[go: up one dir, main page]

CN100505577C - Method and apparatus for utilizing channel state information in a wireless communication system - Google Patents

Method and apparatus for utilizing channel state information in a wireless communication system Download PDF

Info

Publication number
CN100505577C
CN100505577C CNB028085582A CN02808558A CN100505577C CN 100505577 C CN100505577 C CN 100505577C CN B028085582 A CNB028085582 A CN B028085582A CN 02808558 A CN02808558 A CN 02808558A CN 100505577 C CN100505577 C CN 100505577C
Authority
CN
China
Prior art keywords
channel
matrix
state information
data
channel state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028085582A
Other languages
Chinese (zh)
Other versions
CN1552132A (en
Inventor
F·林
J·R·沃尔顿
S·J·霍华德
M·华莱士
J·W·凯彻姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1552132A publication Critical patent/CN1552132A/en
Application granted granted Critical
Publication of CN100505577C publication Critical patent/CN100505577C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0244Channel estimation channel estimation algorithms using matrix methods with inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transmitters (AREA)

Abstract

Techniques for transmitting data from a transmitter unit to a receiver unit in a multiple-input multiple-output (MIMO) communication system. In one method, at the receiver unit, a number of signals are received via a number of receive antennas, with the received signal from the transmitter unit. The received signals are processed to derive channel state information (CSI) indicative of characteristics of a number of transmission channels used for data transmission. The CSI is transmitted back to the transmitter unit. At the transmitter unit, the CSI from the receiver unit is received and data for transmission to the receiver unit is processed based on the received CSI.

Description

在无线通信系统中利用信道状态信息的方法和装置 Method and apparatus for utilizing channel state information in a wireless communication system

技术领域 technical field

本发明一般涉及数据通信,更特定地是涉及一种新颖的经改进的利用(全部或部分)信道状态信息以提供无线通信系统改善的性能的方法和装置。The present invention relates generally to data communications, and more particularly to a novel and improved method and apparatus for utilizing (in whole or in part) channel state information to provide improved performance in wireless communication systems.

背景技术 Background technique

无线通信系统被广泛采用,以提供不同类型的通信诸如语音、数据等。这些系统可能是根据码分多址(CDMA)、时分多址(TDMA)、正交频分调制(OFDM)或一些其它调制技术。OFDM系统能提供一些信道环境下的高性能。Wireless communication systems are widely employed to provide different types of communication such as voice, data, and so on. These systems may be based on Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Modulation (OFDM), or some other modulation technique. OFDM systems can provide high performance in some channel environments.

在陆地通信系统中(例如蜂窝系统、广播系统、多信道多点分布系统(MMDS)以及其它),从发射机单元来的RF已调信号可能通过多个传输路径到达接收机单元。传输路径的特征由于多种因素诸如衰落和多径一般随时间而变化。In terrestrial communication systems (such as cellular systems, broadcast systems, multi-channel multi-point distribution systems (MMDS), and others), an RF modulated signal from a transmitter unit may arrive at a receiver unit via multiple transmission paths. The characteristics of a transmission path generally vary over time due to factors such as fading and multipath.

为提供对抗恶化的路径效应并改善性能的分集,可能使用多个发射和接收天线。如果发射和接收天线间的传输路径是线性独立的(即在一个路径上的传输不形成为其它路径上的传输的线性组合),这一般在一定程度上是成立的,则正确接收发射的信号的概率随天线数目的增加而增加。一般,随着发射和接收天线的数目增加分集也增加且性能得到改善。To provide diversity against degrading path effects and improve performance, multiple transmit and receive antennas may be used. If the transmission paths between the transmit and receive antennas are linearly independent (that is, transmissions on one path do not form a linear combination of transmissions on the other path), which is generally true to some extent, then the transmitted signal is correctly received The probability of increases with the number of antennas. In general, diversity increases and performance improves as the number of transmit and receive antennas increases.

多输入多输出(MIMO)通信系统使用多个(NT)发射天线和多个NR接收天线用于数据传输。MIMO信道可能被分解为NC个独立信道,其中NC≤min{NT,NR}。NC个独立信道的每个还被称为MIMO信道的空间子信道,并对应维数。如果使用由多个发射和接收天线建立的附加维数,则MIMO系统能提供改进的性能。A Multiple-Input Multiple-Output (MIMO) communication system uses multiple ( NT ) transmit antennas and multiple NR receive antennas for data transmission. A MIMO channel may be decomposed into N C independent channels, where N C ≤ min{N T , NR }. Each of the NC independent channels is also referred to as a spatial sub-channel of the MIMO channel and corresponds to a dimension. MIMO systems can provide improved performance if the additional dimension created by the multiple transmit and receive antennas is used.

因此本领域内需要一种技术以利用信道状态信息(CSI)来利用MIMO系统建立的附加维数提供经改进的系统性能。There is therefore a need in the art for a technique to utilize channel state information (CSI) to take advantage of the additional dimensionality created by MIMO systems to provide improved system performance.

发明内容 Contents of the invention

本发明的各方面提供技术以处理在多输入多输出(MIMO)通信系统内接收到的信号以恢复发射的信号,并估计MIMO信道的特征。不同的接收机处理方案可能用于导出指明用于数据传输的传输信道的特征的信道状态信息(CSI)。CSI然后被报告回发射机系统并用于调节信号处理(例如,编码、调制等)。这样,根据确定的信道条件获得高性能。Aspects of this disclosure provide techniques to process received signals within a multiple-input multiple-output (MIMO) communication system to recover transmitted signals and estimate characteristics of the MIMO channel. Different receiver processing schemes may be used to derive channel state information (CSI) that characterizes the transmission channel used for data transmission. The CSI is then reported back to the transmitter system and used to adjust signal processing (eg, coding, modulation, etc.). In this way, high performance is obtained depending on the determined channel conditions.

本发明的特定实施例提供了一种在MIMO通信系统中从发射机单元将数据发射到接收机单元的方法。根据本方法,在接收机单元,许多信号通过多个接收机天线被接收,从每个接收天线接收的信号包括从发射机单元发射的一个或多个信号的组合。接收到的信号经处理(例如,通过信道相关矩阵逆(CCMI)方案、无偏最小均方误差方案(UMMSE)、或一些其它接收机处理方案)以导出信道状态信息,它指明用于数据传输的多个传输信道特征,其中被报告的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计。信道状态信息经编码并被发射回发射机单元。在发射机单元,从接收机单元来的信道状态信息被接收,且传输到接收机单元的数据根据接收到的CSI被处理。Certain embodiments of the present invention provide a method of transmitting data from a transmitter unit to a receiver unit in a MIMO communication system. According to the method, at the receiver unit a number of signals are received via a plurality of receiver antennas, the signal received from each receiving antenna comprising a combination of one or more signals transmitted from the transmitter unit. The received signal is processed (e.g., by a Channel Correlation Matrix Inverse (CCMI) scheme, an Unbiased Minimum Mean Square Error scheme (UMMSE), or some other receiver processing scheme) to derive channel state information, which specifies The plurality of transmission channel characteristics, wherein the reported channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of the plurality of transmission channels. Channel state information is encoded and transmitted back to the transmitter unit. At the transmitter unit, channel state information from the receiver unit is received, and data transmitted to the receiver unit is processed according to the received CSI.

被报告的CSI可能包括全CSI或部分CSI。全CSI包括所有发射和接收天线对间的传播路径的充分的全带宽特性(例如,在可用带宽上的幅度和相位)。部分CSI可能包括例如传输信道的信号对噪声加干扰(SNR)。在发射单元,每个传输信道的数据可能根据传输信道的SNR估计而被编码,且每个传输信道的经编码数据可能根据由SNR估计选择的调制方案而被调制。对全CSI处理,调制码元根据接收到的CSI在传输前经预处理。The reported CSI may include full CSI or partial CSI. Full CSI includes sufficient full bandwidth characteristics (eg, magnitude and phase over the available bandwidth) of the propagation paths between all transmit and receive antenna pairs. Part of the CSI may include, for example, the signal-to-noise-plus-interference (SNR) of the transport channel. At the transmit unit, the data for each transport channel may be encoded according to the SNR estimate of the transport channel, and the encoded data for each transport channel may be modulated according to the modulation scheme selected by the SNR estimate. For full CSI processing, the modulation symbols are pre-processed according to the received CSI before transmission.

本发明另一方面提供了一种多输入多输出通信系统,包括:接收机单元,接收机单元包括:多个前端处理器,用于通过多个接收天线接收多个信号并处理接收到的信号以提供接收到的调制码元;至少一个接收多输入多输出处理器,耦合到前端处理器并用于接收并处理接收到的调制码元以导出信道状态信息,它指示用于数据传输的多个传输信道的特征,以及发射数据处理器,操作上耦合到接收多输入多输出处理器并配置成处理信道状态信息以将其发送回发射机单元。所述通信系统还包括发射机单元,它包括:至少一个解调器,配置为接收并处理一个或多个从接收机单元来的信号以恢复发射的信道状态信息,以及发射数据处理器,配置为根据恢复的信道状态信息对用于传输到接收机单元的数据处理,其中,被报告的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计。Another aspect of the present invention provides a multiple-input multiple-output communication system, including: a receiver unit, the receiver unit includes: multiple front-end processors, used to receive multiple signals through multiple receiving antennas and process the received signals to provide received modulation symbols; at least one receive multiple-input multiple-output processor coupled to the front-end processor and used to receive and process received modulation symbols to derive channel state information, which indicates multiple channels for data transmission A transmit channel characteristic, and a transmit data processor, is operatively coupled to the receive MIMO processor and configured to process channel state information for sending it back to the transmitter unit. The communication system also includes a transmitter unit including at least one demodulator configured to receive and process one or more signals from the receiver unit to recover transmitted channel state information, and a transmit data processor configured to Data for transmission to the receiver unit is processed based on recovered channel state information, wherein the reported channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of a plurality of transmission channels.

本发明的再一方面提供了一种多输入多输出通信系统中的接收机单元,包括:多个前端处理器,配置为通过多个接收天线接收多个发射的信号,并处理接收到的信号以提供接收到的调制码元;滤波器,操作上耦合到多个前端处理器并配置为根据第一矩阵对接收到的调制码元滤波以提供经滤波调制码元,其中第一矩阵代表用于数据传输的多个发射天线和接收天线间的信道特征估计;乘法器,耦合到滤波器并配置为将经滤波的调制码元与第二矩阵相乘以提供对发射的调制码元的估计,其中所述第二矩阵是基于所述第一矩阵导出的逆矩阵;信道质量估计器,耦合到乘法器并配置为估计用于数据传输的多个传输信道的特征,并提供指明多个发射天线和多个接收天线间的多个传输信道的信号对噪声加干扰比估计的信道状态信息,以及发射数据处理器,用于接收和处理从接收机单元来的用于传输的信道状态信息。Still another aspect of the present invention provides a receiver unit in a multiple-input multiple-output communication system, comprising: a plurality of front-end processors configured to receive a plurality of transmitted signals through a plurality of receiving antennas, and process the received signals to provide received modulation symbols; a filter operatively coupled to a plurality of front-end processors and configured to filter the received modulation symbols according to a first matrix to provide filtered modulation symbols, wherein the first matrix represents the Estimation of channel characteristics between a plurality of transmit antennas and receive antennas for data transmission; a multiplier coupled to the filter and configured to multiply the filtered modulation symbols with a second matrix to provide an estimate of the transmitted modulation symbols , wherein the second matrix is an inverse matrix derived based on the first matrix; a channel quality estimator, coupled to the multiplier and configured to estimate the characteristics of a plurality of transmission channels for data transmission, and provide a number of transmit channel state information for signal-to-noise-and-interference ratio estimation for a plurality of transmission channels between the antenna and the plurality of receive antennas, and a transmit data processor for receiving and processing the channel state information for transmission from the receiver unit.

本发明还提供实现本发明各个方面、实施例和特征的方法、系统以及装置,将如下详述。The present invention also provides methods, systems and devices for realizing various aspects, embodiments and features of the present invention, which will be described in detail as follows.

附图说明 Description of drawings

通过下面提出的结合附图的详细描述,本发明的特征、性质和优点将变得更加明显,附图中相同的符号具有相同的标识,其中:The characteristics, properties and advantages of the present invention will become more apparent through the detailed description proposed below in conjunction with the accompanying drawings, in which the same symbols have the same identification, wherein:

图1是能实现本发明不同方面和实施例的多输入多输出(MIMO)通信系统的图;1 is a diagram of a multiple-input multiple-output (MIMO) communication system that can implement various aspects and embodiments of the present invention;

图2A和2B是能实现部分CSI处理以及全CSI处理的MIMO发射机系统的实施例的相应方框图;2A and 2B are respective block diagrams of embodiments of MIMO transmitter systems capable of partial CSI processing as well as full CSI processing;

图3是使用正交频分调制(OFDM)的MIMO发射机系统的实施例方框图;3 is a block diagram of an embodiment of a MIMO transmitter system using Orthogonal Frequency Division Modulation (OFDM);

图4是能提供对不同传输类型不同处理且使用OFDM的MIMO系统的部分的框图;Figure 4 is a block diagram of parts of a MIMO system that can provide different handling for different transmission types and uses OFDM;

图5和图6是两个有多个(NR)接收天线并能根据信道相关矩阵逆(CCMI)技术以及无偏最小均方误差(UMMSE)而处理数据传输的接收机系统的实施例相应的方框图;Figures 5 and 6 are two corresponding embodiments of receiver systems having multiple ( NR ) receiving antennas and capable of processing data transmissions according to Channel Correlation Matrix Inverse (CCMI) techniques and Unbiased Minimum Mean Square Error (UMMSE) block diagram of

图7A示出三个接收机处理技术和不同SNR值的MIMO系统的平均吞吐量;以及Figure 7A shows the average throughput of a MIMO system for three receiver processing techniques and different SNR values; and

图7B示出根据数据直方图产生的三个接收机处理技术的累积概率分布函数(CDF)。Figure 7B shows the cumulative probability distribution functions (CDFs) for the three receiver processing techniques generated from the data histograms.

具体实施方式 Detailed ways

图1是能实现本发明各个方面和实施例的多输入多输出(MIMO)通信系统100的图。系统100包括与第二系统150通信的第一系统110。系统100能用于使用天线、频率和时间分集(以下描述)的组合以增加频谱效率、改善性能并增加灵活性。在一方面,系统150可能用于确定通信链路的特征并将信道状态信息(CSI)报告回系统110,且系统110可能用于根据报告的CSI调整对要发射的数据处理(例如编码和调制)。1 is a diagram of a multiple-input multiple-output (MIMO) communication system 100 that can implement various aspects and embodiments of the present invention. System 100 includes a first system 110 in communication with a second system 150 . System 100 can be used to use a combination of antenna, frequency, and time diversity (described below) to increase spectral efficiency, improve performance, and increase flexibility. In one aspect, system 150 may be used to characterize the communication link and report channel state information (CSI) back to system 110, and system 110 may be used to adjust processing (e.g., coding and modulation) of data to be transmitted based on the reported CSI. ).

在系统110内,数据源112提供数据(即信息比特)到发射(TX)数据处理器114,它根据特定编码方案对数据进行编码,根据特定交织方案对经编码的数据进行交织(即重排序),并将经交织比特映射为一个或多个用于发射数据的传输信道的调制码元。交织提供了对编码比特的时间分集,允许数据根据用于数据传输的传输信道的平均信号对噪声加干扰(SNR)比而被发射,减少衰落,并去除用于形成每个调制码元的经编码比特之间的相关。如果经编码比特在多个频率子信道上被发射,则交织还可能提供频率分集。根据本发明的一方面,编码、交织以及码元映射(或以上的组合)根据系统110可用的全CSI或部分CSI而被实现,如图1指明。Within system 110, data source 112 provides data (i.e., information bits) to transmit (TX) data processor 114, which encodes the data according to a particular coding scheme and interleaves (i.e., reorders) the encoded data according to a particular interleaving scheme. ), and maps the interleaved bits to modulation symbols of one or more transport channels for transmitting data. Interleaving provides time diversity for the coded bits, allows data to be transmitted according to the average signal-to-noise-plus-interference (SNR) ratio of the transmission channel used for data transmission, reduces fading, and removes Correlation between encoded bits. Interleaving may also provide frequency diversity if the coded bits are transmitted on multiple frequency sub-channels. According to an aspect of the present invention, encoding, interleaving, and symbol mapping (or a combination of the above) are implemented according to the full CSI or partial CSI available to the system 110, as indicated in FIG. 1 .

在发射系统110处的编码、交织以及码元映射可能根据多个方案而实现。一个特定的方案在美国专利号09776073内得到描述,题为“CODING SCHEME FORA WIRELESS COMMUNICATION SYSTEM”提交于2001年2月1日,被转让给本发明的受让人,并通过引用被结合于此。Coding, interleaving, and symbol mapping at transmission system 110 may be accomplished according to a number of schemes. One particular scheme is described in US Patent No. 09776073, entitled "CODING SCHEME FORA WIRELESS COMMUNICATION SYSTEM," filed February 1, 2001, assigned to the assignee of the present invention, and incorporated herein by reference.

MIMO系统100在通信链路的发射和接收端使用多个天线。这些发射和接收天线可能用于提供空间分集的各种形式,包括发射分集和接收分集。空间分集特征是使用多个发射天线和一个或多个接收天线。发射分集的特征是在多个发射天线上传输数据。一般,附加处理在从发射天线发射来的数据上实现以获得期望的分集。例如,从不同发射天线发射而来的数据可能经时延或在时间上重排序、在可用的发射天线上经编码和交织等。接收分集的特征是在多个接收天线上对发射的信号的接收,分集是通过简单地接收经不同信号路径的信号而实现。MIMO system 100 uses multiple antennas at the transmit and receive ends of the communication link. These transmit and receive antennas may be used to provide various forms of space diversity, including transmit diversity and receive diversity. Space diversity is characterized by the use of multiple transmit antennas and one or more receive antennas. Transmit diversity is characterized by transmitting data over multiple transmit antennas. Typically, additional processing is performed on the data transmitted from the transmit antennas to achieve the desired diversity. For example, data transmitted from different transmit antennas may be delayed or reordered in time, encoded and interleaved at available transmit antennas, and so on. Receive diversity is characterized by the reception of transmitted signals on multiple receive antennas, and diversity is achieved by simply receiving signals via different signal paths.

系统100可能用于多个不同的通信模式,每个通信模式使用天线、频率或时间分集或以上的组合。通信模式可能包括例如“分集”通信模式以及“MIMO”通信模式。分集通信模式使用分集以改善通信链路的可靠性。在分集通信模式,这还被称为“纯”分集通信模式,的一般应用中数据从所有可用的发射天线发射到接收接收机系统。纯分集通信模式可能用于当数据速率要求较低或当SNR较低或两者皆是情况下。MIMO通信模式在通信链路的两端使用天线分集(即多个发射天线和多个接收天线)并一般用于改善可靠性以及增加通信链路的容量。MIMO通信模式可能还使用频率和/或时间分集结合天线分集。System 100 may be used in a number of different communication modes, each using antenna, frequency or time diversity, or a combination of the above. Communication modes may include, for example, a "diversity" communication mode as well as a "MIMO" communication mode. The diversity communication mode uses diversity to improve the reliability of the communication link. In the general application of diversity communication mode, which is also referred to as "pure" diversity communication mode, data is transmitted from all available transmit antennas to the receiver system. Pure diversity communication mode may be used when data rate requirements are lower or when SNR is lower or both. The MIMO communication mode uses antenna diversity (ie, multiple transmit antennas and multiple receive antennas) at both ends of the communication link and is generally used to improve reliability and increase the capacity of the communication link. MIMO communication modes may also use frequency and/or time diversity in combination with antenna diversity.

系统100还可能利用正交频分调制(OFDM),这有效地将操作频带分成多个(L)频率子信道(即频率箱)。在每个时隙(即特定的取决于频率子信道的带宽的时间间隔),调制码元可能在L频率子信道的每个上被发射。System 100 may also utilize Orthogonal Frequency Division Modulation (OFDM), which effectively divides the operating frequency band into multiple (L) frequency sub-channels (ie, frequency bins). In each time slot (ie a specific time interval depending on the bandwidth of the frequency sub-channels), a modulation symbol may be transmitted on each of the L frequency sub-channels.

系统100可能用于通过多个传输信道发射数据。如上所述,MIMO信道可能被分解为NC个独立的信道,NC≤min{NT,NR}。NC个独立的信道的每个还被称为MIMO信道的空间子信道。对不使用OFDM的MIMO系统,可能只有一个频率子信道且每个空间子信道可能被称为“传输信道”。对使用OFDM的MIMO系统,每个频率子信道的每个空间子信道可能被称为一个传输信道。对不以MIMO通信模式操作的OFDM系统,只有一个空间子信道且每个频率子信道可能被称为传输信道。System 100 may be used to transmit data over multiple transmission channels. As mentioned above, a MIMO channel may be decomposed into N C independent channels, N C ≤ min{N T , NR }. Each of the NC independent channels is also referred to as a spatial sub-channel of the MIMO channel. For MIMO systems that do not use OFDM, there may be only one frequency subchannel and each spatial subchannel may be called a "transport channel". For MIMO systems using OFDM, each spatial subchannel of each frequency subchannel may be referred to as a transport channel. For OFDM systems not operating in MIMO communication mode, there is only one spatial subchannel and each frequency subchannel may be called a transmission channel.

如果使用由多个发射和接收天线建立的附加维数,则MIMO系统可以提供改善的性能。这并不一定需要在发射机处已知CSI,当发射机配备有CSI时,可能会增加系统效率和改善性能,CSI描述从发射天线到接收天线的传输特征。CSI可能被归为“全CSI”或“部分CSI”。MIMO systems can provide improved performance if the additional dimension created by the multiple transmit and receive antennas is used. This does not necessarily require the CSI to be known at the transmitter, which may increase system efficiency and improve performance when the transmitter is equipped with CSI, which describes the characteristics of the transmission from the transmit antenna to the receive antenna. CSI may be classified as "full CSI" or "partial CSI".

全CSI包括在NT×NRMIMO矩阵内的每个发射接收天线对间的传播路径的整个系统频带(即每个频率子信道)的足够特征。全CSI处理指(1)信道特征在发射机和接收机端都可利用,(2)发射机计算MIMO信道的特征模量(如下描述),确定以特征模量发射的调制码元,对调制码元线性预调节(滤波),并发射经预调节的调制码元,以及(3)接收机根据信道特征实现线性发射处理的互补操作(例如空间匹配滤波器)以计算每个传输信道(即每个特征模量)所需的NC个空间匹配滤波器系数。全CSI处理还包括根据信道的特征值(以下描述)处理每个传输信道的数据(例如选择合适的编码和调制方案)以导出调制码元。Full CSI includes sufficient characterization of the entire system frequency band (ie, each frequency subchannel) of the propagation path between each transmit-receive antenna pair within the NT x NR MIMO matrix. Full CSI processing refers to (1) channel characteristics are available at both the transmitter and receiver, (2) the transmitter calculates the characteristic modulus of the MIMO channel (described below), determines the modulation symbols transmitted with the characteristic modulus, and modulates The symbols are linearly pre-adjusted (filtered), and the pre-adjusted modulation symbols are transmitted, and (3) the receiver implements a complementary operation of linear transmit processing (such as a spatial matched filter) according to the channel characteristics to calculate each transmission channel (ie N C spatial matched filter coefficients required for each eigenmodulus). Full CSI processing also includes processing the data for each transport channel (eg selecting an appropriate coding and modulation scheme) according to the channel's eigenvalues (described below) to derive modulation symbols.

部分CSI可能包括,例如传输信道的信号对噪声加干扰比(SNR)(即无OFDM的MIMO系统的每个空间子信道的SNR,或有OFDM的MIMO系统的每个空间子信道的每个频率子信道的SNR)。部分CSI处理可能指根据信道的SNR处理每个传输信道的数据(例如,选择合适的编码和调制方案)。Part of the CSI may include, for example, the signal-to-noise-plus-interference ratio (SNR) of the transport channel (i.e., the SNR per spatial subchannel for a MIMO system without OFDM, or per frequency per spatial subchannel for a MIMO system with OFDM SNR of the subchannel). Part of the CSI processing may refer to processing the data of each transport channel (eg, selecting an appropriate coding and modulation scheme) according to the channel's SNR.

参考图1,TX MIMO处理器120接收并处理从TX数据处理器114来的调制码元以提供适合在MIMO信道上传输的码元。由TX MIMO处理器120实现的处理取决于是否使用全或部分CSI处理,这将在以下详述。1, TX MIMO processor 120 receives and processes modulation symbols from TX data processor 114 to provide symbols suitable for transmission over the MIMO channel. The processing implemented by the TX MIMO processor 120 depends on whether full or partial CSI processing is used, as detailed below.

对全CSI处理,TX MIMO处理器120可能对调制码元解多路复用并预调节。对部分CSI处理,TX MIMO处理器120可能简单地对调制码元解复用。以下将详述全和部分CSI MIMO处理。对使用全CSI处理而不使用OFDM的MIMO系统而言,TX MIMO处理器120为每个发射天线提供经预调节的调制码元流,每个时隙一个经预调节的调制码元。每个经预调节的调制码元是对NC个空间子信道的给定时隙的NC个调制码元的线性(以及加权)组合,如下将详述。对使用全CSI处理和OFDM的MIMO系统,TX MIMO处理器120提供对每个发射天线的经预调节的调制码元向量流,每个向量包括对给定时隙的L个频率子信道的L个经预调节的调制码元。对使用部分CSI处理但不使用OFDM的MIMO系统,TX MIMO处理器120提供每个发射天线的调制码元流,每个时隙一个调制码元。对使用OFDM和部分CSI处理的MIMO系统而言,TX MIMO处理器120提供用于每个发射天线的调制码元向量流,每个向量包括对给定时隙的L个频率子信道的L个调制码元。对上述的所有情况,每个调制码元或调制码元向量的流(或经预调节或未经预调节)由相应的调制器(MOD)122接收并调制,并通过相关的天线124发射。For full CSI processing, the TX MIMO processor 120 may demultiplex and precondition the modulation symbols. For partial CSI processing, TX MIMO processor 120 may simply demultiplex the modulation symbols. Full and partial CSI MIMO processing will be detailed below. For a MIMO system that uses full CSI processing without OFDM, TX MIMO processor 120 provides a stream of preconditioned modulation symbols for each transmit antenna, one preconditioned modulation symbol per slot. Each preconditioned modulation symbol is a linear (and weighted) combination of the NC modulation symbols for a given time slot of the NC spatial subchannels, as will be detailed below. For MIMO systems using full CSI processing and OFDM, TX MIMO processor 120 provides a stream of preconditioned modulation symbol vectors for each transmit antenna, each vector comprising L frequency subchannels for a given time slot Preconditioned modulation symbols. For MIMO systems using partial CSI processing but not OFDM, TX MIMO processor 120 provides a stream of modulation symbols for each transmit antenna, one modulation symbol per slot. For MIMO systems using OFDM and partial CSI processing, TX MIMO processor 120 provides a stream of modulation symbol vectors for each transmit antenna, each vector comprising L modulations for L frequency subchannels of a given time slot symbol. For all of the above cases, each modulation symbol or stream of modulation symbol vectors (either preconditioned or not) is received and modulated by a corresponding modulator (MOD) 122 and transmitted via an associated antenna 124 .

在图1示出的实施例中,接收机系统150包括许多接收发射的信号并提供接收的信号给相应的解调器(DEMOD)154的接收天线152。每个解调器154实现与调制器122处互补的处理。从所有解调器154来的已调码元提供给接收(RX)MIMO处理器156并以以下描述的方式经处理。传输信道的接收调制码元然后提供给RX数据处理器158,它实现与TX数据处理器114互补的处理。在特定设计中,RX数据处理器158提供比特值,指明接收到的调制码元,对比特值解交织,并对解交织的值解码以生成已解码比特,然后提供给数据宿160。接收到的码元的解映射、解交织和解码是与发射机系统110处的码元映射、交织以及编码互补的。接收机系统150的处理将在以下详述。In the embodiment shown in FIG. 1 , receiver system 150 includes a number of receive antennas 152 that receive transmitted signals and provide received signals to corresponding demodulators (DEMODs) 154 . Each demodulator 154 implements processing complementary to that at modulator 122 . The modulated symbols from all demodulators 154 are provided to receive (RX) MIMO processor 156 and processed in the manner described below. The received modulation symbols for the transport channel are then provided to an RX data processor 158 which performs processing complementary to TX data processor 114 . In a particular design, RX data processor 158 provides bit values indicative of received modulation symbols, deinterleaves the bit values, and decodes the deinterleaved values to generate decoded bits, which are then provided to data sink 160 . The demapping, deinterleaving and decoding of the received symbols is complementary to the symbol mapping, interleaving and encoding at the transmitter system 110 . The processing of receiver system 150 will be described in detail below.

MIMO系统的空间子信道(或更一般地,带有或没有OFDM的MIMO系统的传输信道)一般经历不同的链路条件(例如,不同衰减和多径效应)且可能获得不同的SNR。相应地,传输信道的容量可能在信道与信道间有所不同。该容量可能由对于特定性能级别在每个传输信道上发射的信息比特速率(即每调制码元的信息比特数)量化。而且,链路条件一般随时间变化。确定描述链路条件的CSI其结果,对传输信道所支持的特率也随时间而变化。为更充分利用传输信道的容量,可能(一般在接收单元处)且提供给发射单元使得能相应地调整(或适应)处理。本发明的方面提供确定和利用(全或部分)CSI的技术以提供经改善的系统性能。The spatial subchannels of a MIMO system (or more generally, the transport channel of a MIMO system with or without OFDM) typically experience different link conditions (eg, different fading and multipath effects) and may achieve different SNRs. Accordingly, the capacity of the transmission channel may vary from channel to channel. This capacity may be quantified by the information bit rate (ie the number of information bits per modulation symbol) transmitted on each transport channel for a particular performance level. Also, link conditions typically change over time. As a result of determining the CSI describing link conditions, the supported bit rates for the transport channel also vary over time. To more fully utilize the capacity of the transmission channel, it is possible (typically at the receiving unit) and provided to the transmitting unit so that the processing can be adjusted (or adapted) accordingly. Aspects of the invention provide techniques for determining and utilizing (full or partial) CSI to provide improved system performance.

带有部分CSI处理的MIMO发射机系统MIMO Transmitter System with Partial CSI Processing

图2A是MIMO发射机系统110a的实施例的方框图,这是图1中系统110的发射机部分的实施例。发射机系统110a(不使用OFDM)能根据接收机系统150报告的部分CSI调整其处理。系统110a包括(1)接收并处理信息比特以提供调制码元的TX数据处理器114a以及(2)对NT个发射天线的调制码元解复用的TXMIMC处理器120a。FIG. 2A is a block diagram of an embodiment of a MIMO transmitter system 110a, which is an embodiment of the transmitter portion of system 110 in FIG. 1 . Transmitter system 110a (not using OFDM) can adjust its processing based on the partial CSI reported by receiver system 150 . System 110a includes (1) a TX data processor 114a that receives and processes information bits to provide modulation symbols and (2) a TXMIMC processor 120a that demultiplexes modulation symbols for NT transmit antennas.

TX数据处理器114a是图1中的TX数据处理器114的一实施例,且许多其它设计还可能用于TX数据处理器114并在本发明的范围内。在图2A示出的特定实施例中,TX数据处理器114a包括编码器202、信道交织器204、截短器206以及码元映射元件208。编码器202接收并根据特定编码方案对信息比特编码以提供经编码比特。信道交织器204根据特定交织方案对经编码的比特进行交织以提供分集。截短器206截去零个或多个经交织经编码的比特以提供期望的经编码比特。码元映射元件208将未被截去的经编码比特映射为一个或多个用于发射数据的传输信道的调制码元。TX data processor 114a is one embodiment of TX data processor 114 in FIG. 1, and many other designs are possible for TX data processor 114 and are within the scope of the invention. In the particular embodiment shown in FIG. 2A , TX data processor 114a includes encoder 202 , channel interleaver 204 , puncturer 206 , and symbol mapping element 208 . An encoder 202 receives and encodes the information bits according to a particular encoding scheme to provide encoded bits. A channel interleaver 204 interleaves the coded bits according to a particular interleaving scheme to provide diversity. A truncator 206 truncates zero or more interleaved encoded bits to provide the desired encoded bits. A symbol mapping element 208 maps the non-truncated encoded bits into modulation symbols of one or more transport channels for transmitting data.

虽然为简洁缘故未在图2A中示出,导频数据(例如已知模式的数据)可能与经处理的信息比特一起经编码和复用。经处理的导频数据可能在所有或一组用于发射信息比特的传输信道的子集上发射(例如以时分多路复用方式)。如在在领域内已知的且将在以下详述的,导频数据可能在接收机处用于实现信道估计。Although not shown in FIG. 2A for the sake of brevity, pilot data (eg, data of a known pattern) may be encoded and multiplexed with the processed information bits. The processed pilot data may be transmitted (eg in a time division multiplexed fashion) on all or a subset of the set of transport channels used to transmit the information bits. As is known in the art and will be detailed below, pilot data may be used at the receiver to enable channel estimation.

如图2A示出,可能根据接收机系统150报告的部分CSI而调整编码和调制。在一实施例中,通过使用固定的基本码(例如速率1/3的Turbo码)以及调整截短以获得期望的码率来实现自适应编码的,如由用于发射数据的传输信道的SNR支持的。或者,可能根据报告的部分CSI而使用不同的编码方案(如由虚线箭头指向方框202所指)。例如,传输信道的每个可能用独立的码而实现编码。用该编码方案,可能使用相继“零化/均衡以及干扰对消”接收机处理方案以检测并对数据流解码以导出对发射的数据流更可靠的估计。一种该种接收机处理方案由P.W.Wolniansky,et al在论文中描述,题为“V-BLAST:An Architecture for AchievingVery High Data Rates over the Rich-Scattering WirelessChannel”,Proc.ISSSE-98,Pisa,Italy。被转让给本发明的受让人,并通过引用被结合于此。As shown in FIG. 2A , the coding and modulation may be adjusted based on the partial CSI reported by the receiver system 150 . In one embodiment, adaptive coding is achieved by using a fixed base code (e.g., a rate 1/3 Turbo code) and adjusting truncation to obtain the desired code rate, as determined by the SNR of the transmission channel used to transmit the data supported. Alternatively, different coding schemes may be used depending on the reported partial CSI (as indicated by the dashed arrow pointing to block 202). For example, each of the transmission channels may be encoded with a separate code. With this encoding scheme, it is possible to use a sequential "nullization/equalization and interference cancellation" receiver processing scheme to detect and decode the data stream to derive a more reliable estimate of the transmitted data stream. One such receiver processing scheme is described by P.W. Wolniansky, et al in a paper entitled "V-BLAST: An Architecture for Achieving Very High Data Rates over the Rich-Scattering Wireless Channel", Proc. ISSSE-98, Pisa, Italy . Assigned to the assignee of the present invention and incorporated herein by reference.

对每个传输信道,码元映射元件208可能设计成将未被截去的经编码的比特分组成集以形成非二进制码元,并将非二进制码元映射成对应的为该传输信道选择的特定调制方案(例如QPSK、M-PSK、M-QAM或一些其它方案)的信号星座图内的点。每个经映射的点对应调制码元。对某特定性能级别(例如百分之一分组误差率)为每个调制码元可能发射的信息比特数取决于传输信道的SNR。因此,每个传输信道的编码方案以及调制方案可能根据报告的部分CSI而被选择。信道交织可能根据报告的部分CSI而被调整(由指向方框204的虚线箭头指明)。For each transport channel, the symbol mapping element 208 may be designed to group the untruncated coded bits into groups to form non-binary symbols, and to map the non-binary symbols into corresponding A point within a signal constellation diagram of a particular modulation scheme (eg, QPSK, M-PSK, M-QAM, or some other scheme). Each mapped point corresponds to a modulation symbol. The number of information bits that may be transmitted per modulation symbol for a particular level of performance (eg, one percent packet error rate) depends on the SNR of the transport channel. Therefore, the coding scheme as well as the modulation scheme for each transport channel may be selected according to the reported partial CSI. Channel interleaving may be adjusted according to the reported partial CSI (indicated by the dashed arrow pointing to block 204).

表1列出可能用于一定数目的SNR范围的不同编码速率和调制方案的组合。每个传输信道支持的比特速率可能使用多个可能的编码速率和调制方案的组合中的任何一个而获得。例如,每码元一信息比特可能通过使用以下方式获得(1)编码速率为1/2,以及QPSK调制(2)编码速率为1/3,以及8-PSK调制,(3)编码速率为1/4,以及16-QAM调制或一些其它码率和调制方案的组合。在表1中,QPSK、16-QAM以及64-QAM用于列出的SNR范围。其它调制方案诸如8-PSK、32-QAM、128-QAM等,还可能被使用并在本发明的范围内。Table 1 lists different coding rate and modulation scheme combinations possible for a certain number of SNR ranges. The bit rate supported by each transport channel may be obtained using any of a number of possible combinations of coding rates and modulation schemes. For example, one information bit per symbol may be obtained by using (1) a coding rate of 1/2, and QPSK modulation (2) a coding rate of 1/3, and 8-PSK modulation, (3) a coding rate of 1 /4, and 16-QAM modulation or some other combination of code rate and modulation scheme. In Table 1, QPSK, 16-QAM, and 64-QAM are used for the listed SNR ranges. Other modulation schemes, such as 8-PSK, 32-QAM, 128-QAM, etc., may also be used and are within the scope of the present invention.

表1Table 1

  SNR范围 信息比特/码元的#   调制码元 经编码的比特/码元的#     编码速率 1.5-4.4 1 QPSK 2 1/2 4.4-6.4 1.5 QPSK 2 3/4 6.4-8.35 2 16-QAM 4 1/2 8.35-10.4 2.5 16-QAM 4 5/8 10.4-12.3 3 16-QAM 4 3/4 12.3-14.15 3.5 64-QAM 6 7/12 14.15-15.55 4 64-QAM 6 2/3 SNR range # of information bits/symbols modulation symbol # of encoded bits/symbols encoding rate 1.5-4.4 1 QPSK 2 1/2 4.4-6.4 1.5 QPSK 2 3/4 6.4-8.35 2 16-QAM 4 1/2 8.35-10.4 2.5 16-QAM 4 5/8 10.4-12.3 3 16-QAM 4 3/4 12.3-14.15 3.5 64-QAM 6 7/12 14.15-15.55 4 64-QAM 6 2/3

  15.55-17.35 4.5 64-QAM 6 3/4 >17.35 5 64-QAM 6 5/6 15.55-17.35 4.5 64-QAM 6 3/4 >17.35 5 64-QAM 6 5/6

从TX数据处理器114a来的调制码元被提供给TX MIMO处理器120a,这是图1内的TX MIMO处理器120的一个实施例。在TX MIM0处理器120a内,解复用器214将接收到的调制码元解复用为多个(NT)调制码元流,对用于发射调制码元的每个天线一个流。每个调制码元流提供给相应的调制器122。每个调制器122将调制码元转变为模拟信号,且进一步放大、滤波、正交调制并将信号上变频以生成适合在无线链路上传输的已调信号。The modulation symbols from TX data processor 114a are provided to TX MIMO processor 120a, which is one embodiment of TX MIMO processor 120 in FIG. 1 . Within TX MIMO processor 120a, a demultiplexer 214 demultiplexes received modulation symbols into multiple ( NT ) modulation symbol streams, one stream for each antenna from which modulation symbols are being transmitted. Each modulation symbol stream is provided to a corresponding modulator 122 . Each modulator 122 converts the modulation symbols to an analog signal, and further amplifies, filters, quadrature modulates, and upconverts the signal to generate a modulated signal suitable for transmission over the wireless link.

如果空间子信道数小于可用的发射天线数(即NC<NT),则可能使用各种方案用于数据传输。在一种方案中,NC调制码元流在可用发射天线的子集(即NC上生成并发射。剩余的NT-NC个发射天线并不用于数据传输。在另一方案中,由(NT-NC)附加发射天线提供的附加的自由度用于改善数据传输的可靠性。对该方案,一个或多个数据流的每个可被编码、可能经交织并在多个发射天线上发射。对数据流使用多个发射天线增加了分集并改善了恶化的路径效应的可靠性。If the number of spatial sub-channels is less than the number of available transmit antennas (ie, N C < N T ), various schemes may be used for data transmission. In one approach, NC modulated symbol streams are generated and transmitted on a subset of the available transmit antennas, namely NC . The remaining NT - NC transmit antennas are not used for data transmission. In another approach, The additional degrees of freedom provided by ( NT - NC ) additional transmit antennas are used to improve the reliability of data transmission. To this scheme, each of one or more data streams can be encoded, possibly interleaved and distributed between multiple Transmit on Transmit Antennas. Using multiple transmit antennas for data streams increases diversity and improves reliability against degraded path effects.

带全CSI处理的MIMO发射机系统MIMO Transmitter System with Full CSI Processing

图2B是MIMO发射机系统110b(未使用OFDM)的实施例模块图,它能根据由接收机系统150报告的全CSI处理数据。信息比特经编码、交织并经TX数据处理器114码元映射以生成调制码元。编码和调制可能根据由接收机系统报告的可用全CSI而经调整,且可能如同上述MIMO发射机系统110a所描述地实行。2B is a block diagram of an embodiment of a MIMO transmitter system 110b (not using OFDM) capable of processing data based on the full CSI reported by the receiver system 150. The information bits are encoded, interleaved, and symbol mapped by a TX data processor 114 to generate modulation symbols. Coding and modulation may be adjusted according to the available full CSI reported by the receiver system, and may be performed as described above for MIMO transmitter system 110a.

在TX MIMO处理器120b内,信道MIMO处理器212对接收到的调制码元解复用成多个(NC)调制码元流,每个用于发射调制码元的空间子信道(即特征模是)一个流。对全CSI处理,信道MIMO处理器212对NC个在每个时隙处的调制码元进行预调节以生成NT个经预调节的调制码元,如下:Within TX MIMO processor 120b, channel MIMO processor 212 demultiplexes the received modulation symbols into multiple (N C ) modulation symbol streams, one for each spatial subchannel (i.e., characteristic module is) a stream. For full CSI processing, the channel MIMO processor 212 preconditions the NC modulation symbols at each slot to generate NT preconditioned modulation symbols, as follows:

x 1 x 2 M x N T = e 11 , e 12 , e 1 N c e 21 , e 22 , e 2 N c e N T 1 , e N T 1 , e N T N c &CenterDot; b 1 b 2 M b N C            等式(1) x 1 x 2 m x N T = e 11 , e 12 , e 1 N c e twenty one , e twenty two , e 2 N c e N T 1 , e N T 1 , e N T N c &Center Dot; b 1 b 2 m b N C Equation (1)

其中,b1,b2...以及

Figure C02808558D0016125112QIETU
是相应的空间子信道1、2...的调制码元,其中NC个调制码元的每个可能使用例如M-PSK、M-QAM或一些其它调制方案生成;where b 1 , b 2 ... and
Figure C02808558D0016125112QIETU
are the corresponding spatial subchannels 1, 2... modulation symbols, where each of the N modulation symbols may be generated using, for example, M-PSK, M-QAM, or some other modulation scheme;

eij是与从发射天线到接收天线的传输特征相关的特征向量矩阵E的元素;以及e ij are the elements of the matrix E of eigenvectors related to the characteristics of the transmission from the transmitting antenna to the receiving antenna; and

Figure C02808558D00171
是经预调节的调制码元,这可以表达为:
Figure C02808558D00171
is the preconditioned modulation symbol, which can be expressed as:

xx 11 == bb 11 &CenterDot;&CenterDot; ee 1111 ++ bb 22 &CenterDot;&Center Dot; ee 1212 ++ .. .. .. ++ bb NN CC &CenterDot;&CenterDot; ee 11 NN CC ,,

xx 22 == bb 11 &CenterDot;&Center Dot; ee 21twenty one ++ bb 22 &CenterDot;&Center Dot; ee 22twenty two ++ .. .. .. ++ bb NN CC &CenterDot;&Center Dot; ee 22 NN CC ,,

xx NN TT == bb 11 &CenterDot;&Center Dot; ee NN TT 11 ++ bb 22 &CenterDot;&Center Dot; ee NN TT 22 ++ .. .. .. ++ bb NN CC &CenterDot;&Center Dot; ee NN TT NN CC

特征向量矩阵E可能由发射机计算或由接收机提供给发射机。The eigenvector matrix E may be calculated by the transmitter or provided to the transmitter by the receiver.

对于全CSI处理,每个经预调节的调制码元xi,对特定的发射天线表示多达NC个空间子信道的(加权)调制码元的线性组合。对每个调制码元xi使用的调制方案是基于该特征模量的有效SNR且与特征值λi成正比(以下描述)。NC个用于生成每个经预调节的调制码元的调制码元的每个可能与不同的信号星座图相关。对每个时隙,NT个由信道MIMO处理器212生成的经预调节的调制码元由解复用器214解复用并提供给NT个调制器122。For full CSI processing, each preconditioned modulation symbol xi represents a linear combination of (weighted) modulation symbols of up to NC spatial subchannels for a particular transmit antenna. The modulation scheme used for each modulation symbol x i is based on the effective SNR of the eigenmodulus and is proportional to the eigenvalue λ i (described below). Each of the NC modulation symbols used to generate each preconditioned modulation symbol may be associated with a different signal constellation. NT preconditioned modulation symbols generated by channel MIMO processor 212 are demultiplexed by demultiplexer 214 and provided to NT modulators 122 for each slot.

全CSI处理可能根据可用的CSI以及经选择的发射天线而实现。全CSI处理还可能选择性并动态地启用和停用。例如,全CSI处理可能为特定的数据传输而启用,并为其它一些数据传输停用。全CSI处理可能在一定条件下启用,例如当通信链路有足够的SNR时。Full CSI processing is possible depending on available CSI and selected transmit antennas. Full CSI processing may also be selectively and dynamically enabled and disabled. For example, full CSI processing may be enabled for certain data transfers and disabled for others. Full CSI processing may be enabled under certain conditions, such as when the communication link has sufficient SNR.

带有OFDM的MIMO发射机系统MIMO Transmitter System with OFDM

图3是MIMO发射机系统110c的实施例的方框图,它使用OFDM并能根据全或部分CSI调整其处理。信息比特经编码、经交织、经截短,并由TX数据处理器114码元映射以生成调制码元。编码和调制可能根据接收机系统报告的可用的全或偏CSI而调整。对有OFDM的MIMO系统,调制码元可能在多个频率子信道上从多个发射天线发射。当操作在纯MIMO通信模式时,在每个频率子信道上以及从每个发射天线来的发射代表非复制数据。Figure 3 is a block diagram of an embodiment of a MIMO transmitter system 110c that uses OFDM and can adjust its processing based on full or partial CSI. The information bits are encoded, interleaved, truncated, and symbol mapped by a TX data processor 114 to generate modulation symbols. Coding and modulation may be adjusted according to available full or partial CSI reported by the receiver system. For MIMO systems with OFDM, modulation symbols may be transmitted from multiple transmit antennas on multiple frequency sub-channels. When operating in pure MIMO communication mode, the transmissions on each frequency sub-channel and from each transmit antenna represent non-duplicated data.

在MIMO处理器120c内,解复用器(DEMUX)310接收并对调制码元解复用为多个子信道码元流S1到SL,一个子信道码元流对应每个用于发射码元的频率子信道。Within the MIMO processor 120c, a demultiplexer (DEMUX) 310 receives and demultiplexes the modulation symbols into a plurality of sub-channel symbol streams S 1 to S L , one sub-channel symbol stream for each transmitted code The frequency subchannel of the element.

对全CSI处理,每个子信道码元流被提供给相应的子信道MIMO处理器312。每个子信道MIMO处理器312对接收到的子信道码元流解复用为多个(多达到NC个)码元子流,每个用于发射调制码元的空间子信道一个码元子流。对OFDM系统内的全CST处理,导出特征模式并在每频率子信道的基础上被应用。因此,每个子信道MIMO处理器312根据等式(1)可以对多达NC的调制码元进行预调节以生成经预调节的调制码元。每个对特定频率子信道的特定发射天线的经预调节的调制码元代表多达NC个空间子信道的(加权)调制码元的线性组合。For full CSI processing, each sub-channel symbol stream is provided to a corresponding sub-channel MIMO processor 312 . Each subchannel MIMO processor 312 demultiplexes the received subchannel symbol stream into multiple (up to N C ) symbol substreams, one symbol substream for each spatial subchannel used to transmit modulation symbols flow. For full CST processing within OFDM systems, eigenmodes are derived and applied on a per-frequency subchannel basis. Accordingly, each subchannel MIMO processor 312 can precondition up to Nc modulation symbols according to equation (1) to generate preconditioned modulation symbols. Each preconditioned modulation symbol for a particular transmit antenna for a particular frequency subchannel represents a linear combination of (weighted) modulation symbols for up to NC spatial subchannels.

对全CSI处理,每个时隙的由每个MIMO处理器312生成的(可达)NT个经预调节的调制码元由相应的解复用器314解复用,且被提供给(可达)NT个码元组合器316a到316t。例如,分配给频率子信道1的子信道MIMO处理器312a可能提供用于天线1到NT的频率子信道1的多达NT个经预调节的调制码元。同样地,分配给频率子信道L的子信道MIMO处理器3121可能提供天线1到NT的频率子信道L的多达NT个码元。For full CSI processing, the (up to) NT preconditioned modulation symbols per slot generated by each MIMO processor 312 are demultiplexed by the corresponding demultiplexer 314 and provided to ( up to) NT symbol combiners 316a through 316t. For example, subchannel MIMO processor 312a assigned to frequency subchannel 1 may provide up to NT preconditioned modulation symbols for frequency subchannel 1 of antennas 1 through NT . Likewise, subchannel MIMO processor 3121 assigned to frequency subchannel L may provide up to NT symbols for frequency subchannel L for antennas 1 to NT .

对部分CSI处理,每个子信道码元流S,由相应的解复用器314解复用并提供给(多达)NT个码元组合器316a到316t。子信道MIMO处理器312的处理对部分CSI处理被旁路了。For partial CSI processing, each subchannel symbol stream, S, is demultiplexed by a corresponding demultiplexer 314 and provided to (up to) NT symbol combiners 316a through 316t. The processing of the sub-channel MIMO processor 312 is bypassed for part of the CSI processing.

每个组合器316为多达L个频率子信道接收调制码元,将每个时隙的码元组合成调制码元向量V,并将调制码元向量提供给下一处理级(即调制器122)。Each combiner 316 receives modulation symbols for up to L frequency subchannels, combines the symbols for each slot into a modulation symbol vector V, and provides the modulation symbol vector to the next processing stage (i.e. modulator 122).

因此MIMO处理器120c接收并处理调制码元以提供NT个调制码元向量V1到VT,每个发射天线一个调制码元向量。每个调制码元向量V占用单一一个时隙,且调制码元向量V的每个元素都与特定带有唯一子载波的频率子信道相关,调制码元在此载波上传输。如果不以“纯”MIMO通信模式操作,调制码元向量中一些可能对不同发射天线在特定的频率子信道上有重复或冗余信息。The modulation symbols are thus received and processed by MIMO processor 120c to provide NT modulation symbol vectors V1 through VT , one modulation symbol vector for each transmit antenna. Each modulation symbol vector V occupies a single time slot, and each element of the modulation symbol vector V is associated with a specific frequency subchannel with a unique subcarrier on which the modulation symbol is transmitted. If not operating in a "pure" MIMO communication mode, some of the modulation symbol vectors may have duplicate or redundant information on specific frequency sub-channels for different transmit antennas.

图3还示出了OFDM的解调器122的实施例。从MIMO处理器120c来得调制码元向量V1到VT被提供给相应的调制器122a到122t。在图3示出的实施例中,每个调制器122包括反快速傅立叶变换(IFFT)320,循环前缀发生器322以及上变频器324。FIG. 3 also shows an embodiment of the demodulator 122 for OFDM. Modulation symbol vectors V1 through VT from MIMO processor 120c are provided to corresponding modulators 122a through 122t. In the embodiment shown in FIG. 3 , each modulator 122 includes an inverse fast Fourier transform (IFFT) 320 , a cyclic prefix generator 322 and an upconverter 324 .

IFFT 320使用IFFT将每个接收到的调制码元向量转换为其时域表示(被称为OFDM码元)。IFFT 320能设计成在任何数量的频率子信道上实现IFFT(例如8、16、32等)。在一实施例中,对每个被转变成OFDM码元的调制码元向量而言,循环前缀发生器322重复OFDM码元的时域表示的一部分以形成对特定发射天线的传输码元。循环前缀保证传输码元在有多径时延扩展时保留它的正交性,因此改善了恶化路径效应。IFFT 320的实现以及循环前缀发生器在技术领域内是已知的,在此不作详细描述。IFFT 320 converts each received modulation symbol vector to its time-domain representation (referred to as an OFDM symbol) using an IFFT. IFFT 320 can be designed to perform IFFT on any number of frequency sub-channels (eg, 8, 16, 32, etc.). In one embodiment, for each modulation symbol vector that is converted into an OFDM symbol, cyclic prefix generator 322 repeats a portion of the time domain representation of the OFDM symbol to form a transmission symbol to a particular transmit antenna. The cyclic prefix ensures that the transmitted symbols retain their orthogonality when multipath delay spreads, thus improving the degradation path effects. Implementations of IFFT 320 and cyclic prefix generators are known in the art and will not be described in detail here.

每个循环前缀发生器322的时域表示(即每个天线的传输码元)然后经上变频器324处理(例如转变为模拟信号、经调制、经放大以及经滤波)以生成已调信号,然后从相应的天线124发射。The time-domain representation of each CP generator 322 (i.e., the transmitted symbols for each antenna) is then processed (e.g., converted to analog, modulated, amplified, and filtered) by an upconverter 324 to generate a modulated signal, It is then transmitted from the corresponding antenna 124 .

OFDM调制在下述论文中得到详细描述,题为“Multicarrier Modulation forDataTransmission:An Idea Whose Time Has Come”,作者为John A.C Bingham,IEEE通信杂志,1990年五月,在此引入作为参考。OFDM modulation is described in detail in the paper entitled "Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come" by John A.C Bingham, IEEE Journal of Communications, May 1990, which is incorporated herein by reference.

许多不同类型的传输(例如语音、信令、数据、导频等)可能由通信系统发射。这些传输的每种可能需要不同处理。Many different types of transmissions (eg, voice, signaling, data, pilot, etc.) may be transmitted by a communication system. Each of these transfers may require different handling.

图4是能提供不同传输类型的不同处理并使用OFDM的MIMO发射机系统的部分的方框图。集合输入数据,包括所有由系统110d发射的信息比特,提供给解复用器408。解复用器408将输入数据解复用为多个(K)信道数据流B1到BK。每个信道数据流可能对应例如信令信道、广播信道、语音呼叫或分组数据传输。每个信道数据流提供给相应的TX数据处理器114,它用为该信道数据流选择的特定编码方案对数据编码,根据特定交织方案对经编码的数据交织,并将经交织比特映射为用于发射该信道数据流的一个或多个传输信道的调制码元。Figure 4 is a block diagram of a portion of a MIMO transmitter system capable of providing different processing of different transmission types and using OFDM. The aggregated input data, including all information bits transmitted by system 110d, is provided to demultiplexer 408. The demultiplexer 408 demultiplexes the input data into multiple (K) channel data streams B 1 through B k . Each channel data stream may correspond to eg a signaling channel, a broadcast channel, a voice call or a packet data transmission. Each channel data stream is provided to a corresponding TX data processor 114, which encodes the data with the particular coding scheme selected for that channel data stream, interleaves the encoded data according to the particular interleaving scheme, and maps the interleaved bits into Modulation symbols for one or more transport channels that transmit data streams for that channel.

编码可能在每个传输基础上实现(即在如图4示出的信道数据流上)。然而,编码也可能实现在集合输入数据上(如图1示出)、在多个信道数据流上、在信道数据流的一部分上、跨过一组频率子信道、跨过一组空间子信道、跨过一组频率子信道和空间子信道、跨过每个频率子信道、在每个调制码元上、或在一些其它的时间、空间以及频率单元上。Encoding may be done on a per-transmission basis (ie on a channel stream as shown in Figure 4). However, encoding may also be implemented on aggregate input data (as shown in Figure 1), on multiple channel data streams, on a portion of a channel data stream, across a set of frequency subchannels, across a set of spatial subchannels , across a set of frequency subchannels and spatial subchannels, across each frequency subchannel, over each modulation symbol, or over some other time, space, and frequency unit.

从每个TX数据处理器114来的调制码元流可能在一个或多个频率子信道上发射,且通过每个频率子信道的一个或多个空间子信道。TX MIMO处理器120d从TX数据处理器114接收调制码元流。根据用于每个调制码元流的通信模式,TX MIMO处理器120d可能将调制码元流解复用为多个子信道码元流。在图4示出的实施例中,调制码元流S1在一个频率子信道上发射且调制码元流SK在L个频率子信道上发射。每个频率子信道的调制流由相应的子信道MIMO处理器412处理、由解复用器414解复用,且由组合器416组合(例如以与图3描述的类似的方式)以形成每个发射天线的调制码元向量。Modulation symbol streams from each TX data processor 114 may be transmitted on one or more frequency subchannels and through one or more spatial subchannels of each frequency subchannel. TX MIMO processor 120d receives a stream of modulation symbols from TX data processor 114 . Depending on the communication mode used for each modulation symbol stream, TX MIMO processor 12Od may demultiplex the modulation symbol stream into multiple subchannel symbol streams. In the embodiment shown in Fig. 4, the modulation symbol stream S 1 is transmitted on one frequency sub-channel and the modulation symbol stream S K is transmitted on L frequency sub-channels. The modulated streams for each frequency subchannel are processed by a corresponding subchannel MIMO processor 412, demultiplexed by a demultiplexer 414, and combined by a combiner 416 (e.g., in a manner similar to that described for FIG. 3) to form each Modulation symbol vector of transmit antennas.

一般而言,发射机系统根据描述该信道传输容量的信息对每个传输信道的数据编码并调制。该信息一般是以上述的全CSI或部分CSI形式。用于数据传输的传输信道的全/部分CSI一般在接收机系统处被确定并报告回发射机系统,它然后使用该信息以相应地调整编码和调制。在此描述的技术可应用于多个能支持多个平行传输信道的MIMO、OFDM或其它任何通信方案(例如CDMA方案)支持的平行传输信道。In general, the transmitter system encodes and modulates the data for each transmission channel according to information describing the transmission capacity of that channel. This information is generally in the form of full CSI or partial CSI as described above. The full/partial CSI of the transport channel used for data transmission is typically determined at the receiver system and reported back to the transmitter system, which then uses this information to adjust coding and modulation accordingly. The techniques described herein are applicable to multiple parallel transmission channels supported by MIMO, OFDM, or any other communication scheme (eg, a CDMA scheme) capable of supporting multiple parallel transmission channels.

MIMO处理在美国专利序列号09532492内进一步得到描述,题为“HIGHEFFICIENCY,HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-CARRIERMODULATION”,提交于2000年3月,被转让给本发明的受让人,并通过引用被结合于此。MIMO processing is further described in U.S. Patent Serial No. 09532492, entitled "HIGHEFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-CARRIERMODULATION," filed March 2000, assigned to the assignee of the present invention, and incorporated by reference here.

MIMO接收系统MIMO receiving system

本发明的各方面提供在MIMO系统内处理接收到信号以恢复发射的数据的技术,并估计MIMO信道特性。估计的信道特性然后可能报告回发射机系统并用于调整信号处理(例如,编码、调制等)。这样,可以根据确定的信道条件获得高性能。在此描述的接收机处理技术包括信道相关矩阵逆(CCMI)技术、无偏最小均方误差(UMMSE)技术以及全CSI技术,所有的这些将在下面详述。还可能使用其它接收机处理技术并在本发明范围内。Aspects of the invention provide techniques for processing received signals within a MIMO system to recover transmitted data and estimate MIMO channel characteristics. The estimated channel characteristics may then be reported back to the transmitter system and used to adjust signal processing (eg, coding, modulation, etc.). In this way, high performance can be achieved depending on the determined channel conditions. Receiver processing techniques described herein include channel correlation matrix inverse (CCMI) techniques, unbiased minimum mean square error (UMMSE) techniques, and full CSI techniques, all of which are detailed below. It is also possible to use other receiver processing techniques and be within the scope of the present invention.

图1示出带有多个(NR)接收天线并能处理数据传输的接收机系统150。从多达NT个发射天线来的发射信号由NR个天线152a到152r接收并路由到相应的解调器(DEMOD)154(也被称为前端处理器)。例如,接收天线152a还可能接收从多个发射天线来的多个发射信号,并且接收天线152r可能类似地接收多个发射信号。每个解调器154将接收信号条件化(例如过滤和放大),将经条件化的信号下变频到中频或基带,并将经下变频的信号数字化。每个解调器154还可能用接收的导频对数字化的采样解调以生成接收到的调制码元,提供给RXMIMO处理器156。Figure 1 shows a receiver system 150 with multiple ( NR ) receive antennas and capable of handling data transmissions. Transmit signals from up to NT transmit antennas are received by NR antennas 152a through 152r and routed to respective demodulators (DEMODs) 154 (also referred to as front-end processors). For example, receive antenna 152a may also receive multiple transmit signals from multiple transmit antennas, and receive antenna 152r may similarly receive multiple transmit signals. Each demodulator 154 conditions (eg, filters and amplifies) the received signal, downconverts the conditioned signal to an intermediate frequency or baseband, and digitizes the downconverted signal. Each demodulator 154 may also demodulate the digitized samples with received pilots to generate received modulation symbols, which are provided to RXMIMO processor 156 .

如果OFDM用于数据传输,每个解调器154还实现与图3示出的调制器122实现的互补的处理。在这种情况下,每个解调器154包括FFT处理器(未示出),它生成采样的变换后的表示并提供调制码元向量流,每个向量包括L个频率子信道的L个调制码元。从所有解调器的FFT处理器来的调制码元向量流然后提供给解复用器/组合器(未在图5示出),它首先将从每个FFT处理器来的调制码元向量流“信道化”为多个(多达L)个子信道码元流。每个(多达)L个子信道码元流然后可能提供给相应的RX MIMO处理器156。Each demodulator 154 also implements complementary processing to that implemented by modulator 122 shown in FIG. 3 if OFDM is used for data transmission. In this case, each demodulator 154 includes an FFT processor (not shown) that generates a transformed representation of the samples and provides a stream of modulation symbol vectors, each vector comprising L of the L frequency subchannels modulation symbols. The streams of modulation symbol vectors from the FFT processors of all demodulators are then provided to a demultiplexer/combiner (not shown in Figure 5), which first combines the modulation symbol vectors from each FFT processor The stream is "channelized" into multiple (up to L) sub-channel symbol streams. Each (up to) L subchannel symbol streams may then be provided to a corresponding RX MIMO processor 156.

对不使用OFDM的MIMO系统,一个RX MIMO处理器156可能用于实现对NR个接收天线来的调制信号的MIMO处理。对使用OFDM的MIMO系统,一个RX MIMO处理器156可能用于实现对用于数据传输的L个频率子信道的每个的NR个接收天线来的调制信号的MIMO处理。For MIMO systems that do not use OFDM, one RX MIMO processor 156 may be used to implement MIMO processing of modulated signals from NR receive antennas. For MIMO systems using OFDM, one RX MIMO processor 156 may be used to implement MIMO processing of modulated signals from NR receive antennas for each of the L frequency subchannels used for data transmission.

在有NT个发射天线和NR个接收天线的MIMO系统内,在NR个接收天线输出处的接收到的信号可表示为:In a MIMO system with NT transmit antennas and NR receive antennas, the received signal at the output of NR receive antennas can be expressed as:

r=Hx+n              等式(2) r = H x + n Equation (2)

其中r是接收码元向量(即从MIMO信道来的NR×1向量输出,在接收天线处被测量)。H是给出在某特定时刻NT个发射天线和NR个接收天线的信道响应的NR×NT信道系数矩阵,x是发射码元向量(即输入到MIMO信道的NT×1向量),以及n是代表噪声加干扰的NR×1的向量。接收码元向量r包括在特定时间通过NR个接收天线接收到的NR个信号的NR个调制码元。同样地,发射的码元向量x包括在特定时间通过NT个发射天线发射的NT个信号的NT个调制码元。where r is the received symbol vector (ie the NR × 1 vector output from the MIMO channel, measured at the receiving antenna). H is the NR ×N T channel coefficient matrix giving the channel responses of N T transmit antennas and NR receive antennas at a specific moment, and x is the transmit symbol vector (i.e., the NT ×1 vector input to the MIMO channel ), and n is an NR x 1 vector representing noise plus interference. The received symbol vector r includes NR modulation symbols for NR signals received at a particular time by the NR receive antennas. Likewise, the transmitted symbol vector x includes NT modulation symbols for the NT signals transmitted by the NT transmit antennas at a particular time.

利用CCMI技术的MIMO接收机MIMO Receiver Using CCMI Technology

对CCMI技术,接收机系统首先先对接收到的码元向量r实现信道匹配滤波操作,且滤波后的输出可表示为:For CCMI technology, the receiver system first implements the channel matching filtering operation on the received symbol vector r , and the filtered output can be expressed as:

HH r=HHHx+HH n                     等式(3)H H r = H H H x + H H n Equation (3)

其中上标″H″代表转置以及复数共轭。方阵R可能用于表示信道系数矩阵H与其共轭转置HH的积(即R=HHH)。where the superscript "H" stands for transpose and complex conjugation. The square matrix R may be used to represent the product of the channel coefficient matrix H and its conjugate transpose H H (ie R=H H H).

信道系数矩阵H可能从例如与数据一起发送的导频码元导出。为了实现最佳接收并估计传输信道的SNR,最方便的是在发射数据流内插入一些已知码元,并将已知码元在一个或多个传输信道上发射。这种已知码元还被称为导频码元或导频信号。根据导频信号或数据传输估计单一传输信道的方法在技术领域内的许多论文内均有论述。一种该种信道估计方法在F.Ling的论文中有描述,题为“OptimalReception,Performance Bound,and Cutoff-RateAnalysis ofReferneces-Assisted Coherent CDMA Communications with Applications”,IEEETransaction On Communication.1999年十月。这个或一些其它信道估计方法可能扩展到矩阵形式以导出信道系数矩阵H。The channel coefficient matrix H may be derived, for example, from pilot symbols sent with the data. In order to achieve optimal reception and estimate the SNR of the transmission channels, it is most convenient to insert some known symbols in the transmitted data stream and transmit the known symbols on one or more transmission channels. Such known symbols are also called pilot symbols or pilot signals. Methods for estimating a single transmission channel from pilot signals or data transmissions are described in many papers in the art. One such channel estimation method is described in a paper by F. Ling entitled "Optimal Reception, Performance Bound, and Cutoff-Rate Analysis of Referneces-Assisted Coherent CDMA Communications with Applications", IEEE Transaction On Communication. October 1999. This or some other channel estimation method may be extended to matrix form to derive the matrix H of channel coefficients.

发射码元向量的估计x′可能通过将信号向量HH r与R的逆(或伪逆)相乘而得到,可表示为:An estimate x ′ of the transmitted symbol vector may be obtained by multiplying the signal vector H H r by the inverse (or pseudo-inverse) of R, which can be expressed as:

x″=R-1HH r x″=R -1 H H r

   =x+R-1HH n = x + R -1 H H n

   =x+n′                等式(4)= x + n ′ Equation (4)

从以上等式,可以得出发射码元向量x可能通过对接收到的码元向量r匹配滤波而被恢复(即乘以矩阵HH),然后将滤波结果乘以逆方阵R-1From the above equations, it can be concluded that the transmitted symbol vector x may be recovered by matching filtering the received symbol vector r (ie multiplying by the matrix H H ), and then multiplying the filtered result by the inverse square matrix R −1 .

传输信道的SNR可能按如下确定。噪声向量n的自相关矩阵φnn首先从接收到的信号被计算。一般,φnn是Hermitian矩阵,即它是复共轭对称。如果信道噪声的分量是不相关的且独立且相同分布(iid),则噪声向量n的自相关矩阵φnn可以表示如下:The SNR of the transport channel may be determined as follows. The autocorrelation matrix φ nn of the noise vector n is first calculated from the received signal. In general, φ nn is a Hermitian matrix, ie it is complex conjugate symmetric. If the components of the channel noise are uncorrelated and independent and identically distributed (iid), the autocorrelation matrix φnn of the noise vector n can be expressed as follows:

&phi; nn = &sigma; n 2 I 以及 &phi; n = &sigma; no 2 I as well as

&phi; nn = &sigma; n 2 I                       等式(5) &phi; n = &sigma; no 2 I Equation (5)

其中,I是单位阵(即沿对角线为一,其余为零)且

Figure C02808558D00223
是接收到信号的噪声方差。处理后噪声向量n′的自相关矩阵φn′n′(即在匹配滤波和与矩阵R-1左乘后)可表达为:where I is the identity matrix (i.e. ones along the diagonal and zeros elsewhere) and
Figure C02808558D00223
is the noise variance of the received signal. The autocorrelation matrix φ n′n′ of the processed noise vector n ′ (i.e. after matched filtering and left multiplication with matrix R −1 ) can be expressed as:

&phi;&phi; nno &prime;&prime; nno &prime;&prime; == EE. [[ nno &OverBar;&OverBar; &prime;&prime; nno &OverBar;&OverBar; &prime;&prime; Hh ]]

     = &sigma; n 2 R - 1                    等式(6) = &sigma; no 2 R - 1 Equation (6)

从等式(6),处理后噪声n′的第i个元素的噪声方差

Figure C02808558D00226
等于于
Figure C02808558D00227
其中,是R-1的第i个对角元素。对不使用OFDM的MIMO系统,第i个元素代表第i个接收天线。且如果使用OFDM,则下标“i”可分解为下标“jk”,其中,“j”代表第j个频率子信道,而“k”代表对应第k个接收天线的第k个空间子信道。From equation (6), the noise variance of the i-th element of the processed noise n
Figure C02808558D00226
equal to
Figure C02808558D00227
in, is the ith diagonal element of R -1 . For MIMO systems that do not use OFDM, the i-th element represents the i-th receive antenna. And if OFDM is used, the subscript "i" can be decomposed into the subscript "jk", where "j" represents the jth frequency subchannel, and "k" represents the kth spatial subchannel corresponding to the kth receiving antenna channel.

对CCMI技术,处理后接收到的码元向量的第i个元素(即x′的第i个元素)的SNR可表示为:For CCMI technology, the SNR of the i-th element (i.e. the i-th element of x ') of the symbol vector received after processing can be expressed as:

SNR i = | x i &prime; | 2 &OverBar; &sigma; n 2                      等式(7) SNR i = | x i &prime; | 2 &OverBar; &sigma; no 2 Equation (7)

如果第i个发射的码元

Figure C02808558D002210
的方差平均等于一(1.0),接收码元向量的SNR可表示为:If the ith transmitted symbol
Figure C02808558D002210
The variance of is equal to one (1.0) on average, and the SNR of the received symbol vector can be expressed as:

Figure C02808558D002211
Figure C02808558D002211

噪声方差可通过对接收到的码元向量的第i个元素缩放比例

Figure C02808558D002212
而归一化。The noise variance can be scaled by the ith element of the received symbol vector
Figure C02808558D002212
And normalized.

从NR个接收天线来的经缩放的信号可能被加在一起以形成组合信号,这可能表示为:The scaled signals from the NR receive antennas may be summed together to form a combined signal, which may be expressed as:

Figure C02808558D00231
                       等式(8)
Figure C02808558D00231
Equation (8)

组合信号的SNR,SNRtotal会有等于从NR个接收天线来的信号的SNR之和的最大组合SNR。组合SNR可能表示为:The SNR of the combined signal, SNR total, will have a maximum combined SNR equal to the sum of the SNRs of the signals from NR receiving antennas. The combined SNR might be expressed as:

Figure C02808558D00232
            等式(9)
Figure C02808558D00232
Equation (9)

图5示出RX MIMO处理器156a的实施例,它能实现上述的CCMI处理。在RX MIMO处理器156a内,从NR个接收天线来的调制码元有多路复用器512多路复用以形成接收调制码元向量r的流。信道系数矩阵H可能根据类似于常规的导频辅助单一和多载波系统的导频信号而被估计,如在领域内已知的。矩阵R然后根据以上示出的R=HHH而经计算。接收到的调制码元向量r然后经匹配滤波器514滤波,它将每个向量r与共轭转置的信道系数矩阵HH左乘,如在等式(3)中所示。经滤波的向量还由乘法器516与逆方阵R-1左乘以得到发射的调制码元矩阵x的估计x’,如在等式(4)中所示。Figure 5 shows an embodiment of the RX MIMO processor 156a that enables the CCMI processing described above. Within RX MIMO processor 156a, the modulation symbols from the NR receive antennas are multiplexed by a multiplexer 512 to form a stream of received modulation symbol vectors r . The channel coefficient matrix H may be estimated from pilot signals similar to conventional pilot-assisted single and multi-carrier systems, as known in the art. The matrix R is then calculated according to R=H H H shown above. The received modulation symbol vectors r are then filtered by matched filter 514, which left-multiplies each vector r by the conjugate transposed channel coefficient matrix H , as shown in equation (3). The filtered vector is also left-multiplied by multiplier 516 with the inverse matrix R -1 to obtain an estimate x' of the transmitted modulation symbol matrix x , as shown in equation (4).

对一些通信模式,从所有用于信道数据流的传输的天线来的子信道码元流可能被提供给组合器518,它包括在时间、空间以及频率上的重复信息。组合的调制码元x"然后提供给RX数据处理器158。对一些其它的通信模式,估计的调制码元x′可能直接被提供给RX数据处理器158(未在图5中示出)。For some communication modes, subchannel symbol streams from all antennas used for transmission of the channel data stream may be provided to combiner 518, which includes repetition information in time, space, and frequency. The combined modulation symbols x " are then provided to the RX data processor 158. For some other communication modes, the estimated modulation symbols x ' may be provided directly to the RX data processor 158 (not shown in FIG. 5).

RX MIMO处理器156a因此生成多个独立对应在发射机系统处使用的传输信道数目的码元流。每个码元流包括处理后调制码元,这对应在发射机系统处全/部分-CSI处理前的调制码元。(处理后)码元流然后提供给RX数据处理器158。The RX MIMO processor 156a thus generates a plurality of symbol streams independently corresponding to the number of transport channels used at the transmitter system. Each symbol stream includes processed modulation symbols, which correspond to modulation symbols before full/partial-CSI processing at the transmitter system. The (processed) symbol stream is then provided to an RX data processor 158 .

在RX数据处理器158内,每个调制码元的处理后码元流提供给相应的实现解调方案(例如M-PSK、M-QAM)的解调元件,该方案与在发射机系统处使用的被处理的传输信道的调制方案互补。对于MIMO通信模式,从所有分配的解调器来的已调数据可能被独立解码或经多路复用为一个信道数据流然后再被解码,这取决于在发射机单元处使用的编码和调制方法。每个信道数据流然后可能提供给相应的实现与为信道数据流在发射机单元处使用的互补的解码方案的解码器。从每个解码器来的经解码的数据代表该信道数据流的经发射的数据的估计。Within the RX data processor 158, the processed symbol stream for each modulation symbol is provided to a corresponding demodulation element implementing a demodulation scheme (e.g., M-PSK, M-QAM) that is identical to that at the transmitter system The modulation schemes of the processed transport channels used are complementary. For MIMO communication modes, the modulated data from all assigned demodulators may be decoded independently or multiplexed into one channel data stream and then decoded again, depending on the coding and modulation used at the transmitter unit method. Each channel data stream may then be provided to a corresponding decoder implementing a complementary decoding scheme to that used at the transmitter unit for the channel data stream. The decoded data from each decoder represents an estimate of the transmitted data for that channel data stream.

估计的调制码元x′和/或组合的调制码元x"还被提供给CSI处理器520,这确定了传输信道的全或部分CSI,并提供该全/部分CSI以被报告回发射机系统110。例如,CSI处理器520可能根据接收到的导频信号估计第i个传输信道的噪声协方差矩阵φnn′,并根据等式(7)和(9)计算SNR。可能用类似的常规的导频辅助单一和多载波系统估计SNR,如在本领域内所知的。传输信道的SNR包括报告回发射机系统的部分CSI。调制码元还被提供给相应地估计信道系数矩阵H并导出方阵R的信道估计器522以及矩阵处理器524。控制器530耦合到RX MIMO处理器156a以及RX数据处理器158,并引导这些单元的操作。The estimated modulation symbols x ' and/or the combined modulation symbols x " are also provided to the CSI processor 520, which determines the full or partial CSI of the transmission channel and provides the full/partial CSI to be reported back to the transmitter System 110. For example, the CSI processor 520 may estimate the noise covariance matrix φ nn' of the ith transmission channel from the received pilot signal, and calculate the SNR according to equations (7) and (9). It may be possible to use a similar Conventional pilot-assisted single and multi-carrier systems estimate SNR, as known in the art. The SNR of transmission channel comprises the part CSI that reports back transmitter system. Modulation symbol is also provided to estimate channel coefficient matrix H accordingly And derive the channel estimator 522 of the square matrix R and the matrix processor 524. The controller 530 is coupled to the RX MIMO processor 156a and the RX data processor 158 and directs the operation of these units.

利用UMMSE的MIMO接收机MIMO Receiver Using UMMSE

对UMMSE技术,接收机系统实现将接收到的码元向量r与矩阵M相乘以导出发射的码元向量x的初始MMSE估计

Figure C02808558D00241
可表示为:For the UMMSE technique, the receiver system implementation multiplies the received symbol vector r by the matrix M to derive an initial MMSE estimate of the transmitted symbol vector x
Figure C02808558D00241
Can be expressed as:

x &OverBar; ^ = M r &OverBar;                  等式(10) x &OverBar; ^ = m r &OverBar; Equation (10)

选择矩阵M使得初始MMSE估计

Figure C02808558D0024131029QIETU
和发射码元向量x间(即
Figure C02808558D00243
)的误差向量e的均方误差最小化。Choose matrix M such that the initial MMSE estimate
Figure C02808558D0024131029QIETU
and the transmitted symbol vector x (ie
Figure C02808558D00243
) to minimize the mean square error of the error vector e .

为确定M,代价函数ε首先可表示为:To determine M, the cost function ε can first be expressed as:

ε=E{e H e}ε=E{ e H e }

 =E{[r HMH-x H][Mr-x]}=E{[ r H M H - x H ][M r - x ]}

 =E{r HMHMr-2Re[x HMr]+x H x}=E{ r H M H M r -2Re[ x H M r ]+ x H x }

为最小化代价函数ε,可以求出与M相关的代价函数的导数,且其结果可被设为零,如下:To minimize the cost function ε, the derivative of the cost function related to M can be found, and the result can be set to zero, as follows:

&PartialD;&PartialD; &PartialD;&PartialD; Mm &epsiv;&epsiv; == 22 (( HHHH Hh ++ &phi;&phi; nnn )) Mm Hh -- 22 Hh == 00

由E{xx H}=I、E{rr H}=HHHnn,且E{rx H}=H,获得以下关系:From E{ xx H }=I, E{ rr H }=HH Hnn , and E{ rx H }=H, the following relations are obtained:

2(HHHnn)MH=2H2(HH Hnn )M H =2H

因此,矩阵M可表示为:Therefore, the matrix M can be expressed as:

M=HH(HHHnn)-1       等式(11)M=H H (HH Hnn ) -1Equation (11)

根据等式(10)和(11),发射码元向量x的初始MMSE估计

Figure C02808558D0024131029QIETU
可以确定为:According to equations (10) and (11), the initial MMSE estimate of the transmitted symbol vector x
Figure C02808558D0024131029QIETU
can be determined as:

xx &OverBar;&OverBar; ^^ == Mm rr &OverBar;&OverBar;

   = H H ( HH H + &phi; nn ) - 1 r &OverBar;        等式(12) = h h ( HH h + &phi; n ) - 1 r &OverBar; Equation (12)

为确定UMMSE技术的传输信道的SNR,信号分量可以首先根据给定x

Figure C02808558D00247
的均值而被确定,在加性噪声上取平均,这可以表示为:In order to determine the SNR of the transmission channel of the UMMSE technique, the signal component can first be based on the given time x
Figure C02808558D00247
is determined by the mean of , averaged over the additive noise, which can be expressed as:

EE. [[ xx &OverBar;&OverBar; ^^ || xx &OverBar;&OverBar; ]] == EE. [[ Mm rr &OverBar;&OverBar; || xx &OverBar;&OverBar; ]]

       = H H ( HH H + &phi; nn ) - 1 E [ r &OverBar; ] = h h ( HH h + &phi; n ) - 1 E. [ r &OverBar; ]

       = H H ( HH H + &phi; nn ) - 1 H x &OverBar; = h h ( HH h + &phi; n ) - 1 h x &OverBar;

       = V x &OverBar; = V x &OverBar;

其中矩阵V被定义为where the matrix V is defined as

V={vij}V={v ij }

 =MH=MH

 =HH(HHHnn)-1H=H H (HH Hnn ) -1 H

使用等式use the equation

(( HHHH Hh ++ &phi;&phi; nnn )) -- 11 == &phi;&phi; nnn -- 11 -- &phi;&phi; nnn -- 11 Hh (( II ++ Hh Hh &phi;&phi; nnn -- 11 Hh )) -- 11 Hh Hh &phi;&phi; nnn -- 11

矩阵V可被表示为:Matrix V can be expressed as:

VV == Hh Hh &phi;&phi; nnn -- 11 Hh (( II ++ Hh Hh &phi;&phi; nnn -- 11 Hh )) -- 11

初始MMSE估计

Figure C02808558D00257
的第i个元素可被表示为:Initial MMSE estimate
Figure C02808558D00257
the ith element of can be expressed as:

x ^ i = v i 1 x 1 + . . . + v ii x i + . . . + v iN R x N R          等式(13) x ^ i = v i 1 x 1 + . . . + v i x i + . . . + v i R x N R Equation (13)

如果

Figure C02808558D002510
的所有元素都不相关且均值为零,则的第i个元素期望值可表示为:if
Figure C02808558D002510
All elements of are uncorrelated and have a mean of zero, then The expected value of the i-th element of can be expressed as:

E [ x ^ i | x ] = v ii x i                     等式(14) E. [ x ^ i | x ] = v i x i Equation (14)

如在等式(14)中示出,是xi的有偏估计。可以根据UMMSE技术除去有偏以获得改善的接收机性能。xi的无偏估计可以通过用vii

Figure C02808558D002514
而获得。因此,x的无偏最小均方误差估计
Figure C02808558D002515
可通过将有偏估计乘以对角矩阵
Figure C02808558D002517
而获得,如下:As shown in equation (14), is a biased estimate of xi . The bias can be removed according to the UMMSE technique for improved receiver performance. An unbiased estimate of x i can be obtained by dividing vi by
Figure C02808558D002514
And get. Therefore, the unbiased minimum mean square error estimate of x
Figure C02808558D002515
can be biased by estimating Multiply the diagonal matrix
Figure C02808558D002517
And get, as follows:

x &OverBar; ~ = D v - 1 x &OverBar; ^                         等式(15) x &OverBar; ~ = D. v - 1 x &OverBar; ^ Equation (15)

其中in

DD. vv -- 11 == diagdiag (( 11 // vv 1111 ,, 11 // vv 22twenty two ,, .. .. .. ,, 11 // vv NN RR NN RR ))

为确定噪声加干扰,无偏估计

Figure C02808558D002520
以及发射的码元向量
Figure C02808558D0025131807QIETU
之间的误差可以表达为:To determine noise-plus-interference, an unbiased estimate
Figure C02808558D002520
and the transmitted symbol vector
Figure C02808558D0025131807QIETU
error between can be expressed as:

ee &OverBar;&OverBar; ^^ == xx &OverBar;&OverBar; -- DD. vv -- 11 xx &OverBar;&OverBar; ^^

   = x &OverBar; - D v - 1 H H ( HH H + &phi; nn ) - 1 r &OverBar; = x &OverBar; - D. v - 1 h h ( HH h + &phi; n ) - 1 r &OverBar;

误差向量

Figure C02808558D002524
的自相关矩阵可表示为error vector
Figure C02808558D002524
The autocorrelation matrix of can be expressed as

Figure C02808558D00261
Figure C02808558D00261

    = I - D v - 1 H H ( HH H + &phi; nn ) - 1 H ( 1 - 1 2 D v - 1 ) - ( 1 - 1 2 D v - 1 ) H H ( HH H + &phi; nn ) - 1 HD v - 1 = I - D. v - 1 h h ( HH h + &phi; n ) - 1 h ( 1 - 1 2 D. v - 1 ) - ( 1 - 1 2 D. v - 1 ) h h ( HH h + &phi; n ) - 1 HD v - 1

误差向量

Figure C02808558D00263
的第i个元素的方差等于uu。误差向量
Figure C02808558D00264
的元素是相关的。然而,可能使用足够的交织使得可以忽略误差向量
Figure C02808558D00265
的元素间的相关性,只有方差影响系统性能。error vector
Figure C02808558D00263
The variance of the ith element of is equal to u u . error vector
Figure C02808558D00264
elements are related. However, it is possible to use enough interleaving such that the error vector
Figure C02808558D00265
The correlation among the elements, only the variance affects the system performance.

如果信道噪声的分量是不相关且相同分布,则信道噪声的相关矩阵可以表达为等式(5)。在该情况下,误差向量

Figure C02808558D00266
的自相关矩阵可表示为:If the components of the channel noise are uncorrelated and equally distributed, the correlation matrix of the channel noise can be expressed as Equation (5). In this case, the error vector
Figure C02808558D00266
The autocorrelation matrix of can be expressed as:

&phi;&phi; ee ^^ ee ^^ == II -- DD. Xx -- 11 [[ II -- &sigma;&sigma; nno 22 (( &sigma;&sigma; nno 22 II ++ RR )) -- 11 ]] (( II -- 11 22 DD. Xx -- 11 )) -- (( II -- 11 22 DD. Xx -- 11 )) [[ II -- &sigma;&sigma; nno 22 (( &sigma;&sigma; nno 22 II ++ RR )) -- 11 ]] DD. Xx -- 11

    = U = { u ij } = u = { u ij }

且如果信道噪声的分量是不相关的,则And if the components of the channel noise are uncorrelated, then

Uu == II -- DD. vv -- 11 Hh Hh (( HHHH Hh ++ &phi;&phi; nnn )) -- 11 Hh (( II -- 11 22 DD. vv -- 11 )) -- (( II -- 11 22 DD. vv -- 11 )) Hh Hh (( HHHH Hh ++ &phi;&phi; nnn )) -- 11 HDHD vv -- 11

                               等式(17)Equation (17)

对应第i个发射码元的解调器输出的SNR可表示为:The SNR of the demodulator output corresponding to the ith transmitted symbol can be expressed as:

SNR i = E [ | x i | 2 &OverBar; ] u ii                      等式(18) SNR i = E. [ | x i | 2 &OverBar; ] u i Equation (18)

如果处理的接收到的码元xi的方差|xi|2平均值等于一(1.0),接收码元向量的SNR可能表达为:If the variance | xi | 2 of the processed received symbols xi is equal to one (1.0) on average, the SNR of the received symbol vector may be expressed as:

SNRSNR ii == 11 uu iii

图6示出RX MIMO处理器156b的实施例,它能实现上述的UMMSE处理。类似于CCMI方法,首先根据接收到的导频信号和/或数据传输估计矩阵H和φnn。然后根据等式(11)计算加权系数矩阵M。在RX MIMO处理器156b内,从NR个接收天线来的调制码元由多路复用器612多路复用形成接收到的调制码元向量r流。接收到的调制码元向量r然后由乘法器614左乘矩阵M以得到发射码元向量x的估计

Figure C02808558D002612
如等式(10)示出。估计
Figure C02808558D002613
进一步由乘法器616左乘对角矩阵
Figure C02808558D002614
得到发射码元向量x的无偏估计
Figure C02808558D002615
如等式(15)示出。Figure 6 shows an embodiment of the RX MIMO processor 156b, which enables the UMMSE processing described above. Similar to the CCMI method, the matrices H and φ nn are first estimated from received pilot signals and/or data transmissions. The weighting coefficient matrix M is then calculated according to equation (11). Within RX MIMO processor 156b, the modulation symbols from the NR receive antennas are multiplexed by a multiplexer 612 to form a received modulation symbol vector r stream. The received modulation symbol vector r is then left multiplied by matrix M by multiplier 614 to obtain an estimate of the transmitted symbol vector x
Figure C02808558D002612
as shown in equation (10). estimate
Figure C02808558D002613
Further multiplied by the multiplier 616 to the left of the diagonal matrix
Figure C02808558D002614
Get an unbiased estimate of the transmitted symbol vector x
Figure C02808558D002615
as shown in equation (15).

同样地,根据特定的实现通信模式,从所有用于信道数据流传输的天线来的子信道码元流可能提供给组合器618,它将在时间、空间和频率上的冗余信息组合。经组合的调制码元

Figure C02808558D002616
然后提供给RX数据处理器158。对一些其它的通信模式,估计的调制码元可能直接提供给RX处理器158。Likewise, depending on the particular implementation communication mode, the sub-channel symbol streams from all antennas used for channel data stream transmission may be provided to combiner 618, which combines redundant information in time, space and frequency. Combined Modulation Symbols
Figure C02808558D002616
It is then provided to the RX data processor 158 . For some other communication modes, the estimated modulation symbols Possibly to the RX processor 158 directly.

无偏估计的调制码元

Figure C02808558D00271
和/或组合调制码元
Figure C02808558D00272
还可以提供给CSI处理器620,它确定传输信道的全或部分CSI,并提供全/部分CSI以被报告回发射机系统110。例如,CSI处理器620可能根据等式(16)到(18)估计第i个传输信道的SNR。传输信道的SNR还包括报告回发射机系统的部分CSI。在等式(11)内计算的最优M应该已经最小化误差向量的范数。Dv是根据等式(16)计算的。unbiased estimated modulation symbols
Figure C02808558D00271
and/or combined modulation symbols
Figure C02808558D00272
It may also be provided to a CSI processor 620 that determines full or partial CSI for the transport channel and provides full/partial CSI to be reported back to the transmitter system 110 . For example, the CSI processor 620 may estimate the SNR of the i-th transport channel according to equations (16) to (18). The SNR of the transport channel also includes part of the CSI that is reported back to the transmitter system. The optimal M calculated in equation (11) should have minimized the norm of the error vector. D v is calculated according to equation (16).

使用全CSI技术的MIMO接收机MIMO Receiver Using Full CSI Technology

对全CSI技术,在NR个接收天线的输出处接收到的信号可能表示为以上等式(2),即For the full CSI technique, the signal received at the output of NR receive antennas may be expressed as equation (2) above, namely

r=Hx+n r = H x + n

由信道矩阵与其共轭转置的积形成的Hermitian矩阵的特征向量分解可表示为:The eigenvector decomposition of the Hermitian matrix formed by the product of the channel matrix and its conjugate transpose can be expressed as:

HHH=EΛ.EH H H H = EΛ.E H

其中E是特征向量矩阵,Λ是特征值的对角矩阵,两个的维数均为NT×NT。发射机使用特征向量矩阵E对一组NT个调制码元b进行预调节,如上述等式(1)示出。从NT个发射天线来的发射的(经预调节的)调制码元可表示为:Where E is an eigenvector matrix, Λ is a diagonal matrix of eigenvalues, and both dimensions are N T ×N T . The transmitter preconditions a set of NT modulation symbols b using the eigenvector matrix E, as shown in equation (1) above. The transmitted (preconditioned) modulation symbols from the NT transmit antennas can be expressed as:

x=Eb x = Eb

由于HHH是Hermitian的,特征向量矩阵是酉矩阵。因此,如果b的元素为等幂,则x的元素也为等幂。接收到的信号可能表示为:Since H H H is Hermitian, the eigenvector matrix is unitary. Thus, if the elements of b are idempotent, the elements of x are also idempotent. A received signal may be represented as:

r=HEb+n                         等式(19) r = HE b + n Equation (19)

接收机实现信道匹配滤波操作,接着乘以右特征向量。信道匹配滤波和乘法操作的结果是向量z,可表示为:The receiver implements a channel matched filter operation followed by multiplication by the right eigenvector. The result of the channel matched filtering and multiplication operations is a vector z that can be expressed as:

z=EHHHHEb+EHHH n=Λb+n′          等式(20) z = E H H H HE b + E H H H n = Λ b + n ′ Equation (20)

其中,新噪声项的协方差可表示为:where the covariance of the new noise term can be expressed as:

E ( n &OverBar; ^ n &OverBar; ^ H ) = E ( E H H H nn &OverBar; H HE ) = E H H H HE = &Lambda;      等式(21) E. ( no &OverBar; ^ no &OverBar; ^ h ) = E. ( E. h h h n &OverBar; h HE ) = E. h h h HE = &Lambda; Equation (21)

即,噪声项独立于由特征值给出的方差。z的第i个分量的SNR是Λ的第i个对角线元素

Figure C02808558D00274
That is, the noise term is independent of the variance given by the eigenvalues. The SNR of the ith component of z is the ith diagonal element of Λ
Figure C02808558D00274

全CSI处理在上述的美国专利申请序列号09532492内有进一步描述。Full CSI processing is further described in the aforementioned US Patent Application Serial No. 09532492.

图5示出的接收机实施例可能还用于实现全CSI技术。接收到的调制码元向量r由匹配滤波器514滤波,它将每个向量r与共轭转置信道系数矩阵HH左乘,如上等式(20)示出。经滤波的向量还由乘法器516与右特征向量EH左乘以形成对调制码元向量b的估计z,如在等式(20)中所示。对全CSI技术,矩阵处理器524用于提供右特征向量EH。相继的处理(例如组合器518和RX数据处理器158进行的)可能按上述进行。The receiver embodiment shown in Figure 5 may also be used to implement full CSI techniques. The received modulation symbol vectors r are filtered by a matched filter 514, which left-multiplies each vector r by the conjugate transposed channel coefficient matrix H , as shown in equation (20) above. The filtered vector is also left multiplied by the multiplier 516 with the right eigenvector EH to form an estimate z of the modulation symbol vector b , as shown in equation (20). For the full CSI technique, the matrix processor 524 is used to provide the right eigenvector E H . Subsequent processing (eg, by combiner 518 and RX data processor 158) may proceed as described above.

对全CSI技术,发射机单元能根据由特征值给出的SNR为特征向量的每个选择编码方案以及调制方案(即信号星座图)。如果信道条件在CSI在接收机处测量并被报告且用于对发射机处的传输预调节这段时间间隔不变,则通信系统的性能可能等效于一组带有已知SNRs的独立AWGN信道的性能。For the full CSI technique, the transmitter unit can select the coding scheme and the modulation scheme (ie signal constellation) for each of the eigenvectors according to the SNR given by the eigenvalues. If the channel conditions are constant at the time interval during which CSI is measured and reported at the receiver and used to precondition the transmission at the transmitter, the performance of the communication system may be equivalent to a set of independent AWGNs with known SNRs channel performance.

将全或部分CSI报告回发射机系统Report full or partial CSI back to transmitter system

使用在此描述的部分CSI(例如CCMI或UMMSE)或全CSI技术,可能为接收到的信道获得每个传输信道的SNR。确定的传输信道的SNR可能通过反向信道报告回发射机系统。通过反馈传输信道的发射调制码元的SNR值(即对每个空间子信道,在使用OFDM时可能对每个频率子信道),可能实现自适应处理(例如自适应编码和调制)以改善MIMO信道的使用。对部分CSI反馈技术,自适应处理可能在没有完全的CSI情况下获得。对全CSI反馈技术,足够信息(不一定显式的特征值和特征模量)被返回到发射机以方便每个所使用的频率子信道的特征值和特征模式的计算。Using partial CSI (such as CCMI or UMMSE) or full CSI techniques described herein, it is possible to obtain the SNR for each transmitted channel for the received channel. The determined SNR of the transport channel may be reported back to the transmitter system via a back channel. By feeding back the SNR values of the transmitted modulation symbols of the transport channel (i.e. for each spatial subchannel and possibly for each frequency subchannel when using OFDM), it is possible to implement adaptive processing (e.g. adaptive coding and modulation) to improve MIMO Channel usage. For partial CSI feedback techniques, adaptive processing may be obtained without full CSI. For the full CSI feedback technique, enough information (not necessarily explicit eigenvalues and eigenmoduli) is returned to the transmitter to facilitate the calculation of eigenvalues and eigenmodes for each used frequency subchannel.

对CCMI技术,接收到调制码元的SNR值(例如, SNR i = | x &prime; i | 2 &OverBar; / &sigma; n 2 , 或对在第i个传输信道上接收到的码元的 SNR i = 1 / &sigma; n 2 r ii )被反馈回发射机。对UMMSE技术,接收到调制码元的SNR值(例如对在第i传输信道上接收到的码元SNRi=E[|xi|]2/uii或SNRi=1/uii,uii按等式(16)和(17)计算)被反馈回发射机。对全CSI技术,接收到调制码元的SNR值(例如对在第i传输信道上接收到的码元 SNR i = | z i | 2 / &sigma; n 2 SNR i = &lambda; ii / &sigma; n 2 , 其中λii是方阵R的特征值)可被反馈回发射机。对全CSI技术,特征模量E可能被进一步确定并反馈回发射机。对部分和全CSI技术,SNR用于在发射机系统调整数据的处理。对全CSI技术,特征模E进一步用于在传输前对调制码元进行预调节。For CCMI techniques, the SNR value of the received modulation symbol (e.g., SNR i = | x &prime; i | 2 &OverBar; / &sigma; no 2 , or for symbols received on the i-th transmission channel SNR i = 1 / &sigma; no 2 r i ) is fed back to the transmitter. For UMMSE technology, the SNR value of the received modulation symbol (for example, for the symbol SNR i =E[| xi |] 2 /u ii or SNR i =1/u ii , u ii calculated by equations (16) and (17)) is fed back to the transmitter. For the full CSI technique, the SNR value of the received modulation symbol (for example, for the symbol received on the i-th transmission channel SNR i = | z i | 2 / &sigma; no 2 or SNR i = &lambda; i / &sigma; no 2 , where λii is the eigenvalue of the square matrix R) can be fed back to the transmitter. For full CSI techniques, the characteristic modulus E may be further determined and fed back to the transmitter. For partial and full CSI techniques, the SNR is used to adjust the data processing at the transmitter system. For the full CSI technique, the eigenmode E is further used to precondition the modulation symbols before transmission.

报告回发射机的CSI可能或以完整的或以差别的或以上的组合送回。在一实施例中,全或部分CSI被周期性地报告,且根据先前发送的CSI送回不同的更新。作为全CSI的一例,更新可能是对报告的特征模量的纠正(根据误差信号)。特征值一般不及特征模量改变得那么快,所以能以较低速率更新。在另一实施例中,CSI只在有变化时才被发送(例如如果改变超过一特定阈值),这可能降低反馈信道的有效速率。作为部分CSI的例子,SNRs可能只在它们有所改变时才送回(例如有差别地)。对OFDM系统(有或没有MIMO),频域内的相关可能用于减少要反馈的CSI量。作为使用部分CSI的OFDM系统的一例,如果对应M频率子信道的特定空间子信道的SNR相同,则SNR和该条件为真的第一和最后频率子信道可能被汇报。还可能使用其它用于减少反馈回CSI数据量的压缩和反馈信道差错恢复技术,且在本发明范围内。The CSI reported back to the transmitter may be returned either in full or in differential or a combination of the above. In one embodiment, full or partial CSI is reported periodically and different updates are sent back depending on previously sent CSI. As an example of full CSI, the update may be a correction (from the error signal) to the reported characteristic modulus. The eigenvalues generally do not change as quickly as the eigenmoduli, so can be updated at a slower rate. In another embodiment, CSI is only sent when there is a change (eg, if the change exceeds a certain threshold), which may reduce the effective rate of the feedback channel. As an example of partial CSI, SNRs may only be sent back if they have changed (eg differentially). For OFDM systems (with or without MIMO), correlation in the frequency domain may be used to reduce the amount of CSI to be fed back. As an example of an OFDM system using partial CSI, if the SNR of a particular spatial subchannel corresponding to M frequency subchannels is the same, then the SNR and the first and last frequency subchannel for which this condition is true may be reported. It is also possible to use other compression and feedback channel error recovery techniques to reduce the amount of CSI data fed back and are within the scope of the present invention.

参考回图1,由RX MIMO处理器156确定的全或部分CSI(例如信道SNR)提供给TX数据处理器162,它处理CSI并提供被处理的数据给一个或多个调制器154。调制器154进一步对被处理的数据条件化并通过反信道将CSI发射回发射机系统。Referring back to FIG. 1 , full or partial CSI (eg, channel SNR) determined by RX MIMO processor 156 is provided to TX data processor 162, which processes the CSI and provides processed data to one or more modulators 154. The modulator 154 further conditions the processed data and transmits the CSI back to the transmitter system through the back channel.

在系统110处,发射的反馈信号由天线124接收,由解调器122解调,并提供给RX数据处理器132。RX数据处理器132实现与TX数据处理器162实现的互补的处理并恢复被报告的全/部分CSI,该CSI然后提供给TX数据处理器114以及TXMIMO处理器120用于调整由它们进行的处理。At system 110 , the transmitted feedback signal is received by antenna 124 , demodulated by demodulator 122 , and provided to RX data processor 132 . RX data processor 132 performs complementary processing to that performed by TX data processor 162 and recovers the reported full/partial CSI, which is then provided to TX data processor 114 and TX MIMO processor 120 for tailoring the processing by them .

发射机系统110可能根据从接收机系统150的全/部分CSI(即SNR信息)调整(即适应)其处理。例如,每个传输信道的编码可能被调整使得信息比特速率与信道SNR支持的传输能力匹配。另外,传输信道的调制方案可能根据信道SNR而选择。其它处理(例如交织)还可能被调整并在本发明的范围内。根据每个信道确定的SNR而调整每个传输信道的处理使得MIMO系统能获得高性能(即高吞吐量或特定性能级别的比特速率)。自适应处理能应用于单载波MIMO系统或基于多载波的MIMO系统(例如使用OFDM的MIMO系统)。The transmitter system 110 may adjust (ie adapt) its processing according to the full/partial CSI (ie SNR information) from the receiver system 150 . For example, the encoding of each transmission channel may be adjusted so that the information bit rate matches the transmission capability supported by the channel SNR. In addition, the modulation scheme of the transport channel may be selected according to the channel SNR. Other processes, such as interleaving, may also be adapted and are within the scope of the invention. Adjusting the processing of each transport channel according to the determined SNR of each channel enables MIMO systems to achieve high performance (ie high throughput or bit rate for a certain performance level). Adaptive processing can be applied to single-carrier MIMO systems or multi-carrier based MIMO systems (eg MIMO systems using OFDM).

在发射机系统处的编码的调整和调制方案的选择可能根据许多技术而进行,其中一个在前述的美国专利申请序列号09776073内有描述。The adjustment of the encoding and the selection of the modulation scheme at the transmitter system may be performed according to a number of techniques, one of which is described in the aforementioned US Patent Application Serial No. 09776073.

部分(例如CCMI和UMMSE)以及全CSI技术为接收机处理技术,允许MIMO系统使用由使用多个发射和接收天线而建立的附加维数,这是对于使用MIMO的主要优点。CCMI和UMMSE技术可能如同使用全CSI的MIMO系统允许对每个时隙发射同样数目的调制码元,然而,其它接收机处理技术还可能连同在此描述的全/部分CSI反馈技术一起使用且在本发明范围内。可类比地,图5和图6代表能处理MIMO传输、确定传输信道的特性(即SNR)以及将全或部分CSI报告回发射机系统的接收机系统的两个实施例。可以考虑根据在此表出的技术的其它设计和其它接收机处理技术,且这是在本发明范围内的。Partial (such as CCMI and UMMSE) as well as full CSI techniques are receiver processing techniques that allow MIMO systems to use the additional dimensionality created by using multiple transmit and receive antennas, which is a major advantage for using MIMO. CCMI and UMMSE techniques may allow the same number of modulation symbols to be transmitted per slot as MIMO systems using full CSI, however, other receiver processing techniques may also be used in conjunction with the full/partial CSI feedback techniques described here and in within the scope of the present invention. Analogously, Figures 5 and 6 represent two embodiments of receiver systems capable of handling MIMO transmissions, determining the characteristics of the transmission channel (ie, SNR), and reporting full or partial CSI back to the transmitter system. Other designs and other receiver processing techniques in accordance with the techniques presented here are contemplated and are within the scope of the invention.

只有当总的接收到的信号SNR或根据SNR估计的能达到的总吞吐量被反馈回时,还可能直接使用部分CSI技术(例如CCMI和UMMSE技术)而不需要在发射机处的自适应处理。在一实施例中,调制格式根据接收到的SNR估计或估计的吞吐量而被确定,且同样的调制格式被用于所有的传输信道。该方法可能减少整个系统的吞吐量但可以大大减少在反向链路上送回的信息量。It is also possible to directly use partial CSI techniques (such as CCMI and UMMSE techniques) without adaptive processing at the transmitter, only when the total received signal SNR or the total achievable throughput estimated from the SNR is fed back . In one embodiment, the modulation format is determined from the received SNR estimate or the estimated throughput, and the same modulation format is used for all transport channels. This approach may reduce overall system throughput but can greatly reduce the amount of information sent back on the reverse link.

可能使用本发明的全/部分CSI反馈技术实现系统性能的改善。带有部分CSI反馈的系统吞吐量可以被计算并与全CSI反馈的吞吐量相比。系统吞吐量可以定义为:It is possible to achieve system performance improvement using the full/partial CSI feedback technique of the present invention. System throughput with partial CSI feedback can be calculated and compared to that of full CSI feedback. System throughput can be defined as:

CC == &Sigma;&Sigma; ii == 11 NN CC loglog 22 (( 11 ++ &gamma;&gamma; ii ))

其中,γi是部分CSI技术的每个接收到调制码元的SNR或全CSI技术的每个传输信道的SNR。不同处理器技术的SNR可归纳如下:where γi is the SNR per received modulation symbol for partial CSI techniques or the SNR per transport channel for full CSI techniques. The SNR of different processor technologies can be summarized as follows:

对CCMI技术:

Figure C02808558D00302
For CCMI technology:
Figure C02808558D00302

对UMMSE技术: &gamma; i = 1 u ii , For UMMSE techniques: &gamma; i = 1 u i ,

对全CSI技术: &gamma; i = &lambda; ii &sigma; n 2 , For full CSI technology: &gamma; i = &lambda; i &sigma; no 2 ,

图7A和7B示出使用部分CSI和全CSI反馈技术的4 x 4MIMO系统的性能。结果是由计算机仿真得到的。在仿真中,每个信道系统矩阵H的元素模型化为带有零均值和单位方差的独立的高斯随机变量。对每次计算,生成多个随机矩阵实现且为实现所计算的吞吐量经平均以生成平均吞吐量。Figures 7A and 7B illustrate the performance of a 4x4 MIMO system using partial CSI and full CSI feedback techniques. The results are obtained by computer simulation. In the simulation, each element of the channel system matrix H is modeled as an independent Gaussian random variable with zero mean and unit variance. For each computation, multiple random matrix realizations are generated and the computed throughputs for the realizations are averaged to generate an average throughput.

图7A示出对不同SNR值的全CSI、部分CSICCMI以及部分CSIUMMSE技术的MIMO系统的吞吐量。可以从图7A看出,部分CSI UMMSE技术的吞吐量在高SNR值时大约是全SI输出的75%,在低SNR值时接近全CSI吞吐量。部分CSI CCMI技术的吞吐量在高SNR值时大约是部分CSI UMMSE技术的吞吐量的75%到90%,且在低SNR值处大约比UMMSE的吞吐量少了30%。Figure 7A shows the throughput of a MIMO system for full CSI, partial CSI CCMI and partial CSI U MSE techniques for different SNR values. It can be seen from Fig. 7A that the throughput of the partial CSI UMMSE technique is about 75% of the full SI output at high SNR values and close to the full CSI throughput at low SNR values. The throughput of the partial CSI CCMI technique is about 75% to 90% of the throughput of the partial CSI UMMSE technique at high SNR values, and is about 30% less than that of UMMSE at low SNR values.

图7B根据数据直方图生成的三种技术的累加概率分布函数(CDF)。图7B示出每传输信道平均16dB的SNR时,对CCMI技术大约有5%的情况吞吐量小于2bps/Hz。另一方面,在同一SNR处,UMMSE技术的吞吐量在所有情况下均在7.5bps/Hz以上。因此,UMMSE技术比CCMI技术的中止概率低。Figure 7B Cumulative probability distribution functions (CDFs) for the three techniques generated from the histograms of the data. Figure 7B shows that at an average SNR of 16dB per transmission channel, the throughput is less than 2bps/Hz for about 5% of the cases for the CCMI technique. On the other hand, at the same SNR, the throughput of the UMMSE technique is above 7.5bps/Hz in all cases. Therefore, the UMMSE technique has a lower outage probability than the CCMI technique.

发射机和接收机系统的元件可能使用一个或多个数字信号处理器(DSP)、应用专用集成电路(ASIC)、处理器、微处理器、控制器、微控制器、现场可编程门阵列(FGPA)、可编程逻辑设备、其它电子单元或以上的任何组合。在此描述的一些函数和处理还可能用在处理器上执行的软件实现。Elements of the transmitter and receiver systems may use one or more digital signal processors (DSPs), application-specific integrated circuits (ASICs), processors, microprocessors, controllers, microcontrollers, field-programmable gate arrays ( FGPA), programmable logic devices, other electronic units, or any combination of the above. Some of the functions and processes described herein may also be implemented in software executing on a processor.

本发明的各方面可用软件和应用的组合实现。例如,对CCMI和UMMSE技术的码元估计的计算以及信道SNR的导出可能根据在处理器上(图5和图6相应的控制器530和650)执行的程序代码实现。Aspects of the invention can be implemented with a combination of software and applications. For example, calculation of symbol estimates for CCMI and UMMSE techniques and derivation of channel SNR may be implemented according to program code executing on a processor (controllers 530 and 650, respectively, in FIGS. 5 and 6).

上述优选实施例的描述使本领域的技术人员能制造或使用本发明。这些实施例的各种修改对于本领域的技术人员来说是显而易见的,这里定义的一般原理可以被应用于其它实施例中而不使用创造能力。因此,本发明并不限于这里示出的实施例,而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。The above description of the preferred embodiment enables any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without the exercise of inventiveness. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (38)

1.在多输入多输出通信系统内从发射机单元发射数据到接收机单元的方法,其特征在于包括:1. A method of transmitting data from a transmitter unit to a receiver unit in a multiple-input multiple-output communication system, characterized in that it comprises: 在接收机单元,In the receiver unit, 通过多个接收天线接收多个信号,其中从每个接收天线接收到的信号包括从发射机单元发射的一个或多个信号的组合,receiving a plurality of signals via a plurality of receive antennas, wherein the signal received from each receive antenna comprises a combination of one or more signals transmitted from the transmitter unit, 处理接收到的信号以导出信道状态信息,它指明用于数据传输的多个传输信道的特征,其中所导出的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计,以及processing the received signal to derive channel state information that characterizes a plurality of transmission channels used for data transmission, wherein the derived channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of the plurality of transmission channels ,as well as 将信道状态信息发射回发射机单元;以及transmitting channel state information back to the transmitter unit; and 在发射机单元,In the transmitter unit, 从接收机单元接收信道状态信息,以及receiving channel state information from the receiver unit, and 根据接收到的信道状态信息处理用于传输到接收机单元的数据。Data for transmission to the receiver unit is processed based on the received channel state information. 2.如权利要求1所述的方法,其特征在于发射机单元处的处理包括2. The method of claim 1, wherein the processing at the transmitter unit comprises 根据传输信道的信号对噪声加干扰比估计对每个传输信道的数据编码。The data for each transport channel is encoded based on a signal-to-noise-plus-interference ratio estimate for the transport channel. 3.如权利要求2所述的方法,其特征在于,每个传输信道的数据是根据传输信道的信号对噪声加干扰比估计而被独立编码的。3. The method as claimed in claim 2, characterized in that the data of each transport channel is independently coded based on the estimate of the signal-to-noise-plus-interference ratio of the transport channel. 4.如权利要求2所述的方法,其特征在于,编码包括4. The method of claim 2, wherein encoding comprises 用固定的基本码对传输信道的数据编码,以及encoding the data of the transport channel with a fixed base code, and 根据传输信道的信号对噪声加干扰比估计调整对经编码比特的截短。The truncation of coded bits is adjusted based on a signal-to-noise-plus-interference ratio estimate of the transmission channel. 5.如权利要求2所述的方法,其特征在于发射机单元处的处理还包括5. The method of claim 2, wherein the processing at the transmitter unit further comprises 按照根据传输信道的信号对噪声加干扰比估计而选择的调制方案对每个传输信道的经编码数据进行调制。The encoded data for each transport channel is modulated according to a modulation scheme selected from an estimate of the signal-to-noise-plus-interference ratio for the transport channel. 6.如权利要求1所述的方法,其特征在于所导出的信道状态信息包括多个传输信道的特征。6. The method of claim 1, wherein the derived channel state information comprises characteristics of a plurality of transmission channels. 7.如权利要求1所述的方法,其特征在于所导出的信道状态信息指明多个传输信道的特征模量和特征值。7. The method of claim 1, wherein the derived channel state information indicates eigenmoduli and eigenvalues of a plurality of transmission channels. 8.如权利要求7所述的方法,其特征在于在发射机单元处的处理包括根据特征值对传输信道的数据编码。8. A method as claimed in claim 7, characterized in that the processing at the transmitter unit comprises encoding the data of the transport channel according to the eigenvalues. 9.如权利要求8所述的方法,其特征在于每个传输信道的数据是独立被编码的。9. A method as claimed in claim 8, characterized in that the data of each transport channel is encoded independently. 10.如权利要求8所述的方法,其特征在于发射机单元处的处理还包括10. The method of claim 8, wherein the processing at the transmitter unit further comprises 按照根据特征值选择的调制方案而对传输信道的经编码数据进行调制以提供调制码元。The encoded data of the transport channel is modulated according to a modulation scheme selected according to the eigenvalues to provide modulation symbols. 11.如权利要求10所述的方法,其特征在于发射机单元处的处理还包括根据特征模量在传输前对调制码元进行预调节。11. The method of claim 10, wherein the processing at the transmitter unit further comprises preconditioning the modulation symbols before transmission according to the eigenmodulus. 12.如权利要求1所述的方法,其特征在于信道状态信息从接收机单元被完全传输。12. The method of claim 1, wherein the channel state information is completely transmitted from the receiver unit. 13.如权利要求12所述的方法,其特征在于信道状态信息周期性地从接收机单元被完整发射,且其中对信道状态信息的更新在完全传输间被发射。13. The method of claim 12, wherein the channel state information is periodically transmitted in full from the receiver unit, and wherein updates to the channel state information are transmitted between complete transmissions. 14.如权利要求1所述的方法,其特征在于信道状态信息在检测到信道特征的变化超过特定阈值时被发射。14. The method of claim 1, wherein channel state information is transmitted upon detection of a change in channel characteristics exceeding a certain threshold. 15.如权利要求7所述的方法,其特征在于指明特征模量和特征值的信道状态信息以不同更新速率发射。15. The method of claim 7, wherein the channel state information indicating the eigenmodulus and the eigenvalue are transmitted at different update rates. 16.如权利要求1所述的方法,其特征在于信道状态信息是在接收机单元处根据相关矩阵逆处理而导出的。16. The method of claim 1, wherein the channel state information is derived at the receiver unit from correlation matrix inverse processing. 17.如权利要求16所述的方法,其特征在于接收机单元处的相关矩阵逆处理包括17. The method of claim 16, wherein the correlation matrix inverse processing at the receiver unit comprises 处理接收到的信号以导出接收到的调制码元;processing the received signal to derive received modulation symbols; 根据第一矩阵滤波接收到的调制码元以提供经滤波的调制码元,其中第一矩阵代表用于数据传输的多个发射天线和多个接收天线间的信道特征的估计;filtering the received modulation symbols according to a first matrix to provide filtered modulation symbols, wherein the first matrix represents an estimate of channel characteristics between a plurality of transmit antennas and a plurality of receive antennas for data transmission; 将经过滤波的调制码元与第二矩阵相乘以提供被发射的调制码元的估计,其中所述第二矩阵是基于所述第一矩阵导出的逆矩阵;以及multiplying the filtered modulation symbols with a second matrix to provide an estimate of the transmitted modulation symbols, wherein the second matrix is an inverse matrix derived based on the first matrix; and 估计用于数据传输的多个传输信道的特征。Estimate characteristics of multiple transmission channels for data transmission. 18.如权利要求17所述的方法,其特征在于还包括:18. The method of claim 17, further comprising: 根据特定解调方案对调制码元估计解调以提供已解调的码元。The modulated symbols are estimated to be demodulated according to a particular demodulation scheme to provide demodulated symbols. 19.如权利要求18所述的方法,其特征在于还包括:19. The method of claim 18, further comprising: 根据特定解码方案对已调码元解码。The modulated symbols are decoded according to a particular decoding scheme. 20.如权利要求17所述的方法,其特征在于还包括:20. The method of claim 17, further comprising: 组合冗余传输的调制码元估计以提供经组合的调制码元估计。The modulation symbol estimates for the redundant transmissions are combined to provide combined modulation symbol estimates. 21.如权利要求17所述的方法,其特征在于还包括:21. The method of claim 17, further comprising: 根据接收到的调制码元导出信道系数矩阵,以及deriving a matrix of channel coefficients from the received modulation symbols, and 其中第一矩阵是从信道系数矩阵导出的。where the first matrix is derived from the channel coefficient matrix. 22.如权利要求21所述的方法,其特征在于信道系数矩阵是根据与导频数据对应的接收到的调制码元而导出的。22. The method of claim 21, wherein the matrix of channel coefficients is derived from received modulation symbols corresponding to pilot data. 23.如权利要求17所述的方法,其特征在于第二矩阵是根据第一矩阵导出的逆方阵。23. The method of claim 17, wherein the second matrix is an inverse matrix derived from the first matrix. 24.如权利要求1所述的方法,其特征在于信道状态信息是根据无偏最小均方误差处理在接收机单元处导出的。24. The method of claim 1, wherein the channel state information is derived at the receiver unit according to an unbiased minimum mean square error process. 25.如权利要求24所述的方法,其特征在于所述无偏最小均方误差处理包括:25. The method of claim 24, wherein said unbiased minimum mean square error processing comprises: 处理接收到的信号以导出接收到的调制码元;processing the received signal to derive received modulation symbols; 将接收到的调制码元与第一矩阵相乘以提供被对发射的调制码元的估计;以及multiplying the received modulation symbols with the first matrix to provide an estimate of the transmitted modulation symbols; and 根据接收到的调制码元估计用于数据传输的多个传输信道的特征,且estimating characteristics of a plurality of transmission channels for data transmission from the received modulation symbols, and 其中选择第一矩阵以最小化调制码元估计和发射的调制码元间的均方误差。where the first matrix is chosen to minimize the mean squared error between the modulation symbol estimate and the transmitted modulation symbol. 26.如权利要求25所述的方法,其特征在于还包括26. The method of claim 25, further comprising 将调制码元估计与第二矩阵相乘以提供对发射的调制码元的无偏估计,其中所述第二矩阵是基于所述第一矩阵导出的逆矩阵,以及multiplying the modulation symbol estimate with a second matrix to provide an unbiased estimate of the transmitted modulation symbol, wherein the second matrix is an inverse matrix derived based on the first matrix, and 其中传输信道的特征是根据无偏调制码元的估计而被估计。Wherein the characteristics of the transmission channel are estimated based on the estimation of the unbiased modulation symbols. 27.如权利要求26所述的方法,其特征在于还包括27. The method of claim 26, further comprising 根据无偏调制码元估计导出第一矩阵并最小化无偏调制码元估计和发射调制码元间的均方误差。The first matrix is derived from the unbiased modulation symbol estimates and the mean square error between the unbiased modulation symbol estimates and the transmitted modulation symbols is minimized. 28.如权利要求1所述的方法,其特征在于多输入多输出系统实现正交频分调制。28. The method of claim 1, wherein the MIMO system implements quadrature frequency division modulation. 29.如权利要求28所述的方法,其特征在于在接收机单元或发射机单元处的处理是为多个频率子信道的每一个执行的。29. The method of claim 28, wherein the processing at the receiver unit or the transmitter unit is performed for each of a plurality of frequency subchannels. 30.多输入多输出通信系统,其特征在于包括:30. A multiple-input multiple-output communication system, characterized in that it comprises: 接收机单元,包括receiver unit, including 多个前端处理器,用于通过多个接收天线接收多个信号并处理接收到的信号以提供接收到的调制码元,a plurality of front-end processors for receiving a plurality of signals via a plurality of receive antennas and processing the received signals to provide received modulation symbols, 至少一个接收多输入多输出处理器,耦合到前端处理器并用于接收并处理接收到的调制码元以导出信道状态信息,它指示用于数据传输的多个传输信道的特征,以及at least one receive multiple-input multiple-output processor coupled to the front-end processor and operable to receive and process received modulation symbols to derive channel state information indicative of characteristics of a plurality of transmission channels used for data transmission, and 发射数据处理器,操作上耦合到接收多输入多输出处理器并配置成处理信道状态信息以将其发送回发射机单元;以及a transmit data processor operatively coupled to the receive MIMO processor and configured to process channel state information for sending it back to the transmitter unit; and 发射机单元,包括transmitter unit, including 至少一个解调器,配置为接收并处理一个或多个从接收机单元来的信号以恢复发射的信道状态信息,以及at least one demodulator configured to receive and process one or more signals from the receiver unit to recover transmitted channel state information, and 发射数据处理器,配置为根据恢复的信道状态信息对用于传输到接收机单元的数据处理,a transmit data processor configured to process data for transmission to the receiver unit based on the recovered channel state information, 其中,所导出的信道状态信息包括对多个传输信道中每一个的信号对噪声加干扰比的估计。Wherein the derived channel state information includes an estimate of a signal-to-noise-plus-interference ratio for each of the plurality of transmission channels. 31.多输入多输出通信系统中的接收机单元,其特征在于包括31. A receiver unit in a multiple-input multiple-output communication system, characterized in that it comprises 多个前端处理器,配置为通过多个接收天线接收多个发射的信号,并处理接收到的信号以提供接收到的调制码元;a plurality of front-end processors configured to receive a plurality of transmitted signals via a plurality of receive antennas and process the received signals to provide received modulation symbols; 滤波器,操作上耦合到多个前端处理器并配置为根据第一矩阵对接收到的调制码元滤波以提供经滤波调制码元,其中第一矩阵代表用于数据传输的多个发射天线和接收天线间的信道特征估计;a filter operatively coupled to the plurality of front-end processors and configured to filter the received modulation symbols according to a first matrix to provide filtered modulation symbols, wherein the first matrix represents a plurality of transmit antennas for data transmission and Estimation of channel characteristics between receiving antennas; 乘法器,耦合到滤波器并配置为将经滤波的调制码元与第二矩阵相乘以提供对发射的调制码元的估计,其中所述第二矩阵是基于所述第一矩阵导出的逆矩阵;a multiplier coupled to the filter and configured to multiply the filtered modulation symbols with a second matrix to provide an estimate of the transmitted modulation symbols, wherein the second matrix is an inverse derived based on the first matrix matrix; 信道质量估计器,耦合到乘法器并配置为估计用于数据传输的多个传输信道的特征,并提供指明多个发射天线和多个接收天线间的多个传输信道的信号对噪声加干扰比估计的信道状态信息,以及a channel quality estimator coupled to the multiplier and configured to estimate characteristics of the plurality of transmission channels used for data transmission and provide a signal-to-noise-plus-interference ratio indicative of the plurality of transmission channels between the plurality of transmit antennas and the plurality of receive antennas estimated channel state information, and 发射数据处理器,用于接收和处理从接收机单元来的用于传输的信道状态信息。A transmit data processor for receiving and processing channel state information for transmission from the receiver unit. 32.如权利要求31所述的接收机单元,其特征在于还包括:32. The receiver unit of claim 31, further comprising: 第二估计器,配置为根据调制码元估计导出信道系数矩阵,且其中第一矩阵是根据信道系数矩阵而被导出。A second estimator configured to derive a channel coefficient matrix according to the modulation symbol estimation, and wherein the first matrix is derived according to the channel coefficient matrix. 33.如权利要求31所述的接收机单元,其特征在于还包括33. The receiver unit of claim 31 further comprising 一个或多个解调元件,每个解调元件配置为接收并根据特定调制方案对相应的调制码元估计的流进行解调以提供经解调的码元流。One or more demodulation elements, each demodulation element configured to receive and demodulate a corresponding stream of modulation symbol estimates according to a particular modulation scheme to provide a stream of demodulated symbols. 34.如权利要求33所述的接收机单元,其特征在于还包括34. The receiver unit of claim 33, further comprising 一个或多个解码器,每个解码器配置为接收并根据特定解码方案对已解调码元流解码以提供经解码的数据。One or more decoders, each configured to receive and decode the demodulated symbol stream according to a particular decoding scheme to provide decoded data. 35.如权利要求31所述的接收机单元,其特征在于,所述信道质量估计器还用于生成指明多个传输信道的特征的信道状态信息。35. The receiver unit of claim 31, wherein the channel quality estimator is further operable to generate channel state information characterizing a plurality of transmission channels. 36.如权利要求31所述的接收机单元,其特征在于,所述信道质量估计器还用于生成指明多个传输信道的特征模量和特征值的信道状态信息。36. The receiver unit of claim 31, wherein the channel quality estimator is further configured to generate channel state information indicative of eigenmoduli and eigenvalues of a plurality of transmission channels. 37.如权利要求31所述的接收机单元,其特征在于,所述信道质量估计器还使用无偏最小均方误差处理生成信道状态信息。37. The receiver unit of claim 31, wherein the channel quality estimator further generates channel state information using unbiased minimum mean square error processing. 38.如权利要求31所述的接收机单元,其特征在于,所述信道质量估计器还使用相关矩阵逆处理生成信道状态信息。38. The receiver unit of claim 31, wherein the channel quality estimator further uses correlation matrix inverse processing to generate channel state information.
CNB028085582A 2001-03-23 2002-03-22 Method and apparatus for utilizing channel state information in a wireless communication system Expired - Lifetime CN100505577C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/816,481 US6771706B2 (en) 2001-03-23 2001-03-23 Method and apparatus for utilizing channel state information in a wireless communication system
US09/816,481 2001-03-23

Publications (2)

Publication Number Publication Date
CN1552132A CN1552132A (en) 2004-12-01
CN100505577C true CN100505577C (en) 2009-06-24

Family

ID=25220738

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028085582A Expired - Lifetime CN100505577C (en) 2001-03-23 2002-03-22 Method and apparatus for utilizing channel state information in a wireless communication system

Country Status (15)

Country Link
US (5) US6771706B2 (en)
EP (4) EP1371147B1 (en)
JP (2) JP4593878B2 (en)
KR (2) KR20090040929A (en)
CN (1) CN100505577C (en)
AT (1) ATE360288T1 (en)
AU (1) AU2002306798A1 (en)
BR (1) BR0208312A (en)
DE (1) DE60219605T2 (en)
DK (2) DK2256952T3 (en)
ES (4) ES2734517T3 (en)
PT (2) PT2256953T (en)
TR (1) TR201908292T4 (en)
TW (1) TWI230525B (en)
WO (1) WO2002078211A2 (en)

Families Citing this family (505)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US6865237B1 (en) 2000-02-22 2005-03-08 Nokia Mobile Phones Limited Method and system for digital signal transmission
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US8064188B2 (en) 2000-07-20 2011-11-22 Paratek Microwave, Inc. Optimized thin film capacitors
US7865154B2 (en) 2000-07-20 2011-01-04 Paratek Microwave, Inc. Tunable microwave devices with auto-adjusting matching circuit
AU2001276986A1 (en) 2000-07-20 2002-02-05 Paratek Microwave, Inc. Tunable microwave devices with auto-adjusting matching circuit
US8744384B2 (en) 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
FI20011357A0 (en) * 2001-06-25 2001-06-25 Nokia Corp Shipping method
FI20002845A7 (en) * 2000-12-22 2002-06-23 Nokia Corp Sending a digital signal
US7342875B2 (en) * 2000-11-06 2008-03-11 The Directv Group, Inc. Space-time coded OFDM system for MMDS applications
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
JP2002290367A (en) * 2001-03-26 2002-10-04 Hitachi Kokusai Electric Inc Band division demodulation method and OFDM receiver
US8290098B2 (en) * 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US7379508B1 (en) * 2001-04-09 2008-05-27 At&T Corp. Frequency-domain method for joint equalization and decoding of space-time block codes
US7092450B1 (en) * 2001-04-09 2006-08-15 At&T Corp. Frequency-domain method for joint equalization and decoding of space-time block codes
KR100510434B1 (en) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 OFDM signal transmission system, OFDM signal transmission apparatus and OFDM signal receiver
US7706458B2 (en) * 2001-04-24 2010-04-27 Mody Apurva N Time and frequency synchronization in Multi-Input, Multi-Output (MIMO) systems
US7310304B2 (en) * 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
GB0110125D0 (en) 2001-04-25 2001-06-20 Koninkl Philips Electronics Nv Radio communication system
US7133459B2 (en) * 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
US7889759B2 (en) * 2001-05-04 2011-02-15 Entropic Communications, Inc. Broadband cable network utilizing common bit-loading
EP1255369A1 (en) * 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US7594249B2 (en) * 2001-05-04 2009-09-22 Entropic Communications, Inc. Network interface device and broadband local area network using coaxial cable
FI20010963A0 (en) * 2001-05-08 2001-05-08 Nokia Corp Adaptive Symbol Description in a Mobile System
US6785341B2 (en) * 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
DE02769734T1 (en) * 2001-05-14 2004-05-19 Interdigital Technology Corp., Wilmington CHANNEL QUALITY MEASUREMENTS FOR DOWNLOADING OPERATING APPARATUS
US6856992B2 (en) 2001-05-15 2005-02-15 Metatomix, Inc. Methods and apparatus for real-time business visibility using persistent schema-less data storage
US7058637B2 (en) 2001-05-15 2006-06-06 Metatomix, Inc. Methods and apparatus for enterprise application integration
US6925457B2 (en) 2001-07-27 2005-08-02 Metatomix, Inc. Methods and apparatus for querying a relational data store using schema-less queries
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7688899B2 (en) * 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US8291457B2 (en) 2001-05-24 2012-10-16 Vixs Systems, Inc. Channel selection in a multimedia system
US20090031419A1 (en) 2001-05-24 2009-01-29 Indra Laksono Multimedia system and server and methods for use therewith
US6999472B2 (en) * 2001-05-30 2006-02-14 Nokia Mobile Phones Limited Apparatus, and associated method, for space-time encoding, and decoding, data at a selected code rate
DE60224672T2 (en) * 2001-06-21 2009-01-22 Koninklijke Philips Electronics N.V. TRANSMISSION METHOD AND DEVICE IN A RADIO COMMUNICATION NETWORK
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
DE10132492A1 (en) * 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptive signal processing method for bidirectional radio transmission in a MIMO channel and MIMO system for performing the method
US7359466B2 (en) * 2001-08-24 2008-04-15 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US7024163B1 (en) * 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US7061854B2 (en) * 2001-10-15 2006-06-13 Nortel Networks Limited Efficient OFDM communications with interference immunity
US7327798B2 (en) 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7012883B2 (en) * 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
US6754169B2 (en) * 2001-12-13 2004-06-22 Motorola, Inc. Method and system of operation for a variable transmission mode multi-carrier communication system
ITMI20012685A1 (en) * 2001-12-19 2003-06-19 Cit Alcatel METHOD AND SYSTEM TO DOUBLE THE SPECTRAL EFFICIENCY INHUN RADIO TRANSMISSION SYSTEMS
US7173990B2 (en) * 2001-12-27 2007-02-06 Dsp Group Inc. Joint equalization, soft-demapping and phase error correction in wireless system with receive diversity
US7573805B2 (en) * 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
KR100463526B1 (en) * 2002-01-04 2004-12-29 엘지전자 주식회사 Method for allocating power in multiple input multiple output system
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) * 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
JP3913575B2 (en) * 2002-02-28 2007-05-09 三洋電機株式会社 Wireless device, wireless communication system, space path control method, and space path control program
JP4166026B2 (en) 2002-03-22 2008-10-15 三洋電機株式会社 Wireless device, space path control method, and space path control program
US7103325B1 (en) * 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
EP1502364A4 (en) 2002-04-22 2010-03-31 Ipr Licensing Inc Multiple-input multiple-output radio transceiver
KR100548312B1 (en) * 2002-06-20 2006-02-02 엘지전자 주식회사 Signal Processing Method in Multiple Input / Output Mobile Communication System
US7436757B1 (en) * 2002-06-21 2008-10-14 Nortel Networks Limited Scattered pilot and filtering for channel estimation
ES2318176T3 (en) * 2002-07-30 2009-05-01 Ipr Licensing Inc. RADIO COMMUNICATION SYSTEM AND METHOD WITH MULTIPLE MULTIPLE INPUT OUTPUT (MIMO).
TWI334739B (en) * 2002-08-07 2010-12-11 Interdigital Tech Corp Closed loop transmit diversity of point to multipoint physical channels
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en) * 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
EP1392004B1 (en) * 2002-08-22 2009-01-21 Interuniversitair Microelektronica Centrum Vzw Method for multi-user MIMO transmission and apparatuses suited therefore
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7260153B2 (en) * 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US7889819B2 (en) * 2002-10-04 2011-02-15 Apurva Mody Methods and systems for sampling frequency offset detection, correction and control for MIMO OFDM systems
KR100484447B1 (en) * 2002-10-09 2005-04-20 텔레시스 인코포레이티드 Transmitting/receiving apparatus and method for improving peak-to-average power ratio in an orthogonal frequency division multiplexing system
JP4602641B2 (en) * 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ Signal transmission system, signal transmission method and transmitter
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7151809B2 (en) 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
JP4197482B2 (en) * 2002-11-13 2008-12-17 パナソニック株式会社 Base station transmission method, base station transmission apparatus, and communication terminal
EP1511189B1 (en) * 2002-11-26 2017-09-06 Wi-Fi One, LLC Communication method, transmitter apparatus and receiver apparatus
US7154960B2 (en) * 2002-12-31 2006-12-26 Lucent Technologies Inc. Method of determining the capacity of each transmitter antenna in a multiple input/multiple output (MIMO) wireless system
US7813440B2 (en) 2003-01-31 2010-10-12 Ntt Docomo, Inc. Multiple-output multiple-input (MIMO) communication system, MIMO receiver and MIMO receiving method
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US8099099B2 (en) * 2003-02-19 2012-01-17 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
AU2004214003C1 (en) * 2003-02-19 2010-09-16 Qualcomm Incorporated Controlled superposition coding in multi-user communication systems
JP2004266586A (en) 2003-03-03 2004-09-24 Hitachi Ltd Data transmission / reception method for mobile communication system
US7428279B2 (en) * 2003-03-03 2008-09-23 Interdigital Technology Corporation Reduced complexity sliding window based equalizer
US7042967B2 (en) * 2003-03-03 2006-05-09 Interdigital Technology Corporation Reduced complexity sliding window based equalizer
US7822140B2 (en) * 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7983355B2 (en) 2003-07-09 2011-07-19 Broadcom Corporation System and method for RF signal combining and adaptive bit loading for data rate maximization in multi-antenna communication systems
US8185075B2 (en) 2003-03-17 2012-05-22 Broadcom Corporation System and method for channel bonding in multiple antenna communication systems
US7391832B2 (en) * 2003-03-17 2008-06-24 Broadcom Corporation System and method for channel bonding in multiple antenna communication systems
US7130580B2 (en) * 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
US7099678B2 (en) * 2003-04-10 2006-08-29 Ipr Licensing, Inc. System and method for transmit weight computation for vector beamforming radio communication
JP4490368B2 (en) * 2003-04-21 2010-06-23 三菱電機株式会社 Wireless communication apparatus, wireless communication system, and wireless communication method
US7532600B2 (en) * 2003-04-25 2009-05-12 Alcatel-Lucent Usa Inc. Method and system for using hybrid ARQ in communication systems that use multiple input multiple output antenna systems
US20040218519A1 (en) * 2003-05-01 2004-11-04 Rong-Liang Chiou Apparatus and method for estimation of channel state information in OFDM receivers
JP3799030B2 (en) * 2003-05-09 2006-07-19 松下電器産業株式会社 CDMA transmitter and CDMA transmission method
US8593932B2 (en) * 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US8064528B2 (en) 2003-05-21 2011-11-22 Regents Of The University Of Minnesota Estimating frequency-offsets and multi-antenna channels in MIMO OFDM systems
WO2005006638A2 (en) * 2003-06-18 2005-01-20 University Of Florida Wireless lan compatible multi-input multi-output system
CN1751465B (en) * 2003-06-18 2011-11-09 日本电信电话株式会社 Radio packet communication method and radio packet communication apparatus
US7606217B2 (en) 2003-07-02 2009-10-20 I2 Telecom International, Inc. System and method for routing telephone calls over a voice and data network
US8391322B2 (en) 2003-07-09 2013-03-05 Broadcom Corporation Method and system for single weight (SW) antenna system for spatial multiplexing (SM) MIMO system for WCDMA/HSDPA
JP4212976B2 (en) * 2003-07-23 2009-01-21 富士通株式会社 MIMO wireless communication system and wireless communication apparatus
EP2523382A3 (en) 2003-07-29 2013-01-16 Broadcom Corporation Frequency selective transmit signal weighting for multiple antenna communication systems
US7187940B2 (en) * 2003-07-31 2007-03-06 Motorola, Inc. Decorrelating rake receiver apparatus and method
US7394858B2 (en) * 2003-08-08 2008-07-01 Intel Corporation Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
US7213197B2 (en) * 2003-08-08 2007-05-01 Intel Corporation Adaptive bit loading with low density parity check forward error correction
US7925291B2 (en) 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US20050047517A1 (en) * 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US7379506B2 (en) * 2003-09-23 2008-05-27 Nokia Corporation Apparatus, and associated method, for assigning data to transmit antennas of a multiple transmit antenna transmitter
US7724838B2 (en) * 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
KR100713403B1 (en) * 2003-09-30 2007-05-04 삼성전자주식회사 Apparatus and method for controlling transmission method according to channel state in communication system
US7349436B2 (en) * 2003-09-30 2008-03-25 Intel Corporation Systems and methods for high-throughput wideband wireless local area network communications
US7742546B2 (en) * 2003-10-08 2010-06-22 Qualcomm Incorporated Receiver spatial processing for eigenmode transmission in a MIMO system
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US7120395B2 (en) * 2003-10-20 2006-10-10 Nortel Networks Limited MIMO communications
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
KR100520159B1 (en) * 2003-11-12 2005-10-10 삼성전자주식회사 Apparatus and method for interference cancellation of ofdm system using multiple antenna
KR100981554B1 (en) * 2003-11-13 2010-09-10 한국과학기술원 In a mobile communication system having multiple transmit / receive antennas, a method of transmitting signals by grouping transmit antennas
KR100996080B1 (en) * 2003-11-19 2010-11-22 삼성전자주식회사 Apparatus and Method for Adaptive Modulation and Coding Control in Communication System Using Orthogonal Frequency Division Multiplexing
US7746800B2 (en) * 2003-11-21 2010-06-29 Nokia Corporation Flexible rate split method for MIMO transmission
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7286606B2 (en) * 2003-12-04 2007-10-23 Intel Corporation System and method for channelization recognition in a wideband communication system
US8983467B2 (en) * 2003-12-09 2015-03-17 Lsi Corporation Method and apparatus for access point selection using channel correlation in a wireless communication system
KR100560386B1 (en) * 2003-12-17 2006-03-13 한국전자통신연구원 Transmitter and Method of Orthogonal Frequency Division Multiple Access for Coherent Detection in Uplink of Wireless Communication System
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
KR100580843B1 (en) * 2003-12-22 2006-05-16 한국전자통신연구원 V―Channel transfer function matrix processing apparatus and processing method thereof in BSL
US8369790B2 (en) * 2003-12-30 2013-02-05 Intel Corporation Communication overhead reduction apparatus, systems, and methods
US7450489B2 (en) * 2003-12-30 2008-11-11 Intel Corporation Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices
US7336746B2 (en) 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
EP1709752B1 (en) * 2004-01-20 2016-09-14 LG Electronics, Inc. Method for transmitting/receiving signals in a mimo system
JP4130191B2 (en) * 2004-01-28 2008-08-06 三洋電機株式会社 Transmitter
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
CN101854188B (en) 2004-01-29 2013-03-13 桥扬科技有限公司 Methods and apparatus for multi-carrier, multi-cell wireless communication networks
US7818018B2 (en) 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
US7864725B2 (en) 2004-01-29 2011-01-04 Neocific, Inc. Methods and apparatus for overlaying multi-carrier and direct sequence spread spectrum signals in a broadband wireless communication system
US11152971B2 (en) * 2004-02-02 2021-10-19 Charles Abraham Frequency modulated OFDM over various communication media
CN1898924B (en) * 2004-02-05 2011-09-07 英特尔股份公司 Method and apparatus to perform channel estimation for communication system
WO2005076554A1 (en) * 2004-02-05 2005-08-18 Zakrytoe Aktsionernoe Obschestvo Intel Method and apparatus to reduce crosstalk in a mimo communication system
EP1710929B1 (en) * 2004-02-13 2008-12-03 Panasonic Corporation MIMO system with eigenvalues feedback information
KR20050081528A (en) * 2004-02-14 2005-08-19 삼성전자주식회사 Channel state information feedback method for multi-carrier communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7206354B2 (en) * 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
WO2005093982A1 (en) * 2004-03-26 2005-10-06 Nec Corporation Radio communication device
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US7885354B2 (en) * 2004-04-02 2011-02-08 Rearden, Llc System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7564814B2 (en) * 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
KR100754722B1 (en) 2004-05-12 2007-09-03 삼성전자주식회사 Apparatus and method for data transmission/receiving using channel state information in a wireless communication system
JP4447372B2 (en) * 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION DEVICE, RADIO RECEPTION DEVICE, RADIO COMMUNICATION METHOD, AND CHANNEL ESTIMATION METHOD
US8233555B2 (en) 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
US7665063B1 (en) 2004-05-26 2010-02-16 Pegasystems, Inc. Integration of declarative rule-based processing with procedural programming
US7746802B2 (en) * 2004-06-01 2010-06-29 Samsung Electronics Co., Ltd. Method and apparatus for channel state feedback using arithmetic coding
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
JP4616338B2 (en) * 2004-06-14 2011-01-19 サムスン エレクトロニクス カンパニー リミテッド Apparatus, system and method for controlling transmission mode in a mobile communication system using multiple transmit / receive antennas
GB2415336B (en) * 2004-06-18 2006-11-08 Toshiba Res Europ Ltd Bit interleaver for a mimo system
JP2006050573A (en) 2004-06-28 2006-02-16 Sanyo Electric Co Ltd Transmitting method and apparatus, and receiving method and apparatus
KR100887006B1 (en) * 2004-06-28 2009-03-04 산요덴키가부시키가이샤 Sending method and device
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US9294218B2 (en) * 2004-07-16 2016-03-22 Qualcomm Incorporated Rate prediction in fractional reuse systems
US7830976B2 (en) * 2004-07-16 2010-11-09 Qualcomm Incorporated Iterative channel and interference estimation with dedicated pilot tones for OFDMA
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US7684753B2 (en) * 2004-07-21 2010-03-23 Nokia Corporation Method and device for transmission parameter selection in mobile communications
US7567621B2 (en) * 2004-07-21 2009-07-28 Qualcomm Incorporated Capacity based rank prediction for MIMO design
US9148256B2 (en) * 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
JP4068600B2 (en) * 2004-07-27 2008-03-26 株式会社東芝 Wireless transmission device and wireless reception device
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7864659B2 (en) * 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
US7583982B2 (en) * 2004-08-06 2009-09-01 Interdigital Technology Corporation Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas
MX2007001710A (en) 2004-08-11 2007-04-16 Interdigital Tech Corp Channel sounding for improved system performance.
AU2005272789B2 (en) 2004-08-12 2009-02-05 Interdigital Technology Corporation Method and apparatus for implementing space frequency block coding
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
FR2875658B1 (en) * 2004-09-21 2007-03-02 Commissariat Energie Atomique ESTIMATING THE MOST NOISE INTERFERENCE SIGNAL RATIO AT THE OUTPUT OF AN OFDM-CDMA RECEIVER.
US7882412B2 (en) * 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
US20060114974A1 (en) * 2004-11-05 2006-06-01 Interdigital Technology Corporation Normalized least mean square chip-level equalization advanced diversity receiver
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
JP2006186991A (en) * 2004-12-03 2006-07-13 Nagoya Institute Of Technology Packet transmission method using adaptive modulation
US7623490B2 (en) * 2004-12-22 2009-11-24 Qualcomm Incorporated Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication
KR100617835B1 (en) * 2005-01-05 2006-08-28 삼성전자주식회사 Apparatus and method for transmitting/receiving a channel quality information in a communication system
US20060209970A1 (en) * 2005-01-11 2006-09-21 Emmanuel Kanterakis Adaptive transmission rate communication system
CN1805305A (en) * 2005-01-13 2006-07-19 松下电器产业株式会社 Adaptive space-time transmit diversity method and apparatus by means of antenna selection
JP4541165B2 (en) * 2005-01-13 2010-09-08 富士通株式会社 Wireless communication system and transmitter
DE112006000201B4 (en) * 2005-01-14 2015-12-17 Cambium Networks Ltd. Dual payload and adaptive modulation
US7522555B2 (en) * 2005-01-21 2009-04-21 Intel Corporation Techniques to manage channel prediction
US8335704B2 (en) 2005-01-28 2012-12-18 Pegasystems Inc. Methods and apparatus for work management and routing
US7535821B2 (en) * 2005-02-02 2009-05-19 Electronics And Telecommunications Research Institute Method for generating two-dimensional orthogonal variable spreading code and MIMO system using the same
US7839819B2 (en) * 2005-02-07 2010-11-23 Broadcom Corporation Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US20060182207A1 (en) * 2005-02-11 2006-08-17 In-Kyu Lee Hybrid STBC receiver
US7471702B2 (en) * 2005-03-09 2008-12-30 Qualcomm Incorporated Methods and apparatus for implementing, using, transmitting, and/or receiving signals at least some of which include intentional null tones
US8325826B2 (en) * 2005-03-09 2012-12-04 Qualcomm Incorporated Methods and apparatus for transmitting signals facilitating antenna control
US7826807B2 (en) 2005-03-09 2010-11-02 Qualcomm Incorporated Methods and apparatus for antenna control in a wireless terminal
US9246560B2 (en) * 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US8995547B2 (en) 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US8724740B2 (en) 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US20060234642A1 (en) * 2005-03-14 2006-10-19 Motorola, Inc. Low feedback scheme for link quality reporting based on the exp esm technique
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
KR100975730B1 (en) 2005-03-29 2010-08-13 삼성전자주식회사 Random Beamforming Method for Multiple Input and Output Systems
WO2006107230A1 (en) * 2005-03-30 2006-10-12 Intel Corporation Multiple-input multiple-output multicarrier communication system with joint transmitter and receiver adaptive beamforming for enhanced signal-to-noise ratio
US7583735B2 (en) * 2005-03-31 2009-09-01 Adc Telecommunications, Inc. Methods and systems for handling underflow and overflow in a software defined radio
US7593450B2 (en) * 2005-03-31 2009-09-22 Adc Telecommunications, Inc. Dynamic frequency hopping
US20060223514A1 (en) * 2005-03-31 2006-10-05 Adc Telecommunications, Inc. Signal enhancement through diversity
US20060227805A1 (en) * 2005-03-31 2006-10-12 Adc Telecommunications, Inc. Buffers handling multiple protocols
US20060222020A1 (en) * 2005-03-31 2006-10-05 Adc Telecommunications, Inc. Time start in the forward path
US7398106B2 (en) * 2005-03-31 2008-07-08 Adc Telecommunications, Inc. Dynamic readjustment of power
US7640019B2 (en) * 2005-03-31 2009-12-29 Adc Telecommunications, Inc. Dynamic reallocation of bandwidth and modulation protocols
US7423988B2 (en) * 2005-03-31 2008-09-09 Adc Telecommunications, Inc. Dynamic reconfiguration of resources through page headers
US9184870B2 (en) * 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) * 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7872981B2 (en) * 2005-05-12 2011-01-18 Qualcomm Incorporated Rate selection for eigensteering in a MIMO communication system
EP1889436A4 (en) * 2005-05-26 2012-01-25 Nokia Corp METHOD AND APPARATUS FOR SPECIFYING CHANNEL STATUS INFORMATION FOR MULTIPLE CARRIERS
US8879511B2 (en) * 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) * 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) * 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) * 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8358714B2 (en) * 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US9179319B2 (en) * 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8064837B2 (en) 2005-06-16 2011-11-22 Qualcomm Incorporated Method and apparatus for optimum selection of MIMO and interference cancellation
KR101154979B1 (en) * 2005-07-22 2012-06-18 엘지전자 주식회사 apparatus for receiving and transmitting data of multi-carrier system and method for receiving and transmitting data using the same
EP1912362B1 (en) 2005-08-02 2011-04-20 Mitsubishi Electric Corporation Communication device, and radio communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
KR100770909B1 (en) * 2005-08-12 2007-10-26 삼성전자주식회사 Apparatus and method for estimating and reporting received signal-to-noise interference ratio in multi-antenna system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US7551648B2 (en) * 2005-08-22 2009-06-23 Nec Laboratories America, Inc. Superimposed training for multiple antenna communications
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8073068B2 (en) 2005-08-22 2011-12-06 Qualcomm Incorporated Selective virtual antenna transmission
KR101276797B1 (en) * 2005-08-24 2013-06-20 한국전자통신연구원 Base station tranmitter for mobile telecommunication system, method for that system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
WO2007024324A2 (en) * 2005-08-25 2007-03-01 Beceem Communications Inc. Subcarrier allocation in ofdma with imperfect channel state information at the transmitter
US9136974B2 (en) * 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
US7706455B2 (en) * 2005-09-26 2010-04-27 Intel Corporation Multicarrier transmitter for multiple-input multiple-output communication systems and methods for puncturing bits for pilot tones
US7590184B2 (en) * 2005-10-11 2009-09-15 Freescale Semiconductor, Inc. Blind preamble detection for an orthogonal frequency division multiplexed sample stream
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8693405B2 (en) * 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9088384B2 (en) * 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) * 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8582509B2 (en) * 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9406444B2 (en) 2005-11-14 2016-08-02 Blackberry Limited Thin film capacitors
US7782573B2 (en) * 2005-11-17 2010-08-24 University Of Connecticut Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US7623599B2 (en) * 2005-11-21 2009-11-24 Freescale Semiconductor, Inc. Blind bandwidth detection for a sample stream
US7409015B1 (en) * 2005-11-29 2008-08-05 The United States As Represented By The Secretary Of The Army Adaptive modulation scheme based on cutoff rate with imperfect channel state information
US8200164B2 (en) * 2005-12-01 2012-06-12 Intel Corporation Wireless communication system, associated methods and data structures
US8831607B2 (en) * 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
RU2319304C2 (en) * 2006-01-10 2008-03-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Complex of onboard digital communication instruments
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
JP5027155B2 (en) 2006-01-11 2012-09-19 クゥアルコム・インコーポレイテッド Method and apparatus for generating, transmitting and / or using wireless terminal beacon signals
US20070160007A1 (en) * 2006-01-11 2007-07-12 Li-Chun Wang Method and device for cost-function based handoff determination using wavelet prediction in vertical networks
EP1808989A1 (en) * 2006-01-12 2007-07-18 Siemens Aktiengesellschaft Method of digital wireless communication on a wideband mobile radio channel
US7711337B2 (en) 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
US8325097B2 (en) 2006-01-14 2012-12-04 Research In Motion Rf, Inc. Adaptively tunable antennas and method of operation therefore
US8125399B2 (en) 2006-01-14 2012-02-28 Paratek Microwave, Inc. Adaptively tunable antennas incorporating an external probe to monitor radiated power
US7675844B2 (en) * 2006-02-24 2010-03-09 Freescale Semiconductor, Inc. Synchronization for OFDM signals
US20100226415A1 (en) * 2006-02-28 2010-09-09 Mitsubishi Electric Research Laboratories, Inc. Mapping for MIMO Communication Apparatus
US7818013B2 (en) * 2006-03-20 2010-10-19 Intel Corporation Downlink channel parameters determination for a multiple-input-multiple-output (MIMO) system
US8924335B1 (en) 2006-03-30 2014-12-30 Pegasystems Inc. Rule-based user interface conformance methods
US20100290568A1 (en) * 2006-03-31 2010-11-18 Hajime Suzuki Decoding frequency channelised signals
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US7783293B2 (en) * 2006-04-26 2010-08-24 Beceem Communications Inc. Method of training a communication system
JP4775288B2 (en) 2006-04-27 2011-09-21 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4356756B2 (en) 2006-04-27 2009-11-04 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4924106B2 (en) 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4924107B2 (en) 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system
WO2007130963A1 (en) * 2006-05-01 2007-11-15 Intel Corporation Providing cqi feedback with common code rate to a transmitter station
US7830977B2 (en) * 2006-05-01 2010-11-09 Intel Corporation Providing CQI feedback with common code rate to a transmitter station
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
US7974360B2 (en) 2006-05-24 2011-07-05 Qualcomm Incorporated Multi input multi output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system
JP4838353B2 (en) * 2006-06-16 2011-12-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method for obtaining channel quality measurements in multi-antenna systems
WO2008002224A1 (en) * 2006-06-26 2008-01-03 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus to optimize the choice of communication link in a wireless network with mimo
US7724853B2 (en) * 2006-07-14 2010-05-25 Qualcomm Incorporated Enabling mobile switched antennas
US8225186B2 (en) 2006-07-14 2012-07-17 Qualcomm Incorporated Ecoding and decoding methods and apparatus for use in a wireless communication system
US7720485B2 (en) * 2006-07-14 2010-05-18 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
US20080025197A1 (en) * 2006-07-28 2008-01-31 Mccoy James W Estimating frequency error of a sample stream
KR100839243B1 (en) * 2006-08-03 2008-06-17 자크리토에 악치오네르노에 오브쉐스트보 인텔 Crosstalk Reduction Methods, Devices, Products, and Multiple Input Multiple Output Systems
TWI479822B (en) 2006-08-17 2015-04-01 Intel Corp Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system
US7944985B2 (en) * 2006-08-24 2011-05-17 Interdigital Technology Corporation MIMO transmitter and receiver for supporting downlink communication of single channel codewords
EP2060022B1 (en) 2006-09-06 2016-02-17 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
ES2901556T3 (en) 2006-09-26 2022-03-22 Optis Wireless Technology Llc Communications scheme for channel quality information
TWI337462B (en) * 2006-09-26 2011-02-11 Realtek Semiconductor Corp Receiver of mimo multi-carrier system and associated apparatus and method for receive antenna selection
US20080080635A1 (en) * 2006-10-02 2008-04-03 Nokia Corporation Advanced feedback signaling for multi-antenna transmission systems
JP5001375B2 (en) * 2006-10-19 2012-08-15 クゥアルコム・インコーポレイテッド Beacon coding in wireless communication systems
US7924957B2 (en) * 2006-10-24 2011-04-12 Cisco Technology, Inc. Method for creating beamformed multiple-input-multiple-output channels with partial nulling
US7535312B2 (en) 2006-11-08 2009-05-19 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method with improved dynamic range
US7714676B2 (en) 2006-11-08 2010-05-11 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method
US8299867B2 (en) 2006-11-08 2012-10-30 Research In Motion Rf, Inc. Adaptive impedance matching module
KR100961889B1 (en) * 2006-11-17 2010-06-09 삼성전자주식회사 Apparatus and Method for Sequential Scheduling of Multiple Input Multiple Output System
US20080132173A1 (en) 2006-11-30 2008-06-05 Korea Advanced Institute Of Science And Technology Channel estimation apparatus and channel estimation method
CN101197798B (en) 2006-12-07 2011-11-02 华为技术有限公司 Signal processing system, chip, circumscribed card, filtering and transmitting/receiving device and method
CN101197592B (en) 2006-12-07 2011-09-14 华为技术有限公司 Far-end cross talk counteracting method and device, signal transmission device and signal processing system
US7813777B2 (en) * 2006-12-12 2010-10-12 Paratek Microwave, Inc. Antenna tuner with zero volts impedance fold back
CN101202552B (en) * 2006-12-15 2012-01-25 华为技术有限公司 Crossfire counteract apparatus, signal processing system and crossfire counteract method
US7822102B2 (en) * 2007-01-09 2010-10-26 Broadcom Corporation Method and system for an efficient channel quantization method for MIMO pre-coding systems
US7983322B2 (en) * 2007-01-09 2011-07-19 Broadcom Corporation Method and system for codebook design of MIMO pre-coders with finite rate channel state information feedback
WO2008086532A1 (en) * 2007-01-11 2008-07-17 Qualcomm Incorporated Using dtx and drx in a wireless communication system
US20080207258A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Multimode transmitter with digital up conversion and methods for use therewith
US8250525B2 (en) 2007-03-02 2012-08-21 Pegasystems Inc. Proactive performance management for multi-user enterprise software systems
EP2835924B1 (en) 2007-03-19 2017-03-08 Telefonaktiebolaget LM Ericsson (publ) Channel state feedback delivery in a telecommunication system
US7813371B2 (en) * 2007-03-21 2010-10-12 Kapsch Trafficcom Ag System and method for short range communication using adaptive channel intervals
US8676115B2 (en) 2007-03-29 2014-03-18 Qualcomm Incorporated Apparatus and methods for testing using modulation error ratio
KR101276851B1 (en) 2007-04-06 2013-06-18 엘지전자 주식회사 Apparatus and Method for transmitting Digital broadcasting signal
TWI362843B (en) * 2007-04-14 2012-04-21 Realtek Semiconductor Corp A method for receiving signal and apparatus thereof
US7917104B2 (en) 2007-04-23 2011-03-29 Paratek Microwave, Inc. Techniques for improved adaptive impedance matching
KR101484460B1 (en) * 2007-04-25 2015-01-20 코닌클리케 필립스 엔.브이. A method for transmitting a channel quality report to a primary station and a secondary station using a discontinuous transmission scheme
US20080274706A1 (en) * 2007-05-01 2008-11-06 Guillaume Blin Techniques for antenna retuning utilizing transmit power information
US8213886B2 (en) 2007-05-07 2012-07-03 Paratek Microwave, Inc. Hybrid techniques for antenna retuning utilizing transmit and receive power information
GB2449935A (en) * 2007-06-08 2008-12-10 Fujitsu Ltd Closed loop MIMO communication system using SISO r.m.s. delay spread to estimate eigen coherence bandwidth.
WO2008157620A2 (en) * 2007-06-19 2008-12-24 Interdigital Technology Corporation Constant modulus mimo precoding for constraining transmit antenna power for differential feedback
JP5134018B2 (en) * 2007-06-23 2013-01-30 パナソニック株式会社 Method and system for communication channel optimization in a multiple-input multiple-output (MIMO) communication system
EP2163019B1 (en) * 2007-07-02 2012-09-12 Telefonaktiebolaget LM Ericsson (publ) Adaptive modulation scheme for multipath wireless channels
US8630281B2 (en) 2007-07-10 2014-01-14 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US9848372B2 (en) 2007-07-10 2017-12-19 Qualcomm Incorporated Coding Methods of communicating identifiers in peer discovery in a peer-to-peer network
US8494007B2 (en) 2007-07-10 2013-07-23 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US8520704B2 (en) 2007-07-10 2013-08-27 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US20090022049A1 (en) * 2007-07-16 2009-01-22 Honeywell International Inc. Novel security enhancement structure for mimo wireless network
US8842702B2 (en) * 2007-07-17 2014-09-23 Qualcomm Incorporated Control indications for slotted wireless communication
US7907677B2 (en) * 2007-08-10 2011-03-15 Intel Corporation Open loop MU-MIMO
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US7499515B1 (en) * 2007-08-27 2009-03-03 Harris Corporation System and method for automated link quality measurement for adaptive modulation systems using noise level estimates
WO2009045139A1 (en) * 2007-10-02 2009-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Including in the uplink grant an indication of specific amount of cqi to be reported
KR101329145B1 (en) * 2007-10-05 2013-11-21 포항공과대학교 산학협력단 Method of space block coding signal transmission and receive with interactive multiuser detection, and aparatus using the same
US20090110114A1 (en) * 2007-10-26 2009-04-30 Eko Nugroho Onggosanusi Open-Loop MIMO Scheme and Signaling Support for Wireless Networks
US7991363B2 (en) * 2007-11-14 2011-08-02 Paratek Microwave, Inc. Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics
EP2063618B1 (en) * 2007-11-21 2014-01-08 Nokia Solutions and Networks Oy Method and device for processing data and to a communication system comprising such device
TW200926702A (en) * 2007-12-12 2009-06-16 Alcor Micro Corp Apparatus and method for measuring channel state information
ES2373240T3 (en) 2007-12-20 2012-02-01 Panasonic Corporation CONTROL CHANNEL SIGNALING USING A COMMON SIGNALING FIELD FOR TRANSPORT FORMAT AND REDUNDANCY VERSION.
US8909278B2 (en) * 2007-12-21 2014-12-09 Airvana Lp Adjusting wireless signal transmission power
EP2099185B1 (en) * 2008-01-29 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) Channel estimation in a terminal of an OFDM-based, cellular telecommunications system
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
WO2010003176A1 (en) * 2008-07-07 2010-01-14 Commonwealth Scientific And Industrial Resaerch Organisation Parallel packet transmission
WO2010003183A1 (en) * 2008-07-07 2010-01-14 Commonwealth Scientific And Industrial Research Organisation Multiple-input multiple-output ofdm systems
US8340605B2 (en) * 2008-08-06 2012-12-25 Qualcomm Incorporated Coordinated transmissions between cells of a base station in a wireless communications system
FR2935209B1 (en) * 2008-08-17 2011-02-11 Univ Sud Toulon Var METHOD AND DEVICE FOR SIMULTANEOUSLY HERTZIC TRANSMISSION OF A SET OF MESSAGES FROM A PLURALITY OF TRANSMITTERS TO A PLURALITY OF RECEIVERS
US8072285B2 (en) 2008-09-24 2011-12-06 Paratek Microwave, Inc. Methods for tuning an adaptive impedance matching network with a look-up table
US8139656B2 (en) * 2008-09-25 2012-03-20 The Regents Of The University Of California Method and system for linear processing of an input using Gaussian belief propagation
US8488691B2 (en) * 2008-10-08 2013-07-16 Qualcomm Incorporated Adaptive loading for orthogonal frequency division multiplex (OFDM) communication systems
US10481878B2 (en) 2008-10-09 2019-11-19 Objectstore, Inc. User interface apparatus and methods
US8067858B2 (en) 2008-10-14 2011-11-29 Paratek Microwave, Inc. Low-distortion voltage variable capacitor assemblies
US8660094B2 (en) * 2008-11-14 2014-02-25 Lg Electronics Inc. Method and apparatus for data transmission using a plurality of resources in a multiple antenna system
GB2466070B (en) * 2008-12-12 2014-04-30 Nokia Corp An apparatus
EP2387859B1 (en) * 2009-01-13 2014-06-18 Nokia Solutions and Networks GmbH & Co. KG Model based channel state information feedback
US8576896B2 (en) * 2009-02-04 2013-11-05 New Jersey Institute Of Technology Decoding of orthogonal space time codes
US8768264B2 (en) * 2009-03-03 2014-07-01 Qualcomm Incorporated Method and system for reducing feedback information in multicarrier-based communication systems based on temporal correlation
KR101032224B1 (en) * 2009-03-06 2011-05-02 삼성전기주식회사 Apparatus and method for generating channel state information (CSI) of an OPDM system
US8843435B1 (en) 2009-03-12 2014-09-23 Pegasystems Inc. Techniques for dynamic data processing
US20100232384A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
KR101055573B1 (en) * 2009-03-16 2011-08-08 주식회사 팬택 Precoding Device in Multi-User, Multi-antenna Radio Transmission System
US8468492B1 (en) 2009-03-30 2013-06-18 Pegasystems, Inc. System and method for creation and modification of software applications
JP5488016B2 (en) * 2009-03-30 2014-05-14 富士通株式会社 Wireless communication method, wireless communication system, and wireless communication apparatus
US8036098B2 (en) * 2009-04-20 2011-10-11 Intel Corporation Wireless network and method for adaptive opportunistic clustering for interference alignment in wireless networks
US8472888B2 (en) 2009-08-25 2013-06-25 Research In Motion Rf, Inc. Method and apparatus for calibrating a communication device
CN102006145B (en) 2009-09-02 2014-08-13 华为技术有限公司 Precoding method and device in multi-input and multi-output system
EP2484039B1 (en) 2009-10-01 2018-08-15 InterDigital Patent Holdings, Inc. Uplink control data transmission
US9026062B2 (en) 2009-10-10 2015-05-05 Blackberry Limited Method and apparatus for managing operations of a communication device
CN101668046B (en) 2009-10-13 2012-12-19 成都市华为赛门铁克科技有限公司 Resource caching method, device and system thereof
CN102055692B (en) * 2009-10-28 2013-11-06 中兴通讯股份有限公司 Channel estimation method and device in multiaerial system
GB2475098B (en) * 2009-11-06 2012-09-05 Toshiba Res Europ Ltd Compression and decompression of channel state information in a wireless communication network
CN105450360B (en) * 2010-01-08 2018-12-11 交互数字专利控股公司 Use the method and WTRU of carrier wave aggregated report channel state information
KR101695055B1 (en) 2010-01-08 2017-01-10 인터디지탈 패튼 홀딩스, 인크 Channel state information transmission for multiple carriers
US9231795B2 (en) * 2010-01-18 2016-01-05 Samsung Electronics Co., Ltd. Communication apparatus and precoding method based on multiple cells and multiple users
KR101719855B1 (en) * 2010-02-02 2017-03-27 엘지전자 주식회사 Power control method for interference alignment in wireless network
WO2011097796A1 (en) * 2010-02-10 2011-08-18 Telefonaktiebolaget Lm Ericsson Method and arrangement in a telecommunications system
KR101706943B1 (en) 2010-02-23 2017-02-15 엘지전자 주식회사 A method and a user equipment for transmitting channel quality information in a wireless, and a method and a base station for transmitting data for a plurality of user equipments
WO2011105706A2 (en) * 2010-02-23 2011-09-01 엘지전자 주식회사 Method for transmitting channel quality information, user equipment, method for transmitting multi-user data, and base station
KR101819502B1 (en) * 2010-02-23 2018-01-17 엘지전자 주식회사 A method and a user equipment for measuring interference, and a method and a base station for receiving interference information
US8976850B2 (en) * 2010-03-11 2015-03-10 Samsung Electronics Co., Ltd. Method and apparatus for sharing channel state information (CSI) in a multiple-user multiple-input multiple-output (MU-MIMO) environment
US8803631B2 (en) 2010-03-22 2014-08-12 Blackberry Limited Method and apparatus for adapting a variable impedance network
GB201006103D0 (en) * 2010-04-13 2010-05-26 Icera Inc Decoding a signal
AU2011242798B2 (en) 2010-04-20 2015-01-15 Blackberry Limited Method and apparatus for managing interference in a communication device
US8537669B2 (en) 2010-04-27 2013-09-17 Hewlett-Packard Development Company, L.P. Priority queue level optimization for a network flow
US8537846B2 (en) 2010-04-27 2013-09-17 Hewlett-Packard Development Company, L.P. Dynamic priority queue level assignment for a network flow
CN102264124B (en) * 2010-05-28 2014-03-05 富士通株式会社 Bit and power allocation method, device and communication system
TWI426791B (en) * 2010-06-09 2014-02-11 Univ Ishou Interrupt capacity calculation device and method
CN102404072B (en) 2010-09-08 2013-03-20 华为技术有限公司 Method for sending information bits, device thereof and system thereof
US20120069927A1 (en) * 2010-09-17 2012-03-22 Intel Corporation CQI feedback mechanisms for distortion-aware link adaptation toward enhanced multimedia communications
US9813135B2 (en) 2010-09-29 2017-11-07 Qualcomm, Incorporated Systems and methods for communication of channel state information
US9831983B2 (en) 2010-09-29 2017-11-28 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
US10090982B2 (en) 2010-09-29 2018-10-02 Qualcomm Incorporated Systems and methods for communication of channel state information
US9602298B2 (en) 2010-09-29 2017-03-21 Qualcomm Incorporated Methods and apparatuses for determining a type of control field
US9806848B2 (en) 2010-09-29 2017-10-31 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
US9882624B2 (en) 2010-09-29 2018-01-30 Qualcomm, Incorporated Systems and methods for communication of channel state information
CN101969361B (en) * 2010-09-30 2015-06-03 中兴通讯股份有限公司 Method and device for transmitting cycle feedback report
US9379454B2 (en) 2010-11-08 2016-06-28 Blackberry Limited Method and apparatus for tuning antennas in a communication device
US8712340B2 (en) 2011-02-18 2014-04-29 Blackberry Limited Method and apparatus for radio antenna frequency tuning
US8880487B1 (en) 2011-02-18 2014-11-04 Pegasystems Inc. Systems and methods for distributed rules processing
US8655286B2 (en) 2011-02-25 2014-02-18 Blackberry Limited Method and apparatus for tuning a communication device
US9030953B2 (en) 2011-03-04 2015-05-12 Alcatel Lucent System and method providing resilient data transmission via spectral fragments
US9686062B2 (en) 2011-03-04 2017-06-20 Alcatel Lucent Virtual aggregation of fragmented wireless spectrum
US9496982B2 (en) 2011-03-04 2016-11-15 Alcatel Lucent System and method providing resilient data transmission via spectral fragments
US20130272438A1 (en) * 2011-03-16 2013-10-17 Nec (China) Co., Ltd. Method, transmitter and receiver for beamforming
DE102011001911A1 (en) * 2011-04-08 2012-10-11 Rheinisch-Westfälische Technische Hochschule Aachen Method for a transmitter for a multichannel communication system for sending real-time sensitive data D
US8626083B2 (en) 2011-05-16 2014-01-07 Blackberry Limited Method and apparatus for tuning a communication device
US8594584B2 (en) 2011-05-16 2013-11-26 Blackberry Limited Method and apparatus for tuning a communication device
EP2740221B1 (en) 2011-08-05 2019-06-26 BlackBerry Limited Method and apparatus for band tuning in a communication device
WO2013024838A1 (en) * 2011-08-15 2013-02-21 シャープ株式会社 Wireless transmission device, wireless reception device, program, integrated circuit, and wireless communication system
US9137788B2 (en) * 2011-09-05 2015-09-15 Nec Laboratories America, Inc. Multiple-input multiple-output wireless communications with full duplex radios
US9209950B2 (en) 2011-10-03 2015-12-08 Qualcomm Incorporated Antenna time offset in multiple-input-multiple-output and coordinated multipoint transmissions
US9178590B2 (en) * 2011-12-27 2015-11-03 Industrial Technology Research Institute Channel information feedback method and wireless communication device using the same
US9195936B1 (en) 2011-12-30 2015-11-24 Pegasystems Inc. System and method for updating or modifying an application without manual coding
US8965390B2 (en) 2012-01-30 2015-02-24 T-Mobile Usa, Inc. Simultaneous communications over licensed and unlicensed spectrum
US9071289B2 (en) * 2012-04-23 2015-06-30 Cambridge Silicon Radio Limited Transceiver supporting multiple modulation schemes
US8787427B2 (en) * 2012-05-10 2014-07-22 Telefonaktiebolaget L M Ericsson (Publ) Chip-level processing for joint demodulation in CDMA receivers
US9021330B2 (en) 2012-05-15 2015-04-28 Alcatel Lucent System and method for multi-channel FEC encoding and transmission of data
US8948889B2 (en) 2012-06-01 2015-02-03 Blackberry Limited Methods and apparatus for tuning circuit components of a communication device
WO2014003506A1 (en) * 2012-06-29 2014-01-03 엘지전자 주식회사 Method for measuring and reporting csi-rs in wireless communication system, and apparatus for supporting same
US9853363B2 (en) 2012-07-06 2017-12-26 Blackberry Limited Methods and apparatus to control mutual coupling between antennas
US9246223B2 (en) 2012-07-17 2016-01-26 Blackberry Limited Antenna tuning for multiband operation
US9350405B2 (en) 2012-07-19 2016-05-24 Blackberry Limited Method and apparatus for antenna tuning and power consumption management in a communication device
US9413066B2 (en) 2012-07-19 2016-08-09 Blackberry Limited Method and apparatus for beam forming and antenna tuning in a communication device
US9362891B2 (en) 2012-07-26 2016-06-07 Blackberry Limited Methods and apparatus for tuning a communication device
US9048893B1 (en) * 2012-09-18 2015-06-02 Marvell International Ltd. Determining channel information using decision feedback equalization
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9374113B2 (en) 2012-12-21 2016-06-21 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US10404295B2 (en) 2012-12-21 2019-09-03 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9176213B2 (en) * 2013-03-13 2015-11-03 Northrop Grumman Systems Corporation Adaptive coded modulation in low earth orbit satellite communication system
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
TWI507881B (en) * 2013-04-10 2015-11-11 Realtek Semiconductor Corp Communication device and method of configuring data transmission
CN104753653B (en) * 2013-12-31 2019-07-12 中兴通讯股份有限公司 A kind of method, apparatus and reception side apparatus of solution rate-matched
WO2015103733A1 (en) * 2014-01-07 2015-07-16 Qualcomm Incorporated TWO SUBFRAME SET CSI FEEDBACK FOR eIMTA IN LTE
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10469396B2 (en) 2014-10-10 2019-11-05 Pegasystems, Inc. Event processing with enhanced throughput
MY179983A (en) * 2014-10-10 2020-11-19 Ericsson Telefon Ab L M Method for dynamic csi feedback
US9433009B1 (en) * 2014-10-28 2016-08-30 Sprint Spectrum L.P. Channel selection based on correlation between air interface quality and level of port-to-port isolation
US9632883B2 (en) * 2014-12-08 2017-04-25 Oracle International Corporation Digital encoding of parallel busses to suppress simultaneous switching output noise
US9438319B2 (en) 2014-12-16 2016-09-06 Blackberry Limited Method and apparatus for antenna selection
EP3048765A1 (en) * 2015-01-20 2016-07-27 Alcatel Lucent Transforming and combining signals from antenna array
CN105871443B (en) * 2015-01-23 2019-04-30 深圳市中兴微电子技术有限公司 Indication information correction method and system
KR101754527B1 (en) * 2015-03-09 2017-07-06 한국항공우주연구원 Apparatus and method for coding packet
US9525470B1 (en) * 2015-10-19 2016-12-20 Xilinx, Inc. Adaptive multiple-input multiple-output (MIMO) data detection and precoding
US10694473B2 (en) 2015-12-01 2020-06-23 Rajant Corporation System and method for controlling dynamic transmit power in a mesh network
CN108886396B (en) * 2016-02-03 2021-09-17 三星电子株式会社 Method and apparatus for configuring reference signal and for generating channel information
CN107370533B (en) * 2016-05-12 2020-09-25 上海诺基亚贝尔股份有限公司 Method, device and system for carrying out analog CSI feedback
US10698599B2 (en) 2016-06-03 2020-06-30 Pegasystems, Inc. Connecting graphical shapes using gestures
US10698647B2 (en) 2016-07-11 2020-06-30 Pegasystems Inc. Selective sharing for collaborative application usage
CN109818725B (en) * 2016-11-04 2020-06-16 华为技术有限公司 Method and device for channel state information feedback
JP7003424B2 (en) * 2017-03-15 2022-01-20 日本電気株式会社 Wireless communication devices, methods and programs
CN109756257B (en) * 2017-11-07 2023-07-07 珠海市魅族科技有限公司 Data transmission method and device for receiving end or transmitting end
CN108494458B (en) * 2018-02-27 2020-10-09 北京邮电大学 Signal transmission device and method based on subcarrier-level analog beamformer
US11048488B2 (en) 2018-08-14 2021-06-29 Pegasystems, Inc. Software code optimizer and method
KR102597605B1 (en) * 2018-10-18 2023-11-02 삼성전자주식회사 Wireless communication device for setting modulation and demodulation based on channel information and operation method thereof
RU2716834C1 (en) * 2019-06-03 2020-03-17 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Method of determining location of a receiver of signals of aviation telecommunication systems
US11570654B2 (en) * 2019-12-05 2023-01-31 Qualcomm Incorporated Link adaptation using a link quality estimation sequence
US11567945B1 (en) 2020-08-27 2023-01-31 Pegasystems Inc. Customized digital content generation systems and methods
RU2762743C1 (en) * 2020-10-20 2021-12-22 Акционерное общество "Научно-производственное предприятие "Полет" Complex of airborne digital radio communication means
US11363513B1 (en) 2020-12-16 2022-06-14 Sprint Spectrum L.P. Proactive control of UE service based on quality of an access node's RF-circuitry as to frequency bands on which the access node operates in coverage zones through which the UE is predicted to move
US12068799B2 (en) 2021-03-01 2024-08-20 Samsung Electronics Co., Ltd. Method and apparatus for bandwidth-adaptive and model-order-adaptive channel prediction
WO2022243946A1 (en) * 2021-05-21 2022-11-24 Lenovo (Singapore) Pte. Ltd. Determining a magnitude of a composite zero-forcing equalizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009381A1 (en) * 1996-08-29 1998-03-05 The Board Of Trustees Of The Leland Stanford Junior University High capacity wireless communication using spatial subchannels
US5844922A (en) * 1993-02-22 1998-12-01 Qualcomm Incorporated High rate trellis coding and decoding method and apparatus
US6131016A (en) * 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
CN1275293A (en) * 1998-07-16 2000-11-29 三星电子株式会社 Processing packet data in mobile communication system

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144026A (en) 1984-01-06 1985-07-30 Fujitsu Ltd viterbi decoder
JPS60144057A (en) 1984-01-06 1985-07-30 Hashimoto Corp Automatic answering telephone set possible for remote control
JPS6444057A (en) 1987-08-11 1989-02-16 Nec Corp Semiconductor integrated circuit device
US5065109A (en) * 1990-10-16 1991-11-12 Varian Associates, Inc. Electropneumatic band selector
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5265119A (en) * 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5592490A (en) 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
JPH084162A (en) 1994-06-07 1996-01-09 Kubota Corp Wall plate mounting bracket
JPH0884162A (en) 1994-09-14 1996-03-26 Hitachi Ltd Digital cable service transmitting / receiving method, transmitting apparatus, and receiving apparatus
US5799005A (en) * 1996-04-30 1998-08-25 Qualcomm Incorporated System and method for determining received pilot power and path loss in a CDMA communication system
US5903554A (en) * 1996-09-27 1999-05-11 Qualcomm Incorporation Method and apparatus for measuring link quality in a spread spectrum communication system
US5886988A (en) 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US5960399A (en) * 1996-12-24 1999-09-28 Gte Internetworking Incorporated Client/server speech processor/recognizer
US5933421A (en) * 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
US5940439A (en) * 1997-02-26 1999-08-17 Motorola Inc. Method and apparatus for adaptive rate communication system
US6108374A (en) * 1997-08-25 2000-08-22 Lucent Technologies, Inc. System and method for measuring channel quality information
US6097972A (en) * 1997-08-29 2000-08-01 Qualcomm Incorporated Method and apparatus for processing power control signals in CDMA mobile telephone system
US6154489A (en) * 1998-03-30 2000-11-28 Motorola, Inc. Adaptive-rate coded digital image transmission
US5973642A (en) 1998-04-01 1999-10-26 At&T Corp. Adaptive antenna arrays for orthogonal frequency division multiplexing systems with co-channel interference
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
JP3741866B2 (en) * 1998-06-05 2006-02-01 富士通株式会社 Adaptive modulation system
KR100342525B1 (en) * 1998-07-16 2002-06-28 윤종용 Method and system form processing packet data in mobile communication system
US6304594B1 (en) * 1998-07-27 2001-10-16 General Dynamics Government Systems Corporation Interference detection and avoidance technique
FI118359B (en) 1999-01-18 2007-10-15 Nokia Corp Speech recognition method, speech recognition device, and wireless communication means
JP2002540477A (en) 1999-03-26 2002-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Client-server speech recognition
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
KR100316777B1 (en) * 1999-08-24 2001-12-12 윤종용 Closed loop transmit antenna diversity method, base station apparatus and mobile station apparatus therefor in next generation mobile communication system
GB2355834A (en) 1999-10-29 2001-05-02 Nokia Mobile Phones Ltd Speech recognition
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US7418043B2 (en) * 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844922A (en) * 1993-02-22 1998-12-01 Qualcomm Incorporated High rate trellis coding and decoding method and apparatus
WO1998009381A1 (en) * 1996-08-29 1998-03-05 The Board Of Trustees Of The Leland Stanford Junior University High capacity wireless communication using spatial subchannels
US6131016A (en) * 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
CN1275293A (en) * 1998-07-16 2000-11-29 三星电子株式会社 Processing packet data in mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A comparison of differential and coherent reception for acoded OFDM system in a low C/I environment. BAUM K L ET AL.GLOBECOM 97. 1997 *

Also Published As

Publication number Publication date
JP2009005370A (en) 2009-01-08
DK2256952T3 (en) 2020-02-10
DK2256953T3 (en) 2019-07-22
HK1068465A1 (en) 2005-04-29
JP4593878B2 (en) 2010-12-08
EP2256953A2 (en) 2010-12-01
ES2284899T3 (en) 2007-11-16
US7590182B2 (en) 2009-09-15
US7949060B2 (en) 2011-05-24
EP1786118B1 (en) 2012-10-31
BR0208312A (en) 2006-02-21
DE60219605T2 (en) 2008-01-03
ES2734517T3 (en) 2019-12-10
JP2005502223A (en) 2005-01-20
EP1371147A2 (en) 2003-12-17
KR100950141B1 (en) 2010-03-30
ES2396563T3 (en) 2013-02-22
ES2770180T3 (en) 2020-06-30
DE60219605D1 (en) 2007-05-31
JP5362274B2 (en) 2013-12-11
TWI230525B (en) 2005-04-01
US20090323851A1 (en) 2009-12-31
EP2256952A3 (en) 2012-08-29
EP2256953A3 (en) 2012-09-12
EP2256952A2 (en) 2010-12-01
PT2256953T (en) 2019-07-26
US7411929B2 (en) 2008-08-12
US20030003880A1 (en) 2003-01-02
CN1552132A (en) 2004-12-01
AU2002306798A1 (en) 2002-10-08
EP2256953B1 (en) 2019-04-24
US7006848B2 (en) 2006-02-28
US20040165558A1 (en) 2004-08-26
WO2002078211A3 (en) 2003-02-27
EP1786118A1 (en) 2007-05-16
US20020191703A1 (en) 2002-12-19
WO2002078211A2 (en) 2002-10-03
KR20090040929A (en) 2009-04-27
EP2256952B1 (en) 2019-11-20
KR20030085040A (en) 2003-11-01
PT2256952T (en) 2020-02-28
US6771706B2 (en) 2004-08-03
ATE360288T1 (en) 2007-05-15
US20050002326A1 (en) 2005-01-06
EP1371147B1 (en) 2007-04-18
TR201908292T4 (en) 2019-06-21

Similar Documents

Publication Publication Date Title
CN100505577C (en) Method and apparatus for utilizing channel state information in a wireless communication system
US7072413B2 (en) Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US8488706B2 (en) Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7894538B2 (en) Frequency-independent spatial processing for wideband MISO and MIMO systems
US7729444B2 (en) Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
KR20030093346A (en) Method and apparatus for processing data in a multiple-input multiple-output (mimo) communication system utilizing channel state information
HK1068465B (en) Method and apparatus for utilizing channel state information in a wireless communication system
HK1108229A (en) Method and apparatus for utilizing channel state information in a wireless communication system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1068465

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1068465

Country of ref document: HK

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090624