CN100505446C - semiconductor laser device - Google Patents
semiconductor laser device Download PDFInfo
- Publication number
- CN100505446C CN100505446C CNB200610142108XA CN200610142108A CN100505446C CN 100505446 C CN100505446 C CN 100505446C CN B200610142108X A CNB200610142108X A CN B200610142108XA CN 200610142108 A CN200610142108 A CN 200610142108A CN 100505446 C CN100505446 C CN 100505446C
- Authority
- CN
- China
- Prior art keywords
- layer
- mentioned
- semiconductor laser
- laser device
- ridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 239
- 239000010410 layer Substances 0.000 claims description 618
- 229910052751 metal Inorganic materials 0.000 claims description 89
- 239000002184 metal Substances 0.000 claims description 89
- 239000010931 gold Substances 0.000 claims description 73
- 239000012790 adhesive layer Substances 0.000 claims description 63
- 239000000463 material Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 48
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 36
- 229910052737 gold Inorganic materials 0.000 claims description 35
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 32
- 238000009713 electroplating Methods 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 229910052697 platinum Inorganic materials 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 11
- 239000011733 molybdenum Substances 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 10
- ZMCCBULBRKMZTH-UHFFFAOYSA-N molybdenum platinum Chemical compound [Mo].[Pt] ZMCCBULBRKMZTH-UHFFFAOYSA-N 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000005476 soldering Methods 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 3
- 229910000679 solder Inorganic materials 0.000 abstract description 115
- 230000010287 polarization Effects 0.000 abstract description 49
- 230000001464 adherent effect Effects 0.000 abstract 4
- 238000007747 plating Methods 0.000 description 81
- 230000035882 stress Effects 0.000 description 50
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 238000005530 etching Methods 0.000 description 32
- 239000010953 base metal Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 22
- 239000002243 precursor Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 238000005275 alloying Methods 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910001295 No alloy Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种例如光盘系统中的光学拾波器等中所使用的半导体激光器件。The present invention relates to a semiconductor laser device used in, for example, an optical pickup in an optical disc system or the like.
背景技术 Background technique
特开平9—64479号公报中所公开的半导体激光装置中,在半导体基板中设置有肋形波导,由此激光下面电极由以下3层形成:即与保护层欧姆接触的欧姆接触层,形成在欧姆接触层表面的由与焊锡层不进行合金化的高熔点金属构成的非合金化金属层,以及在非合金化金属层表面的从发光区域5长边方向的中心线正下沿左右方向离开给定以上距离的区域中所形成的、与焊锡层8进行合金化的合金化电极层。非合金层和与其相接触的焊锡层不会合金化,而使合金化电极与焊锡层合金化,从而将半导体激光器件粘合在散热片上。In the semiconductor laser device disclosed in Japanese Unexamined Patent Publication No. 9-64479, a rib-shaped waveguide is provided in the semiconductor substrate, so that the lower electrode of the laser is formed by the following three layers: the ohmic contact layer that is in ohmic contact with the protective layer, formed on the The non-alloyed metal layer on the surface of the ohmic contact layer is composed of a high-melting-point metal that does not alloy with the solder layer, and the surface of the non-alloyed metal layer is separated from the center line of the long-side direction of the light-emitting
特开2004—14659号公报中所公开的半导体激光装置中,具有有源层(active layer)以及位于脊形结构部两侧的凹槽部,电极膜形成为包括脊形结构部及凹槽部的表面并延伸到其两侧。将半导体激光器件与安装基板粘合的焊锡层形成在凹槽部的两侧,由此形成面向脊形结构部及凹槽部的空间。In the semiconductor laser device disclosed in Japanese Unexamined Patent Publication No. 2004-14659, an active layer (active layer) and grooves located on both sides of the ridge structure are provided, and the electrode film is formed to include the ridge structure and the groove. surface and extend to its sides. A solder layer for bonding the semiconductor laser device to the mounting substrate is formed on both sides of the groove portion, thereby forming a space facing the ridge structure portion and the groove portion.
特开平11—87849号公报中所公开的半导体激光装置中,通过焊锡层将半导体激光器件粘合在Si基板上,但在有源层下形成有未焊接的空腔空间。In the semiconductor laser device disclosed in JP-A-11-87849, the semiconductor laser device is bonded to the Si substrate via a solder layer, but an unsoldered cavity space is formed under the active layer.
特开平9—64479号公报中,在具有肋形波导的半导体激光器件中,虽然可降低由散热片与半导体激光器件的热膨胀率之差所引起的作用到发光区域的内部应力,从而提高半导体激光器的寿命以及成品率,但如果应用于具有脊形波导的半导体激光器件中,就无法改善发光特性。In Japanese Patent Application Laid-Open No. 9-64479, in a semiconductor laser device having a rib-shaped waveguide, although the internal stress acting on the light-emitting region caused by the difference in thermal expansion rate between the heat sink and the semiconductor laser device can be reduced, thereby improving the semiconductor laser However, if it is applied to a semiconductor laser device with a ridge waveguide, the light emitting characteristics cannot be improved.
特开2004—14659号公报中,需要形成焊锡层以使面向脊形结构部及凹槽部的空间形成,并且焊锡层不能以遍及半导体激光器件的层积面的全表面的方式层积,由此存在半导体激光器件难于安装到副底座(sub mount)这样的问题。In Japanese Patent Laid-Open No. 2004-14659, it is necessary to form a solder layer to form a space facing the ridge structure and the groove, and the solder layer cannot be laminated over the entire surface of the semiconductor laser device. This has a problem that it is difficult to mount the semiconductor laser device on a sub mount.
另外,特开平11—87849号公报中,也需要在半导体激光器件与基板连接时所形成的焊锡层中设置空腔区域,并且焊锡层不能以遍及半导体激光器件的层积面的全表面的方式层积,由此存在半导体激光器件难于安装到副底座这样的问题。。In addition, in Japanese Patent Laid-Open No. 11-87849, it is also necessary to provide a cavity region in the solder layer formed when the semiconductor laser device is connected to the substrate, and the solder layer cannot spread over the entire surface of the semiconductor laser device. As a result of lamination, there is a problem that the semiconductor laser device is difficult to mount on the submount. .
另外,特开平9—64479号公报以及特开平11—87849号公报中,对于具有比肋形波导易于受到应力影响的脊形波导的半导体激光装置,没有公开任何改善偏振特性的构成。Also, JP-A-9-64479 and JP-A-11-87849 do not disclose any structure for improving polarization characteristics in semiconductor laser devices having ridge waveguides that are more susceptible to stress than rib waveguides.
发明内容 Contents of the invention
因此,本发明的目的在于,提供一种具有提高发光特性尤其是偏振特性并且安装容易的脊形波导的半导体激光器件。Accordingly, an object of the present invention is to provide a semiconductor laser device having a ridge waveguide with improved light emission characteristics, especially polarization characteristics, and easy mounting.
本发明是一种半导体激光器件,其具有设置在半导体基板上的条纹状脊形波导的脊形结构部,其特征在于,该半导体激光器件介由焊锡层与安装部粘合,具有:The present invention is a semiconductor laser device, which has a ridge-shaped structure part of a stripe-shaped ridge-shaped waveguide arranged on a semiconductor substrate. It is characterized in that the semiconductor laser device is bonded to the mounting part through a solder layer, and has:
不完全粘合层,其具有电导性,位于在比上述脊形波导更靠近外侧的半导体激光器件的最表面部分,不完全粘合层上层积有上述焊锡层,不完全粘合层至少在上述脊形结构部上形成,并且与上述焊锡层不完全粘合;以及An incomplete adhesive layer, which has electrical conductivity, is located on the outermost portion of the semiconductor laser device outside the above-mentioned ridge waveguide, the above-mentioned solder layer is laminated on the incomplete adhesive layer, and the incomplete adhesive layer is at least above the above-mentioned formed on the ridge structure and not fully adhered to the above-mentioned solder layer; and
完全粘合层,其具有电导性,且位于比上述脊形波导更靠近外侧的半导体激光器件的最表面部分,完全粘合层上层积有上述焊锡层,完全粘合层在与上述半导体基板的厚度方向以及上述脊形波导的延伸方向垂直的方向上,分别在上述不完全粘合层的两侧形成,并且与上述焊锡层粘合。The complete adhesive layer has electrical conductivity and is located on the outermost part of the semiconductor laser device than the above-mentioned ridge waveguide. The above-mentioned solder layer is laminated on the complete adhesive layer. The thickness direction and the direction perpendicular to the extending direction of the ridge waveguide are respectively formed on both sides of the incomplete adhesion layer and bonded to the solder layer.
通过本发明,由于形成有不完全粘合层,该不完全粘合层在比脊形波导更靠近外侧的层积有上述焊锡层的半导体激光器件的最表面部分,至少在上述脊形结构部上形成,具有电导性并且与焊锡层的粘合不完全,由此在介由焊锡层将半导体激光器件安装到安装部中时,该不完全粘合层就不与焊锡层粘合或以不完全的状态粘合。由此,通过焊锡层的热膨胀与热收缩就可以对脊形结构部均匀地赋予应力,从而能够降低半导体激光器件发光时由半导体激光器件与安装部的热膨胀与热收缩之差所引起并赋予脊形结构部的应力,因而,可以减轻因赋予应力而在脊形结构部中产生的变形。减轻脊形结构部中产生的变形,由此还能够降低赋予有源层的应力并抑制有源层中的变形,从而提高激光的偏振特性。提高激光的偏振特性是指提高偏振比、减小偏振角。According to the present invention, since the incomplete adhesive layer is formed, the incomplete adhesive layer is formed on the outermost portion of the semiconductor laser device on which the above-mentioned solder layer is laminated than the ridge waveguide, at least in the above-mentioned ridge structure portion. formed on the surface, has electrical conductivity and is incompletely bonded to the solder layer, and thus when the semiconductor laser device is mounted in the mounting part via the solder layer, the incompletely bonded layer does not bond to the solder layer or Complete condition bonded. Thus, the stress can be uniformly applied to the ridge structure part by the thermal expansion and thermal contraction of the solder layer, so that the difference caused by the thermal expansion and thermal contraction between the semiconductor laser device and the mounting part when the semiconductor laser device emits light can be reduced. The stress of the ridge-shaped structure portion can be reduced, and thus, the deformation generated in the ridge-shaped structure portion due to the application of stress can be alleviated. Reducing the deformation generated in the ridge structure can also reduce the stress applied to the active layer and suppress the deformation in the active layer, thereby improving the polarization characteristics of laser light. Improving the polarization characteristics of the laser refers to increasing the polarization ratio and reducing the polarization angle.
另外,由于完全粘合层具有电导性,且位于比脊形波导更靠近外侧的半导体激光器件的最表面部分,完全粘合层上层积有上述焊锡层,完全粘合层在与半导体基板的厚度方向以及脊形波导的延伸方向垂直的方向上,分别在不完全粘合层的两侧形成,由此能够使半导体激光器件与安装部牢固地机械连接。In addition, since the perfect bonding layer has electrical conductivity and is located on the outermost part of the semiconductor laser device than the ridge waveguide, the above-mentioned solder layer is laminated on the perfect bonding layer, and the perfect bonding layer has a thickness equal to that of the semiconductor substrate. direction and the direction perpendicular to the extending direction of the ridge waveguide are respectively formed on both sides of the incomplete adhesive layer, whereby the semiconductor laser device and the mounting part can be firmly mechanically connected.
层积有焊锡层的最表面部中设置有上述不完全粘合层与上述完全粘合层,在其上层积焊锡层并将半导体激光器件安装到安装部中,由此能够以遍布最表面部的层积面的全表面的方式层积焊锡层,由于不需对焊锡层进行加工,因此半导体激光器件就易于安装到安装部中。In the outermost part on which the solder layer is laminated, the above-mentioned incomplete adhesion layer and the above-mentioned perfect adhesion layer are provided, and the solder layer is laminated thereon and the semiconductor laser device is mounted in the mounting part, whereby it is possible to spread over the outermost part. The solder layer is laminated on the entire surface of the laminated surface. Since the solder layer does not need to be processed, the semiconductor laser device can be easily mounted in the mounting part.
本发明的特征在于,上述不完全粘合层包括:The present invention is characterized in that the above-mentioned incomplete adhesive layer comprises:
第1不完全粘合层,其在与上述半导体基板的厚度方向以及上述脊形波导的延伸方向垂直的方向上,在半导体激光器件的中央形成;以及The first incomplete adhesive layer is formed in the center of the semiconductor laser device in a direction perpendicular to the thickness direction of the above-mentioned semiconductor substrate and the extending direction of the above-mentioned ridge waveguide; and
第2不完全粘合层,其在与上述半导体基板的厚度方向以及上述脊形波导的延伸方向垂直的方向上,分别在上述第1不完全粘合层的两侧形成,且与形成上述焊锡层的焊锡材料之间的湿润性位于上述第1不完全粘合层的与形成上述焊锡层的焊锡材料之间的湿润性和上述完全粘合层的与形成上述焊锡层的焊锡材料之间的湿润性之中。The second incomplete adhesion layer is formed on both sides of the first incomplete adhesion layer in a direction perpendicular to the thickness direction of the above-mentioned semiconductor substrate and the extending direction of the ridge waveguide, and is connected with the formation of the above-mentioned solder. The wettability between the solder materials of the layers is located between the wettability between the above-mentioned first incomplete adhesion layer and the solder material forming the above-mentioned solder layer and the wettability between the above-mentioned complete adhesion layer and the solder material forming the above-mentioned solder layer. in wetness.
根据本发明,在不完全粘合层中的接近脊形结构部的部分上形成湿润性较差的第1不完全粘合层,该湿润性是与形成焊锡层的焊锡材料的湿润性,在垂直于半导体基板的厚度方向以及上述脊形波导的延伸方向的方向上,在第1不完全粘合层与完全粘合层之间形成:与形成焊锡层的焊锡材料的湿润性具有上述第1不完全粘合层与上述完全粘合层之间的性质的第2不完全粘合层。由此,随着离开脊形结构部,层积焊锡层的最表面部与焊锡层间的粘合力就逐步地增大。通过使粘合力逐步地变化,能够抑制由完全粘合层中所产生的应力与不完全粘合层中所产生的应力引起的完全粘合层与不完全粘合层相邻的部分中的急剧的应力变化,从而缓和赋予脊形结构部的应力,由此降低脊形结构部中产生的变形。According to the present invention, the first incomplete adhesion layer having poor wettability with the solder material forming the solder layer is formed on the portion of the incomplete adhesion layer close to the ridge structure. In the direction perpendicular to the thickness direction of the semiconductor substrate and the extending direction of the above-mentioned ridge waveguide, it is formed between the first incomplete adhesion layer and the complete adhesion layer: the wettability with the solder material forming the solder layer has the above-mentioned first A second incompletely bonded layer having properties between the incompletely bonded layer and the aforementioned fully bonded layer. As a result, the adhesive force between the uppermost surface portion of the laminated solder layer and the solder layer gradually increases as the distance from the ridge structure portion increases. By gradually changing the adhesive force, it is possible to suppress tension in the portion adjacent to the fully bonded layer and the incompletely bonded layer caused by the stress generated in the fully bonded layer and the stress generated in the incompletely bonded layer. The sharp stress change relaxes the stress applied to the ridge structure, thereby reducing the deformation generated in the ridge structure.
另外,本发明的特征在于,上述第1不完全粘合层由钼(Mo)形成;上述第2不完全粘合层由铂(Pt)形成;上述完全粘合层由金(Au)形成。In addition, the present invention is characterized in that the first partial adhesion layer is formed of molybdenum (Mo), the second partial adhesion layer is formed of platinum (Pt), and the perfect adhesion layer is formed of gold (Au).
根据本发明,第1不完全粘合层由钼(Mo)形成,第2不完全粘合层由铂(Pt)形成,完全粘合层由金(Au)形成,由此能够实现上述效果。另外,形成Mo、Pt以及Au的成膜技术以前就一直使用,由此为了形成完全粘合层与不完全粘合层,就不需新的成膜技术,从而能够简单地形成。According to the present invention, the first partial adhesion layer is formed of molybdenum (Mo), the second partial adhesion layer is formed of platinum (Pt), and the perfect adhesion layer is formed of gold (Au), whereby the above effects can be achieved. In addition, film-forming techniques for forming Mo, Pt, and Au have been used in the past, so that forming a perfect adhesion layer and an incomplete adhesion layer does not require a new film-forming technique and can be easily formed.
另外,本发明的特征在于,在与上述半导体基板的厚度方向及上述脊形波导的延伸方向垂直的方向上,在上述脊形波导的两侧,以从上述脊形波导隔开预定距离的方式形成台阶部,并且在该台阶部与脊形波导间形成凹部。In addition, the present invention is characterized in that, in a direction perpendicular to the thickness direction of the semiconductor substrate and the extending direction of the ridge waveguide, on both sides of the ridge waveguide, the ridge waveguide is separated from the ridge waveguide by a predetermined distance. A stepped portion is formed, and a concave portion is formed between the stepped portion and the ridge waveguide.
根据本发明,在通过焊锡层将半导体激光器件粘合到副底座上时,需要以给定的荷重将半导体激光器件压向副底座,但通过设置台阶部,该台阶部在垂直于上述半导体基板的厚度方向与上述脊形波导的延伸方向的方向上,在上述脊形波导的两侧以从上述脊形波导隔开预定距离的方式形成,于是在与脊形波导间形成凹部,由此可使加载到上述脊形结构部的上述荷重分散到台阶部,从而能够降低由按压脊形结构部产生的附加应力,因而,就可以减轻安装到安装部中时所产生的脊形结构部的变形。According to the present invention, when the semiconductor laser device is bonded to the sub-mount through the solder layer, it is necessary to press the semiconductor laser device to the sub-mount with a given load, but by providing a step portion, the step portion is perpendicular to the above-mentioned semiconductor substrate. In the direction of the thickness direction of the above-mentioned ridge-shaped waveguide and the direction of the extending direction of the above-mentioned ridge-shaped waveguide, it is formed on both sides of the above-mentioned ridge-shaped waveguide with a predetermined distance from the above-mentioned ridge-shaped waveguide. By distributing the above-mentioned load applied to the above-mentioned ridge structure to the step portion, the additional stress generated by pressing the ridge structure can be reduced, and therefore, the deformation of the ridge structure when it is installed in the mounting portion can be reduced. .
另外,本发明的特征在于,在上述凹部偏向脊形波导处,形成有上述不完全粘合层;上述凹部偏向台阶部处,形成有上述完全粘合层。In addition, the present invention is characterized in that the partial adhesive layer is formed where the concave portion deviates from the ridge waveguide, and the perfect adhesive layer is formed where the concave portion deviates from the step portion.
根据本发明,在凹部偏向脊形波导处形成上述不完全粘合层,因此能够降低从脊形结构部的周围赋予脊形结构部的应力。在脊形结构部与焊锡层的界面中,通过激光出射而在脊形结构部中产生的热就难于释放,但通过在凹部偏向台阶部8处形成完全粘合层,就能够使所产生的热从完全粘合层高效地释放到半导体层。According to the present invention, since the incomplete adhesive layer is formed where the concave portion deviates from the ridge waveguide, the stress applied to the ridge structure portion from around the ridge structure portion can be reduced. In the interface between the ridge structure and the solder layer, it is difficult to release the heat generated in the ridge structure by laser emission, but by forming a complete adhesive layer at the concave portion biased to the
另外,本发明的特征在于,上述不完全粘合层中的形成在上述凹部中的部分,按照在脊形波导与台阶部之间从脊形波导遍布规定范围的方式形成,该规定范围是脊形波导与台阶部之间的距离的30%以上并不满50%的范围。In addition, the present invention is characterized in that the portion of the incomplete adhesive layer formed in the recess is formed so as to extend from the ridge waveguide over a predetermined range between the ridge waveguide and the step portion, and the predetermined range is the ridge waveguide. The distance between the shaped waveguide and the stepped portion is more than 30% and less than 50%.
根据本发明,如果不完全粘合层中的形成在凹部中的部分,按照在脊形波导与台阶部之间在由脊形波导到脊形波导与台阶部之间的距离的30%以上的范围内形成,就能够更可靠地降低应力。另外,如果不完全粘合层中的形成在凹部中的部分,按照在脊形波导与台阶部之间在由脊形波导到脊形波导与台阶部之间的距离的50%以上的范围内形成,则来自脊形结构部的热就难于释放到合金层中,从而使半导体激光器件的电流值特性恶化,也就是使发光效率降低。因此,使不完全粘合层中的形成在凹部中的部分,按照在脊形波导与台阶部之间从脊形波导遍布规定范围的方式形成,该规定范围是脊形波导与台阶部之间的距离的30%以上并不满50%的范围,就不仅能够可靠地降低附加到脊形波导的应力,并且可以抑制半导体激光器件的电流值特性的恶化。According to the present invention, if the portion of the incompletely bonded layer formed in the concave portion, according to 30% or more of the distance between the ridge waveguide and the step portion from the ridge waveguide to the distance between the ridge waveguide and the step portion Formed within the range, the stress can be reduced more reliably. In addition, if the portion of the incomplete adhesive layer formed in the concave portion is within the range of 50% or more of the distance between the ridge waveguide and the step portion from the ridge waveguide to the distance between the ridge waveguide and the step portion If formed, the heat from the ridge structure is difficult to be released into the alloy layer, thereby deteriorating the current value characteristics of the semiconductor laser device, that is, reducing the luminous efficiency. Therefore, the portion of the incomplete adhesive layer formed in the concave portion is formed so as to extend from the ridge waveguide to a predetermined range between the ridge waveguide and the step portion between the ridge waveguide and the step portion. In the range of 30% or more and less than 50% of the distance, not only the stress added to the ridge waveguide can be reliably reduced, but also the deterioration of the current value characteristics of the semiconductor laser device can be suppressed.
另外,本发明的特征在于,上述完全粘合层中的形成在上述凹部中的部分,按照在脊形波导与台阶部之间在由台阶部到脊形波导与台阶部之间的距离的50%以下的范围内形成。In addition, the present invention is characterized in that the part of the above-mentioned complete bonding layer formed in the above-mentioned concave part is divided into 50% of the distance between the ridge waveguide and the step part from the step part to the distance between the ridge waveguide and the step part. % formed within the following range.
根据本发明,在完全粘合层中的形成在凹部中的部分,按照在脊形波导与台阶部之间在由台阶部超过脊形波导与台阶部之间的距离的50%的方式形成的情况下,虽然通过从完全粘合层向焊锡层的放热(heat release)效果能够抑制半导体激光器件的电流值特性的恶化,但完全粘合层中产生的应力易于传递到脊形结构部中。因此,使完全粘合层中的形成在凹部中的部分,按照在脊形波导与台阶部之间由台阶部到脊形波导与台阶部之间的距离的50%以下的范围内的方式形成,就能够抑制半导体激光器件的电流值特性的恶化,并且使完全粘合层中产生的应力难于传递到脊形结构部中,由此抑制脊形结构部中产生的变形。According to the present invention, the part formed in the recess in the fully bonded layer is formed in such a way that the step exceeds 50% of the distance between the ridge waveguide and the step between the ridge waveguide and the step. In this case, although the deterioration of the current value characteristics of the semiconductor laser device can be suppressed by the heat release effect from the complete adhesion layer to the solder layer, the stress generated in the complete adhesion layer is easily transmitted to the ridge structure. . Therefore, the portion formed in the concave portion in the complete bonding layer is formed so as to be within a range of 50% or less of the distance between the ridge waveguide and the step portion from the step portion to the distance between the ridge waveguide and the step portion. , it is possible to suppress the deterioration of the current value characteristics of the semiconductor laser device, and make it difficult for the stress generated in the perfect adhesion layer to be transmitted to the ridge structure portion, thereby suppressing the deformation generated in the ridge structure portion.
另外,本发明的特征在于,具有基底金属层,其由金(Au)形成并且层积有上述完全粘合层与上述不完全粘合层。In addition, the present invention is characterized in that it has a base metal layer formed of gold (Au) and in which the above-mentioned perfect adhesion layer and the above-mentioned incomplete adhesion layer are laminated.
根据本发明,使脊形结构部中所产生的热介由由高热传导率的金(Au)形成的基底金属层而传递到完全粘合层侧,由此可介由焊锡层释放到安装部中。从而,能够消除不完全粘合层与焊锡层之间的放热不足,进一步抑制电流特性的恶化,由此实现半导体激光器件的长寿化。According to the present invention, the heat generated in the ridge structure part is transferred to the complete adhesion layer side through the base metal layer formed of gold (Au) with high thermal conductivity, thereby being released to the mounting part through the solder layer middle. Therefore, it is possible to eliminate the lack of heat release between the incomplete adhesion layer and the solder layer, further suppress deterioration of current characteristics, and thereby achieve a longer life of the semiconductor laser device.
另外,本发明的特征在于,具有基底金属层,其层积有上述完全粘合层与上述不完全粘合层;In addition, the present invention is characterized in that it has a base metal layer in which the above-mentioned perfect adhesion layer and the above-mentioned incomplete adhesion layer are laminated;
上述基底金属层的特征在于,按照顺次层积由金(Au)构成并通过电镀形成的电镀电极层、由预定的金属形成的第1电极层、以及由金(Au)形成的第2电极层的方式形成。The base metal layer is characterized in that a plating electrode layer made of gold (Au) and formed by electroplating, a first electrode layer made of a predetermined metal, and a second electrode made of gold (Au) are laminated in this order. formed in layers.
由金构成的电镀电极层通过电镀形成,因此与通过溅射法形成的由金构成的层相比,就能够以短时间形成厚度较大的层。但是,由金构成的电镀电极层表面平坦性较差,湿润性随电镀条件变化,因此存在粘合特性中产生离散偏差之虞。根据本发明,基底金属层中包括由金构成的电镀电极层,但在该电镀电极层中顺次层积有表面平坦性比上述电镀电极层好且由预定金属形成的第1电极层、和由金形成的第2电极层。由此,能够提高由金构成的第2电极层的表面平坦性。因而,能够提高与层积在第2电极层上的完全粘合层及不完全粘合层之间的粘合特性,由此可抑制基底金属层与完全粘合层及不完全粘合层的剥离。因此,脊形结构部中所产生的热,能够介由包括高热传导率的金(Au)所形成的基底金属层传导到完全粘合层侧,从而能够介由焊锡层可靠地释放到安装部中。由此能够解决不完全粘合层与焊锡层间的放热不足,从而进一步抑制电流特性的恶化来谋求半导体激光器件的长寿化。Since the plating electrode layer made of gold is formed by electroplating, a thicker layer can be formed in a shorter time than a layer made of gold formed by a sputtering method. However, since the plating electrode layer made of gold has poor surface flatness and wettability varies with plating conditions, there is a possibility of discrete variations in adhesion characteristics. According to the present invention, the base metal layer includes a plating electrode layer made of gold, but the plating electrode layer is sequentially laminated with a first electrode layer having a surface flatter than the plating electrode layer and formed of a predetermined metal, and The second electrode layer is made of gold. Thereby, the surface flatness of the second electrode layer made of gold can be improved. Therefore, it is possible to improve the adhesion properties between the perfect adhesion layer and the incomplete adhesion layer laminated on the second electrode layer, thereby suppressing the adhesion between the base metal layer and the complete adhesion layer and the incomplete adhesion layer. peel off. Therefore, the heat generated in the ridge structure part can be conducted to the side of the complete bonding layer through the base metal layer formed of gold (Au) with high thermal conductivity, and can be reliably released to the mounting part through the solder layer. middle. In this way, insufficient heat dissipation between the incomplete adhesion layer and the solder layer can be solved, and the deterioration of current characteristics can be further suppressed to achieve a longer life of the semiconductor laser device.
另外,本发明的特征在于,形成上述第1电极层的预定的金属,从由钼(Mo)、铂(Pt)、钼铂(MoPt)以及钛(Ti)构成的组中选择。In addition, the present invention is characterized in that the predetermined metal forming the first electrode layer is selected from the group consisting of molybdenum (Mo), platinum (Pt), molybdenum platinum (MoPt), and titanium (Ti).
根据本发明,形成第1电极层的预定的金属,从由钼(Mo)、铂(Pt)、钼铂(MoPt)以及钛(Ti)构成的组中选择。钼(Mo)、铂(Pt)、钼铂(MoPt)以及钛(Ti),在形成电极层时表面平坦性优秀,因此能够实现上述效果。According to the present invention, the predetermined metal forming the first electrode layer is selected from the group consisting of molybdenum (Mo), platinum (Pt), molybdenum platinum (MoPt), and titanium (Ti). Molybdenum (Mo), platinum (Pt), molybdenum platinum (MoPt), and titanium (Ti) have excellent surface flatness when forming an electrode layer, and thus can achieve the above-mentioned effects.
另外,本发明的特征在于,上述第1与第2电极层通过溅射法以连续成膜方式形成。In addition, the present invention is characterized in that the first and second electrode layers are formed continuously by sputtering.
根据本发明,第1与第2电极层通过溅射法以连续成膜方式形成,因此能够提高与由金构成的电镀电极层间的密接性,进而即使电镀电极层的表面中有凹凸,也以填补该凹凸部分的方式形成第1与第2电极层,因此能够使基底电极层的厚度尽可能均匀。通过使基底电极层的厚度更加均匀,可以获得更加稳定的接合性及提高粘合性,其效果,能够消除放热不足,由此进一步抑制电流特性的恶化来谋求半导体激光器件的长寿化。According to the present invention, since the first and second electrode layers are continuously formed by sputtering, the adhesion to the plating electrode layer made of gold can be improved, and even if there are irregularities on the surface of the plating electrode layer, Since the first and second electrode layers are formed to fill up the unevenness, the thickness of the base electrode layer can be made as uniform as possible. By making the thickness of the base electrode layer more uniform, more stable bonding and improved adhesion can be obtained. As a result, insufficient heat dissipation can be eliminated, thereby further suppressing deterioration of current characteristics and prolonging the life of the semiconductor laser device.
另外,本发明的特征在于,上述基底金属层的厚度选择为0.5μm以上且不满5.0μm。In addition, the present invention is characterized in that the thickness of the base metal layer is selected to be 0.5 μm or more and less than 5.0 μm.
根据本发明,如果基底金属层的厚度不满0.5μm,就不能充分实现传热效果,如果超过5.0μm,由形成基底金属层产生的应力就传递到脊形波导中,由此脊形波导变形。通过使基底金属层的厚度设为0.5μm以上且不满5.0μm,就能够不仅获得从脊形波导到不完全粘合层的充分传热效果,并且能够降低赋予脊形波导的应力。According to the present invention, if the thickness of the base metal layer is less than 0.5 μm, the heat transfer effect cannot be sufficiently achieved, and if it exceeds 5.0 μm, the stress generated by forming the base metal layer is transmitted to the ridge waveguide, thereby deforming the ridge waveguide. By setting the thickness of the base metal layer to 0.5 μm or more and less than 5.0 μm, not only sufficient heat transfer effect from the ridge waveguide to the incomplete bonding layer can be obtained, but also stress applied to the ridge waveguide can be reduced.
另外,本发明的特征在于,具有背面金属层,其以夹持上述半导体基板的方式在与上述脊形结构部相反侧的上述半导体基板的表面部上由金形成。In addition, the present invention is characterized by having a back metal layer formed of gold on the surface portion of the semiconductor substrate opposite to the ridge structure portion so as to sandwich the semiconductor substrate.
根据本发明,由于具有以夹持上述半导体基板的方式在与上述脊形结构部相反侧的上述半导体基板的表面部上由金形成的背面金属层,因此能够缓和形成在脊形结构部侧的基底金属层所产生的应力。According to the present invention, since there is a back metal layer formed of gold on the surface portion of the semiconductor substrate on the opposite side to the ridge structure portion so as to sandwich the semiconductor substrate, it is possible to relax the damage formed on the ridge structure portion side. The stress induced by the base metal layer.
附图说明 Description of drawings
根据以下的详细说明及附图,能够使本发明的目的、特色、以及优点更加明确。The purpose, features, and advantages of the present invention will become clearer from the following detailed description and accompanying drawings.
图1是本发明的一实施方式的半导体激光器件的剖面图。FIG. 1 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention.
图2是半导体激光器件的俯视图。Fig. 2 is a plan view of a semiconductor laser device.
图3A~图3C是表示半导体激光器件的制造工序的剖面图。3A to 3C are cross-sectional views showing manufacturing steps of the semiconductor laser device.
图4A~图4D是表示半导体激光器件的制造工序的剖面图。4A to 4D are cross-sectional views showing manufacturing steps of the semiconductor laser device.
图5A~图5C是表示半导体激光器件的制造工序的剖面图。5A to 5C are cross-sectional views showing manufacturing steps of the semiconductor laser device.
图6是表示将半导体激光器件介由焊锡层安装在安装部中的半导体激光装置的剖面图。6 is a cross-sectional view showing a semiconductor laser device in which a semiconductor laser device is mounted on a mounting portion via a solder layer.
图7是本发明的另一实施方式的半导体激光器件的剖面图。7 is a cross-sectional view of a semiconductor laser device according to another embodiment of the present invention.
图8是半导体激光器件的俯视图。Fig. 8 is a plan view of the semiconductor laser device.
图9是表示将半导体激光器件介由焊锡层安装在安装部中的半导体激光装置的剖面图。9 is a cross-sectional view showing a semiconductor laser device in which a semiconductor laser device is mounted on a mounting portion via a solder layer.
图10是本发明的另一实施方式的半导体激光器件的剖面图。Fig. 10 is a cross-sectional view of a semiconductor laser device according to another embodiment of the present invention.
图11是本发明的另一实施方式的半导体激光器件的剖面图。Fig. 11 is a cross-sectional view of a semiconductor laser device according to another embodiment of the present invention.
具体实施方式 Detailed ways
以下参照附图,对本发明的优选实施方式进行详细的说明。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
图1是本发明的一实施方式的半导体激光器件1的剖面图,图2是半导体激光器件1的俯视图。图1是从图2的剖面线I—I所观察到的剖面图。另外,图2表示从半导体基板2厚度方向Z中的设置有脊形结构部35一侧观察的图,图中不完全粘合层31为了易于图解以标注斜线方式被图示。半导体激光器件1是半导体激光器基片(laser chip)。半导体基板2的厚度方向Z,平行于形成半导体激光器件的各半导体层及各金属层的层积方向。半导体激光器件1具有:半导体基板2、第1镀层3、有源层4、第2镀层5、蚀刻停止层6、脊形部7、台阶部8、第1以及第2电介质层17、18、电镀用基底电极层23、电镀电极层27、包括不完全粘合层31的金属层32、以及完全粘合层33。FIG. 1 is a cross-sectional view of a semiconductor laser device 1 according to an embodiment of the present invention, and FIG. 2 is a plan view of the semiconductor laser device 1 . Fig. 1 is a sectional view viewed from the section line II-I in Fig. 2 . In addition, FIG. 2 shows a view viewed from the side where the
半导体基板2可以层积化合物半导体层,在本实施方式中由n型砷化镓(GaAs)形成。半导体基板2厚度方向Z的表面形成为矩形形状。半导体基板2的厚度例如选择为50μm~130μm。The
第1镀层3,在半导体基板2厚度方向Z的一表面2a上以遍及上述一表面2a全表面的方式进行层积。第1镀层3由n型(AlXGa1-X)YIn1-YP形成,其中0<X<1,0<Y<1。本实施方式中,选择X=0.7,Y=0.5,也就是,第1镀层3由n型(Al0.7Ga0.3)0.5In0.5P形成。第1镀层3的厚度例如选择为2.0μm。The first plated
有源层4,在第1镀层厚度方向Z的一表面3a上以遍及上述一表面3a全表面的方式进行层积。有源层4具有量子阱结构,并且包括:层积在第1镀层3厚度方向Z的一表面3a上的第1导向层(guide layer)、层积在第1导向层厚度方向Z的一表面上的第1阱层(well layer)、形成在第1阱层厚度方向Z的一表面上的势垒层、形成在势垒层厚度方向的一表面上的第2阱层、以及形成在第2阱层的厚度方向Z的一表面上的第2导向层。第1及第2阱层由In0.5Ga0.5P形成,其厚度例如选择为。势垒层由(Al0.7Ga0.3)0.5In0.5P形成,其厚度例如选择为。导向层由(Al0.7Ga0.3)0.5In0.5P形成,其厚度例如选择为 The
第2镀层5,在有源层4厚度方向Z的一表面4a上以遍及上述一表面4a全表面的方式进行层积。。第2镀层5由p型(AlXGa1-X)YIn1-YP形成,其中0<X<1,0<Y<1。本实施方式中,选择X=0.7,Y=0.5,也就是,第2镀层5由p型(Al0.7Ga0.3)0.5In0.5P形成。第2镀层5的厚度例如选择为0.2~0.3μm。The
蚀刻停止层6,在第2镀层5厚度方向Z的一表面5a上以遍及上述一表面5a全表面的方式进行层积。蚀刻停止层6由p型In0.5Ga0.5P形成。蚀刻停止层6的厚度例如选择为。蚀刻停止层6防止第2镀层5被蚀刻。The
脊形部7包括第3镀层11和保护层12。脊形部7层积在蚀刻停止层6厚度方向Z的一表面6a上。脊形部7,在半导体激光器件1宽度方向Y的中央部,从蚀刻停止层6的一表面6a向厚度方向Z的一方突出。半导体激光器件1形成得关于假想平面大致面对称,该假想平面穿过宽度方向Y的中央并沿厚度方向Z平行地延伸。脊形部7沿垂直于上述厚度方向Z以及宽度方向Y的方向即激光的出射方向延伸,形成为条纹状。在激光的出射方向即脊形部7的延伸方向X中,脊形部7以延伸到半导体激光器件1的两端部间的方式形成。The
第3镀层11层积在蚀刻停止层6厚度方向Z的一表面6a上。第3镀层11由p型(AlXGa1-X)YIn1-YP形成,其中0<X<1,0<Y<1。本实施方式中,选择X=0.7,Y=0.5,也就是说,第3镀层11由p型(Al0.7Ga0.3)0.5In0.5P形成。第3镀层11的厚度例如选择为300nm~5000nm。第3镀层11形成对激光进行导波的脊形波导。The third plated
保护层12层积在第3镀层11厚度方向Z的一表面11a上。保护层12由砷化镓(GaAs)形成。保护层12用来形成与后述的脊上电极层21的欧姆接触。The
脊形部7在宽度方向Y上形成为预定尺寸L1,上述预定尺寸选择为1.5μm~3.0μm。脊形部7的厚度方向Z的一端部即从半导体基板2离开的侧的端部的宽度方向Y的尺寸选择为0.1μm~0.3μm,厚度方向Z的另一端部即与蚀刻停止层6相接触的端部的宽度方向Y的尺寸选择为1.5μm~3.0μm,由此垂直于该脊形部7的延伸方向X的剖面,形成为以半导体基板2侧为下底的梯形状。The
台阶部8包括第1台阶结构层13及第2台阶结构层14。台阶部8在宽度方向Y上,以在脊形部7的两侧即脊形波导的两侧从脊形部7隔开预定距离L2的方式形成,由此在台阶部8与脊形部7之间形成沿脊形部7的延伸方向X延伸的凹部15。上述预定距离L2选择为大致10μm~20μm。台阶部8沿脊形部7的延伸方向X平行地延伸,形成为条纹状。台阶部8以从宽度方向Y上由脊形部7隔开预定距离L2的位置遍布到半导体激光器件1的端部的方式形成。The stepped
第1台阶结构层13,层积在蚀刻停止层6厚度方向Z的一表面6a上,由与第3镀层11相同的材料形成并且形成为相同厚度。第2台阶结构层14按照遍及第1台阶结构层13厚度方向Z的一表面13a的全表面的方式层积,由与保护层12相同的材料形成并且形成为相同的厚度。也就是,使脊形部7的厚度与台阶部8的厚度形成得相等。通过设置台阶部8,能够在制造半导体激光器件1的制造工艺中对形成有半导体激光器件1先驱体的晶片进行处理时以及半导体激光器件1的安装时,减轻脊形部7所受到的机械损伤。The first stepped
脊形部7面向台阶部8的侧面7b由第1电介质层17覆盖。第1电介质层17从脊形部7的侧面7b沿宽度方向Y向着台阶部8延伸预定距离L3为止,覆盖第3镀层11与蚀刻停止层6的接触部分,另外也层积在蚀刻停止层6厚度方向Z的一表面6a上。The
台阶部8厚度方向Z的一表面8a及面向脊形部7的侧面8b由第2电介质层18覆盖。第2电介质层18从台阶部8的侧面8b沿宽度方向Y向着脊形部7延伸预定距离L4为止,覆盖第3镀层11与蚀刻停止层6的接触部分,另外也层积在蚀刻停止层6厚度方向Z的一表面6a上。One
第1与第2电介质层17、18由SiO2形成,其厚度选择为1000~3000。The 1st and the
在脊形部7的厚度方向Z的一表面即保护层12的厚度方向Z的一表面12a上,以遍布全表面方式层积有脊上电极层21。脊上电极层21由AuZn形成,在氮气环境下进行合金化而形成。脊上电极层21,垂直于脊形部7的延伸方向X的剖面形成为以半导体基板2侧为下底的梯形状。On one surface of the
第1与第2电介质层17、18以及脊上电极层21、蚀刻停止层6的厚度方向Z的一表面6a中的从第1及第2电介质层17、18之间露出来的部分上,层积有电镀用基底电极层23。电镀用基底电极层23由第1电镀用基底层24和第2电镀用基底层25构成。第1电镀用基底层24由钛(Ti)形成,以层积在第1和第2电介质层17、18以及脊上电极层21、蚀刻停止层6的厚度方向Z的一表面6a中的从第1和第2电介质层17、18之间露出来的部分上的方式形成。第1电镀用基底层24的厚度,例如选择为。第2电镀用基底层25由金(Au)形成,层积在第1电镀用基底层24的厚度方向Z的一表面24a上。电镀用基底电极层23设置得为了在制造工艺中通过电镀形成后述的电镀电极层27。第2电镀用基底层25的厚度,例如选择为 On the first and second dielectric layers 17, 18, the ridge
第1电镀用基底层24与蚀刻停止层6相接触的部分成为光的吸收体,由此在脊形部7的附近,通过在第1电镀用基底层24与蚀刻停止层6之间设置第1电介质层17,就能够防止光被吸收。上述预定距离L3选择为3μm~7μm,L4也选择为3μm~7μm。关于L3,如果不满3μm则发光效率就会下降,另外如果超过7μm就会失去远场图形(Far Filed Pattern:简称FFP)改善效果。关于预定距离L4,如果不满3μm就不对台阶部侧面设置电介质膜层,因此失去FFP改善效果,另外,如果超过7μm也失去FFP改善效果。通过在脊形部7与台阶部8之间设置光吸收体,能够改善远场图形(FFP)与波纹(ripple),也就是能够抑制FFP的纹乱(disorder)并降低激光的波纹。The part where the first
在电镀用基底电极层23的厚度方向Z的一表面23a上,以遍布全表面的方式层积有电镀电极层27。电镀电极层27是基底金属层并由金(Au)形成。电镀电极层27的厚度,选择为0.5μm以上且不满5.0μm。On one surface 23 a of the
在电镀电极层27的厚度方向Z的一表面27a上层积有包括不完全粘合层31的金属层32。金属层32例如由钼(Mo)形成。因此不完全粘合层31具有电导性。金属层32的厚度选择为0.05μm~0.30μm。On one
不完全粘合层31以包括金属层32中的至少在脊形结构部35上形成的部分的方式形成。不完全粘合层31,比脊形波导更靠近外侧,在层积在焊锡层61的最表面部分,至少在脊形结构部35上形成,该焊锡层61将半导体激光器件1安装到后述的安装部62上。The
脊形结构部35包括:半导体激光器1中的上述脊形部7;第1电介质层17中的层积在脊形部7上的第1脊形层积部分41;脊上电极层21;电镀用基底电极层23中的介由上述第1电介质层17或脊上电极层21层积在脊形部7上的第2脊形层积部分42;电镀电极层27中的层积在第2脊形层积部分42上的第3脊形层积部分43;以及金属层32中的层积在第3脊形层积部分43上的第4脊形层积部分44。也就是,脊形结构部35,是在半导体激光器件1中的宽度方向Y上层积在蚀刻停止层6的厚度方向Z的一表面6a上的部分、脊形部7在蚀刻停止层6侧的两端部间的范围即图1箭头L1所示的范围。The
不完全粘合层31也形成在上述凹部15偏向脊形波导处。不完全粘合层31中的形成在凹部15中的部分,以在脊形波导即脊形部7与台阶部8之间从脊形部7遍布预定距离L5的方式形成。预定距离L5选择为脊形部7与台阶部8间的距离L2的30%以上并不满50%。The
不完全粘合层31,在脊形部7的延伸方向X中以遍布到半导体激光器件1两端部间的方式形成,由此以从半导体激光器件1的两端面即出射面隔开预定距离L6的方式形成。上述预定距离L6,选择为可在半导体激光器件1的出射面中形成用于防止出射端面损坏的涂布膜。通过如上那样选择上述预定距离L6,能够防止破坏形成在半导体激光器件1中的上述涂布膜。The
在金属层32的厚度方向Z的一表面32a中,除构成上述不完全粘合层31的部分外,层积有完全粘合层33。完全粘合层33由金(Au)形成。完全粘合层33的厚度选择为0.1μm~0.4μm,优选选择为大致0.12μm。完全粘合层33比脊形波导更靠近外侧,在层积有上述焊锡层61的最表面部分宽度方向Y上分别在不完全粘合层31的两侧形成,并且延伸到半导体激光器件1的宽度方向Y的端部为止。On one surface 32 a in the thickness direction Z of the
上述凹部15偏向台阶部8处上形成有完全粘合层33。完全粘合层33中的形成在凹部15中的部分,以在脊形部7和台阶部8之间从台阶部8遍布预定距离L7的方式形成。预定距离L7选择为脊形部7和台阶部8之间的预定距离L2的50%以下。A
半导体基板2的厚度方向Z的另一表面中,形成有作为背面金属层的背面金属层36。背面金属层36以遍布半导体基板2的厚度方向Z的另一表面2b的全表面的方式被层积。背面金属层36由金(Au)形成。背面金属层36的厚度与电镀电极层27的不同,选择为的厚度。On the other surface in the thickness direction Z of the
图3A~图3C、图4A~图4D以及图5A~图5C,是表示半导体激光器件1的制造工序的剖面图。首先如图3A所示,在厚300μm~350μm的半导体基板2的先驱体50的一表面50a上,通过使用分子束外延(简称MBE)装置或有机金属化学气相淀积(简称MOCVD)装置的外延生长法,按以下顺序顺次层积:厚度2.0μm的第1镀层3、有源层4、厚度0.2μm~0.3μm的第2镀层5、厚的蚀刻停止层6、用于形成第3镀层11及第1台阶结构层13的由p型(Al0.7Ga0.3)0.5In0.5P构成的第1先驱体层51、用于形成保护层12及第2台阶结构层14的第2先驱体层52。在有源层4中,将第1及第2阱层的厚度分别设为,将势垒层的厚度设为第1及第2导向层的厚度分别设为 3A to 3C , FIGS. 4A to 4D , and FIGS. 5A to 5C are cross-sectional views showing manufacturing steps of the semiconductor laser device 1 . First, as shown in FIG. 3A , on a
接着,使用光刻技术及蚀刻技术,去除第1先驱体层51及第2先驱体层52的一部分,如图3B所示,形成上述脊形部7及台阶部8。Next, parts of the
接着,覆盖脊形部7和台阶部8及蚀刻停止层6的厚度方向Z的一表面6a,在层积电介质层后,使用光刻技术及蚀刻技术去除该电介质层中的层积在脊形部7上的部分和层积在蚀刻停止层6上的部分中的一部分,由此形成第1与第2电介质层17、18。Next, cover the
接着,覆盖第1及第2电介质层17、18、蚀刻停止层6的厚度方向Z的一表面6a中的从第1及第2电介质层17、18中露出的部分、以及脊形部7的厚度方向Z的一表面7a,在涂布抗蚀剂后,使用光刻技术与蚀刻技术去除抗蚀剂中的层积在脊形部7的厚度方向Z的一表面7a上的部分,如图3C所示,由此形成抗蚀图层53。Then, the first and second dielectric layers 17, 18, the portions exposed from the first and second dielectric layers 17, 18, and the
接着,以覆盖脊形部7的厚度方向Z的一表面7a及抗蚀图层53的方式蒸镀膜厚400~3000的由AuZn构成的第3先驱体层,然后通过剥离(1ift—off)法将第3先驱体层中除层积在脊形部7上的部位外的部分与抗蚀图层53一起去除。由此,如图4A所示,脊上电极层21就形成在保护层12的厚度方向Z的一表面12a上。Next, a film thickness of 400 is deposited so as to cover one
接着,如图4B所示,将半导体基板厚度研磨到半导体基板2的厚度为止。也就是,研磨半导体基板2的先驱体50厚度方向Z的另一表面,从而形成厚50μm~130μm的半导体基板2。Next, as shown in FIG. 4B , the thickness of the semiconductor substrate is ground to the thickness of the
接着如图4C所示,在半导体基板2的厚度方向Z的另一表面2b上,形成背面电极层36,由此,在氮气环境下使脊上电极层21和背面电极层36合金化。Next, as shown in FIG. 4C , on the
接着,从半导体基板2的一表面2a侧,如图4C所示,在第1及第2电介质层17、18、脊形电极层21及蚀刻停止层6上,将Ti以层厚 的方式蒸镀并层积,从而形成第1电镀用基底层24,此后,进一步将Au以层厚的方式蒸镀,从而形成第2电镀用基底层25。由此,形成电镀用基底电极层23。Next, from the one
接着,给电镀用基底电极层23供电来进行规定时间的电解Au的电镀,由此,如图4D所示那样,形成层厚0.5以上且不满5.0μm的电镀电极层23。Next, by supplying electric power to the plating
接着,在电镀电极层23的厚度方向Z的一表面23a上,通过蒸镀Mo而如图5A所示那样形成金属层32,然后,在金属层32的厚度方向Z的一表面32a上,通过蒸镀Au形成第4先驱体层57。Next, on one surface 23a in the thickness direction Z of the
接着,在第4先驱体层57的厚度方向Z的一表面57a上涂布抗蚀剂后,使用光刻技术及蚀刻技术去除第4先驱体层57中的层积在金属层32上的抗蚀剂的一部分,以使层积在金属层32中的应当成为不完全粘合层31部分中的部分露出来,由此,如图5B所示那样形成抗蚀图层58。由抗蚀图层58产生的掩模宽度即从抗蚀图层58中露出来的金属层32的宽度方向Y的尺寸约为20μm。也就是,金属层32从穿过脊形部7的中央并且垂直于宽度方向Y的一假想平面、向宽度方向Y的一方及另一方露出约10μm。另外,金属层32在脊形部7的延伸方向X中的两端部由抗蚀图层58覆盖。Next, after coating a resist on one surface 57a in the thickness direction Z of the
接着,通过蚀刻技术去除从抗蚀图层58露出来的第4先驱体层57,而使金属层32的一部分露出来。金属层32中的该露出来的部分形成不完全粘合层31。另外,去除第4先驱体层57的一部分,进而去除抗蚀图层58,由此,如图5C所示在不完全粘合层31的宽度方向Y的两侧形成完全粘合层33。Next, the
图6是表示介由焊锡层61在安装部62上安装半导体激光器件1后的半导体激光装置60的剖面图。半导体激光器件1,在上述的不完全粘合层31及完全粘合层33上层积焊锡层61,由此通过小片接合(die—bonding)安装在安装部62中。构成焊锡层61的焊锡材料由AuSn形成,在本实施方式中,Au含有70%,并且Sn含有30%。安装部62是所谓的副底座,例如由氮化铝(AlN)等电导率及热传导率高的材料形成。6 is a cross-sectional view showing the
半导体激光器件1通过给定的小片接合条件与安装部62小片接合。小片接合条件包括:将半导体激光器件1安装在安装部62中时所加载的荷重的条件,和将半导体激光器件1安装在安装部62中时所附加的加热条件。The semiconductor laser device 1 is die-bonded to the mounting
物理的荷重对于将半导体激光器件1压接在安装部62上的焊锡层61上是必须的,但如果加载较重的荷重例如1.0N(牛顿)等,半导体激光器件1的内部结构即脊形结构部35及第1和第2电介质层17、18等就会被过度加压,由此通过应力使脊形结构部35发生变形,最坏的情况下则导致半导体激光器件1被损坏。相反地,如果加载较轻的荷重例如0.05N,由于加压不足半导体激光器件1就不能接合在安装部62上的焊锡层61上,由此导致剥离。因此,上述荷重条件选择为大于0.05N且不满1.0N,作为优选,不采用较重的荷重区域而采用较轻的荷重区域,例如选择为0.1N~0.3N。A physical load is necessary for crimping the semiconductor laser device 1 on the
另外,为了使安装部62上的焊锡层61熔化,由此在半导体激光器件1的小片接合面的最表面以合金化方式形成由Au构成的完全粘合层33,于是需要将安装部62置于加热器中进行加热,如果加热量较多,例如在360℃(度)下加热30s(秒)后,在使用吹风机以1秒中强制冷却到大致200℃的情况下,半导体激光器件1的内部的层积结构中因热膨胀系数等之差所产生的各层的剥离、分离、物性变化以及合金形成等,就产生应力从而成为变形的原因。相反地,如果加热量较少,例如在280℃下加热0.3s后,在使用吹风机以1秒中强制冷却到大致200℃的情况下,就会没有形成合金,从而半导体激光器件1不能接合到安装部62上的焊锡层61中,由此导致剥离。因此,上述加热条件,加热温度选择为大于200℃不满360℃,并且加热时间选择为长于0.3秒不满30秒,另外因为在加热量较少的区域中的条件有利,所以将加热条件设为300℃下加热大约2s。In addition, in order to melt the
上述温度条件,在较大程度上也被位于半导体激光器件1的小片接合面侧的最表面的完全接合层33的厚度所左右,因此,由于加热量较少的区域(300℃下大约2s)有利,所以将不完全粘合层31的厚度薄膜化,例如设为0.12μm并在短时间内形成合金。The above-mentioned temperature conditions are largely influenced by the thickness of the uppermost
构成焊锡层61的焊锡材料即AuSn与完全粘合层33的Au的合金反应,也就是AuSn与完全粘合层33的Au的合金化,在由荷重加压的状态下通过加热开始。AuSn与Au反应并且进行合金化的流程是:通过加热使AuSn熔化,将该熔化的AuSn附着在完全粘合层33的表面上,由此通过直接加热而使AuSn扩散到完全粘合层33的内部。扩散方向是向着完全粘合层33的厚度方向进行,但由完全粘合层33的表面的数点处开始扩散,如果继续加热,则位于数处的扩散点不仅增加并且该点就从点状扩大成圆形。AuSn向完全粘合层33的厚度方向Z扩散的深度与速度,由焊锡材料AuSn与形成完全粘合层33的Au的绝对量之比即质量比与加热量来确定,到完全扩散结束为止的时间也是同样的。因此,在焊锡材料的量较多而完全粘合层33的Au的量较少、并且加热量较多的情况下,完全粘合层33只需与AuSn瞬间地接触就被合金化,由此,如前形成半导体激光器件1的小片接合面侧的最表面的完全粘合层33,设置较多的焊锡材料的量,由此通过在AuSn开始扩散时就停止加热,从而停止扩散。The alloy reaction of AuSn, which is the solder material constituting the
在半导体激光器件1的半导体基板2的厚度方向Z的一方侧的最表面中的、脊形结构部35上,形成由Mo构成的不完全粘合层31,则由于Au自身消失,虽然由AuSn构成的焊锡材料与不完全粘合层31密接,但也没有合金形成。只在完全粘合层33的全表面中,产生与层积在安装部62中的焊锡材料AuSn的合金形成。不完全粘合层31与焊锡层61的粘合不完全,由此,不完全粘合层31与完全粘合层33相比,在将半导体激光器件1安装到安装部62上时,从焊锡层61接受到的应力较小。On the outermost surface of one side of the thickness direction Z of the
半导体激光装置60中,在将半导体激光器件1安装到安装部62上时,遍布半导体激光器件1的厚度方向的一表面的全表面中层积焊锡材料,由此与部分地层积焊锡材料的情况相比,安装较容易。In the
制作使用本发明的半导体激光器件1的半导体激光装置60(以下有时也称作实施例1的半导体激光装置),以及制作使用比较例的半导体激光器件的半导体激光装置(以下也称作比较例的半导体激光装置),来测量偏振特性。比较例的半导体激光器件的结构,是在半导体激光器件1的金属层32的厚度方向Z的一表面32a的全表面中形成由Au构成的合金形成层。该合金形成层形成为与完全粘合层33相同的厚度。A
实际制作这些半导体激光器件1与比较例的半导体激光器件时,准备1片由p型GaAs构成的晶片,如图5A所示那样在形成第4先驱体层后,将晶片分割成两份。使用分割成两份后的晶片中的一方,通过上述的工序形成多个形成有不完全电极层31的半导体激光器件1,另外,使用另一方形成多个比较例的半导体激光器件。When actually fabricating these semiconductor laser devices 1 and the semiconductor laser device of the comparative example, one wafer made of p-type GaAs was prepared, and after forming the fourth precursor layer as shown in FIG. 5A , the wafer was divided into two. One of the divided wafers was used to form a plurality of semiconductor laser devices 1 having incomplete electrode layers 31 through the above-mentioned steps, and the other was used to form a plurality of semiconductor laser devices of comparative examples.
将所形成的半导体激光器件1与比较例的半导体激光器件,皆在上述的小片接合条件下,通过焊锡材料焊接到安装部62上。安装在安装部62上的各半导体激光器件,使用Ag浆膏(paste)安装在5.6φ的管座也即直径5.6mm的管座上,经过引线接合·顶盖密封等工序制作出来。在相同条件下对该所制作的半导体激光装置进行老化试验,所测定的激光的偏振特性如表1所示。作为偏振特性测定偏振比以及偏振角。The formed semiconductor laser device 1 and the semiconductor laser device of the comparative example were all soldered to the mounting
【表1】【Table 1】
关于偏振比,测定多个其中30个的半导体激光装置的平均值(Ave)与标准偏差(σ)。关于偏振角,测定多个其中30个的半导体激光装置的平均值(Ave)与标准偏差(σ)。偏振角,是将一定方向的偏振滤光器相对于激光的出射而平行地进行设置并在使偏振滤光器移位90°角时,通过偏振滤光器由受光部接收的光功率成为最大的角度。Regarding the polarization ratio, the average value (Ave) and the standard deviation (σ) of 30 semiconductor laser devices were measured. Regarding the polarization angle, the average value (Ave) and the standard deviation (σ) of 30 semiconductor laser devices were measured. Polarization angle means that when a polarization filter in a certain direction is arranged in parallel with respect to the emission of laser light and the polarization filter is shifted by an angle of 90°, the light power received by the light receiving part through the polarization filter becomes the maximum Angle.
如表1所示,实施例1的半导体激光装置与比较例的半导体激光装置相比,偏振比较大且偏振角较小,并且偏振比与偏振角的离散偏差也都较小。在比较例的半导体激光装置中,如果通过上述的小片接合条件将半导体激光器件安装到副底座上,则位于小片接合面侧的最表面的由Au构成的合金形成层,就与副底座上的AuSn进行合金形成。在比较例的半导体激光装置中,在脊形结构部35的最表面部也可靠地进行合金化,因此不会发生高温下的Iop(额定电流)上升,从而较稳定,但在常温下的激光特性测量中,在具有相同结构的多个半导体激光器件中,偏振比的Ave(平均值)较低,并且偏振比的σ(标准偏差)的离散偏差幅度增大。另外,偏振角的Ave偏向负侧,并且偏振角的σ的离散偏差幅度增大。其原因是,在从外部向脊形结构部35扩散的焊锡材料与位于半导体激光器件的最表面部的合金形成层形成合金时,对脊形结构部35形成合金同时脊形部7由AuSn覆盖,由于合金形成后应力就被附加,从而发生变形。对于成为该变形根源的应力而言,推测为在由Au构成的合金形成层与由AuSn构成的焊锡材料进行合金形成时,对脊形结构部35的压力和张力的混合力。As shown in Table 1, compared with the semiconductor laser device of Comparative Example, the semiconductor laser device of Example 1 has a larger polarization ratio and a smaller polarization angle, and the dispersion deviation of both the polarization ratio and the polarization angle is also smaller. In the semiconductor laser device of the comparative example, when the semiconductor laser device is mounted on the submount under the above-mentioned die bonding conditions, the alloy formation layer made of Au located on the outermost surface on the die bonding surface side is formed in contact with the submount on the submount. AuSn performs alloy formation. In the semiconductor laser device of the comparative example, the alloying is also reliably carried out at the outermost portion of the
另外,脊形结构部35的表面部中具有由Au形成的合金形成层,作为其基底层形成有:由Mo构成的金属层32、由Au构成的电镀电极层27以及电镀用基底电极层23等,但合金形成层与焊锡材料进行合金形成后所接受到的应力,推测为对其基底层也产生影响,由此推测出压力与张力共同作用。推测上述应力中的压力,在焊锡材料加热引起膨胀时产生,推测张力在焊锡材料加热后进行冷却时产生。因此,在焊锡材料膨胀一定程度,以一定程度与脊形结构部35相接触,并且收缩一定程度的情况下,对脊形结构部35作用均匀的应力,由此能够降低变形的发生,从而在接近裸芯片状态的形式下,就可以将半导体激光器件粘合在副底座上。但是,现实中焊锡材料膨胀及收缩时,并非进行一定程度的膨胀及收缩,而是进行部分地不定的膨胀及收缩。因而,加热时在脊形结构部35中局部地产生较大压力部分和较小压力部分,合金形成也局部地进行,由此使应力局部地产生。在局部地进行合金形成并且停止加热而开始冷却的情况下,这时焊锡材料开始收缩,从而在脊形结构部35中就产生局部地附加有大有小的张力和有大有小的压力的部分。此时,收缩的张力与压力推测为对脊形结构部35施加应力的力。另外冷却时,脊形结构部35的最表面部所形成的合金形成层与焊锡材料发生反应而被合金形成的AuSn层则收缩。AuSn是焊锡材料的一种,但在加热AuSn使其接合的300℃~400℃的温度区域中,难于与基底层即由Mo构成的金属层32进行合金形成,反而变向剥离方向,并且由于合金化形成层与金属层32通过溅射进行层积,因此在比较例的半导体激光装置中,可推定合金化的合金化形成层拉伸金属层32,从而对金属层32的应力增大。这样,在比较例的半导体激光装置中,对金属层32施加应力从而发生变形,由此可推定应力还波及到基底层,最终应力作用到最重要的脊形结构部35的脊形部7上为止,而使脊形部7变形。因而,如果不均匀地赋予脊形结构部35应力,就使激光特性恶化,由此均匀地赋予脊形结构部35应力而使变形降低这方面非常重要。使得附加到脊形结构部35的应力不均匀的要因,推测是由于脊形结构部35的最表面部由AuSn合金形成。也就是,可以推测如果对脊形结构部35的最表面部不进行合金形成,应力就会变得均匀而使变形降低,由此激光特性应当不会恶化。In addition, the surface portion of the
通过测量实施例1及比较例的半导体激光装置的偏振特性,根据对脊形结构部35应力作用的方式,就能够使脊形结构部35的变形降低,从而改善偏振特性。By measuring the polarization characteristics of the semiconductor laser devices of Example 1 and Comparative Example, the deformation of the
另外,实施例1的半导体激光装置60,在观察其实际的剖面时,也可以确认安装部62上的由AuSn构成的焊锡材料与完全粘合层33发生反应而变成合金,上述AuSn与不完全粘合层31不发生合金反应,也就是AuSn不与不完全粘合层31发生反应也就不变成合金。In addition, in the
如上所述,在使用半导体激光器件1的半导体激光装置60中,能够谋求组装完成品状态下的激光偏振特性的测定项目偏振比的提高以及偏振比离散偏差的抑制,另外,能够减小偏振角并且谋求偏振角离散偏差的改善。通过提高偏振比,就能够谋求半导体激光装置60的光输出的稳定性。另外,通过减小偏振角并且谋求偏振角的离散偏差的改善,就能够改善FFP辐射特性的功率变化,另外能够谋求所出射的激光辐射噪声的降低。As described above, in the
另外,半导体激光装置60中宽度方向Y上不完全粘合层31的两侧,分别形成有完全粘合层33,因此能够牢固地将半导体激光器件1与安装部62机械连接。In addition, perfect adhesion layers 33 are respectively formed on both sides of the
另外,半导体激光装置60中,凹部15偏向脊形结构部35处形成有不完全粘合层31,因此能够进一步降低从脊形结构部35的周围赋予脊形结构部35的应力。在脊形结构部35与焊锡层61的界面中,因为激光出射而在脊形结构部35中产生的热就难于释放,所以通过在凹部15偏向台阶部8处形成完全粘合层33,就能够使所产生的热从完全粘合层33介由焊锡层61高效地释放到安装部62中。In addition, in the
另外,半导体激光装置60中,将上述的预定距离L5选择为脊形部7与台阶部8之间的预定距离L2的30%以上,就能够更可靠地降低应力,从而将上述预定距离L5设为不满预定距离L2的50%,就使得来自脊形波导的热难于释放到焊锡层中,从而能够抑制半导体激光器件的电流值特性恶化。In addition, in the
另外,在半导体激光装置60中,将上述预定距离L7选择为预定距离的50%以下,就使完全粘合层33中所产生的应力难于传递给脊形结构部35,由此能够进一步降低脊形结构部35中产生的变形。In addition, in the
另外,半导体激光器件1中脊形部7与台阶部8之间,由Ti构成的第1电镀用基底层24与通过外延生长所形成的蚀刻停止层6相接触,因此,为了使该第1电镀用基底层24与蚀刻停止层6相接触的部分中电流不流动,作为欧姆电极的脊上电极层21就以只层积在脊形部7上的方式形成。第1电镀用基底层24和蚀刻停止层6没有形成低电阻的欧姆接触,由此可使电流以只集中在通过脊上电极层21和保护层12形成有欧姆接触的脊形部7中的方式流动。In addition, between the
另外,半导体激光装置60中,发光点的正下方即从发光点在厚度方向Z上向着安装部62的部分及其附近,未与焊锡层61合金化,由此该部分中的热放出(heat release)降低。半导体激光装置60中,脊形结构部35的侧面部与焊锡层61之间形成有微小的空腔,而脊形结构部35的顶部与焊锡层61密接,由此该部分中没有形成空腔。在此所谓脊形结构部35的顶部是指脊形结构部35中的层积在脊形部7的厚度方向Z的一表面7a中的部分。另外,脊形结构部35的侧面部是脊形结构部35中的除上述脊形结构部35的端部外剩下的部分。脊形结构部35的顶部(脊形波导的正下部)即使不与焊锡材料合金化,由于存在焊锡层61,也就会有介由焊锡层61从不完全粘合层31到安装部62的热传导。但是,仅利用来自脊形结构部35的顶部的放热是不足的,因此通过加厚由Au构成的电镀电极层27的厚度,就能够使脊形结构部35的发热从由高热传导率的金(Au)形成的电镀电极层27向台阶部8传递,由此谋求热传导路径的旁路化(by—pass),而介由焊锡层61释放到安装部62中。由此,能够消除不完全粘合层61与焊锡层61之间的热放出不足,从而进一步提高电流特性。In addition, in the
另外,在电镀电极层27的厚度不满0.5μm的情况下,就不能充分地实现传热效果,在超过5.0μm的情况下,当晶片上形成金属层时晶片就会翘曲从而使成品率恶化,并且形成电镀电极层27就使脊形结构部中产生应力,由此脊形波导变形。因而,将电镀电极层27的厚度设为0.5μm以上5.0μm以下,就可以不仅得到从脊形结构部35向完全粘合层33的充分热传导效果,并且能够降低赋予脊形结构部35的应力,从而提高成品率。In addition, when the thickness of the
在或使上述电镀电极层27与AuSn等焊锡材料反应来进行合金化,或在接近于脊形结构部35的部分中通过焊锡将半导体激光器件1安装到安装部62中时进行加热的情况下,激光特性就存在恶化之虞,但如前所述,通过设置不完全粘合层31与完全粘合层33,而使不完全粘合层31与焊锡材料不反应,也就是能够防止电镀电极层27的合金化而能保护电镀电极层27,并且能介由焊锡使所赋予的热从脊形部7离去,由此能够良好地维持激光特性。In the case where the
本发明的实施方式中,使用Mo作为形成不完全粘合层31的材料,但是作为形成不完全粘合层31的材料,只要在上述的小片接合条件下使用与形成焊锡材料的金属不形成合金的材料即可。In the embodiment of the present invention, Mo is used as the material for forming the
进而,本发明的另一实施方式中,也可以在上述实施方式中,使不完全粘合层31由以下金属形成,即该金属与形成完全粘合层33的金属相比其与焊锡材料的湿润性较低。这样的金属材料例如可以列举出铂(Pt)。Furthermore, in another embodiment of the present invention, in the above-mentioned embodiment, the
上述不完全粘合层31由铂(Pt)形成的半导体激光装置(以下有时也称作实施例2的半导体激光装置)的偏振特性如表2所示。制造条件与上述实施例1的半导体激光装置一样,只是替换了形成不完全粘合层31的材料。Table 2 shows the polarization characteristics of the semiconductor laser device in which the
【表1】【Table 1】
实施例2的半导体激光装置,虽然效果不如不完全粘合层31由Mo形成的实施例1的半导体激光装置,但与比较例的半导体激光器件相比,就可判明获得了显著的效果。因而,作为形成不完全粘合层31的材料,可以认为Pt是有效的金属。Although the semiconductor laser device of Example 2 is not as effective as the semiconductor laser device of Example 1 in which the
短时间激烈发生合金反应的金属即短时间进行反应形成合金的金属,可对半导体激光器件的偏振特性带来坏影响,但是可推定慢慢发生合金反应的金属即难于在短时间内合金化的金属、或不产生合金反应的金属即不发生反应形成合金的金属,对激光的偏振特性不赋予或难以赋予坏影响。因而,不完全粘合层31通过慢慢发生合金反应的金属或不会发生合金反应的金属形成,这样的金属除上述Mo与Pt外,还能够列举出Ti等。这些Mo、Pt、Ti熔点比Au高,并且与焊锡材料AuSn之间的湿润性比Au低。A metal that undergoes a rapid alloying reaction in a short time, that is, a metal that reacts to form an alloy in a short time, may have a bad influence on the polarization characteristics of a semiconductor laser device, but it is presumed that a metal that undergoes a slow alloying reaction is difficult to alloy in a short time Metals, or metals that do not undergo an alloy reaction, that is, metals that do not react to form an alloy, do not or hardly exert a bad influence on the polarization characteristics of laser light. Therefore, the
图7是本发明的另一实施方式的半导体激光器件100的剖面图,图8是半导体激光器件100的俯视图。图7是从图8的剖面线VII—VII观察到的剖面图。还有,图8表示从半导体基板2的厚度方向Z中的设有脊形结构部35一侧观察,图中为了使第1与第2不完全粘合层31a、31b易于图解,而标注斜线进行表示。7 is a cross-sectional view of a
半导体激光器件100,在图1所示的上述实施方式的半导体激光器件1中,上述不完全粘合层31由第1不完全粘合层31a与第2不完全粘合层31b构成,其他结构与半导体激光器件1相同,由此对同样的部分赋予相同的参考符号,并省略重复说明。In the
半导体激光器件100中,在上述半导体激光器件1中的金属层32与完全粘合层33之间,形成有包括第2不完全粘合层31b的中间金属层102。中间金属层102层积在金属层32的厚度方向Z的一表面32a上。中间金属层102按照在宽度方向Y上从由脊形结构部35离开预定距离L8的位置遍布到宽度方向Y的端部的方式层积在金属层32上。预定距离L8选择为预定距离L2的30%以上而不满50%。In the
在中间金属层102的厚度方向Z的一表面102a上层积有完全粘合层33。完全粘合层33按照从由脊形结构部35离开预定距离L5的位置遍布到宽度方向Y的端部的方式,层积在中间金属层102上。On one
金属层32中的从中间金属层102露出来的部分构成第1不完全粘合层31a,中间金属层102中的从完全粘合层33露出来的部分构成第2不完全粘合层31b。半导体激光器件1在安装部62中安装时面临焊锡层61的最表面部中,在宽度方向Y上中央形成有第1不完全粘合层31a,第1不完全粘合层31a的两侧分别形成有第2不完全粘合层31b。The portion of the
中间金属层102由以下金属形成,该金属与形成焊锡层61的焊锡材料的湿润性具有上述金属层32和完全粘合层33之间的性质,也就是,比形成金属层32的金属要好即与焊锡材料易于湿润,并且比形成完全粘合层33的金属要差即与焊锡材料难于湿润。本实施方式中,金属层32由Mo形成,完全粘合层33由Au形成,由此中间金属层102例如由铂(Pt)形成。形成中间金属层102的金属,熔点比形成金属层32的金属的低并且比形成完全粘合层33的金属的高。The
中间金属层102通过蒸镀来形成,其厚度例如选择为100~3000。The
第1及第2不完全粘合层31a、31b,在脊形部7的延伸方向X上,以遍及到半导体激光器件100的两端部间的方式形成,由此以从半导体激光器件100的两端面即出射面隔开预定距离L6的方式形成。上述预定距离L6,选择为可在半导体激光器件100的出射面中形成用于防止出射端面损坏的涂布膜。。The first and second incomplete
图9是表示介由焊锡层61在安装部62中安装了半导体激光器件100的半导体激光装置160的剖面图。半导体激光器件100,通过上述的小片接合条件介由由AuSn构成的焊锡层61与安装部62接合。完全粘合层33与焊锡材料合金化,另外第2不完全粘合层31b的一部分也与焊锡材料合金化,但是第2不完全粘合层31b,由与形成焊锡层61的焊锡材料之间的湿润性具有第1不完全粘合层31a与完全粘合层33之间的性质的金属形成,因此第2不完全粘合层31b与焊锡层61间的粘合力,大于第1不完全粘合层31a与焊锡层61间的粘合力,小于完全粘合层33与焊锡层61间的粘合力。9 is a cross-sectional view showing a
由此,随着宽度方向Y上离开脊形结构部35,层积有焊锡层61的最表面部与焊锡层61间的粘合力就增大。通过随着宽度方向Y上离开脊形结构部35而使粘合力逐步地变化,从而能够抑制由完全粘合层33中所产生的应力与不完全粘合层31a、31b中所产生的应力引起的完全粘合层33与不完全粘合层31a、31b相邻的部分中的急剧应力变化,由此缓和赋予脊形结构部35的应力,并进一步降低脊形结构部35中产生的变形。Accordingly, the adhesive force between the uppermost surface portion on which the
另外,形成Mo、Pt以及Au的成膜技术以前就一直在使用,因此通过第1不完全粘合层31a由钼(Mo)形成,第2不完全粘合层31b由铂(Pt)形成,完全粘合层33由金(Au)形成,来形成第1与第2不完全粘合层31a、31b以及完全粘合层33,就不需新的成膜技术,由此能够简单地进行形成。In addition, since the film-forming technology of forming Mo, Pt, and Au has been used until now, the first
图10是本发明的另一实施方式的半导体激光器件110的剖面图。本实施方式的半导体激光器件110,具有与上述图1所示的实施方式的半导体激光器件1相同的构成,只是电镀电极层27的结构不同,因此对同样的构成标注相同的参考符号,并省略重复说明。FIG. 10 is a cross-sectional view of a semiconductor laser device 110 according to another embodiment of the present invention. The semiconductor laser device 110 of this embodiment has the same structure as the semiconductor laser device 1 of the embodiment shown in FIG. Repeat instructions.
半导体激光器件110具有:半导体基板2、第1镀层3、有源层4、第2镀层5、蚀刻停止层6、脊形部7、台阶部8、第1及第2电介质层17、18、电镀用基底电极层23、基底金属层112、包括不完全粘合层31的金属层32、以及完全粘合层33。The semiconductor laser device 110 has: a
基底金属层112具有电镀电极层113、第1电极层114、以及第2电极层115。基底金属层112以顺次层积电镀电极层113、第1电极层114、第2电极层115的方式形成。基底金属层112的厚度选择为0.5μm以上且不满5.0μm。The
电镀电极层113与上述电镀电极层27结构相同并通过同样的方法形成。在电镀用基底电极层23的厚度方向Z的一表面23a上以遍布全表面的方式层积电镀电极层113。电镀电极层113的厚度选择为0.5μm以上且不满5.0μm,例如选择为1μm。The plating electrode layer 113 has the same structure as the above-mentioned
在电镀电极层113的厚度方向Z的一表面113a上以遍布全表面的方式形成第1电极层114。第1电极层114与电镀电极层113相比表面平坦性出色,并通过预定金属形成。预定金属从由钼(Mo)、铂(Pt)、钼铂(MoPt)以及钛(Ti)构成的组中选择。通过这些金属形成第1电极层114,能就够形成表面平坦性优异的第1电极层114。在第1电极层114例如由钼(Mo)形成的情况下,其厚度选择为0.05μm以上且不满0.30μm,例如选择0.05μm。第1电极层114通过溅射法形成。The
在第1电极层114的厚度方向Z的一表面114a上,以遍布全表面的方式形成第2电极层115。第2电极层115由金形成。第2电极层115的厚度选择为0.05μm以上且不满1.0μm,例如选择0.12μm。在第2电极层115的厚度方向Z的一表面115a上,以遍布全表面的方式层积包括不完全粘合层31的金属层32。通过由金形成第2电极层115,能够提高基底金属层112与不完全粘合层31的粘合特性,由此使其难于剥离。另外,第2电极层115与第1电极层114同样地通过溅射法形成后,就连续地进行成膜。第2电极层115与第1电极层114,在将晶片设置在1个溅射装置中的状态下,以连续地使Mo膜与Au膜成膜的方式形成。以前,需要在使Mo膜成膜后,将晶片从装置中取出并将晶片再次放置在其他装置中来使Au膜成膜,但在本实施方式中,在不将晶片从装置中取出的情况下,将两个试料(Mo与Au)配置在装置内,按顺序使Mo膜(第1电极层114)与Au膜(第2电极层115)成膜。由此,不需要破坏真空,即不需要将晶片暂时暴露在大气中,就能够连续地使第2电极层115与第1电极层114成膜。由此,由Mo构成的第1电极层114的表面不被氧化,从而不存在损害与由层积的Au构成的第2电极层115的密接性之虞。On one
电镀电极层113、第1电极层114、第2电极层115的厚度,优选其比率为:电镀电极层113(Au)为1μm,第1电极层114(Mo)为0.05μm,第2电极层115(Au)为0.12μm。The thicknesses of the electroplating electrode layer 113, the
由金构成的电镀电极层113通过电镀形成,因此与通过溅射法形成由金构成的层相比,就能够以短时间形成厚度较大的层。但是,电镀电极层113表面平坦性较差,湿润性随电镀条件变化,因此存在粘合特性中产生离散偏差之虞。根据本发明,在该电镀电极层113上顺次层积第1电极层114与第2电极层115。第1电极层114与上述电镀电极层113相比表面平坦性优异,通过预定的金属形成。由此,能够提高第2电极层115的表面平坦性。因而,能够提高与层积在第2电极层115上的不完全粘合层31间的粘合特性,由此可抑制基底金属层112与不完全粘合层31产生剥离。Since the plating electrode layer 113 made of gold is formed by electroplating, it is possible to form a thicker layer in a shorter time than forming a layer made of gold by a sputtering method. However, the surface flatness of the plating electrode layer 113 is poor, and the wettability varies with plating conditions, so there is a possibility of discrete variations in adhesion characteristics. According to the present invention, the
半导体激光器件110与上述半导体激光器件100同样地介由焊锡层61安装在安装部62中,由此制作出半导体激光装置。本实施方式的半导体激光器件110中,可抑制基底金属层112与不完全粘合层31产生剥离,因此脊形结构部35中产生的热,能够介由以包括高热传导率的金(Au)的方式形成的基底金属层112传导到完全粘合层33侧,从而能够介由焊锡层61可靠地释放到安装部62中。由此,能够解决不完全粘合层31与焊锡层61间的放热不足,从而进一步抑制电流特性的恶化来谋求半导体激光器件110的长寿化。The semiconductor laser device 110 is mounted in the mounting
另外,第1与第2电极层114、115通过溅射法以连续成膜方式形成,由此能够提高与电镀电极层113的密接性,进而即使电镀电极层113的表面113a中存在凹凸,而以填补该凹凸部分的方式形成第1与第2电极层114、115,因此能够使基底金属层112的厚度尽可能均匀。通过使基底电极层112的厚度更加均匀,可以获得更加稳定的接合性及提高粘合性,其效果,能够消除放热不足,由此进一步抑制电流特性的恶化来谋求半导体激光器件的长寿化。In addition, the first and second electrode layers 114, 115 are formed in a continuous film-forming manner by sputtering, thereby improving the adhesion to the plating electrode layer 113, and even if there are irregularities in the
图11是本发明的另一实施方式的半导体激光器件120的剖面图。本实施方式的半导体激光器件120,具有与前述的图7所示的实施方式的半导体激光器件100相同的构造,将半导体激光器件100的电镀电极层27替换为上述图10所示的实施方式中的基底电极层112。通过采用这样的构成,除上述半导体激光器件100的效果外,还可以谋求与半导体激光器件120相同的效果。FIG. 11 is a cross-sectional view of a
本发明的另一实施方式的半导体激光器件中,也可以在上述各实施方式的半导体激光器件中,在不设置蚀刻停止层6的情况下,将第2镀层5、脊形部7以及台阶部12通过相同的半导体材料即例如形成前述的第2与第3镀层5、11的半导体材料以一体化方式形成,并形成层积在有源层4的厚度方向Z的一表面4a中的镀层。采用这样的构成,就使来自外部的应力易于赋予脊形波导,但即使是这样的构成,由于通过上述不完全粘合层31来缓和应力,因此也能够实现与上述实施方式相同的效果,进而由于外延生长的工序减少,从而能够缩短制造时间,由此提高生产性。In the semiconductor laser device of another embodiment of the present invention, in the semiconductor laser device of each of the above-mentioned embodiments, the
本发明还可以在不超越其主要精神或主要特征的情况下,以其他各种各样的方式进行。因此,上述实施方式以其所有方面仅仅是例示,本发明的范围通过权利要求的范围来表示,一点也不受说明书本文的限定。进而,属于权利要求的范围的变形及变更均包括在本发明的范围内。The present invention can also be carried out in other various forms without departing from its main spirit or main characteristics. Therefore, the above-mentioned embodiment is merely an illustration in all points, and the scope of the present invention is shown by the scope of the claim, and is not limited at all by this specification. Furthermore, modifications and changes belonging to the scope of the claims are included in the scope of the present invention.
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005288168 | 2005-09-30 | ||
JP2005288168 | 2005-09-30 | ||
JP2006246157 | 2006-09-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1941528A CN1941528A (en) | 2007-04-04 |
CN100505446C true CN100505446C (en) | 2009-06-24 |
Family
ID=37959409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200610142108XA Active CN100505446C (en) | 2005-09-30 | 2006-09-30 | semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100505446C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105229523A (en) * | 2013-05-23 | 2016-01-06 | 富士通株式会社 | Photosemiconductor integrated component and its manufacture method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967875B2 (en) * | 2007-07-17 | 2012-07-04 | 三菱電機株式会社 | Semiconductor light emitting device and manufacturing method thereof |
CN102709627A (en) * | 2012-06-25 | 2012-10-03 | 世达普(苏州)通信设备有限公司 | Waveguide duplexer device |
-
2006
- 2006-09-30 CN CNB200610142108XA patent/CN100505446C/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105229523A (en) * | 2013-05-23 | 2016-01-06 | 富士通株式会社 | Photosemiconductor integrated component and its manufacture method |
Also Published As
Publication number | Publication date |
---|---|
CN1941528A (en) | 2007-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6954034B2 (en) | Semiconductor light-emitting device | |
US7929587B2 (en) | Semiconductor laser diode element and method of manufacturing the same | |
JP5148647B2 (en) | Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device | |
JP2011522427A (en) | Optoelectronic component and manufacturing method thereof | |
CN103238225A (en) | A light emitting diode assembly and method for fabricating the same | |
JP4514376B2 (en) | Nitride semiconductor laser device | |
JP2003031895A (en) | Semiconductor light emitting device and its manufacturing method | |
JP4141549B2 (en) | Manufacturing method of semiconductor light emitting device | |
JP4908982B2 (en) | Semiconductor laser element | |
JP2015513229A (en) | Laser diode device | |
CN100505446C (en) | semiconductor laser device | |
JP3752339B2 (en) | Semiconductor light emitting device | |
JP3924756B2 (en) | Manufacturing method of nitride semiconductor laser device | |
US20060289875A1 (en) | Light emitting diode and method making the same | |
US7606275B2 (en) | Semiconductor laser device having incomplete bonding region and electronic equipment | |
CN100364189C (en) | Semiconductor laser and its manufacturing method | |
CN100481658C (en) | Semiconductor laser apparatus and semiconductor laser device | |
JP4978579B2 (en) | Semiconductor laser device manufacturing method and semiconductor laser device | |
US10193301B2 (en) | Method of manufacturing light emitting device and light emitting device | |
JP2007096090A (en) | Semiconductor light emitting element and method of manufacturing the same | |
JP4081897B2 (en) | Multilayer semiconductor laser device and manufacturing method thereof | |
JP5438806B2 (en) | Semiconductor light emitting device and semiconductor light emitting device | |
JP3875800B2 (en) | Semiconductor laser element | |
JP4655209B2 (en) | Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device | |
JP5802256B2 (en) | Semiconductor light emitting device and semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220330 Address after: Asahi 1, Damen Machi, Fukuyama, Hiroshima, Japan Patentee after: Sharp Fukuyama laser Co.,Ltd. Address before: Osaka, Japan Patentee before: Sharp Corp. |