[go: up one dir, main page]

CN100503637C - Glucagon-like peptide analogs, compositions and methods of use thereof - Google Patents

Glucagon-like peptide analogs, compositions and methods of use thereof Download PDF

Info

Publication number
CN100503637C
CN100503637C CNB2004100176679A CN200410017667A CN100503637C CN 100503637 C CN100503637 C CN 100503637C CN B2004100176679 A CNB2004100176679 A CN B2004100176679A CN 200410017667 A CN200410017667 A CN 200410017667A CN 100503637 C CN100503637 C CN 100503637C
Authority
CN
China
Prior art keywords
glp
insulin
peptide
acid
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100176679A
Other languages
Chinese (zh)
Other versions
CN1683408A (en
Inventor
张晓东
谢国建
郇正伟
查理斯·大卫
王印祥
陈杭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Betta Pharmaceuticals Co Ltd
Original Assignee
Zhejiang Beta Pharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35262930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100503637(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zhejiang Beta Pharma Inc filed Critical Zhejiang Beta Pharma Inc
Priority to CNB2004100176679A priority Critical patent/CN100503637C/en
Publication of CN1683408A publication Critical patent/CN1683408A/en
Application granted granted Critical
Publication of CN100503637C publication Critical patent/CN100503637C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a kind of glucagon-like peptide analog and its composition, which are used in up regulating insulin expression in mammal body to treat diabetes. These peptide derivatives may be used in treating diabetes and other insulinotropic hormone peptide related diseases as well as glucagon level related gastrointestinal function activity diseases.

Description

胰高血糖素样肽类似物、其组合物及其使用方法 Glucagon-like peptide analogs, compositions and methods of use thereof

技术领域 technical field

本发明涉及胰高血糖素样肽类似物及其组合物,它们用来上调哺乳动物体内的胰岛素表达,从而用于治疗糖尿病。具体地说,这些肽衍生物可以用于长期治疗糖尿病和其它与促胰岛素肽相关疾病,以及与胰高血糖素水平相关的胃肠道功能活动性疾病。The present invention relates to glucagon-like peptide analogs and compositions thereof, which are used to up-regulate insulin expression in mammals, thereby treating diabetes. In particular, these peptide derivatives can be used for the long-term treatment of diabetes and other diseases associated with insulinotropic peptides, as well as functionally active diseases of the gastrointestinal tract related to glucagon levels.

背景技术 Background technique

胰岛的内分泌被一套复杂的机制掌控着,这套机制不仅由葡萄糖、氨基酸和儿茶酚胺这样的代谢物影响着,但也受局部旁分泌的影响。主要的胰岛激素、胰高血糖素、胰岛素以及生长激素抑制素与特定的胰腺细胞相结合(分别为A细胞,B细胞和D细胞)来调节分泌反应。虽然胰岛素的分泌主要由血中胰岛素水平所决定,但是人生长激素会释放抑制素以抑制葡萄糖调节性胰岛素的分泌。除了胰岛素分泌的内岛旁分泌调节以外,有事实证明肠内促胰岛素因子的存在。Islet endocrine control is governed by a complex set of mechanisms not only influenced by metabolites such as glucose, amino acids and catecholamines, but also by local paracrine influences. The major islet hormones, glucagon, insulin, and somatostatin bind to specific pancreatic cells (A cells, B cells, and D cells, respectively) to regulate secretory responses. Although insulin secretion is primarily determined by blood insulin levels, human growth hormone releases inhibin to inhibit glucose-regulated insulin secretion. In addition to the insular paracrine regulation of insulin secretion, the existence of intestinal insulinotropic factors has been demonstrated.

内分泌的概念起源于对以下现象的观察:和同样数量的从静脉内注射的能量(葡萄糖)相比,由食物摄取或肠葡萄糖吸收所得的能量能激起更大的刺激来促进胰岛素的释放(Elrick,H.等人,J.Clin.Endocrinol.Metab.,24,1076-1082,1964;McIntyre,N.等人,J.Clin.Endocrinol.Metab.,25,1317-1324,1965)。因此,这假设当能量通过胃肠道摄取而非通过胃肠外途径摄取的时候,口头营养物质的摄取所激发的肠源性信号代表了促使胰岛素释放增加的有效的胰岛素促分泌素(Dupre,J.等人,Diabetes,15,555-559,1966)。The endocrine concept arose from the observation that energy derived from food intake or intestinal glucose absorption elicits a greater stimulus to insulin release than the same amount of energy (glucose) injected intravenously ( Elrick, H. et al., J. Clin. Endocrinol. Metab., 24 , 1076-1082, 1964; McIntyre, N. et al., J. Clin. Endocrinol. Metab., 25 , 1317-1324, 1965). Thus, it was hypothesized that gut-derived signals elicited by oral nutrient intake represent potent insulin secretagogues that drive increased insulin release when energy is taken up through the gastrointestinal tract rather than parenterally (Dupre, J. et al., Diabetes, 15 , 555-559, 1966).

虽然一些神经递质和肠激素也有类似内分泌的活性,但从免疫、拮抗剂以及剔除(knockout)研究中所得到的大量证据表明,葡萄糖依赖性促胰岛素多肽(GIP)和胰高血糖素样肽(GLP)-1才代表了对大多数营养物质刺激所引起的胰岛素分泌起主导作用的肽。2型糖尿病病人进餐所刺激的胰岛素分泌释放表现出明显的数量上的缩减这一观察结果,引起了人们对以下研究的兴趣:不完全的内分泌或者内分泌抗性是否与糖尿病患者β-细胞功能紊乱的病理生理学有关。Although some neurotransmitters and gut hormones also have endocrine-like activities, there is substantial evidence from immune, antagonist, and knockout studies that glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP)-1 represents the dominant peptide responsible for most nutrient-stimulated insulin secretion. The observation that meal-stimulated insulin secretion release in patients with type 2 diabetes exhibits a markedly reduced magnitude has aroused interest in investigating whether incomplete endocrine or endocrine resistance is associated with β-cell dysfunction in diabetics related to the pathophysiology of.

1987年,人类首次发现了胰高血糖素样肽-1(GLP-1),认为它是一种内分泌激素,是一种在食物摄取后由肠道分泌的肽。GLP-1是由160个氨基酸的前体蛋白(即前胰高血糖素原)经蛋白水解过程之后由肠L细胞分泌的。前胰高血糖素原(preproglucagon)经切割后首先生成一种由37个氨基酸组成的肽GLP-1,即GLP-1(1-37)OH,该肽的活性很弱。随后在7位上的切割生成有生物活性的GLP-1(7-37)OH。当在L-细胞中将在末端甘氨酸残基被去除后,大约80%合成的GLP-1(7-37)OH在末端C位上被酰胺化。游离酸GLP-1(7-37)OH和酰胺化合物GLP-1(7-37)NH2的生物学影响和代谢更新是无法区分的。In 1987, glucagon-like peptide-1 (GLP-1) was discovered for the first time in humans, and it was considered to be an endocrine hormone, a peptide secreted by the intestine after food intake. GLP-1 is secreted by intestinal L cells following a proteolytic process of a 160 amino acid precursor protein (ie, preproglucagon). After the preproglucagon (preproglucagon) is cleaved, a peptide GLP-1 composed of 37 amino acids is firstly generated, that is, GLP-1(1-37)OH, and the activity of this peptide is very weak. Subsequent cleavage at position 7 yields biologically active GLP-1(7-37)OH. Approximately 80% of the synthesized GLP-1(7-37)OH is amidated at the terminal C-position after removal of the terminal glycine residue in L-cells. The biological effects and metabolic turnover of the free acid GLP-1(7-37)OH and the amide compound GLP-1(7-37) NH2 were indistinguishable.

众所周知,GLP-1刺激胰岛素分泌引起细胞中葡萄糖浓度上升,从而降低血糖水平(Moisov,S.等人,J.Clin.Invest.,79,616-619,1987;Kreymann,B.等人,Lancet ii,1300-1304,1987;Orskov,C.等人,Endocrinology,123,2009-2013,1988)。急性脑室内注射GLP-1或GLP-1受体收缩会产生短暂的食物摄入减少(Turton M.D.等人,Nature,379,60-72,1996),然而一些研究表明,更多的长期脑室内注射或胃肠外GLP-1受体促效剂的给药和体重减轻有关(Meeran,K.等人,Endocrinology,140,244-250,1999;Davies,H.R.Jr.,Obes.Res.,6,147-156,1998;Szayna,M.等人,Endocrinology,141,1936-1941,2000;Larsen,P.J.等人,Diabetes,50,2530-2539,2001)。大量具有促胰岛素作用的GLP-1类似物在本领域中是已知的。例如,这些类似物包括GLP-1(7-36),Gln9-GLP-1(7-37),D-Gln9-GLP-1(7-37),乙酰基-Lys9-GLP-1(7-37),Thr16-Lys18-GLP-1(7-37)和Lys18-GLP-1(7-37);GLP-1的衍生物包括酸加成盐,羧酸盐,低级烷基酯以及酰胺化合物(WO91/11457;EP0733,644;US专利5,512,549)。It is well known that GLP-1 stimulates insulin secretion to cause an increase in glucose concentration in cells, thereby reducing blood sugar levels (Moisov, S. et al., J.Clin.Invest., 79 , 616-619, 1987; Kreymann, B. et al., Lancet ii, 1300-1304, 1987; Orskov, C. et al., Endocrinology, 123 , 2009-2013, 1988). Acute intraventricular injection of GLP-1 or GLP-1 receptor constriction produces a transient reduction in food intake (Turton MD et al., Nature, 379 , 60-72, 1996), however some studies have shown that more chronic intraventricular Administration of injectable or parenteral GLP-1 receptor agonists has been associated with weight loss (Meeran, K. et al., Endocrinology, 140 , 244-250, 1999; Davies, HRJr., Obes. Res., 6 , 147-156, 1998; Szayna, M. et al., Endocrinology, 141 , 1936-1941, 2000; Larsen, PJ et al., Diabetes, 50 , 2530-2539, 2001). A large number of GLP-1 analogs with insulinotropic effects are known in the art. For example, these analogs include GLP-1(7-36), Gln 9 -GLP-1(7-37), D-Gln9-GLP-1(7-37), Acetyl-Lys9-GLP-1(7 -37), Thr16-Lys18-GLP-1(7-37) and Lys18-GLP-1(7-37); derivatives of GLP-1 include acid addition salts, carboxylates, lower alkyl esters and amides compounds (WO91/11457; EP0733,644; US Patent 5,512,549).

在临床前的试验中所描绘的大多数GLP-1作用在人体研究中也被证实了。在快速的葡萄糖摄入及食物摄取状态下,在正常人体内注入GLP-1(7-36)NH2会刺激胰岛素分泌,明显降低血糖(Orskov,C.等人,Diabetes,42,658-661,1993;Qualmann,C.等人,Acta.Diabetol.,32,13-16,1995)。Most of the effects of GLP-1 delineated in preclinical experiments have also been confirmed in human studies. Under fast glucose intake and food intake state, inject GLP-1 (7-36) NH in normal human body Can stimulate insulin secretion, obviously reduce blood sugar (Orskov, people such as C., Diabetes, 42 , 658-661 , 1993; Qualmann, C. et al., Acta. Diabetol., 32 , 13-16, 1995).

对于用对磺脲类药物治疗失败的糖尿病患者而言,选用基于GLP-1的肽来治疗肯定会有良好的疗效(Nauck,M.A.等人,Diabetes Care,21,1925-1931,1998)。GLP-1只在高血糖症的情况下刺激胰岛素分泌。GLP-1的这个特性使之和胰岛素相比起来更具安全性,而且已观察到分泌的胰岛素的数量和高血糖症的程度是成正比的。另外,GLP-1的治疗将导致胰腺释放胰岛素及在肝脏中胰岛素首次通过时起作用。和皮下胰岛素注射相比,这可导致外周胰岛素的低循环水平。GLP-1使胃肠道的清空变慢,这更有利于让营养物质在较长的时期内被吸收,以此降低餐后的葡萄糖高峰。一些报道提示,GLP-1可以提高外周组织(比如肌肉、肝脏和脂肪)中胰岛素的敏感性。最后,GLP-1还表现出潜在的食欲调节的功能。For diabetic patients who fail to be treated with sulfonylureas, GLP-1-based peptides will definitely have a good therapeutic effect (Nauck, MA et al., Diabetes Care, 21 , 1925-1931, 1998). GLP-1 stimulates insulin secretion only in the context of hyperglycemia. This property of GLP-1 makes it safer than insulin, and it has been observed that the amount of insulin secreted is directly proportional to the degree of hyperglycemia. In addition, GLP-1 treatment will cause insulin to be released from the pancreas and act on the first pass of insulin in the liver. This results in lower circulating levels of peripheral insulin compared with subcutaneous insulin injections. GLP-1 slows the emptying of the gastrointestinal tract, which allows nutrients to be absorbed over a longer period of time, thereby reducing the postprandial glucose peak. Some reports suggest that GLP-1 can increase insulin sensitivity in peripheral tissues such as muscle, liver and fat. Finally, GLP-1 also exhibits a potential appetite-regulating function.

如果应用于1型糖尿病患者身上,GLP-1及其类似物在治疗方面的潜能会更加突出。大量研究证明了天然GLP-1在治疗胰岛素依赖性糖尿病(IDDM)中的有效性。与非胰岛素依赖性糖尿病(NIDDM)患者类似,GLP-1通过它的稳定胰高血糖素的(glucagonostatic)特性,能有效的缓解饥饿性高血糖症。另外的研究表明,很可能通过延长胃的清空,GLP-1还减少了IDDM患者的餐后血糖偏移。这些观察暗示,GLP-1可用于治疗IDDM和NIDDM。The therapeutic potential of GLP-1 and its analogs will be even more prominent if applied to patients with type 1 diabetes. Numerous studies have demonstrated the effectiveness of natural GLP-1 in the treatment of insulin-dependent diabetes mellitus (IDDM). Similar to patients with non-insulin-dependent diabetes mellitus (NIDDM), GLP-1 can effectively alleviate starvation hyperglycemia through its glucagonostatic properties. Additional studies suggest that GLP-1 also reduces postprandial glycemic excursions in IDDM patients, likely by prolonging gastric emptying. These observations suggest that GLP-1 may be useful in the treatment of IDDM and NIDDM.

然而,天然GLP-1分子的生物半衰期受二肽酶IV(DPP IV)活性的影响,是相当短暂的。例如,GLP-1(7-37)OH的生物学半衰期仅仅3-5分钟(美国专利5118666)。只有通过持续的灌输才能持续降低血中葡萄糖浓度,就像研究中所证明的那样,24小时的静脉内输注才能控制GLP-1的浓度(Larsen,J.等人,DiabetesCare,24,1416-1421,2001)。酶DPP IV是一种在倒数第二个NH2-末端的脯氨酸(Xaa-Pro-)或丙胺酸(Xaa-Ala-)之后的位置优先水解肽的丝氨酸蛋白酶(Mentlein,R.,Regul.Pept.,85,9-25,1999),这种酶已经表现出能够在体外迅速使GLP-1产生代谢变化。因此,对DPP IV有抗性的长效的基于GLP-1的肽在治疗糖尿病患者方面具有巨大的治疗潜能。However, the biological half-life of the native GLP-1 molecule is rather short, influenced by the activity of dipeptidase IV (DPP IV). For example, the biological half-life of GLP-1(7-37)OH is only 3-5 minutes (US Patent 5118666). Sustained lowering of blood glucose concentrations can only be achieved by continuous infusion, as demonstrated in studies where 24-hour intravenous infusions can control GLP-1 concentrations (Larsen, J. et al., DiabetesCare, 24 , 1416- 1421, 2001). The enzyme DPP IV is a serine protease that preferentially hydrolyzes peptides at the position after the penultimate NH2-terminal proline (Xaa-Pro-) or alanine (Xaa-Ala-) (Mentlein, R., Regul. Pept., 85 , 9-25, 1999), this enzyme has been shown to rapidly metabolize GLP-1 in vitro. Therefore, long-acting GLP-1-based peptides resistant to DPP IV have great therapeutic potential in treating diabetic patients.

发明内容 Contents of the invention

本发明提供了GLP-1类似物,与天然GLP-1相比,它能发挥更持久的作用,并且对酶DPP IV的水解作用具有完全的抗性。The present invention provides analogues of GLP-1 which are more persistent than native GLP-1 and are completely resistant to hydrolysis by the enzyme DPP IV.

该发明包括具有以下通式I的化合物或其药学上可接受的盐:The invention includes a compound of the following general formula I or a pharmaceutically acceptable salt thereof:

R1-X-R2 R 1 -XR 2

式IFormula I

式中,In the formula,

R1选自:L-组氨酸、D-组氨酸、脱氨基-组氨酸、2-氨基-组氨酸、β-羟基-组氨酸、高组氨酸、α-氟甲基-组氨酸、α-甲基组氨酸; R1 is selected from: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β-hydroxy-histidine, homohistidine, α-fluoromethyl - histidine, alpha-methylhistidine;

X是选自下组连接单元:X is a linker unit selected from the following group:

Figure C200410017667D00061
Figure C200410017667D00061

R2是选自下组的肽部分或片段:R 2 is a peptide moiety or fragment selected from the group consisting of:

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-R4 -Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val -Lys-Gly-Arg-R 4

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-Gly-R4 -Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val -Lys-Gly-Arg-Gly-R 4

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-Lys-R4 -Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val -Lys-Gly-Arg-Lys-R 4

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-

Figure C200410017667D00062
-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-
Figure C200410017667D00062

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-

Figure C200410017667D00063
-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-
Figure C200410017667D00063

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Y-Gly-Gln-Ala-Ala-Lys-Z-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-R4 -Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Y-Gly-Gln-Ala-Ala-Lys-Z-Phe-Ile-Ala-Trp-Leu-Val -Lys-Gly-Arg-R 4

-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Y-Gly-Gln-Ala-Ala-Lys-Z-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-Gly-R4-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Y-Gly-Gln-Ala-Ala-Lys-Z-Phe-Ile-Ala-Trp-Leu-Val -Lys-Gly-Arg-Gly- R4 ;

Y和Z独立地选自:Glu、Gln、Ala、Thr、Ser、和Gly;Y and Z are independently selected from: Glu, Gln, Ala, Thr, Ser, and Gly;

R3选自C1-6烷基;R 3 is selected from C 1-6 alkyl;

R4选自NH2和OH,它们表示末端氨基酸的游离酸或酰胺化合物形式;R 4 is selected from NH 2 and OH, which represent the free acid or amide compound form of the terminal amino acid;

R5选自C6-10无支链的酰基。R 5 is selected from C 6-10 unbranched acyl groups.

本发明还提供了一种下式化合物或其药学上可接受的盐:The present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof:

R1-X-R6 R 1 -XR 6

其中:in:

R1选自:L-组氨酸、D-组氨酸、脱氨基组氨酸、2-氨基组氨酸、β-羟基组氨酸、同型组氨酸、α-氟甲基组氨酸和α-甲基组氨酸; R1 is selected from: L-histidine, D-histidine, deaminohistidine, 2-aminohistidine, β-hydroxyhistidine, homohistidine, α-fluoromethylhistidine and α-methylhistidine;

X如上所定义;X is as defined above;

R6为肽片段,这些片段除了含有与天然存在的GLP-1肽基本同源的片段外,在其羧基末端还含有一个或多个额外的氨基酸。 R6 are peptide fragments which contain one or more additional amino acids at their carboxyl terminus in addition to the fragments substantially homologous to naturally occurring GLP-1 peptides.

本发明还提供了一种下式化合物或其药学上可接受的盐:The present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof:

R1-X-R7 R 1 -XR 7

其中:in:

R1为酪氨酸;R 1 is tyrosine;

X如上所定义;X is as defined above;

R7为肽片段,这些片段含有与天然存在的GIP(3-42)肽:R 7 is a peptide fragment, these fragments contain the same peptide as the naturally occurring GIP(3-42):

-EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ42基本同源的序列。- EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 42 substantially homologous sequences.

本发明还提供了上述化合物的化学反应性衍生化合物,所述的衍生化合物可与细胞载体上的可利用的官能团反应,形成共价键,其中所述的细胞载体包括可移动的血液蛋白。The present invention also provides chemically reactive derivatives of the above compounds, said derivatives can react with available functional groups on cell carriers to form covalent bonds, wherein said cell carriers include mobile blood proteins.

本发明还提供了一种治疗糖尿病、胰岛素耐受性和神经系统紊乱的方法,其特征在于,它包括给需要治疗的患者服用无毒的、治疗有效量的本发明所述的化合物。较佳地,一天一次、一天两次或一天三次,以口服、静脉注射、皮下注射或气雾剂的形式服用所述化合物。The present invention also provides a method of treating diabetes, insulin resistance and nervous system disorders, characterized in that it comprises administering a non-toxic, therapeutically effective amount of the compound of the present invention to a patient in need of treatment. Preferably, the compound is administered orally, intravenously, subcutaneously or by aerosol once a day, twice a day or three times a day.

本发明还提供了一种药物组合物,它含有本发明所述的化合物和药学上可接受的载体。The present invention also provides a pharmaceutical composition, which contains the compound described in the present invention and a pharmaceutically acceptable carrier.

本发明还提供了所述化合物的用途,它被用于制备治疗糖尿病、胰岛素耐受性和神经系统紊乱的药物。The present invention also provides the use of the compound, which is used to prepare medicines for treating diabetes, insulin resistance and nervous system disorders.

具体实施方式 Detailed ways

本发明的关键在于,用含CF3的连接单元取代GLP-1的氨基末端的Ala8中的酰胺键,该位置是DPP-IV的识别位点。最近有报道称,在一类金属蛋白酶抑制剂的主肽骨架中,新型连接单元[-CH(CF3)NH-]可能可作为常规连接单元(NHCO)的模拟物(OrganicLetters,2,1827-1830,2000;Tetrahedron Letters,42,3143-3144,2001)。基于同样的原理,经过[-CH(CF3)NH-]修饰的GLP-1类似物保留与促胰岛素物质相同的生物学活性并且是长效作用的。The key of the present invention is to replace the amide bond in the Ala 8 of the amino terminal of GLP-1 with a linking unit containing CF 3 , which is the recognition site of DPP-IV. Recently, it has been reported that in the main peptide backbone of a class of metalloprotease inhibitors, the new linker [-CH(CF 3 )NH-] may be used as a mimic of the conventional linker (NHCO) (Organic Letters, 2, 1827- 1830, 2000; Tetrahedron Letters, 42 , 3143-3144, 2001). Based on the same principle, [-CH(CF 3 )NH-]-modified GLP-1 analogues retain the same biological activity as insulinotropic substances and are long-acting.

从以确定的人GLP-1氨基酸序列中选出的肽部分(肽片段)构成了开发本发明的起点。可互换的术语“肽片段”和“肽部分”意味着包括衍生自天然存在的氨基酸序列的,合成的和天然的氨基酸序列。一些研究人员已经报道了GLP的氨基酸序列(Lopez,L.C.等人,Acad.Sci.,USA 80,5485-5489,1983;Bell,G.I.等人,Nature 302:716-718(1983);Heinrich,G.等人,Endocrinol,115:2176-2181(1984))。前高血糖素原(preproglucagon)的mRNA及其相应的氨基酸序列的结构是众所周知的。前体基因产物(即高血糖素原)转变成胰高血糖素以及两个促胰岛素肽的蛋白质水解过程也已经被确定了。正如本文所用,GLP-1(1-37)的符号代表了具有从第1位(N端)到第37位(C端)所有氨基酸的GLP-1多肽。类似地,GLP-1(7-37)代表了具有从第7位(N端)到第37位(C端)所有氨基酸的GLP-1多肽。同样,GLP-1(7-36)代表的多肽是具有从第7位(N端)到第36位(C端)所有氨基酸的GLP-1多肽。Peptide parts (peptide fragments) selected from the determined amino acid sequence of human GLP-1 constitute the starting point for the development of the present invention. The interchangeable terms "peptide fragment" and "peptide portion" are meant to include both synthetic and natural amino acid sequences derived from naturally occurring amino acid sequences. Some researchers have reported the amino acid sequence of GLP (Lopez, people such as LC, Acad.Sci., USA 80,5485-5489,1983 ; Bell, people such as GI, Nature 302 :716-718 (1983); Heinrich, G. et al., Endocrinol, 115 :2176-2181 (1984)). The structure of preproglucagon mRNA and its corresponding amino acid sequence is well known. The conversion of the precursor gene product (ie, proglucagon) to glucagon and the proteolysis of the two insulinotropic peptides have also been identified. As used herein, the notation GLP-1(1-37) represents a GLP-1 polypeptide having all amino acids from position 1 (N-terminus) to position 37 (C-terminus). Similarly, GLP-1(7-37) represents a GLP-1 polypeptide having all amino acids from position 7 (N-terminus) to position 37 (C-terminus). Likewise, a polypeptide represented by GLP-1(7-36) is a GLP-1 polypeptide having all amino acids from position 7 (N-terminal) to position 36 (C-terminal).

同样的实践可以应用于葡萄糖依赖性促胰岛素多肽(GIP),GIP是来自更大的有153个氨基酸的前体中的一个42个氨基酸的多肽(Takeda,J.等人,Proc.Natl.Acad.Sci.,USA 84,7005-7008,1987)。和GLP-1一样,GIP在2位的丙氨酸处被广泛表达的氨基肽酶DPP IV切割,由此生成了截断的无活性的肽GIP(3-42)。一种具有下式的GIP类似物(4非对映异构体)对DPP IV有抗性并且可发挥长效的GIP作用。The same practice can be applied to the glucose-dependent insulinotropic polypeptide (GIP), a 42 amino acid polypeptide derived from a larger 153 amino acid precursor (Takeda, J. et al., Proc. Natl. Acad. .Sci., USA 84 , 7005-7008, 1987). Like GLP-1, GIP is cleaved at the alanine at position 2 by the ubiquitously expressed aminopeptidase DPP IV, thereby generating the truncated inactive peptide GIP(3-42). A GIP analog (4 diastereomers) of the formula is resistant to DPP IV and exerts long-acting GIP effects.

Figure C200410017667D00081
Figure C200410017667D00081

本发明还提供药物组合物,它包括本发明的化合物和一种或多种药学上可接受的载体、稀释剂或赋形剂。The present invention also provides pharmaceutical compositions comprising a compound of the present invention and one or more pharmaceutically acceptable carriers, diluents or excipients.

多肽的固相合成原理在技术上是众所周知的,也可能在这一领域的通用著作中被找到,例如:Dugas,H.and Penney,C.,Bioorganic Chemistry(1981)Springer-Verlag,New York,page 54-92;Merrifield,J.M.,Chem.Soc.,85,2149,1962,and Stewart and Young,Solid Phase Peptide Synthesis,page 24-66,Freeman(San Francisco,1969)。The principles of solid phase synthesis of polypeptides are well known in the art and may also be found in general works in this field, for example: Dugas, H. and Penney, C., Bioorganic Chemistry (1981) Springer-Verlag, New York, pages 54-92; Merrifield, JM, Chem. Soc., 85 , 2149, 1962, and Stewart and Young, Solid Phase Peptide Synthesis, pages 24-66, Freeman (San Francisco, 1969).

例如,此发明的多肽片段可通过固相方法,用Applied Biosystems 430肽合成仪(Applied Biosystems,Inc.,850 Lincoln Centre Drive,Foster City,CA94404)和Applied Biosystems公司提供的合成循环装置来合成。受Boc保护的氨基酸和其它试剂可购自在Applied Biosystems公司和其他化学产品供应商。用双偶联方案的连续BOC化学法可应用对-甲基二苯甲胺树脂,从而产生C末端的羧酰胺(carboxamide)。为了制造C末端的酸,可以使用相应的PAM树脂。可使用预制的羟基苯并三唑酯使天冬氨酸、谷胺酰氨和精氨酸偶联。For example, the polypeptide fragments of the present invention can be synthesized by a solid-phase method using an Applied Biosystems 430 peptide synthesizer (Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, CA94404) and a synthetic cycle device provided by Applied Biosystems. Boc-protected amino acids and other reagents are commercially available from Applied Biosystems and other chemical suppliers. Sequential BOC chemistry using a double coupling protocol can be applied to p-methylbenzhydrylamine resins to generate C-terminal carboxamides. For the production of C-terminal acids, the corresponding PAM resins can be used. Aspartic acid, glutamine, and arginine can be coupled using preformed hydroxybenzotriazole esters.

所需的含有CF3的片段可以按以下的反应程序合成。受保护的谷氨酸1可以与CF3CHO中的甲基半缩醛反应生成2。2和乙酸盐阴离子反应生成3,3被去保护从而生成羧酸4。在Et3N存在下(在含叔丁醇的四氢呋喃中),用(PhO)2PON3处理4,生成5。用钯炭Pd/C催化剂催化加氢,使5生成6的非对映异构体混合物。6经HPLC分离,可获得所有的纯净非对映异构体A,B,C,D。The desired fragment containing CF 3 can be synthesized according to the following reaction procedure. Protected glutamic acid 1 can react with methyl hemiacetal in CF 3 CHO to generate 2. 2 reacts with acetate anion to generate 3, which is deprotected to generate carboxylic acid 4. Treatment of 4 with (PhO) 2 PON 3 in the presence of Et 3 N in THF with tert-butanol gave 5. Catalytic hydrogenation over palladium-on-carbon Pd/C catalyst led to the formation of 5 as a diastereomeric mixture of 6. 6 was separated by HPLC to obtain all pure diastereoisomers A, B, C, D.

Figure C200410017667D00101
Figure C200410017667D00101

用Applied Biosystems 430肽合成仪通过固相合成法将A,B,C,D连于结合在聚合体上的肽片段,然后去保护并添加R1,R1选自:L-组氨酸、D-组氨酸、脱氨基-组氨酸、2-氨基-组氨酸、β-羟基-组氨酸、高组氨酸、α-氟甲基-组氨酸和α-甲基组氨酸。去保护和从聚合物固相载体上切下,就获得了一类新的GLP类似物,这一类物质能抵抗DPP IV的水解作用,并有长期的促胰岛素作用。Use Applied Biosystems 430 peptide synthesizer to link A, B, C, and D to the peptide fragments bound to the polymer by solid-phase synthesis, then deprotect and add R 1 , R 1 is selected from: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β-hydroxy-histidine, homohistidine, α-fluoromethyl-histidine and α-methylhistidine acid. Deprotection and cleavage from the polymeric solid support yielded a new class of GLP analogs that are resistant to DPP IV hydrolysis and have long-lasting insulinotropic effects.

本发明还包括GLP-1(胰高糖素样肽-1)类似物的盐形式。GLP-1类似物可以呈强酸性或强碱性,能和许多无机碱和无机酸发生反应生成盐。用来合成酸加成盐的无机酸通常是盐酸、氢溴酸、氢碘酸、硫磺酸、磷酸等等,有机酸是对甲苯磺酸、甲基磺酸、草酸、对溴苯磺酸、碳酸、丁二酸、柠檬酸、安息香酸、乙酸等等。盐的例子包括:硫酸盐、硫酸化物、硫酸氢盐、亚硫酸盐、亚硫酸氢盐、磷酸盐、磷酸氢盐、磷酸二氢盐、偏磷酸盐、焦磷酸盐、氯化物、溴化物、碘化物、丙酸盐、癸酸盐、辛酸盐、丙烯酸盐、甲酸盐、异丁酸盐、庚酸盐、丙炔酸盐、草酸盐、丙二酸盐、丁二酸盐、辛二酸盐、癸二酸盐、延胡索酸盐、马来酸盐、丁炔-1,4-二酸盐、己炔-1,6-二甲基、苯甲酸盐、氯苯甲酸盐、苯甲酸盐、二硝基苯甲酸盐、羟基苯甲酸盐、羟基苯甲酸盐、邻苯二甲酸盐、磺酸盐、二甲苯磺酸盐、苯乙酸盐、苯丙酸盐、苯丁酸盐、柠檬酸盐、乳酸盐、3-羟基苯丁酸盐、羟乙酸盐、酒石酸盐、甲基磺酸盐、丙磺酸盐、1-磺酸萘盐、2-磺酸萘盐、扁桃酸盐等等。首选的酸加成盐是与无机酸形成的盐,例如盐酸、氢溴酸,尤其是盐酸。The present invention also includes salt forms of GLP-1 (glucagon-like peptide-1) analogs. GLP-1 analogs can be strongly acidic or basic, and can react with many inorganic bases and inorganic acids to form salts. The inorganic acids used to synthesize acid addition salts are usually hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc., and the organic acids are p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, Carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, etc. Examples of salts include: sulfates, sulfates, bisulfates, sulfites, bisulfites, phosphates, hydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, Iodide, propionate, caprate, caprylate, acrylate, formate, isobutyrate, heptanoate, propiolate, oxalate, malonate, succinate, Suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dimethyl, benzoate, chlorobenzoate , benzoate, dinitrobenzoate, hydroxybenzoate, hydroxybenzoate, phthalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropanoid salt, phenylbutyrate, citrate, lactate, 3-hydroxyphenylbutyrate, glycolate, tartrate, methanesulfonate, propanesulfonate, 1-sulfonic acid naphthalene salt, 2-Naphthalene sulfonate, mandelate, etc. Preferred acid addition salts are those formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, especially hydrochloric acid.

碱加成盐可由无机碱生成,例如铵,碱金属或碱土金属的氢氧化物,碳酸盐,重碳酸盐等等。下述碱性物质常用来生成该产物的盐类形式,如氢氧化钠,氢氧化钾,氢氧化铵,碳酸钾等等。GLP-1类似物的盐形式是特别优选的。当然,如果要将本发明化合物用于治疗,这些化合物也可以是盐类,但必须是药学上可接受的盐。Base addition salts can be formed from inorganic bases, such as ammonium, alkali or alkaline earth metal hydroxides, carbonates, bicarbonates and the like. The following basic substances are commonly used to form the salt forms of this product, such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate and the like. Salt forms of the GLP-1 analogs are particularly preferred. Of course, if the compounds of the present invention are to be used in therapy, these compounds may also be salts, but they must be pharmaceutically acceptable salts.

经过改良的本发明GLP-1类似物可有多种用途,它们可以用来治疗糖尿病,可以用作镇静剂,可以治疗神经系统功能紊乱,可以作用于中枢神经系统产生抗焦虑作用,可以刺激中枢神经系统,可以用作术后治疗并且用来治疗胰岛素耐受性。The improved GLP-1 analogs of the present invention can have multiple uses, they can be used to treat diabetes, can be used as a sedative, can treat nervous system dysfunction, can act on the central nervous system to produce anxiolytic effect, and can stimulate the central nervous system system, which can be used as postoperative therapy and to treat insulin resistance.

A.糖尿病治疗A. Diabetes treatment

经过修饰的本发明GLP-1类似物通常能通过葡萄糖依赖性机制使高血糖症恢复正常。因此,修饰的GLP-1类似物就可以用作治疗II型糖尿病的主导药物,也可以用作治疗I型糖尿病的辅佐药物。Modified GLP-1 analogs of the invention generally normalize hyperglycemia through a glucose-dependent mechanism. Therefore, the modified GLP-1 analog can be used as a leading drug for treating type II diabetes, and can also be used as an adjuvant drug for treating type I diabetes.

使用有效剂量的修饰的GLP-1类似物来治疗糖尿病比未经修饰的GLP-1更有效。因为修饰的GLP-1类似物在体内更稳定,给予较小的剂量就可以达到有效的治疗效果。本发明尤其适合糖尿病患者的治疗,不管是I型还是II型,因为多肽的活动依赖于血中葡萄糖的浓度,因此相对当前使用的治疗方法,新法中低血糖症副作用的危险性大大降低了。Treatment of diabetes with effective doses of modified GLP-1 analogs is more effective than unmodified GLP-1. Because the modified GLP-1 analogs are more stable in vivo, effective therapeutic effects can be achieved with a smaller dosage. The present invention is especially suitable for the treatment of diabetic patients, regardless of type I or type II, because the activity of the polypeptide depends on the concentration of glucose in the blood, so compared with the currently used treatment method, the risk of hypoglycemia side effect is greatly reduced in the new method.

本发明也提供了在人体内治疗糖尿病的方法,其中该方法包括步骤:提供数量足以治疗糖尿病的经修饰的GLP-1类似物;其中组合物含有修饰的GLP-1类似物。The present invention also provides a method for treating diabetes in humans, wherein the method comprises the steps of: providing a modified GLP-1 analogue in an amount sufficient to treat diabetes; wherein the composition comprises the modified GLP-1 analogue.

B.神经系统紊乱的治疗B. Treatment of nervous system disorders

本发明经修饰的GLP-1类似物也可以作为镇静剂来使用。一方面,对于一些因某种异常而导致中枢或外周神经系统的活性被增强的哺乳动物,使用足量的经修饰的GLP-1类似物,可以在这些哺乳动物身上产生一种诱人的或抗焦虑的影响,从而使其镇静。这种经修饰的GLP-1类似物可以经脑室内注射、口服、皮下注射、肌肉内注射或者静脉内注射。这种方法对于治疗或者改善焦虑、运动错乱、侵略性行为、精神错乱、抓狂、恐慌性袭击、歇斯底里以及失眠等神经系统症状是有效的。The modified GLP-1 analogs of the invention may also be used as sedatives. On the one hand, for some mammals whose activity of the central or peripheral nervous system is enhanced due to some abnormality, an attractive or Anxiolytic effect, thereby calming it. Such modified GLP-1 analogs can be injected intracerebroventricularly, orally, subcutaneously, intramuscularly or intravenously. This approach is effective in treating or improving neurological symptoms such as anxiety, movement disturbances, aggressive behavior, confusion, madness, panic attacks, hysteria, and insomnia.

在另一相关方面,此发明还包括一种提高哺乳动物的活动性的方法:给予对象足量经修饰的GLP-1类似物,使之在哺乳动物身上产生作用并激活对象的功效。此法更适用于中枢或周围神经系统活性降低的哺乳动物。对于治疗或改善抑郁症、情感性切割症、睡眠性呼吸暂停综合症、注意力分散症、失忆症、健忘症、嗜睡症等一系列症状尤其适用。在这些病症中,唤醒中枢神经系统可能是有利的。In another related aspect, the invention also includes a method of increasing the mobility of a mammal by administering to a subject a modified GLP-1 analog in an amount sufficient to cause it to act in the mammal and to activate efficacy in the subject. This method is more suitable for mammals with reduced central or peripheral nervous system activity. It is especially suitable for treating or improving a series of symptoms such as depression, affective cutting disorder, sleep apnea syndrome, attention-distraction disorder, amnesia, amnesia, and narcolepsy. In these conditions, it may be beneficial to awaken the central nervous system.

在治疗或改善抑郁症、情感性切割症、睡眠性呼吸暂停综合症、注意力分散症、失忆症、健忘症、嗜睡症等病症中,本发明的经修饰的GLP-1类似物可以用来唤醒患者。GLP-1类似物的疗效可以通过会诊患者以评估他们的病症,通过心理上或神经学上的试验,或者通过与这些病症相关症状的改善来评定。举例来说,从对嗜睡症发作的掌控程度可以来评价对于嗜睡症的疗效。再举个例子,可用本领域技术人员熟知的各种不同诊断测试中的任一种,来评估经修饰的GLP-1类似物作用于患者后使之集中注意力,或者提高记忆力的效果。In the treatment or improvement of depression, affective cutting disorder, sleep apnea syndrome, distraction disorder, amnesia, amnesia, narcolepsy and other diseases, the modified GLP-1 analog of the present invention can be used Wake up the patient. The efficacy of GLP-1 analogs can be assessed by counseling patients to assess their disorders, by psychological or neurological testing, or by improvement in symptoms associated with these disorders. For example, the curative effect on narcolepsy can be evaluated from the degree of control over the onset of narcolepsy. As another example, any of a variety of different diagnostic tests known to those skilled in the art can be used to assess the effect of a modified GLP-1 analog on concentration or memory in a patient.

C.术后治疗C. Postoperative treatment

本发明的经修饰的GLP-1类似物可以被用作术后治疗。无论是在术前1-16小时,或者手术过程中,或者术后5天以内,患者都可需要这种经修饰的GLP-1类似物。The modified GLP-1 analogs of the invention can be used as post-operative therapy. Patients may require such modified GLP-1 analogues either 1-16 hours before surgery, during surgery, or up to 5 days after surgery.

从在手术开始之前的16小时至前1小时,给予患者经修饰的GLP-1类似物。给予患者本发明的化合物是为了减少分解代谢作用和胰岛素耐受性,而给药的时间长短取决于许多因素。这些因素是普通技能的医生所熟知的,包括包括:最重要的是手术准备阶段患者是否禁食或进行了葡萄糖输注或饮用了饮料或者其他形式的食物。其他重要因素包括患者的性别、体重、年龄、血糖失调的严重性,任何调节血糖无能的潜在诱因,手术预期创伤的严重性、给药途径以及生物药效率、个体的耐力、配方以及药效。给予本发明修饰的GLP-1类似物的首选的时间段从术前一小时到十小时不等。开始给药的最佳时间段是术前两小时至术前八小时。Patients are administered the modified GLP-1 analogue from 16 hours to 1 hour before the start of surgery. The duration of administration of the compounds of the invention to patients to reduce catabolic effects and insulin resistance depends on many factors. These factors are well known to physicians of ordinary skill and include: Most importantly, whether the patient is fasting or receiving glucose infusions or drinking beverages or other forms of food in preparation for surgery. Other important factors include the patient's sex, weight, age, severity of glycemic dysregulation, potential triggers of any inability to regulate blood glucose, severity of anticipated trauma from surgery, route of administration and bioavailability, individual tolerance, formulation, and efficacy of the drug. The preferred time period for administering the modified GLP-1 analogs of the invention varies from one hour to ten hours before surgery. The optimal time period to start dosing is two hours to eight hours before surgery.

特殊类型的手术后,例如选择性腹部手术后的胰岛素耐受性在术后第一天最为严重,至少持续五天,并且可能持续三周才恢复正常。因此,经历了手术创伤,术后一段时间患者需要给予本发明的经修饰的GLP-1类似物,药物给予时间的长短取决于患者术后是否禁食或进行了葡萄糖输注或饮用了饮料或者其他形式的食物。同时,患者的性别、体重、年龄、血糖失调的严重性,能引起血糖调节功能丧失的潜在诱因,手术创伤的实际严重性、给药途径以及生物药效率、个体的耐力、配方以及药效也都是影响因素。本发明中给予的药物的首选使用时间为不多于术后五天。Insulin resistance after a particular type of surgery, such as elective abdominal surgery, is worst on the first postoperative day, lasts at least five days, and may take up to three weeks to return to normal. Therefore, after undergoing surgical trauma, the patient needs to administer the modified GLP-1 analogue of the present invention for a period of time after the operation, and the length of time for drug administration depends on whether the patient fasted after the operation or performed glucose infusion or drank beverages or other forms of food. At the same time, the patient's gender, weight, age, severity of blood sugar imbalance, potential cause of loss of blood sugar regulation function, actual severity of surgical trauma, route of administration, bioavailability, individual endurance, formulation, and drug efficacy are also factors. are all influencing factors. The preferred time of administration of the drugs administered in the present invention is no more than five days post-surgery.

D.胰岛素耐受性的治疗D. Treatment of insulin resistance

胰岛素耐受性的治疗,不同于其在术后治疗中的用法,修饰后的GLP-1类似物可用于治疗胰岛素耐受性。产生胰岛素耐受性的原因可能是细胞表面受体结合的胰岛素数量减少,或是细胞内代谢发生改变。第一种胰岛素耐受性的特点是胰岛素敏感性降低,典型治疗方法是增加胰岛素用量。第二种的特点是胰岛素反应性降低,大剂量胰岛素治疗无效。胰岛素耐受性引起的损伤可用与胰岛素耐受性程度成比例剂量的胰岛素治疗,因此很明显这种损伤是由胰岛素敏感性降低引起的。Treatment of Insulin Resistance Unlike its use in postoperative therapy, modified GLP-1 analogs can be used to treat insulin resistance. Insulin resistance may be caused by a decrease in the amount of insulin bound to receptors on the cell surface or by changes in intracellular metabolism. The first type of insulin resistance is characterized by decreased insulin sensitivity and is typically treated by increasing insulin doses. The second is characterized by reduced insulin responsiveness, which is ineffective for high-dose insulin therapy. The damage caused by insulin resistance can be treated with insulin doses proportional to the degree of insulin resistance, so it is clear that this damage is caused by reduced insulin sensitivity.

使患者血糖水平正常的修饰GLP-1类似物的有效剂量受到以下因素的影响:GLP-1类似物的剂量、有无禁忌症、患者的性别、体重和年龄、血糖调节功能丧失的严重程度、能引起血糖调节功能丧失的潜在病因、是否同时给予葡萄糖或其他糖类、给药途径及生物利用度、患者耐受程度、配方和药效。The effective dose of the modified GLP-1 analog to normalize the patient's blood sugar level is affected by the following factors: the dose of the GLP-1 analog, the presence or absence of contraindications, the sex, weight and age of the patient, the severity of the loss of blood glucose regulation, Potential etiology that can cause loss of blood sugar regulation function, whether to give glucose or other sugars at the same time, route of administration and bioavailability, patient tolerance, formulation and drug efficacy.

要检测GLP-1类似物刺激胰岛素分泌的能力,可以将GLP-1类似物注入人工培育的动物细胞中,如RIN-38型小鼠胰岛β细胞瘤细胞,然后监测释放入培养基中的免疫反应性胰岛素(IRI)的数量。另一种方法是将GLP-1类似物注入动物体内然后监测免疫反应性胰岛素(IRI)在血浆中的浓度。To test the ability of GLP-1 analogs to stimulate insulin secretion, GLP-1 analogs can be injected into artificially cultivated animal cells, such as RIN-38 mouse islet β-cell tumor cells, and then the immune cells released into the culture medium can be monitored. Amount of responsive insulin (IRI). Another approach is to inject GLP-1 analogs into animals and then monitor the plasma concentration of immunoreactive insulin (IRI).

免疫反应性胰岛素(IRI)是用针对胰岛素放射性免疫测定法检测的。任何能检测到IRI的放射性免疫化验方法都可使用;其中一种是由Albano,J.D.M.等人发明的方法的改良法,Acta Endocrinol.70:487-509(1972)。在这种改良法中用pH为7.4的磷酸盐/清蛋白缓冲液。向培养器中依次注入500μl磷酸盐缓冲液,50μl灌注液样本或含标准量小鼠胰岛素的灌注液,100μl抗胰岛素抗血清(Wellcome Laboratories:按1:40,000稀释),以及100μl[125I]胰岛素,总容量750μl,置于10×75mm的一次性玻璃试管中。在4℃下培育2-3天,利用活性炭将游离的胰岛素与抗体结合的胰岛素分开。该化验灵敏度为1-2uU/ml。为了测定释放到组织培养物中细胞生长培养基里的IRI数量,可以给胰岛素原加上放射性标记。尽管任何能标记多肽的放射性标记都可使用,但优选所用3H亮氨酸来获得标记的胰岛素原。Immunoreactive insulin (IRI) was detected by radioimmunoassay against insulin. Any radioimmunoassay capable of detecting IRI can be used; one such method is a modification of the method developed by Albano, JDM, et al., Acta Endocrinol. 70:487-509 (1972). Phosphate/albumin buffer at pH 7.4 was used in this modification. Inject 500 μl of phosphate buffered saline, 50 μl of perfusate sample or perfusate containing standard mouse insulin, 100 μl of anti-insulin antiserum (Wellcome Laboratories: diluted 1:40,000), and 100 μl of [ 125 I] insulin into the culture vessel , with a total capacity of 750 μl, placed in a 10×75mm disposable glass test tube. Incubate at 4°C for 2-3 days, and use charcoal to separate free insulin from antibody-bound insulin. The assay sensitivity is 1-2 uU/ml. Proinsulin can be radiolabeled in order to measure the amount of IRI released into the growth medium of cells in tissue culture. Although any radioactive label capable of labeling a polypeptide can be used, preferably 3 H leucine is used to obtain labeled proinsulin.

要测定GLP-1类似物是否有促胰岛功能也可通过胰腺灌注实验。小鼠胰腺原位灌注化验法是在Penhos,J,C.等人的方法基础上的改良方法(Diabetes,18:733-738(1969))。在体重350-600g不等的、禁食的雄性Charles River种大鼠腹膜内注射异戊巴比妥(Eli Lilly and Co公司,160ng/kg),将它们麻醉。结扎肾脏,肾上腺,胃及低位结肠的血管。除了大约4厘米的十二指肠和降结肠以及直肠,整段肠都失去功能。因此只有一小段肠受到灌注,从而最大程度地减少了胰高血糖素样肽与肠物质之间免疫反应所造成的影响。灌注液是改良后的Kreba-Ringer碳酸氢盐缓冲液,含有4%的T70右旋糖苷和0.2%的牛血清白蛋白(片段V),还用95%O2和5%CO2吹泡。使用了一台带4通道滚柱轴承泵的体外循环机(Buchler polystatic,Buchler Instruments Division,Nuclear-ChicagoCorp),还有一个控制灌注液流向的三通阀。该灌注法按照Weir,G.C.等人的方法进行操作,监测及分析(J.Clin.,Investigat.54:1403-1412(1974),该文献在本文中引用作为参考)。Pancreatic perfusion experiments can also be used to determine whether GLP-1 analogs have the function of promoting insulin. The mouse pancreas in situ perfusion assay is a modification of the method of Penhos, J, C. et al. (Diabetes, 18:733-738 (1969)). Fasted male Charles River rats weighing 350-600 g were anesthetized by intraperitoneal injection of amobarbital (Eli Lilly and Co, 160 ng/kg). Ligate the blood vessels of the kidneys, adrenal glands, stomach and lower colon. The entire bowel was nonfunctional except for about 4 cm of the duodenum and descending colon and rectum. Only a small portion of the intestine is thus perfused, minimizing the effects of an immune reaction between the glucagon-like peptide and intestinal material. The perfusate was a modified Kreba-Ringer bicarbonate buffer containing 4% T70 dextran and 0.2% bovine serum albumin (fragment V), bubbled with 95% O2 and 5% CO2 . An extracorporeal circulation machine (Buchler polystatic, Buchler Instruments Division, Nuclear-Chicago Corp) with a 4-channel roller-bearing pump was used, with a three-way valve controlling the direction of perfusate flow. The perfusion method was performed, monitored and analyzed according to the method of Weir, GC et al. (J. Clin., Investigat. 54:1403-1412 (1974), which is incorporated herein by reference).

本发明还提供了药物组合物,它含有本发明的GLP-1类似物以及药学上可接受的载体、稀释剂或赋形剂。药物组合物可采用传统制药工艺加工而成,可单独服用或与其他治疗药剂混合服用,尤其是通过经胃肠外途径给药。最适合的给药途径包括肌肉注射和皮下注射。The present invention also provides a pharmaceutical composition, which contains the GLP-1 analog of the present invention and a pharmaceutically acceptable carrier, diluent or excipient. The pharmaceutical composition can be processed by traditional pharmaceutical techniques, and can be taken alone or mixed with other therapeutic agents, especially through parenteral administration. The most suitable routes of administration include intramuscular and subcutaneous injections.

经胃肠外途径给药为一天一次,用量在1pg/kg到1000μg/kg之间,尽管用量可高于或低于此标准。具体用量取决于患者病情的严重程度以及患者的身高、体重、性别、年龄和病史。Administration by parenteral route is once a day, and the dosage is between 1 pg/kg and 1000 μg/kg, although the dosage can be higher or lower than this standard. The specific dosage depends on the severity of the patient's condition and the patient's height, weight, sex, age and medical history.

在制造本发明的组合物时,包含至少一个蛋白质的活性成分通常需要与赋形剂混合或用赋形剂稀释。如果把赋形剂作为稀释剂使用,其形态可以是固态,半固态或液态,从而作为活性成分的载体或基质。In manufacturing the compositions of the present invention, the active ingredient comprising at least one protein usually needs to be mixed with or diluted with an excipient. If the excipient is used as a diluent, it can be in solid, semi-solid or liquid form, thereby serving as a carrier or matrix for the active ingredient.

制备制剂时,如果活性蛋白质完全不可溶解,有必要先将活性混合物研磨至大小合适的颗粒以便和其他成分相结合。通常研磨至200目以下。如果活性混合物可完全溶于水,颗粒常常要调整为大致均一的大小,比如大约40目。When preparing a formulation, if the active protein is completely insoluble, it may be necessary to first grind the active mixture to a particle size suitable for incorporation with the other ingredients. Usually ground to below 200 mesh. If the active mixture is completely water soluble, the particles will usually be adjusted to a roughly uniform size, such as about 40 mesh.

可用的赋形剂包括乳糖、葡萄糖、蔗糖、海藻糖、山梨糖醇、甘露醇、淀粉、阿拉伯树胶、硅酸钙、微晶纤维素、水、糖浆、和甲基纤维素。制剂中还可添加润滑剂(如滑石粉、镁和矿物油)、湿润剂、乳化和悬浮剂、防腐剂(如甲基羟基苯甲酸盐和丙基羟基苯甲酸盐)、甜味剂或增香剂。本发明的组合物可配制成使得活性成分能在本领域常规途径给药后迅速起效,也可配制成使其持续或缓释起效。Useful excipients include lactose, glucose, sucrose, trehalose, sorbitol, mannitol, starch, acacia, calcium silicate, microcrystalline cellulose, water, syrup, and methylcellulose. Lubricants (such as talc, magnesium, and mineral oil), wetting agents, emulsifying and suspending agents, preservatives (such as methylhydroxybenzoate and propylhydroxybenzoate), sweeteners may also be added to the formulation. or flavor enhancers. The compositions of the present invention can be formulated so that the active ingredient has a rapid onset of action after administration by routes conventional in the art, and can also be formulated so that the active ingredient has a sustained or slow release onset of action.

该组合物适宜制成单位剂量形式,每单位剂量通常包括大约50μg到100mg或是更常见的约1mg到10mg的活性成分。“单位剂量”是指适用于人体和其他哺乳动物的单一剂量单位,每单位包括预定数量的活性物质,混合以适量的可药用赋形剂,能产生所需的治疗效果。The compositions are conveniently presented in unit dosage form, each unit dosage generally comprising from about 50 [mu]g to 100 mg, or more usually from about 1 mg to 10 mg, of the active ingredient. "Unit dose" refers to a single dosage unit suitable for humans and other mammals, each unit comprising a predetermined amount of active substance, mixed with an appropriate amount of pharmaceutically acceptable excipients, capable of producing the desired therapeutic effect.

为了能经肠胃外给药,本发明中包含蛋白质的成分最好与蒸馏水混合,并将pH调整至约6.0到9.0。For parenteral administration, the protein-containing composition of the present invention is preferably mixed with distilled water and adjusted to a pH of about 6.0 to 9.0.

还可使用其他制药方法来控制反应持续时间。通过使用聚合体来复合或吸收本发明的组合物,可制得控释制剂。选择合适的高分子(例如聚酯、聚氨酸、聚乙烯吡咯烷酮、乙酸乙烯、甲基纤维素、羧甲基纤维素和鱼精蛋白)、其浓度、以及掺入方法来控制药物传输,同样可用于控制药物释放。Other pharmaceutical methods can also be used to control the duration of the response. Controlled release formulations can be prepared through the use of polymers to complex or absorb the compositions of the invention. Selection of the appropriate polymer (e.g., polyester, polyamic acid, polyvinylpyrrolidone, vinyl acetate, methylcellulose, carboxymethylcellulose, and protamine), its concentration, and method of incorporation to control drug delivery, as well Can be used for controlled drug release.

另外一种可行的控制持续作用时间的方法是将本发明蛋白质掺入聚合物颗粒(例如聚酯、聚胺酸、水凝胶、聚乙烯(乳酸)、或乙烯基乙腈共聚体)。Another possible method of controlling duration of action is to incorporate the proteins of the invention into polymeric particles (eg, polyesters, polyamines, hydrogels, polyethylene (lactic acid), or vinyl acetonitrile copolymers).

除了将化合物掺入聚合物颗粒之外,还可以利用凝聚技术或界面聚合技术将混合物包裹于微囊体中,例如羟甲基纤维素或凝胶微囊体,或者包裹于胶状药物传输系统,例如形成脂质体,清蛋白微球体,微乳颗粒,极微颗粒,极微胶粒,或者掺入宏观乳剂(macroemulation)中,有关内容公开于Remington′sPharmaceutical Sciences(1980)一书。In addition to incorporating compounds into polymer particles, the mixture can also be encapsulated in microcapsules, such as hydroxymethylcellulose or gel microcapsules, or in colloidal drug delivery systems using agglomeration or interfacial polymerization techniques , such as forming liposomes, albumin microspheres, microemulsion particles, microparticles, micromicelles, or incorporation into macroemulsions (macroemulation), as disclosed in Remington's Pharmaceutical Sciences (1980).

同样,本发明提供了给需要治疗的哺乳动物(尤其是人类)治疗糖尿病或高糖血症的方法,包括步骤将有效量的本发明GLP-1类似物或组合物施用于该哺乳动物。Likewise, the present invention provides a method for treating diabetes or hyperglycemia in a mammal (especially a human) in need thereof, comprising the step of administering to the mammal an effective amount of a GLP-1 analogue or composition of the present invention.

通过说明,提供以下实施例来帮助描述实施和实践本发明的实施方式。这些实施例不以如何方式构成对本发明的范围的限制。By way of illustration, the following examples are provided to help describe embodiments for making and practicing the invention. These examples are not to be construed in any way as limiting the scope of the invention.

实施例Example

综述review

通过固相肽化学法,在Applied Biosystems(ABI)460A肽合成仪上,用MBHA树脂(Applied Biosystems Inc.,lot#A1A023,0.77mmol/g),产生结合于甲基二苯甲胺(MBHA)树脂中间体肽片段。所有氨基酸都通过叔-叔丁氧羰基(t-Boc)来保护它们的α-氨基。具有活性侧链氨基酸如下进行保护:精氨酸(Tos);赖氨酸(Cl-Z);色氨酸(CHO);谷氨酸(CHex);酪氨酸(Br-Z);丝氨酸(Bzl);天冬氨酸(OBzl);苏氨酸(Bzl)。By solid-phase peptide chemistry, on an Applied Biosystems (ABI) 460A peptide synthesizer, using MBHA resin (Applied Biosystems Inc., lot#A1A023, 0.77mmol/g), generated conjugated to methylbenzhydrylamine (MBHA) Resin intermediate peptide fragment. All amino acids are protected at their α-amino groups by tert-tert-butoxycarbonyl (t-Boc). Amino acids with active side chains are protected as follows: arginine (Tos); lysine (Cl-Z); tryptophan (CHO); glutamic acid (CHex); tyrosine (Br-Z); Bzl); aspartic acid (OBzl); threonine (Bzl).

用二氯甲烷(DCM)使受保护的氨基酸活化,并对每当量氨基酸用半当量的二环己基碳二亚胺(DCC)来形成对称的氨基酸酸酐。但精氨酸、谷氨酰胺和甘氨酸残基则要通过形成各自的1-羟基苯并三氮唑(HOBt)酯类来活化(氨基酸、HOBt和DCC按1:1:1溶于二甲基甲酰胺中)。The protected amino acid was activated with dichloromethane (DCM) and half an equivalent of dicyclohexylcarbodiimide (DCC) per equivalent of amino acid to form the symmetrical amino acid anhydride. However, arginine, glutamine, and glycine residues are activated by forming their respective 1-hydroxybenzotriazole (HOBt) esters (amino acids, HOBt, and DCC are dissolved in dimethyl in formamide).

通过一系列的偶联及去保护循环反应,反应残基从C端逐渐移至N端。偶联是指活化的氨基酸和预先偶联的氨基酸中的第一位游离胺发生亲核取代反应。去保护是指用无水三氟乙酸(TFA)去除N端的保护基团Boc。在用二异丙基乙胺(DIEA)中和后,生成一个游离胺基团。Through a series of coupling and deprotection cyclic reactions, the reactive residues gradually move from the C-terminus to the N-terminus. Coupling refers to the nucleophilic substitution reaction between the activated amino acid and the first free amine in the pre-coupled amino acid. Deprotection refers to the removal of the N-terminal protecting group Boc with anhydrous trifluoroacetic acid (TFA). After neutralization with diisopropylethylamine (DIEA), a free amine group is generated.

该合成规模为0.5mmol。MBHA树脂功能区浓度为0.77mmol/g,共使用了649mg树脂。另需为所有的氨基酸准备两倍于树脂重量的对称的酸酐(脱水剂)。C端精氨酸经标准合成法与MBHA树脂偶联。所有残基均为双偶联。这就是说每个残基都要与树脂偶联两次来确保树脂上的NH2基团完全反应。第二次偶联时,在重新加上氨基酸前没有进行Boc去保护,这就使得树脂中所有的游离胺基充分反应。色氨酸残基进行了四次偶联。在每次双偶联循环反应中的第二次偶联后,用无水三氟乙酸(TFA)去除末端Boc保护基团,并用二异丙基乙胺(DIEA)中和。The synthesis scale was 0.5 mmol. The concentration of the MBHA resin functional area was 0.77mmol/g, and a total of 649mg of resin was used. In addition, it is necessary to prepare symmetrical anhydrides (dehydrating agents) twice the weight of the resin for all amino acids. The C-terminal arginine was coupled to MBHA resin via standard synthesis. All residues are double coupled. This means that each residue is coupled to the resin twice to ensure complete reaction of the NH2 groups on the resin. In the second coupling, no Boc deprotection was performed before re-adding the amino acid, which allowed the full reaction of all free amine groups in the resin. The tryptophan residues were coupled four times. After the second coupling in each double coupling cycle reaction, the terminal Boc protecting group was removed with anhydrous trifluoroacetic acid (TFA) and neutralized with diisopropylethylamine (DIEA).

在使肽与树脂分离之前,色氨酸残基上的甲酰基侧链保护基团在二甲基甲酰胺(DMF)中与哌啶反应脱离。将肽-树脂偶联物转移至50ml的玻璃烧瓶中后,用二氯甲烷(DCM)和二甲基甲酰胺(DMF)进行数次洗涤。然后加入3-5ml的50/50的哌啶/DMF溶液直至肽-树脂被完全覆盖。五分钟后用真空过滤器将哌啶/DMF去除,再加入3-5ml哌啶/DMF。十分钟后再次将哌啶/DMF用真空过滤器去除,加入15-20ml哌啶/DMF。十五分钟后去除哌啶/DMF,用DMF洗涤肽-树脂数次,再用DCM洗涤。然后把肽-树脂放到恒温箱(不加热)中去除溶剂。The formyl side chain protecting group on the tryptophan residue was reacted with piperidine in dimethylformamide (DMF) prior to separation of the peptide from the resin. After the peptide-resin conjugate was transferred to a 50 ml glass flask, several washes were performed with dichloromethane (DCM) and dimethylformamide (DMF). Then 3-5 ml of a 50/50 piperidine/DMF solution was added until the peptide-resin was completely covered. After five minutes the piperidine/DMF was removed with a vacuum filter and 3-5 ml of piperidine/DMF was added. After ten minutes the piperidine/DMF was removed again with a vacuum filter and 15-20 ml of piperidine/DMF was added. After fifteen minutes the piperidine/DMF was removed and the peptide-resin was washed several times with DMF and then with DCM. The peptide-resin is then placed in an incubator (without heating) to remove the solvent.

另外,结合有肽片段的聚合体也可以用芴甲氧羰酰(Fmoc)保护。将RinkAlternatively, polymers incorporating peptide fragments can also be protected with fluorenylmethoxycarbonyl (Fmoc). Will Rink

Amide MBHA树脂、Fmoc-氨基酸、O-苯并三唑-N,N,N′,N′-四甲基脲四氟硼酸盐(HBTU)溶于二甲基甲酰胺(DMF)中,用N-甲基吗啉活化,用哌啶使Fmoc基团去保护(步骤1)。有必要的话,可以有选择性的将赖氨酸(Aloc)基团人工去保护,把树脂置于三等份的溶有Pd(PPh3)4的5ml CHCl3:NMM:HOAc(18:1:0.5)溶液中两小时(步骤2)。然后用CHCl3(6 x 5ml)、DCM中的20%HOAc(6×5ml)、DCM(6×5ml)和DMF(6×5ml)洗涤树脂。有时,由于加入羟乙基乙二胺(AEEA)基团、乙酸或3-顺丁烯酰亚胺丙酸(MPA),合成会重新变为自发的(步骤3)。使用85%三氟乙酸(TFA)/5% TIS/5%茴香硫醚和5%苯酚进行树脂脱去和产物分离,再立即用经干冰冷冻的Et2O处理(步骤4)。使用Varian(Rainin)制备性二元HPLC系统,通过制备性的逆相HPLC对产品进行纯化:使用PhenomenexLuna公司生产的10μ苯基—己基,21mm×25cm柱和波长为214、254nm的紫外线检测器(Varian Dynamax UVD II),以每分钟9.5ml的流量,用30-55%B(0.045%TFA水溶液(A)和0.045%TFA的CH3CN溶液(B))梯度洗涤180分钟。由RP-HPLC质谱分析测得纯化程度为95%,质谱分析时用到了配备有二极管检测器的Hewlett Packard LCMS-1100系列质谱仪和电喷电离法。Amide MBHA resin, Fmoc-amino acid, O-benzotriazole-N,N,N′,N′-tetramethyluronium tetrafluoroborate (HBTU) were dissolved in dimethylformamide (DMF) and washed with Activation with N-methylmorpholine and deprotection of the Fmoc group with piperidine (step 1). If necessary, the lysine (Aloc) group can be selectively artificially deprotected, and the resin is placed in three equal parts of 5ml CHCl 3 : NMM:HOAc(18:1 :0.5) in solution for two hours (step 2). The resin was then washed with CHCl3 (6x5ml), 20% HOAc in DCM (6x5ml), DCM (6x5ml) and DMF (6x5ml). Occasionally, the synthesis becomes spontaneous again (step 3) due to the addition of hydroxyethylethylenediamine (AEEA) groups, acetic acid, or 3-maleimide propionic acid (MPA). Resin removal and product isolation were performed using 85% trifluoroacetic acid (TFA)/5% TIS/5% thioanisole and 5% phenol, followed by immediate treatment with dry ice-frozen Et2O (step 4). Use Varian (Rainin) preparative binary HPLC system, the product is purified by preparative reverse-phase HPLC: use the 10 μ phenyl-hexyl that Phenomenex Luna company produces, 21mm * 25cm post and wavelength are the ultraviolet detector of 214, 254nm ( Varian Dynamax UVD II), at a flow rate of 9.5 ml per minute, washed with 30-55% B (0.045% TFA in water (A) and 0.045% TFA in CH 3 CN (B)) gradient washing for 180 minutes. The degree of purification was 95% as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series mass spectrometer equipped with a diode detector and electrospray ionization.

保护性基团是防止氨基酸自发反应的化学基团。这些保护性基团包括乙酰基,9-芴甲氧基羰基(FMOC),叔丁氧羰基(Boc),苄氧基羰基(CBZ)等等。具体带保护基的氨基酸见表1。Protective groups are chemical groups that prevent amino acids from reacting spontaneously. These protecting groups include acetyl, 9-fluorenylmethoxycarbonyl (FMOC), tert-butoxycarbonyl (Boc), benzyloxycarbonyl (CBZ) and the like. Specific amino acids with protective groups are shown in Table 1.

表1Table 1

实施例1Example 1

以下物质的合成:Synthesis of the following substances:

步骤1step 1

Fmoc-Rink Amide MBHA树脂Fmoc-Rink Amide MBHA Resin

Figure C200410017667D00191
Figure C200410017667D00191

100μmol规模所述类似物的固相肽合成按以下过程进行:使用人工固相合成法和Symphony肽合成仪,将受Fmoc保护的Rink Amide MBHA树脂、受Fmoc保护的氨基酸、O-苯并三唑-1-基-N,N,N′,N′-四甲基-脲四氟硼酸盐(HBTU)溶于二甲基甲酰胺(DMF)中,用N-甲基吗啉活化,用哌啶使Fmoc基团去保护(步骤1)。在与Fmoc-His(Trt)-OH偶联之前,将步骤2的产物中的Boc基团脱去。使用85% TFA/5% TIS/5%茴香硫醚和5%苯酚进行树脂脱去及产物分离,随后用干冰冷冻的Et2O沉淀(步骤2)。使用Varian(Rainin)制备性二元HPLC系统,通过制备性逆相HPLC对产物进行纯化:使用PhenomenexLuna公司生产的10μm苯基—己基,21mm×25cm柱和波长214nm和254nm的紫外线检测器(VarianDynamax UVD II),以每分钟9.5ml的流量,用30-55%B(0.045%TFA水溶液(A)和0.045% TFA的CH3CN溶液(B))梯度洗脱180分钟,经RP-HPLC测定,得到所需的纯度>95%的肽。The solid-phase peptide synthesis of the described analogs on a 100 μmol scale was carried out as follows: using artificial solid-phase synthesis and a Symphony peptide synthesizer, Fmoc-protected Rink Amide MBHA resin, Fmoc-protected amino acids, O-benzotriazole -1-yl-N,N,N',N'-tetramethyl-uronium tetrafluoroborate (HBTU) was dissolved in dimethylformamide (DMF), activated with N-methylmorpholine, and Piperidine deprotects the Fmoc group (step 1). The Boc group was removed from the product of step 2 before coupling with Fmoc-His(Trt)-OH. Resin removal and product isolation were performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation with dry ice frozen Et2O (step 2). Use Varian (Rainin) preparative binary HPLC system, the product is purified by preparative reverse phase HPLC: use the 10 μm phenyl-hexyl that Phenomenex Luna company produces, 21mm * 25cm column and the ultraviolet detector (VarianDynamax UVD of wavelength 214nm and 254nm II), with a flow rate of 9.5ml per minute, gradient elution with 30-55% B (0.045% TFA aqueous solution (A) and 0.045% TFA in CH 3 CN solution (B)) for 180 minutes, determined by RP-HPLC, The desired peptide was obtained in >95% purity.

实施例2Example 2

以下物质的合成:Synthesis of the following substances:

Figure C200410017667D00201
Figure C200410017667D00201

步骤1step 1

Figure C200410017667D00202
Figure C200410017667D00202

GLP-1类似物的合成步骤和条件如实施例1所述。The synthesis steps and conditions of GLP-1 analogs are as described in Example 1.

经RP-HPLC测定,得到所需的纯度>96%的肽。The desired peptide was obtained with >96% purity as determined by RP-HPLC.

实施例3Example 3

以下物质的合成:Synthesis of the following substances:

Figure C200410017667D00211
Figure C200410017667D00211

步骤1step 1

Figure C200410017667D00212
Figure C200410017667D00212

GLP-1类似物的合成步骤和条件如实施例1所述。The synthesis steps and conditions of GLP-1 analogs are as described in Example 1.

经RP-HPLC测定,得到所需的纯度>95%的肽。The desired peptide was obtained with >95% purity as determined by RP-HPLC.

实施例4Example 4

以下物质的合成:Synthesis of the following substances:

Figure C200410017667D00221
Figure C200410017667D00221

步骤1step 1

GLP-1类似物的合成步骤和条件如实施例1所述。The synthesis steps and conditions of GLP-1 analogs are as described in Example 1.

经RP-HPLC测定,得到所需的纯度>95%的肽。The desired peptide was obtained with >95% purity as determined by RP-HPLC.

测试例test case

GLP-1类似物的刺激胰岛素分泌能力Insulin-stimulating ability of GLP-1 analogs

将实施例1-4制备的GLP-1类似物分别注入培养的RIN-38型小鼠胰岛β细胞瘤细胞,然后监测释放入培养基中的免疫反应性胰岛素(IRI)的数量。方法采用Albano,J.D.M.等人的改良法(Acta Endocrinol.70:487-509(1972)):向培养器中依次注入500μl磷酸盐缓冲液,50μl灌注液样本或含标准量小鼠胰岛素的灌注液,100μl抗胰岛素抗血清(Wellcome Laboratories:按1:40,000稀释),以及100μl[125I]胰岛素,总容量750μl,置于10×75mm的一次性玻璃试管中。在4℃下培育2-3天,利用活性炭将游离的胰岛素与抗体结合的胰岛素分开。The GLP-1 analogs prepared in Examples 1-4 were respectively injected into cultured RIN-38 mouse islet β-cell tumor cells, and then the amount of immunoreactive insulin (IRI) released into the medium was monitored. Methods The improved method of Albano, JDM et al. (Acta Endocrinol.70: 487-509 (1972)) was used: 500 μl of phosphate buffer solution, 50 μl of perfusate sample or perfusate containing standard amount of mouse insulin were sequentially injected into the culture vessel , 100 μl anti-insulin antiserum (Wellcome Laboratories: diluted 1:40,000), and 100 μl [ 125 I] insulin, with a total volume of 750 μl, were placed in a 10×75 mm disposable glass test tube. Incubate at 4°C for 2-3 days, and use charcoal to separate free insulin from antibody-bound insulin.

结果,检测到的放射性大小与测试物质的加入量成比例。这表明实施例1-4制备的GLP-1类似物具有刺激胰岛素分泌能力。As a result, the amount of radioactivity detected is proportional to the amount of test substance added. This shows that the GLP-1 analogs prepared in Examples 1-4 have the ability to stimulate insulin secretion.

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

Claims (3)

1. A compound of formula I:
R1-X-R2
formula I
Wherein,
R1selected from: l-histidine, D-histidine, deaminated histidine, 2-aminohistidine, beta-hydroxyhistidine, alpha-fluoromethylhistidine and alpha-methylhistidine;
x is a linking unit selected from the group consisting of:
Figure C200410017667C00021
R2is a peptide portion or fragment selected from the group consisting of:
-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-R4
R3is selected from methyl;
R4is selected from NH2
2. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
3. Use of a compound according to claim 1 for the preparation of a medicament for the treatment of diabetes, insulin resistance and neurological disorders.
CNB2004100176679A 2004-04-14 2004-04-14 Glucagon-like peptide analogs, compositions and methods of use thereof Expired - Lifetime CN100503637C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100176679A CN100503637C (en) 2004-04-14 2004-04-14 Glucagon-like peptide analogs, compositions and methods of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100176679A CN100503637C (en) 2004-04-14 2004-04-14 Glucagon-like peptide analogs, compositions and methods of use thereof

Publications (2)

Publication Number Publication Date
CN1683408A CN1683408A (en) 2005-10-19
CN100503637C true CN100503637C (en) 2009-06-24

Family

ID=35262930

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100176679A Expired - Lifetime CN100503637C (en) 2004-04-14 2004-04-14 Glucagon-like peptide analogs, compositions and methods of use thereof

Country Status (1)

Country Link
CN (1) CN100503637C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424888A2 (en) * 2009-05-01 2012-03-07 F. Hoffmann-La Roche AG Insulinotropic peptide synthesis using solid and solution phase combination techniques
RU2557301C2 (en) * 2010-05-17 2015-07-20 Бетта Фармасьютикалз Ко.,Лтд Novel analogues of glucagon-like peptide, composition and method of use
CN102229668A (en) * 2011-06-03 2011-11-02 浙江贝达药业有限公司 GLP-1 (glucagon-like peptide-1) derivative and application thereof
US20220002343A1 (en) * 2018-11-07 2022-01-06 Follicum Ab Peptide fragments for treatment of diabetes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
重组人胰高血糖素样肽-1 的表达、纯化及其生物学活性. 张志珍.中国生物化学与分子生物学报,第18卷第1期. 2002 *

Also Published As

Publication number Publication date
CN1683408A (en) 2005-10-19

Similar Documents

Publication Publication Date Title
US5981488A (en) Glucagon-like peptide-1 analogs
US7101843B2 (en) Glucagon-like peptide-1 analogs
DE69531889T2 (en) Biologically active fragments of the glucagon-like, insulinotropic peptide
JP4716641B2 (en) Glucagon-like peptide-1 analog
RU2128663C1 (en) Derivatives of polypeptide showing insulinotropic activity, pharmaceutical composition, methods of enhancement of insulin effect, methods of treatment of diabetic patients
US6191102B1 (en) Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US5512549A (en) Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
JP2013209399A (en) Analogues of exendin-4 and exendin-3
CA2263802A1 (en) Use of glucagon-like peptide-1 (glp-1) or analogs to abolish catabolic changes after surgery
JPH07196695A (en) Glucagon-like insulin-irritated peptide, its composition, and its use
WO2003058203A2 (en) Extended glucagon-like peptide-1 analogs
AU2003200839A2 (en) Extended glucagon-like peptide-1 analogs
WO1998043658A1 (en) Glucagon-like peptide-1 analogs
CN103124739B (en) A kind of new glucagon-like peptide-1 analogs, composition and use thereof
CN100503637C (en) Glucagon-like peptide analogs, compositions and methods of use thereof
CN116514952B (en) GLP-1 analogues and application thereof
TWI428139B (en) A novel glucagon-like peptide analogue, a composition and use thereof
CN119488582A (en) A GLP-1 and PYY twin drug and its preparation method and application
US20060252693A1 (en) Glucagon-like peptide-1 analogs
CZ165199A3 (en) Medicament for reducing body weight or obesity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070615

Address after: No. 589 Hongfeng Road, Yuhang Economic Development Zone, Hangzhou

Applicant after: ZHEJIANG BETA PHARMA Inc.

Address before: 12A, Jinming building, 8 South Road, Shanghai, Zunyi

Applicant before: BEIDA MEDICINE DEV SHANGHAI Co.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: BETA PHARMACEUTICAL CO., LTD.

Free format text: FORMER NAME: ZHEJIANG BETA PHARMA CO., LTD.

CP03 Change of name, title or address

Address after: 311100 No. 589 Hongfeng Road, Yuhang economic and Technological Development Zone, Zhejiang, Hangzhou

Patentee after: BETTA PHARMACEUTICALS Co.,Ltd.

Address before: No. 589 Hongfeng Road, Yuhang Economic Development Zone, Hangzhou

Patentee before: ZHEJIANG BETA PHARMA Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090624