10-05 | 2013-11-21 | 포항공과대학교 산학협력단 | Method of space block coding signal transmission and receive with interactive multiuser detection, and aparatus using the same |
US20090110114A1 (en) * | 2007-10-26 | 2009-04-30 | Eko Nugroho Onggosanusi | Open-Loop MIMO Scheme and Signaling Support for Wireless Networks |
US7991363B2 (en) * | 2007-11-14 | 2011-08-02 | Paratek Microwave, Inc. | Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics |
EP2063618B1 (en) * | 2007-11-21 | 2014-01-08 | Nokia Solutions and Networks Oy | Method and device for processing data and to a communication system comprising such device |
TW200926702A (en) * | 2007-12-12 | 2009-06-16 | Alcor Micro Corp | Apparatus and method for measuring channel state information |
ES2373240T3 (en) | 2007-12-20 | 2012-02-01 | Panasonic Corporation | CONTROL CHANNEL SIGNALING USING A COMMON SIGNALING FIELD FOR TRANSPORT FORMAT AND REDUNDANCY VERSION. |
US8909278B2 (en) * | 2007-12-21 | 2014-12-09 | Airvana Lp | Adjusting wireless signal transmission power |
EP2099185B1 (en) * | 2008-01-29 | 2017-07-12 | Telefonaktiebolaget LM Ericsson (publ) | Channel estimation in a terminal of an OFDM-based, cellular telecommunications system |
US8595501B2 (en) | 2008-05-09 | 2013-11-26 | Qualcomm Incorporated | Network helper for authentication between a token and verifiers |
WO2010003176A1 (en) * | 2008-07-07 | 2010-01-14 | Commonwealth Scientific And Industrial Resaerch Organisation | Parallel packet transmission |
WO2010003183A1 (en) * | 2008-07-07 | 2010-01-14 | Commonwealth Scientific And Industrial Research Organisation | Multiple-input multiple-output ofdm systems |
US8340605B2 (en) * | 2008-08-06 | 2012-12-25 | Qualcomm Incorporated | Coordinated transmissions between cells of a base station in a wireless communications system |
FR2935209B1 (en) * | 2008-08-17 | 2011-02-11 | Univ Sud Toulon Var | METHOD AND DEVICE FOR SIMULTANEOUSLY HERTZIC TRANSMISSION OF A SET OF MESSAGES FROM A PLURALITY OF TRANSMITTERS TO A PLURALITY OF RECEIVERS |
US8072285B2 (en) | 2008-09-24 | 2011-12-06 | Paratek Microwave, Inc. | Methods for tuning an adaptive impedance matching network with a look-up table |
US8139656B2 (en) * | 2008-09-25 | 2012-03-20 | The Regents Of The University Of California | Method and system for linear processing of an input using Gaussian belief propagation |
US8488691B2 (en) * | 2008-10-08 | 2013-07-16 | Qualcomm Incorporated | Adaptive loading for orthogonal frequency division multiplex (OFDM) communication systems |
US10481878B2 (en) | 2008-10-09 | 2019-11-19 | Objectstore, Inc. | User interface apparatus and methods |
US8067858B2 (en) | 2008-10-14 | 2011-11-29 | Paratek Microwave, Inc. | Low-distortion voltage variable capacitor assemblies |
US8660094B2 (en) * | 2008-11-14 | 2014-02-25 | Lg Electronics Inc. | Method and apparatus for data transmission using a plurality of resources in a multiple antenna system |
GB2466070B (en) * | 2008-12-12 | 2014-04-30 | Nokia Corp | An apparatus |
EP2387859B1 (en) * | 2009-01-13 | 2014-06-18 | Nokia Solutions and Networks GmbH & Co. KG | Model based channel state information feedback |
US8576896B2 (en) * | 2009-02-04 | 2013-11-05 | New Jersey Institute Of Technology | Decoding of orthogonal space time codes |
US8768264B2 (en) * | 2009-03-03 | 2014-07-01 | Qualcomm Incorporated | Method and system for reducing feedback information in multicarrier-based communication systems based on temporal correlation |
KR101032224B1 (en) * | 2009-03-06 | 2011-05-02 | 삼성전기주식회사 | Apparatus and method for generating channel state information (CSI) of an OPDM system |
US8843435B1 (en) | 2009-03-12 | 2014-09-23 | Pegasystems Inc. | Techniques for dynamic data processing |
US20100232384A1 (en) * | 2009-03-13 | 2010-09-16 | Qualcomm Incorporated | Channel estimation based upon user specific and common reference signals |
KR101055573B1 (en) * | 2009-03-16 | 2011-08-08 | 주식회사 팬택 | Precoding Device in Multi-User, Multi-antenna Radio Transmission System |
US8468492B1 (en) | 2009-03-30 | 2013-06-18 | Pegasystems, Inc. | System and method for creation and modification of software applications |
JP5488016B2 (en) * | 2009-03-30 | 2014-05-14 | 富士通株式会社 | Wireless communication method, wireless communication system, and wireless communication apparatus |
US8036098B2 (en) * | 2009-04-20 | 2011-10-11 | Intel Corporation | Wireless network and method for adaptive opportunistic clustering for interference alignment in wireless networks |
US8472888B2 (en) | 2009-08-25 | 2013-06-25 | Research In Motion Rf, Inc. | Method and apparatus for calibrating a communication device |
CN102006145B (en) | 2009-09-02 | 2014-08-13 | 华为技术有限公司 | Precoding method and device in multi-input and multi-output system |
EP2484039B1 (en) | 2009-10-01 | 2018-08-15 | InterDigital Patent Holdings, Inc. | Uplink control data transmission |
US9026062B2 (en) | 2009-10-10 | 2015-05-05 | Blackberry Limited | Method and apparatus for managing operations of a communication device |
CN101668046B (en) | 2009-10-13 | 2012-12-19 | 成都市华为赛门铁克科技有限公司 | Resource caching method, device and system thereof |
CN102055692B (en) * | 2009-10-28 | 2013-11-06 | 中兴通讯股份有限公司 | Channel estimation method and device in multiaerial system |
GB2475098B (en) * | 2009-11-06 | 2012-09-05 | Toshiba Res Europ Ltd | Compression and decompression of channel state information in a wireless communication network |
CN105450360B (en) * | 2010-01-08 | 2018-12-11 | 交互数字专利控股公司 | Use the method and WTRU of carrier wave aggregated report channel state information |
KR101695055B1 (en) | 2010-01-08 | 2017-01-10 | 인터디지탈 패튼 홀딩스, 인크 | Channel state information transmission for multiple carriers |
US9231795B2 (en) * | 2010-01-18 | 2016-01-05 | Samsung Electronics Co., Ltd. | Communication apparatus and precoding method based on multiple cells and multiple users |
KR101719855B1 (en) * | 2010-02-02 | 2017-03-27 | 엘지전자 주식회사 | Power control method for interference alignment in wireless network |
WO2011097796A1 (en) * | 2010-02-10 | 2011-08-18 | Telefonaktiebolaget Lm Ericsson | Method and arrangement in a telecommunications system |
KR101706943B1 (en) | 2010-02-23 | 2017-02-15 | 엘지전자 주식회사 | A method and a user equipment for transmitting channel quality information in a wireless, and a method and a base station for transmitting data for a plurality of user equipments |
WO2011105706A2 (en) * | 2010-02-23 | 2011-09-01 | 엘지전자 주식회사 | Method for transmitting channel quality information, user equipment, method for transmitting multi-user data, and base station |
KR101819502B1 (en) * | 2010-02-23 | 2018-01-17 | 엘지전자 주식회사 | A method and a user equipment for measuring interference, and a method and a base station for receiving interference information |
US8976850B2 (en) * | 2010-03-11 | 2015-03-10 | Samsung Electronics Co., Ltd. | Method and apparatus for sharing channel state information (CSI) in a multiple-user multiple-input multiple-output (MU-MIMO) environment |
US8803631B2 (en) | 2010-03-22 | 2014-08-12 | Blackberry Limited | Method and apparatus for adapting a variable impedance network |
GB201006103D0 (en) * | 2010-04-13 | 2010-05-26 | Icera Inc | Decoding a signal |
AU2011242798B2 (en) | 2010-04-20 | 2015-01-15 | Blackberry Limited | Method and apparatus for managing interference in a communication device |
US8537669B2 (en) | 2010-04-27 | 2013-09-17 | Hewlett-Packard Development Company, L.P. | Priority queue level optimization for a network flow |
US8537846B2 (en) | 2010-04-27 | 2013-09-17 | Hewlett-Packard Development Company, L.P. | Dynamic priority queue level assignment for a network flow |
CN102264124B (en) * | 2010-05-28 | 2014-03-05 | 富士通株式会社 | Bit and power allocation method, device and communication system |
TWI426791B (en) * | 2010-06-09 | 2014-02-11 | Univ Ishou | Interrupt capacity calculation device and method |
CN102404072B (en) | 2010-09-08 | 2013-03-20 | 华为技术有限公司 | Method for sending information bits, device thereof and system thereof |
US20120069927A1 (en) * | 2010-09-17 | 2012-03-22 | Intel Corporation | CQI feedback mechanisms for distortion-aware link adaptation toward enhanced multimedia communications |
US9813135B2 (en) | 2010-09-29 | 2017-11-07 | Qualcomm, Incorporated | Systems and methods for communication of channel state information |
US9831983B2 (en) | 2010-09-29 | 2017-11-28 | Qualcomm Incorporated | Systems, methods and apparatus for determining control field and modulation coding scheme information |
US10090982B2 (en) | 2010-09-29 | 2018-10-02 | Qualcomm Incorporated | Systems and methods for communication of channel state information |
US9602298B2 (en) | 2010-09-29 | 2017-03-21 | Qualcomm Incorporated | Methods and apparatuses for determining a type of control field |
US9806848B2 (en) | 2010-09-29 | 2017-10-31 | Qualcomm Incorporated | Systems, methods and apparatus for determining control field and modulation coding scheme information |
US9882624B2 (en) | 2010-09-29 | 2018-01-30 | Qualcomm, Incorporated | Systems and methods for communication of channel state information |
CN101969361B (en) * | 2010-09-30 | 2015-06-03 | 中兴通讯股份有限公司 | Method and device for transmitting cycle feedback report |
US9379454B2 (en) | 2010-11-08 | 2016-06-28 | Blackberry Limited | Method and apparatus for tuning antennas in a communication device |
US8712340B2 (en) | 2011-02-18 | 2014-04-29 | Blackberry Limited | Method and apparatus for radio antenna frequency tuning |
US8880487B1 (en) | 2011-02-18 | 2014-11-04 | Pegasystems Inc. | Systems and methods for distributed rules processing |
US8655286B2 (en) | 2011-02-25 | 2014-02-18 | Blackberry Limited | Method and apparatus for tuning a communication device |
US9030953B2 (en) | 2011-03-04 | 2015-05-12 | Alcatel Lucent | System and method providing resilient data transmission via spectral fragments |
US9686062B2 (en) | 2011-03-04 | 2017-06-20 | Alcatel Lucent | Virtual aggregation of fragmented wireless spectrum |
US9496982B2 (en) | 2011-03-04 | 2016-11-15 | Alcatel Lucent | System and method providing resilient data transmission via spectral fragments |
US20130272438A1 (en) * | 2011-03-16 | 2013-10-17 | Nec (China) Co., Ltd. | Method, transmitter and receiver for beamforming |
DE102011001911A1 (en) * | 2011-04-08 | 2012-10-11 | Rheinisch-Westfälische Technische Hochschule Aachen | Method for a transmitter for a multichannel communication system for sending real-time sensitive data D |
US8626083B2 (en) | 2011-05-16 | 2014-01-07 | Blackberry Limited | Method and apparatus for tuning a communication device |
US8594584B2 (en) | 2011-05-16 | 2013-11-26 | Blackberry Limited | Method and apparatus for tuning a communication device |
EP2740221B1 (en) | 2011-08-05 | 2019-06-26 | BlackBerry Limited | Method and apparatus for band tuning in a communication device |
WO2013024838A1 (en) * | 2011-08-15 | 2013-02-21 | シャープ株式会社 | Wireless transmission device, wireless reception device, program, integrated circuit, and wireless communication system |
US9137788B2 (en) * | 2011-09-05 | 2015-09-15 | Nec Laboratories America, Inc. | Multiple-input multiple-output wireless communications with full duplex radios |
US9209950B2 (en) | 2011-10-03 | 2015-12-08 | Qualcomm Incorporated | Antenna time offset in multiple-input-multiple-output and coordinated multipoint transmissions |
US9178590B2 (en) * | 2011-12-27 | 2015-11-03 | Industrial Technology Research Institute | Channel information feedback method and wireless communication device using the same |
US9195936B1 (en) | 2011-12-30 | 2015-11-24 | Pegasystems Inc. | System and method for updating or modifying an application without manual coding |
US8965390B2 (en) | 2012-01-30 | 2015-02-24 | T-Mobile Usa, Inc. | Simultaneous communications over licensed and unlicensed spectrum |
US9071289B2 (en) * | 2012-04-23 | 2015-06-30 | Cambridge Silicon Radio Limited | Transceiver supporting multiple modulation schemes |
US8787427B2 (en) * | 2012-05-10 | 2014-07-22 | Telefonaktiebolaget L M Ericsson (Publ) | Chip-level processing for joint demodulation in CDMA receivers |
US9021330B2 (en) | 2012-05-15 | 2015-04-28 | Alcatel Lucent | System and method for multi-channel FEC encoding and transmission of data |
US8948889B2 (en) | 2012-06-01 | 2015-02-03 | Blackberry Limited | Methods and apparatus for tuning circuit components of a communication device |
WO2014003506A1 (en) * | 2012-06-29 | 2014-01-03 | 엘지전자 주식회사 | Method for measuring and reporting csi-rs in wireless communication system, and apparatus for supporting same |
US9853363B2 (en) | 2012-07-06 | 2017-12-26 | Blackberry Limited | Methods and apparatus to control mutual coupling between antennas |
US9246223B2 (en) | 2012-07-17 | 2016-01-26 | Blackberry Limited | Antenna tuning for multiband operation |
US9350405B2 (en) | 2012-07-19 | 2016-05-24 | Blackberry Limited | Method and apparatus for antenna tuning and power consumption management in a communication device |
US9413066B2 (en) | 2012-07-19 | 2016-08-09 | Blackberry Limited | Method and apparatus for beam forming and antenna tuning in a communication device |
US9362891B2 (en) | 2012-07-26 | 2016-06-07 | Blackberry Limited | Methods and apparatus for tuning a communication device |
US9048893B1 (en) * | 2012-09-18 | 2015-06-02 | Marvell International Ltd. | Determining channel information using decision feedback equalization |
US11189917B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for distributing radioheads |
US10194346B2 (en) | 2012-11-26 | 2019-01-29 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11190947B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for concurrent spectrum usage within actively used spectrum |
US11050468B2 (en) | 2014-04-16 | 2021-06-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US9374113B2 (en) | 2012-12-21 | 2016-06-21 | Blackberry Limited | Method and apparatus for adjusting the timing of radio antenna tuning |
US10404295B2 (en) | 2012-12-21 | 2019-09-03 | Blackberry Limited | Method and apparatus for adjusting the timing of radio antenna tuning |
US9973246B2 (en) | 2013-03-12 | 2018-05-15 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US10488535B2 (en) | 2013-03-12 | 2019-11-26 | Rearden, Llc | Apparatus and method for capturing still images and video using diffraction coded imaging techniques |
US9923657B2 (en) | 2013-03-12 | 2018-03-20 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US10164698B2 (en) | 2013-03-12 | 2018-12-25 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US9176213B2 (en) * | 2013-03-13 | 2015-11-03 | Northrop Grumman Systems Corporation | Adaptive coded modulation in low earth orbit satellite communication system |
RU2767777C2 (en) | 2013-03-15 | 2022-03-21 | Риарден, Ллк | Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output |
TWI507881B (en) * | 2013-04-10 | 2015-11-11 | Realtek Semiconductor Corp | Communication device and method of configuring data transmission |
CN104753653B (en) * | 2013-12-31 | 2019-07-12 | 中兴通讯股份有限公司 | A kind of method, apparatus and reception side apparatus of solution rate-matched |
WO2015103733A1 (en) * | 2014-01-07 | 2015-07-16 | Qualcomm Incorporated | TWO SUBFRAME SET CSI FEEDBACK FOR eIMTA IN LTE |
US11290162B2 (en) | 2014-04-16 | 2022-03-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US10469396B2 (en) | 2014-10-10 | 2019-11-05 | Pegasystems, Inc. | Event processing with enhanced throughput |
MY179983A (en) * | 2014-10-10 | 2020-11-19 | Ericsson Telefon Ab L M | Method for dynamic csi feedback |
US9433009B1 (en) * | 2014-10-28 | 2016-08-30 | Sprint Spectrum L.P. | Channel selection based on correlation between air interface quality and level of port-to-port isolation |
US9632883B2 (en) * | 2014-12-08 | 2017-04-25 | Oracle International Corporation | Digital encoding of parallel busses to suppress simultaneous switching output noise |
US9438319B2 (en) | 2014-12-16 | 2016-09-06 | Blackberry Limited | Method and apparatus for antenna selection |
EP3048765A1 (en) * | 2015-01-20 | 2016-07-27 | Alcatel Lucent | Transforming and combining signals from antenna array |
CN105871443B (en) * | 2015-01-23 | 2019-04-30 | 深圳市中兴微电子技术有限公司 | Indication information correction method and system |
KR101754527B1 (en) * | 2015-03-09 | 2017-07-06 | 한국항공우주연구원 | Apparatus and method for coding packet |
US9525470B1 (en) * | 2015-10-19 | 2016-12-20 | Xilinx, Inc. | Adaptive multiple-input multiple-output (MIMO) data detection and precoding |
US10694473B2 (en) | 2015-12-01 | 2020-06-23 | Rajant Corporation | System and method for controlling dynamic transmit power in a mesh network |
CN108886396B (en) * | 2016-02-03 | 2021-09-17 | 三星电子株式会社 | Method and apparatus for configuring reference signal and for generating channel information |
CN107370533B (en) * | 2016-05-12 | 2020-09-25 | 上海诺基亚贝尔股份有限公司 | Method, device and system for carrying out analog CSI feedback |
US10698599B2 (en) | 2016-06-03 | 2020-06-30 | Pegasystems, Inc. | Connecting graphical shapes using gestures |
US10698647B2 (en) | 2016-07-11 | 2020-06-30 | Pegasystems Inc. | Selective sharing for collaborative application usage |
CN109818725B (en) * | 2016-11-04 | 2020-06-16 | 华为技术有限公司 | Method and device for channel state information feedback |
JP7003424B2 (en) * | 2017-03-15 | 2022-01-20 | 日本電気株式会社 | Wireless communication devices, methods and programs |
CN109756257B (en) * | 2017-11-07 | 2023-07-07 | 珠海市魅族科技有限公司 | Data transmission method and device for receiving end or transmitting end |
CN108494458B (en) * | 2018-02-27 | 2020-10-09 | 北京邮电大学 | Signal transmission device and method based on subcarrier-level analog beamformer |
US11048488B2 (en) | 2018-08-14 | 2021-06-29 | Pegasystems, Inc. | Software code optimizer and method |
KR102597605B1 (en) * | 2018-10-18 | 2023-11-02 | 삼성전자주식회사 | Wireless communication device for setting modulation and demodulation based on channel information and operation method thereof |
RU2716834C1 (en) * | 2019-06-03 | 2020-03-17 | Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") | Method of determining location of a receiver of signals of aviation telecommunication systems |
US11570654B2 (en) * | 2019-12-05 | 2023-01-31 | Qualcomm Incorporated | Link adaptation using a link quality estimation sequence |
US11567945B1 (en) | 2020-08-27 | 2023-01-31 | Pegasystems Inc. | Customized digital content generation systems and methods |
RU2762743C1 (en) * | 2020-10-20 | 2021-12-22 | Акционерное общество "Научно-производственное предприятие "Полет" | Complex of airborne digital radio communication means |
US11363513B1 (en) | 2020-12-16 | 2022-06-14 | Sprint Spectrum L.P. | Proactive control of UE service based on quality of an access node's RF-circuitry as to frequency bands on which the access node operates in coverage zones through which the UE is predicted to move |
US12068799B2 (en) | 2021-03-01 | 2024-08-20 | Samsung Electronics Co., Ltd. | Method and apparatus for bandwidth-adaptive and model-order-adaptive channel prediction |
WO2022243946A1 (en) * | 2021-05-21 | 2022-11-24 | Lenovo (Singapore) Pte. Ltd. | Determining a magnitude of a composite zero-forcing equalizer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998009381A1 (en) * | 1996-08-29 | 1998-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | High capacity wireless communication using spatial subchannels |
US5844922A (en) * | 1993-02-22 | 1998-12-01 | Qualcomm Incorporated | High rate trellis coding and decoding method and apparatus |
US6131016A (en) * | 1997-08-27 | 2000-10-10 | At&T Corp | Method and apparatus for enhancing communication reception at a wireless communication terminal |
CN1275293A (en) * | 1998-07-16 | 2000-11-29 | 三星电子株式会社 | Processing packet data in mobile communication system |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60144026A (en) | 1984-01-06 | 1985-07-30 | Fujitsu Ltd | viterbi decoder |
JPS60144057A (en) | 1984-01-06 | 1985-07-30 | Hashimoto Corp | Automatic answering telephone set possible for remote control |
JPS6444057A (en) | 1987-08-11 | 1989-02-16 | Nec Corp | Semiconductor integrated circuit device |
US5065109A (en) * | 1990-10-16 | 1991-11-12 | Varian Associates, Inc. | Electropneumatic band selector |
US5056109A (en) * | 1989-11-07 | 1991-10-08 | Qualcomm, Inc. | Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system |
US5265119A (en) * | 1989-11-07 | 1993-11-23 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
US5592490A (en) | 1991-12-12 | 1997-01-07 | Arraycomm, Inc. | Spectrally efficient high capacity wireless communication systems |
US5471647A (en) | 1993-04-14 | 1995-11-28 | The Leland Stanford Junior University | Method for minimizing cross-talk in adaptive transmission antennas |
JPH084162A (en) | 1994-06-07 | 1996-01-09 | Kubota Corp | Wall plate mounting bracket |
JPH0884162A (en) | 1994-09-14 | 1996-03-26 | Hitachi Ltd | Digital cable service transmitting / receiving method, transmitting apparatus, and receiving apparatus |
US5799005A (en) * | 1996-04-30 | 1998-08-25 | Qualcomm Incorporated | System and method for determining received pilot power and path loss in a CDMA communication system |
US5903554A (en) * | 1996-09-27 | 1999-05-11 | Qualcomm Incorporation | Method and apparatus for measuring link quality in a spread spectrum communication system |
US5886988A (en) | 1996-10-23 | 1999-03-23 | Arraycomm, Inc. | Channel assignment and call admission control for spatial division multiple access communication systems |
US5960399A (en) * | 1996-12-24 | 1999-09-28 | Gte Internetworking Incorporated | Client/server speech processor/recognizer |
US5933421A (en) * | 1997-02-06 | 1999-08-03 | At&T Wireless Services Inc. | Method for frequency division duplex communications |
US5940439A (en) * | 1997-02-26 | 1999-08-17 | Motorola Inc. | Method and apparatus for adaptive rate communication system |
US6108374A (en) * | 1997-08-25 | 2000-08-22 | Lucent Technologies, Inc. | System and method for measuring channel quality information |
US6097972A (en) * | 1997-08-29 | 2000-08-01 | Qualcomm Incorporated | Method and apparatus for processing power control signals in CDMA mobile telephone system |
US6154489A (en) * | 1998-03-30 | 2000-11-28 | Motorola, Inc. | Adaptive-rate coded digital image transmission |
US5973642A (en) | 1998-04-01 | 1999-10-26 | At&T Corp. | Adaptive antenna arrays for orthogonal frequency division multiplexing systems with co-channel interference |
US6317466B1 (en) | 1998-04-15 | 2001-11-13 | Lucent Technologies Inc. | Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver |
JP3741866B2 (en) * | 1998-06-05 | 2006-02-01 | 富士通株式会社 | Adaptive modulation system |
KR100342525B1 (en) * | 1998-07-16 | 2002-06-28 | 윤종용 | Method and system form processing packet data in mobile communication system |
US6304594B1 (en) * | 1998-07-27 | 2001-10-16 | General Dynamics Government Systems Corporation | Interference detection and avoidance technique |
FI118359B (en) | 1999-01-18 | 2007-10-15 | Nokia Corp | Speech recognition method, speech recognition device, and wireless communication means |
JP2002540477A (en) | 1999-03-26 | 2002-11-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Client-server speech recognition |
US6141567A (en) | 1999-06-07 | 2000-10-31 | Arraycomm, Inc. | Apparatus and method for beamforming in a changing-interference environment |
KR100316777B1 (en) * | 1999-08-24 | 2001-12-12 | 윤종용 | Closed loop transmit antenna diversity method, base station apparatus and mobile station apparatus therefor in next generation mobile communication system |
GB2355834A (en) | 1999-10-29 | 2001-05-02 | Nokia Mobile Phones Ltd | Speech recognition |
US6351499B1 (en) * | 1999-12-15 | 2002-02-26 | Iospan Wireless, Inc. | Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter |
US6473467B1 (en) * | 2000-03-22 | 2002-10-29 | Qualcomm Incorporated | Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system |
US20020154705A1 (en) | 2000-03-22 | 2002-10-24 | Walton Jay R. | High efficiency high performance communications system employing multi-carrier modulation |
US7418043B2 (en) * | 2000-07-19 | 2008-08-26 | Lot 41 Acquisition Foundation, Llc | Software adaptable high performance multicarrier transmission protocol |
US6985434B2 (en) * | 2000-09-01 | 2006-01-10 | Nortel Networks Limited | Adaptive time diversity and spatial diversity for OFDM |
US6961388B2 (en) * | 2001-02-01 | 2005-11-01 | Qualcomm, Incorporated | Coding scheme for a wireless communication system |
US6771706B2 (en) | 2001-03-23 | 2004-08-03 | Qualcomm Incorporated | Method and apparatus for utilizing channel state information in a wireless communication system |
-
2001
- 2001-03-23 US US09/816,481 patent/US6771706B2/en not_active Expired - Lifetime
- 2001-09-18 US US09/956,449 patent/US7006848B2/en not_active Expired - Lifetime
-
2002
- 2002-03-18 TW TW091105077A patent/TWI230525B/en not_active IP Right Cessation
- 2002-03-22 EP EP02753807A patent/EP1371147B1/en not_active Expired - Lifetime
- 2002-03-22 JP JP2002576325A patent/JP4593878B2/en not_active Expired - Lifetime
- 2002-03-22 EP EP10176952.9A patent/EP2256952B1/en not_active Expired - Lifetime
- 2002-03-22 DK DK10176952.9T patent/DK2256952T3/en active
- 2002-03-22 BR BRPI0208312-4A patent/BR0208312A/en unknown
- 2002-03-22 KR KR1020097007598A patent/KR20090040929A/en not_active Ceased
- 2002-03-22 ES ES10176954T patent/ES2734517T3/en not_active Expired - Lifetime
- 2002-03-22 ES ES10176952T patent/ES2770180T3/en not_active Expired - Lifetime
- 2002-03-22 AT AT02753807T patent/ATE360288T1/en not_active IP Right Cessation
- 2002-03-22 EP EP07103174A patent/EP1786118B1/en not_active Expired - Lifetime
- 2002-03-22 EP EP10176954.5A patent/EP2256953B1/en not_active Expired - Lifetime
- 2002-03-22 WO PCT/US2002/008733 patent/WO2002078211A2/en active Application Filing
- 2002-03-22 PT PT10176954T patent/PT2256953T/en unknown
- 2002-03-22 AU AU2002306798A patent/AU2002306798A1/en not_active Abandoned
- 2002-03-22 ES ES07103174T patent/ES2396563T3/en not_active Expired - Lifetime
- 2002-03-22 ES ES02753807T patent/ES2284899T3/en not_active Expired - Lifetime
- 2002-03-22 CN CNB028085582A patent/CN100505577C/en not_active Expired - Lifetime
- 2002-03-22 DK DK10176954.5T patent/DK2256953T3/en active
- 2002-03-22 KR KR1020037012349A patent/KR100950141B1/en not_active Expired - Lifetime
- 2002-03-22 TR TR2019/08292T patent/TR201908292T4/en unknown
- 2002-03-22 DE DE60219605T patent/DE60219605T2/en not_active Expired - Lifetime
- 2002-03-22 PT PT101769529T patent/PT2256952T/en unknown
-
2004
- 2004-02-24 US US10/786,856 patent/US7590182B2/en not_active Expired - Lifetime
- 2004-07-30 US US10/903,066 patent/US7411929B2/en not_active Expired - Lifetime
-
2008
- 2008-07-09 JP JP2008179027A patent/JP5362274B2/en not_active Expired - Lifetime
-
2009
- 2009-09-04 US US12/554,608 patent/US7949060B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5844922A (en) * | 1993-02-22 | 1998-12-01 | Qualcomm Incorporated | High rate trellis coding and decoding method and apparatus |
WO1998009381A1 (en) * | 1996-08-29 | 1998-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | High capacity wireless communication using spatial subchannels |
US6131016A (en) * | 1997-08-27 | 2000-10-10 | At&T Corp | Method and apparatus for enhancing communication reception at a wireless communication terminal |
CN1275293A (en) * | 1998-07-16 | 2000-11-29 | 三星电子株式会社 | Processing packet data in mobile communication system |
Non-Patent Citations (1)
Title |
---|
A comparison of differential and coherent reception for acoded OFDM system in a low C/I environment. BAUM K L ET AL.GLOBECOM 97. 1997 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100505577C (en) | Method and apparatus for utilizing channel state information in a wireless communication system | |
US7072413B2 (en) | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion | |
US8488706B2 (en) | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion | |
US7894538B2 (en) | Frequency-independent spatial processing for wideband MISO and MIMO systems | |
US7729444B2 (en) | Method and apparatus for transmitting data in a time division duplexed (TDD) communication system | |
KR20030093346A (en) | Method and apparatus for processing data in a multiple-input multiple-output (mimo) communication system utilizing channel state information | |
HK1068465B (en) | Method and apparatus for utilizing channel state information in a wireless communication system | |
HK1108229A (en) | Method and apparatus for utilizing channel state information in a wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1068465 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1068465 Country of ref document: HK |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20090624 |