CN100495077C - Laminated Optical Components - Google Patents
Laminated Optical Components Download PDFInfo
- Publication number
- CN100495077C CN100495077C CNB2006800007841A CN200680000784A CN100495077C CN 100495077 C CN100495077 C CN 100495077C CN B2006800007841 A CNB2006800007841 A CN B2006800007841A CN 200680000784 A CN200680000784 A CN 200680000784A CN 100495077 C CN100495077 C CN 100495077C
- Authority
- CN
- China
- Prior art keywords
- layer
- optical
- resin layer
- optical device
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种叠层光学元件,该叠层光学元件在电配线用基板、机械部件用材料、防反射膜和表面保护膜等各种涂敷材料、光发送接收组件、光开关、光调制器等光通信器件、光波导路、光纤、透镜阵列等光传播路径结构以及包含它们的光束分光镜等光器件、积分透镜(integrator lens)、微透镜阵列、反射板、导光板、投影用屏幕等显示器件(显示器或者液晶投影机等)相关的光学元件、眼镜、CCD用光学系统、透镜、复合型非球面透镜、2P(Photoreplication Process)透镜、滤光片、衍射光栅、干涉仪、光耦合器、光合分波器、光传感器、全息光学元件、其它光学部件用材料、光电动势元件、接触透镜、医疗用人工组织、发光二极管(LED)的模材料等中有用。The present invention relates to a laminated optical element, which is used in various coating materials such as substrates for electrical wiring, materials for mechanical parts, antireflection films and surface protection films, optical transmission and reception modules, optical switches, Optical communication devices such as modulators, light propagation path structures such as optical waveguides, optical fibers, and lens arrays, and optical devices such as beam splitters including them, integrator lenses, microlens arrays, reflectors, light guide plates, projections Optical components related to display devices such as screens (displays or liquid crystal projectors, etc.), glasses, optical systems for CCDs, lenses, composite aspheric lenses, 2P (Photoreplication Process) lenses, filters, diffraction gratings, interferometers, optical Couplers, optical multiplexers, optical sensors, holographic optical elements, materials for other optical components, photoelectromotive force elements, contact lenses, medical artificial tissues, and mold materials for light-emitting diodes (LEDs), etc.
背景技术 Background technique
包括透镜、在光学元件的材料中,一直以来使用玻璃或者塑料等。玻璃的种类很多,光学特性的变化(variation)丰富,所以,容易进行光学设计,更进一步,由于是无机系材料,所以可靠性高。另外,通过研磨可得到高精度的光学元件。Glass, plastic, etc. have been used conventionally as materials for optical elements including lenses. There are many kinds of glass, and the variation of optical characteristics is abundant, so it is easy to perform optical design, and furthermore, since it is an inorganic material, it is highly reliable. In addition, high-precision optical elements can be obtained by grinding.
但是,成本高,平面和球面以外的非球面形状,必须使用特殊的研磨装置,或必须通过利用耐热性高的高价的模具(例如陶瓷制造等)进行成形的所谓铸模(mold)法,成形能够在低温下成形的玻璃材料。因此,非常高价。However, the cost is high, and aspherical shapes other than flat and spherical surfaces must use a special grinding device, or must be formed by the so-called mold method using an expensive mold with high heat resistance (such as ceramics, etc.). A glass material that can be formed at low temperatures. Therefore, very high price.
另一方面,使用合成树脂材料(塑料)的光学元件,能够利用注射成形或铸塑(cast)法廉价地制造,但存在耐热性低、热膨胀大、折射率等光学特性的选择幅度窄、可靠性低等问题。On the other hand, optical elements using synthetic resin materials (plastics) can be manufactured inexpensively by injection molding or casting (cast), but they have low heat resistance, large thermal expansion, narrow selection of optical properties such as refractive index, low reliability issues.
作为消除上述问题的方法,提出了通过在玻璃基材上叠层树脂层而得到希望的特性的复合型光学元件。在专利文献1中,公开了一种在平面的玻璃基板上形成有有机高分子层的低通滤波器。另外,在专利文献2和专利文献3中,公开了一种在玻璃透镜基材上形成具有非球面形状的树脂层的所谓复合型非球面透镜。As a method of solving the above-mentioned problems, a composite optical element in which desired characteristics are obtained by laminating a resin layer on a glass substrate has been proposed.
近年来,使用上述那样的光学元件的领域扩大,对光学元件所要求的可靠性也越来越严格。例如,有时要求在作为高温高湿条件的85℃、85%的环境中500~1000小时的耐久性。In recent years, the fields using the above-mentioned optical elements have expanded, and the reliability required for the optical elements has become increasingly strict. For example, durability for 500 to 1000 hours is sometimes required in an environment of 85° C. and 85% which is a high-temperature and high-humidity condition.
在这些叠层光学元件中,为了改善基材与树脂层的附着力,在基材上涂敷利用溶剂稀释后的硅烷偶联剂,然后在其上形成树脂层,但这样的方法在严酷的环境下不能维持充分的附着力,存在容易发生剥离的问题。In these laminated optical elements, in order to improve the adhesion between the base material and the resin layer, a silane coupling agent diluted with a solvent is coated on the base material, and then a resin layer is formed thereon, but such a method is Sufficient adhesion cannot be maintained under the environment, and there is a problem that peeling tends to occur.
当为了改善剥离性而提高偶联剂的浓度进行涂敷时,有在涂敷后表面产生白浊、不能均匀地涂敷、产生斑点等问题。When the concentration of the coupling agent is increased in order to improve peelability, there are problems such as cloudiness of the surface after coating, inability to coat uniformly, and occurrence of spots.
在专利文献4中,在含有大量折射率高的氧化物、二氧化硅成分(SiO2)少的高折射率玻璃中,为了防止由于高折射率玻璃基板(折射率=1.8~2.0左右)与光学树脂层(折射率=约1.5)之间的折射率差而产生的反射,在玻璃基板表面上形成有SiO2/ZrO2/SiO2等电介质多层膜。In
另外,为了提高玻璃与光学树脂层的密着性,通常在玻璃表面上涂敷硅烷偶联剂,该硅烷偶联剂具有发挥提高对二氧化硅成分的密着性的效果的性质,在二氧化硅成分(SiO2)少的高折射率玻璃中,存在不能利用硅烷偶联剂提高玻璃与光学树脂层的密着性的问题。在专利文献4中,电介质多层膜的最上层是SiO2,因此,即使在高折射率玻璃中也能够得到高的密着性。该电介质多层膜由真空蒸镀、离子镀、溅射等方法形成,但使用这样的方法时,难以廉价地且在短时间内制造光学元件。In addition, in order to improve the adhesion between the glass and the optical resin layer, a silane coupling agent is usually applied on the glass surface. This silane coupling agent has the property of improving the adhesion to the silica component. In a high-refractive-index glass with a small component (SiO 2 ), there is a problem that the adhesion between the glass and the optical resin layer cannot be improved by a silane coupling agent. In
专利文献1:特开昭54-6006号公报Patent Document 1: JP-A-54-6006
专利文献2:特开昭52-25651号公报Patent Document 2: JP-A-52-25651
专利文献3:特开平6-222201号公报Patent Document 3: Japanese Unexamined Patent Publication No. 6-222201
专利文献4:特开平5-100104号公报Patent Document 4: Japanese Unexamined Patent Publication No. 5-100104
发明内容 Contents of the invention
本发明的第一目的在于提供一种叠层光学元件,其是在玻璃等光学基材上叠层光学树脂层而形成的复合型光学元件,即使在高温高湿下,光学树脂层也难以被剥离,且可靠性优异。The first object of the present invention is to provide a laminated optical element, which is a composite optical element formed by laminating an optical resin layer on an optical substrate such as glass, and the optical resin layer is difficult to be damaged even under high temperature and high humidity. peeling, and excellent reliability.
本发明的第二目的在于提供一种叠层光学元件,其是在玻璃等光学基材上叠层光学树脂层而形成的复合型光学元件,即使在由高折射率玻璃构成的光学基材上也能够以良好的密着性形成光学树脂层。The second object of the present invention is to provide a laminated optical element, which is a composite optical element formed by laminating an optical resin layer on an optical substrate such as glass, which can be used even on an optical substrate made of high refractive index glass. It is also possible to form an optical resin layer with good adhesion.
本发明的第一方面是一种叠层光学元件,其包括由光学材料构成的光学基材、设置在光学基材上的中间层、和设置在中间层上的光学树脂层,其特征在于:光学树脂层是由具有—M—O—M—键(M是金属原子)的有机金属聚合物、仅具有1个能够水解的基的金属醇盐和/或其水解物、以及具有氨基甲酸酯键和甲基丙烯酰氧基或具有氨基甲酸酯键和丙烯酰氧基的有机聚合物形成的树脂层,中间层包含使由金属氧化物构成的微小颗粒分散在由具有自由基聚合性基和能够水解的基的金属醇盐和/或其水解物形成的母体树脂中而形成的层。The first aspect of the present invention is a laminated optical element, which includes an optical substrate made of optical materials, an intermediate layer disposed on the optical substrate, and an optical resin layer disposed on the intermediate layer, characterized in that: The optical resin layer is composed of an organometallic polymer having an -M—O—M—bond (M is a metal atom), a metal alkoxide having only one hydrolyzable group and/or its hydrolyzate, and a carbamic acid A resin layer formed of an organic polymer having an ester bond and a methacryloxy group or a urethane bond and an acryloxy group. A layer formed in a matrix resin formed of a metal alkoxide and/or a hydrolyzate of a base and a hydrolyzable base.
在本发明的第一方面中,其特征在于,在光学基材和光学树脂层之间设置有中间层,中间层包含使由金属氧化物构成的微小颗粒分散在由具有自由基聚合性基和能够水解的基的金属醇盐和/或其水解物形成的母体树脂中而形成的层。因为中间层是使由金属氧化物构成的微小颗粒分散在母体树脂中而形成的层,所以,能够提高光学基材与光学树脂层的密着性,能够使得即使在高温高湿下也难以剥离光学树脂层。因此,能够形成可靠性优异的叠层光学元件。In the first aspect of the present invention, it is characterized in that an intermediate layer is provided between the optical base material and the optical resin layer, and the intermediate layer includes fine particles composed of metal oxide dispersed in a material having radical polymerizable groups and A layer formed in a matrix resin formed of a hydrolyzed base metal alkoxide and/or its hydrolyzate. Since the intermediate layer is formed by dispersing fine particles of metal oxides in the matrix resin, the adhesion between the optical substrate and the optical resin layer can be improved, making it difficult to peel off the optical material even under high temperature and high humidity. resin layer. Therefore, a multilayer optical element excellent in reliability can be formed.
在本发明的第一方面中,中间层可以由至少2层形成。在这种情况下,只要其中的至少1层是使微小颗粒分散在母体树脂中而形成的层即可。In the first aspect of the present invention, the intermediate layer may be formed of at least 2 layers. In this case, at least one of the layers may be formed by dispersing fine particles in a matrix resin.
在本发明的第一方面中,中间层的母体树脂、和光学树脂层均可以使用能够通过照射能量线而固化的树脂。通过这样均使用利用照射能量线而固化的树脂,能够进一步提高中间层与光学树脂层的密着性。In the first aspect of the present invention, both the matrix resin of the intermediate layer and the optical resin layer can use resins that can be cured by irradiation of energy rays. By using resins that are cured by irradiation with energy rays in this way, the adhesiveness between the intermediate layer and the optical resin layer can be further improved.
本发明的第一方面的中间层的表面的凹凸,例如,可以通过将中间层表面附近的微小颗粒溶解除去而形成。The irregularities on the surface of the intermediate layer according to the first aspect of the present invention can be formed, for example, by dissolving and removing fine particles near the surface of the intermediate layer.
本发明的第二方面是一种叠层光学元件,其包括由光学材料构成的光学基材、设置在光学基材上的中间层、和设置在中间层上的光学树脂层,其特征在于:光学树脂层是由具有—M—O—M—键(M是金属原子)的有机金属聚合物、仅具有1个能够水解的基的金属醇盐和/或其水解物、以及具有氨基甲酸酯键和甲基丙烯酰氧基或具有氨基甲酸酯键和丙烯酰氧基的有机聚合物形成的树脂层,中间层包括设置在光学基材侧的微小颗粒层和设置在光学树脂层侧的偶联层,微小颗粒层是由微小颗粒的分散液形成的层,偶联层是由具有自由基聚合性基和能够水解的基的金属醇盐和/或其水解物形成的层。The second aspect of the present invention is a laminated optical element, which includes an optical substrate made of optical materials, an intermediate layer disposed on the optical substrate, and an optical resin layer disposed on the intermediate layer, characterized in that: The optical resin layer is composed of an organometallic polymer having an -M—O—M—bond (M is a metal atom), a metal alkoxide having only one hydrolyzable group and/or its hydrolyzate, and a carbamic acid A resin layer formed of an ester bond and a methacryloxy group or an organic polymer having a urethane bond and an acryloxy group, and the intermediate layer includes a fine particle layer disposed on the optical substrate side and a fine particle layer disposed on the optical resin layer side In the coupling layer, the fine particle layer is a layer formed of a dispersion liquid of fine particles, and the coupling layer is a layer formed of a metal alkoxide and/or its hydrolyzate having a radically polymerizable group and a hydrolyzable group.
在本发明的第二方面中,中间层包括设置在光学基材侧的微小颗粒层和设置在光学树脂层侧的偶联层,优选这些层通过叠层而形成。In the second aspect of the present invention, the intermediate layer includes a fine particle layer provided on the side of the optical substrate and a coupling layer provided on the side of the optical resin layer, and these layers are preferably formed by lamination.
根据本发明的第二方面,在光学基材上形成有微小颗粒层,在其上形成有偶联层,因此,即使在将高折射率玻璃作为光学基材使用的情况下,也能够以良好的密着性形成光学树脂层。According to the second aspect of the present invention, the fine particle layer is formed on the optical substrate, and the coupling layer is formed thereon, so even when high refractive index glass is used as the optical substrate, it can be obtained in good Adhesiveness forms an optical resin layer.
在本发明的第二方面中,优选:微小颗粒层通过将微小颗粒的分散液涂敷在光学基材上之后进行加热处理而形成,光学基材的成分在微小颗粒层中扩散。作为加热处理的温度,优选300~500℃的温度。In the second aspect of the present invention, it is preferable that the fine particle layer is formed by applying a dispersion liquid of fine particles on the optical substrate followed by heat treatment, and the components of the optical substrate diffuse in the fine particle layer. The temperature of the heat treatment is preferably a temperature of 300 to 500°C.
特别地,在光学基材上涂敷SiO2等微小颗粒的分散液之后,在例如300~500℃的温度下烘焙,由此能够在光学基材上形成SiO2等微小颗粒凝集而成的层。通过在这样的层上形成偶联层、再形成光学树脂层,能够以良好的密着性设置光学树脂层。In particular, after coating a dispersion of fine particles such as SiO 2 on an optical substrate, and then baking at a temperature of, for example, 300 to 500° C., a layer in which fine particles such as SiO 2 are aggregated can be formed on the optical substrate. . By forming a coupling layer on such a layer and then forming an optical resin layer, the optical resin layer can be provided with good adhesion.
通过在规定的温度、例如300~500℃的温度下烘焙微小颗粒层,光学基材中的TiO2等二氧化硅以外的成分扩散到微小颗粒层中,光学基材与微小颗粒层的密着性变得良好。另外,在微小颗粒层中,在偶联层侧的部分中,二氧化硅成分变多。结果,在微小颗粒层中形成微小颗粒层的光学基材侧二氧化硅以外的成分多、微小颗粒层的偶联层侧二氧化硅成分多的倾斜结构,能够同时提高光学基材与微小颗粒层之间的密着性、以及微小颗粒层与偶联层的密着性。另外,利用上述规定的烘焙温度,也能够提高微小颗粒层本身的强度。By baking the microparticle layer at a specified temperature, for example, at a temperature of 300 to 500 ° C, components other than silicon dioxide such as TiO2 in the optical substrate diffuse into the microparticle layer, and the adhesion between the optical substrate and the microparticle layer become good. In addition, in the fine particle layer, the silica component increased in the part on the side of the coupling layer. As a result, in the microparticle layer, an inclined structure in which there are many components other than silica on the optical substrate side of the microparticle layer and many silica components on the coupling layer side of the microparticle layer can be formed, and the optical substrate and microparticles can be simultaneously improved. The adhesion between the layers, and the adhesion between the micro particle layer and the coupling layer. In addition, the strength of the fine particle layer itself can also be increased by using the above-mentioned predetermined baking temperature.
在本发明的第二方面中,微小颗粒层由平均粒径50nm以上的微小颗粒形成,由此可以在该微小颗粒层的表面形成凹凸。通过在微小颗粒层的表面形成凹凸,与偶联层的界面的表面积增大,与偶联层的密着性变得良好。In the second aspect of the present invention, the fine particle layer is formed of fine particles having an average particle diameter of 50 nm or more, whereby unevenness can be formed on the surface of the fine particle layer. By forming irregularities on the surface of the fine particle layer, the surface area of the interface with the coupling layer increases, and the adhesion with the coupling layer becomes good.
在本发明的第二方面中,微小颗粒层可以通过将由平均粒径小于50nm的微小颗粒构成的设置在光学基材侧的第一微小颗粒层、和由平均粒径50nm以上的微小颗粒构成的设置在偶联层侧的第二微小颗粒层叠层而形成。通过形成这样的结构,能够增大光学基材与微小颗粒层的界面的接触部分的面积,从而能够提高光学基材与微小颗粒层的密着性,并且,在微小颗粒层的偶联层侧,通过在微小颗粒层表面形成凹凸,能够提高与偶联层的密着性。In the second aspect of the present invention, the fine particle layer may be composed of a first fine particle layer disposed on the optical substrate side consisting of fine particles having an average particle diameter of less than 50 nm, and a layer consisting of fine particles having an average particle diameter of 50 nm or more. The second fine particle layer disposed on the side of the coupling layer is formed by laminating layers. By forming such a structure, the area of the contact portion of the interface between the optical substrate and the microparticle layer can be increased, thereby improving the adhesion between the optical substrate and the microparticle layer, and, on the coupling layer side of the microparticle layer, By forming irregularities on the surface of the fine particle layer, the adhesion to the coupling layer can be improved.
在本发明的第二方面中,微小颗粒层的分散液可以仅含有微小颗粒作为固体成分。即,微小颗粒的分散液可以仅含有微小颗粒和分散介质。这样的微小颗粒的分散液,通过如上述那样进行烘焙,能够形成致密的微小颗粒层。In the second aspect of the present invention, the dispersion liquid of the fine particle layer may contain only fine particles as a solid component. That is, the dispersion of fine particles may contain only fine particles and a dispersion medium. Such a dispersion of fine particles can form a dense fine particle layer by baking as described above.
另外,在本发明的第二方面中,微小颗粒的分散液可以含有粘合剂树脂。通过含有粘合剂树脂,即使不在高的温度下烘焙,也能够提高微小颗粒层的强度。另外,根据添加的粘合剂树脂的种类,也能够改善与光学基材的密着性。作为粘合剂树脂,可举出水溶性丙烯酸单体、水溶性树脂、硅烷偶联剂、以及感光性树脂等。作为粘合剂树脂,优选使用水溶性的树脂。通过使用感光性树脂等感光性的粘合剂树脂,能够使微小颗粒层具有感光性,在形成微小颗粒层之后,能够通过照射紫外线等而硬化,从而能够将微小颗粒层图案化。In addition, in the second aspect of the present invention, the dispersion of fine particles may contain a binder resin. By containing the binder resin, the strength of the fine particle layer can be increased without baking at a high temperature. In addition, depending on the type of binder resin to be added, it is also possible to improve the adhesiveness with the optical substrate. Examples of the binder resin include water-soluble acrylic monomers, water-soluble resins, silane coupling agents, and photosensitive resins. As the binder resin, a water-soluble resin is preferably used. By using a photosensitive binder resin such as a photosensitive resin, the fine particle layer can be provided with photosensitivity, and after forming the fine particle layer, it can be cured by irradiating ultraviolet rays or the like to pattern the fine particle layer.
在本发明的第二方面中,可以将微小颗粒图案化,使其具有光学功能。例如,能够使其具有衍射光栅等光学功能。由此,能够兼作透镜的色差补偿透镜,从而能够减少光学系统的部件个数。In the second aspect of the present invention, minute particles can be patterned to have optical functions. For example, optical functions such as a diffraction grating can be provided. Thereby, the chromatic aberration compensating lens can also be used as a lens, and the number of parts of the optical system can be reduced.
在本发明的第二方面中,可以将偶联层形成为1nm以下的厚度。通过将偶联层形成为1nm以下的厚度、并形成为几个分子层~1分子层左右的厚度,偶联层的厚度不均匀消失,能够进一步提高与光学树脂层的密着性。In the second aspect of the present invention, the coupling layer may be formed to a thickness of 1 nm or less. By forming the coupling layer to have a thickness of 1 nm or less and a thickness of about several molecular layers to one molecular layer, the thickness unevenness of the coupling layer disappears, and the adhesion to the optical resin layer can be further improved.
在本发明的第二方面中,微小颗粒层可以通过旋涂或浸渍微小颗粒的分散液而形成。通过旋涂或浸渍,微小颗粒在光学基材上密集地聚集,形成为层状。通过在该状态下烘焙或者照射紫外线等能量线,微小颗粒间结合,或者微小颗粒间的树脂固化,由此,能够形成致密的微小颗粒层。In the second aspect of the present invention, the minute particle layer may be formed by spin coating or dipping a dispersion of minute particles. By spin coating or dipping, tiny particles are densely aggregated on the optical substrate to form a layer. Baking in this state or irradiating with energy rays such as ultraviolet rays causes the fine particles to bond or the resin between the fine particles to harden, whereby a dense fine particle layer can be formed.
在本发明的第二方面中,微小颗粒层可以图案化。例如,当在140℃左右的温度下烘焙微小颗粒层时,可得到能够利用清洗剂溶液除去微小颗粒的程度的微小颗粒层的膜强度。因此,在涂敷微小颗粒的分散液之后,进行140℃左右的烘焙,在微小颗粒层的表面形成图案化的抗蚀剂膜,将其浸渍在清洗剂溶液中并加热,由此,能够除去未被抗蚀剂膜覆盖的部分的微小颗粒,由此,能够进行图案化。In the second aspect of the present invention, the minute particle layer may be patterned. For example, when the fine particle layer is baked at a temperature of about 140° C., the film strength of the fine particle layer can be obtained to such an extent that the fine particles can be removed by a detergent solution. Therefore, after coating the dispersion of fine particles, bake at about 140°C to form a patterned resist film on the surface of the fine particle layer, immerse it in a cleaning solution and heat it, thereby removing The fine particles in the portion not covered by the resist film can thus be patterned.
另外,在微小颗粒的分散液中含有感光性树脂的情况下,形成微小颗粒层之后,选择性地曝光,然后,浸渍在清洗剂溶液中,除去非曝光部分,由此,能够将微小颗粒层图案化。In addition, when the dispersion liquid of fine particles contains a photosensitive resin, after the fine particle layer is formed, it is selectively exposed, and then immersed in a cleaning solution to remove the non-exposed part, thereby, the fine particle layer can be removed. patterned.
以下,关于本发明的第一方面和第二方面的共同事项,有时作为“本发明”进行说明。Hereinafter, matters common to the first aspect and the second aspect of the present invention may be described as "the present invention".
在本发明中,光学树脂层的外侧表面可以具有非球面形状。通过将光学树脂层的外侧表面形成为非球面形状,能够形成例如复合型非球面透镜。In the present invention, the outer surface of the optical resin layer may have an aspheric shape. By forming the outer surface of the optical resin layer into an aspheric shape, for example, a composite aspheric lens can be formed.
在本发明中,分散在中间层中的微小颗粒可以分散到光学树脂层中。In the present invention, the fine particles dispersed in the intermediate layer can be dispersed in the optical resin layer.
在本发明中,例如可以使中间层的折射率为光学树脂层的折射率以上、并且为光学基材的折射率以下。即,可以使中间层的折射率为光学基材的折射率和光学树脂层的折射率之间的范围的折射率。In the present invention, for example, the refractive index of the intermediate layer may be equal to or higher than the refractive index of the optical resin layer and equal to or lower than the refractive index of the optical substrate. That is, the refractive index of the intermediate layer can be set to a range between the refractive index of the optical base material and the refractive index of the optical resin layer.
作为中间层中含有的微小颗粒,例如,可以举出选自氧化硅、氧化铌、和氧化锆中的至少一种。The fine particles contained in the intermediate layer include, for example, at least one selected from silicon oxide, niobium oxide, and zirconium oxide.
在本发明中,可以通过在中间层的表面形成凹凸,从而在中间层与光学树脂层的界面形成凹凸。通过在中间层与光学树脂层的界面形成凹凸,能够进一步提高中间层与光学树脂层的密着性。In the present invention, unevenness can be formed at the interface between the intermediate layer and the optical resin layer by forming unevenness on the surface of the intermediate layer. By forming irregularities at the interface between the intermediate layer and the optical resin layer, the adhesiveness between the intermediate layer and the optical resin layer can be further improved.
在本发明中,中间层可以设置成覆盖光学基材的周围。通过以覆盖光学基材的周围的方式设置中间层,能够更有效地防止水分等的浸入,从而能够进一步提高可靠性。In the present invention, the intermediate layer may be provided so as to cover the periphery of the optical substrate. By providing the intermediate layer so as to cover the periphery of the optical base material, it is possible to more effectively prevent intrusion of moisture or the like, and further improve reliability.
在本发明中,可以在光学树脂层的外侧表面设置防反射膜。另外,也可以在光学基材的与设置有中间层的一侧相反一侧的面上,设置防反射膜。In the present invention, an antireflection film may be provided on the outer surface of the optical resin layer. In addition, an antireflection film may be provided on the surface of the optical substrate opposite to the side on which the intermediate layer is provided.
在本发明中,防反射膜例如是由与中间层相同的材料形成的、通过将表面附近的微小颗粒溶解除去而在表面上形成有凹凸的膜。In the present invention, the antireflection film is formed of, for example, the same material as the intermediate layer, and is a film in which irregularities are formed on the surface by dissolving and removing fine particles near the surface.
以下,对本发明的光学树脂层、中间层、和光学基材详细地进行说明。Hereinafter, the optical resin layer, intermediate layer, and optical substrate of the present invention will be described in detail.
<光学树脂层><Optical resin layer>
本发明的光学树脂层由具有—M—O—M—键(M是金属原子)的有机金属聚合物、仅具有1个能够水解的基的金属醇盐和/或其水解物、以及具有氨基甲酸酯键和甲基丙烯酰氧基或具有氨基甲酸酯键和丙烯酰氧基的有机聚合物形成。The optical resin layer of the present invention is composed of an organometallic polymer having a -M—O—M—bond (M is a metal atom), a metal alkoxide having only one hydrolyzable group and/or its hydrolyzate, and an amino group having A formate bond and a methacryloxy group or an organic polymer having a urethane bond and an acryloxy group are formed.
上述有机聚合物是具有氨基甲酸酯键和甲基丙烯酰氧基或具有氨基甲酸酯键和丙烯酰氧基的有机聚合物,例如,可举出在多元醇的末端使用二异氰酸酯等多异氰酸酯、使羟基与具有甲基丙烯酰氧基或丙烯酰氧基的化合物反应而得到的有机聚合物。The above-mentioned organic polymer is an organic polymer having a urethane bond and a methacryloxy group or an organic polymer having a urethane bond and an acryloxy group. Isocyanate, an organic polymer obtained by reacting a hydroxyl group with a compound having a methacryloyloxy group or an acryloyloxy group.
作为具体的结构,在将具有甲基丙烯酰氧基或丙烯酰氧基的部分(丙烯酸酯部分或甲基丙烯酸酯部分)记为AC、将具有氨基甲酸酯键的部分(异氰酸酯部分)记为IS、将多元醇部分记为PO时,可举出具有As a specific structure, when a part having a methacryloxy group or an acryloxy group (acrylate part or methacrylate part) is denoted as AC, and a part having a urethane bond (isocyanate part) is denoted as When it is IS and the polyol part is recorded as PO, there are
AC—IS—PO—IS—ACAC—IS—PO—IS—AC
的结构的结构,通常称为丙烯酸酯系树脂。The structure of the structure is usually called acrylate resin.
从降低吸水性的观点出发,优选使用具有疏水性高的苯基或双酚A结构的丙烯酸酯系树脂。From the viewpoint of reducing water absorption, it is preferable to use an acrylate resin having a highly hydrophobic phenyl group or a bisphenol A structure.
在上述结构中,AC—IS之间和IS—PO之间中的至少一个通过氨基甲酸酯键结合。该氨基甲酸酯键的存在是重要的,通过来自该氨基甲酸酯键的氢键的凝集力,能够在光学树脂层的固化状态下使其具有柔软性和强韧性,从而能够进一步防止在高温高湿下产生裂纹等。In the above structure, at least one of AC-IS and IS-PO is bonded by a urethane bond. The existence of this urethane bond is important, and the cohesive force of the hydrogen bond derived from the urethane bond can make the optical resin layer have flexibility and toughness in the cured state, thereby preventing further damage to the optical resin layer. Cracks, etc., occur under high temperature and high humidity.
上述的AC部分具有能够聚合的基(炭的双键),具有通过光、热等能量,有机聚合物自身进行聚合或与上述有机金属聚合物形成键,从而使光学树脂层固化的作用。The above-mentioned AC moiety has a polymerizable group (double bond of carbon), and has the function of curing the optical resin layer by polymerizing the organic polymer itself or forming a bond with the above-mentioned organometallic polymer by energy such as light and heat.
另外,通过预先在上述有机金属聚合物中导入能够聚合的基,能够与有机聚合物中的AC成分聚合,能够形成更强固的键。In addition, by introducing a polymerizable group into the organometallic polymer in advance, it can be polymerized with the AC component in the organic polymer to form a stronger bond.
上述的PO部是赋予有机聚合物的柔软性等特性的部分,例如,由聚酯系多元醇、聚醚系多元醇、聚炭酸酯系多元醇、聚已内酯系多元醇、有机硅系多元醇等构成。The above-mentioned PO part is a part that imparts properties such as flexibility to the organic polymer. For example, it is made of polyester polyol, polyether polyol, polycarbonate polyol, polycaprolactone polyol, silicone polyols etc.
上述结构的有机聚合物,一般被称为聚氨酯丙烯酸酯系树脂等。Organic polymers having the above structures are generally called urethane acrylate resins and the like.
光学树脂层中含有上述金属醇盐和/或其水解物。上述金属醇盐和/或其水解物可以以不与有机金属聚合物结合的状态含有,也可以以结合的状态含有。另外,金属醇盐的水解物可以是水解物的缩聚物。The above-mentioned metal alkoxide and/or its hydrolyzate are contained in the optical resin layer. The metal alkoxide and/or its hydrolyzate may be contained in a state not bonded to the organometallic polymer, or may be contained in a bonded state. In addition, the hydrolyzate of the metal alkoxide may be a polycondensate of the hydrolyzate.
在光学树脂层中,通过含有仅具有一个能够水解的基的金属醇盐和/或其水解物,金属醇盐和/或其水解物与在有机金属聚合物分子的末端产生的—OH基反应,能够消除—OH基。因此,能够使在1450~1550nm的波长范围内产生的光传播损失和吸水率降低。In the optical resin layer, by containing a metal alkoxide and/or its hydrolyzate having only one hydrolyzable group, the metal alkoxide and/or its hydrolyzate react with the -OH group generated at the terminal of the organometallic polymer molecule , can eliminate -OH groups. Therefore, it is possible to reduce the light propagation loss and the water absorption rate generated in the wavelength range of 1450 to 1550 nm.
例如,当金属原子M是Si时,在有机金属聚合物分子的末端,有存在以—Si—O—R表示的烷氧基的情况。该烷氧基吸收水分、水解,如以下那样反应,产生硅烷醇基。For example, when the metal atom M is Si, an alkoxy group represented by -Si-O-R may exist at the terminal of the organometallic polymer molecule. This alkoxy group absorbs water, hydrolyzes, and reacts as follows to generate a silanol group.
—Si—O—R+H2O→—Si—OH+ROH↑—Si—O—R+H 2 O→—Si—OH+ROH↑
在上述反应中产生的ROH挥发。上述的硅烷醇基存在时,透过率下降、并且吸水率增加。The ROH generated in the above reaction is volatilized. When the above-mentioned silanol groups exist, the transmittance decreases and the water absorption increases.
当含有仅具有1个能够水解的基的金属醇盐和/或其水解物时,能够将如上述那样产生的硅烷醇基消除。例如,由以下的式子表示的只具有1个烷氧基的烷氧基硅烷,吸收水分、如以下那样水解。When a metal alkoxide having only one hydrolyzable group and/or a hydrolyzate thereof is contained, the silanol group generated as described above can be eliminated. For example, an alkoxysilane having only one alkoxy group represented by the following formula absorbs water and is hydrolyzed as follows.
R’3Si—O—R”+H2O→R’3Si—OH+R”OH↑R' 3 Si—O—R”+H 2 O→R' 3 Si—OH+R”OH↑
在上述反应中,R”OH挥发。如上述那样生成的水解物,如以下那样与有机金属聚合物的末端的硅烷醇基反应。In the above reaction, R"OH is volatilized. The hydrolyzate produced as above reacts with the terminal silanol group of the organometallic polymer as follows.
—Si—OH+R’3Si—OH→—Si—O—SiR’3+H2O—Si—OH+R' 3 Si—OH→—Si—O—SiR' 3 +H 2 O
通过上述反应,有机金属聚合物分子末端的硅烷醇基消除。因此,能够长时间维持高透过率,并且能够降低吸水率。Through the above reaction, the silanol group at the molecular terminal of the organometallic polymer is eliminated. Therefore, high transmittance can be maintained for a long time, and water absorption can be reduced.
如以上所述,金属醇盐被水解、作为水解物起作用,因此,可以以金属醇盐的形态含有,也可以以水解物的形态含有。另外,当有机金属醇盐或其水解物以未与有机金属聚合物结合的状态被含有时,在有机金属聚合物中,重新吸收水分、在其末端产生硅烷醇基等,此时,未结合的状态的金属醇盐或其水解物与该硅烷醇基等作用,能够如上述那样使硅烷醇基等消除。As described above, the metal alkoxide is hydrolyzed and acts as a hydrolyzate, so it may be contained in the form of the metal alkoxide or in the form of a hydrolyzate. In addition, when the organometallic alkoxide or its hydrolyzate is contained in a state not bonded to the organometallic polymer, in the organometallic polymer, moisture is reabsorbed, and silanol groups are generated at its terminals. The metal alkoxide or its hydrolyzate in this state acts on the silanol group and the like to eliminate the silanol group and the like as described above.
上述金属醇盐或其水解物可以含有氟原子。即,可以是将烃部分的氢取代为氟原子的金属醇盐及其水解物。The metal alkoxide or its hydrolyzate may contain fluorine atoms. That is, metal alkoxides in which hydrogen atoms in the hydrocarbon moiety are substituted by fluorine atoms and their hydrolyzates may be used.
有机金属聚合物的—M—O—M—键中的M,优选为Si、Ti、Nb或Zr或者这些金属的组合,特别优选为Si。为Si时,有机金属聚合物例如可以由有机硅树脂形成。M in the -M—O—M—bond of the organometallic polymer is preferably Si, Ti, Nb or Zr or a combination of these metals, particularly preferably Si. When it is Si, the organometallic polymer can be formed of, for example, a silicone resin.
优选在光学树脂层中还含有有机酸酐和/或有机酸。It is preferable to further contain an organic acid anhydride and/or an organic acid in the optical resin layer.
因为有机酸酐吸收水分而水解,所以,通过含有有机酸酐,能够使有机金属聚合物中的水分减少。由此,水分成为原因的吸收将减少,即使只添加有机酸酐,也能够抑制由水分引起的材料的劣化,提高透过率。另外,有机金属聚合物中含有的有机酸促进硅烷醇基等的反应。因此,能够促进硅烷醇基等的消除。例如,也能够促进有机金属聚合物分子末端的硅烷醇基之间的反应。Since the organic acid anhydride absorbs moisture and is hydrolyzed, the moisture in the organometallic polymer can be reduced by containing the organic acid anhydride. Thereby, the absorption caused by moisture is reduced, and even if only the organic acid anhydride is added, deterioration of the material due to moisture can be suppressed, and the transmittance can be improved. In addition, the organic acid contained in the organometallic polymer promotes the reaction of silanol groups and the like. Therefore, elimination of silanol groups and the like can be promoted. For example, it is also possible to promote the reaction between silanol groups at the molecular ends of the organometallic polymer.
由于以下的理由,优选光学树脂层中含有有机酸酐和/或有机酸。即,通过同时含有只具有1个能够水解的基的金属醇盐和/或其水解物与有机酸酐和/或有机酸,除了由有机酸酐产生的水分除去以外,只具有1个能够水解的基的金属醇盐的水解物与在有机金属聚合物分子末端产生的—OH基反应,促进使—OH基消除的反应。It is preferable to contain an organic acid anhydride and/or an organic acid in the optical resin layer for the following reasons. That is, by containing a metal alkoxide having only one hydrolyzable group and/or its hydrolyzate and an organic acid anhydride and/or an organic acid at the same time, except for the removal of moisture generated by the organic acid anhydride, only one hydrolyzable group The hydrolyzate of the metal alkoxide reacts with the -OH group generated at the end of the organometallic polymer molecule, and promotes the reaction to eliminate the -OH group.
当上述金属醇盐或其水解物是烷氧基硅烷或其水解物时,由以下的通式表示的化合物可以作为一个例子列举。When the above-mentioned metal alkoxide or its hydrolyzate is an alkoxysilane or its hydrolyzate, the compound represented by the following general formula can be mentioned as an example.
(在此,R1、R2和R3为碳原子数1~15的有机基,优选为烷基。另外,R4为碳原子数1~4的烷基。)(Here, R 1 , R 2 and R 3 are an organic group having 1 to 15 carbon atoms, preferably an alkyl group. In addition, R 4 is an alkyl group having 1 to 4 carbon atoms.)
作为具体例子,可以列举三甲基烷氧基硅烷、三乙基烷氧基硅烷等三烷基烷氧基硅烷。作为烷氧基,可以列举甲氧基和乙氧基等。Specific examples include trialkylalkoxysilanes such as trimethylalkoxysilane and triethylalkoxysilane. Examples of the alkoxy group include methoxy group, ethoxy group and the like.
作为上述有机酸酐的具体例子,可以列举三氟乙酸酐、乙酸酐、丙酸酐等。特别优选使用三氟乙酸酐。作为上述有机酸的具体例子,可以列举三氟乙酸、乙酸、丙酸等。特别优选使用三氟乙酸。Specific examples of the aforementioned organic acid anhydride include trifluoroacetic anhydride, acetic anhydride, propionic anhydride, and the like. Particular preference is given to using trifluoroacetic anhydride. Specific examples of the aforementioned organic acid include trifluoroacetic acid, acetic acid, propionic acid, and the like. Particular preference is given to using trifluoroacetic acid.
有机金属聚合物例如可以通过具有至少2个能够水解的基的有机金属化合物的水解和缩聚反应而合成。作为这样的有机金属化合物,例如,可以列举含有有机基的三烷氧基硅烷或二烷氧基硅烷。作为有机基,可以列举烷基、芳基、含有芳基的基等。作为芳基,优选苯基。进而,作为优选的化合物,可以列举苯基三烷氧基硅烷、二苯基二烷氧基硅烷,更优选苯基三乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、二苯基二乙氧基硅烷。An organometallic polymer can be synthesized, for example, by hydrolysis and polycondensation of an organometallic compound having at least two hydrolyzable groups. As such an organometallic compound, an organic group-containing trialkoxysilane or dialkoxysilane is mentioned, for example. As an organic group, an alkyl group, an aryl group, a group containing an aryl group, etc. are mentioned. As the aryl group, phenyl is preferred. Furthermore, as preferable compounds, phenyltrialkoxysilane, diphenyldialkoxysilane, more preferably phenyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane Silane, Diphenyldiethoxysilane.
另外,作为上述有机金属化合物,优选含有具有通过加热和/或照射能量线而交联的官能基的有机金属化合物。作为能量线,可以列举紫外线、电子线等。作为这样的交联的官能基,可以列举丙烯酰氧基、甲基丙烯酰氧基、苯乙烯基、环氧基和乙烯基。因此,优选使用具有这些官能基的三烷氧基硅烷。In addition, as the above-mentioned organometallic compound, it is preferable to contain an organometallic compound having a functional group crosslinked by heating and/or irradiation with energy rays. Examples of energy rays include ultraviolet rays, electron rays, and the like. As such a crosslinking functional group, an acryloxy group, a methacryloxy group, a styryl group, an epoxy group, and a vinyl group are mentioned. Therefore, trialkoxysilanes having these functional groups are preferably used.
在含有丙烯酰氧基、甲基丙烯酰氧基、苯乙烯基和乙烯基等自由基聚合性官能基时,优选含有自由基系的聚合引发剂。作为自由基系聚合引发剂,例如,可以列举1—羟基—环己基—苯基—酮、2—羟基—2—甲基—1—苯基—丙烷—1—酮、2—苄基—2—二甲基氨基—1—(4—吗啉代苯基)—丁酮—1、氧(oxy)—苯基—乙酸2—〔2—氧代—2—苯基—乙酰氧基—乙氧基〕—乙基—酯、氧(oxy)—苯基—乙酸2—〔2—羟基—乙氧基〕—乙基—酯、和它们的混合物。When radically polymerizable functional groups such as acryloyloxy groups, methacryloyloxy groups, styryl groups, and vinyl groups are contained, it is preferable to contain a radical-based polymerization initiator. As a radical polymerization initiator, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane-1-ketone, 2-benzyl-2 -Dimethylamino-1-(4-morpholinophenyl)-butanone-1, oxygen (oxy)-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethyl Oxy]-ethyl-ester, oxy-phenyl-acetic acid 2-[2-hydroxy-ethoxy]-ethyl-ester, and mixtures thereof.
另外,在含有具有环氧基的有机金属化合物时,优选含有固化剂。作为这样的固化剂,可以列举胺系固化剂、咪唑系固化剂、磷系固化剂、酸酐系固化剂等。具体地说,可以列举甲基六氢邻苯二甲酸酐、六氢邻苯二甲酸酐、三缩四乙二胺等。Moreover, when containing the organometallic compound which has an epoxy group, it is preferable to contain a hardening|curing agent. Examples of such curing agents include amine-based curing agents, imidazole-based curing agents, phosphorus-based curing agents, acid anhydride-based curing agents, and the like. Specifically, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, tetraethylenediamine, and the like are exemplified.
将具有官能基的有机金属化合物和不具有官能基的有机金属化合物混合使用时,混合比例以重量比(具有官能基的有机金属化合物:不具有官能基的有机金属化合物)计,优选为5~95:95~5。When an organometallic compound with a functional group and an organometallic compound without a functional group are used in combination, the mixing ratio is based on a weight ratio (organometallic compound with a functional group: organometallic compound without a functional group), preferably 5 to 5 95:95~5.
在光学树脂层中,上述有机聚合物的含量优选为5~95重量%、更优选为40~95重量%。上述有机聚合物的含量过少时,在高温高湿下容易产生裂纹,成为光的吸收和散射的主要原因。另外,相反地,上述有机聚合物的含量过多时,耐热性下降,高温环境下的劣化进行,光学特性、特别是透光性下降。In the optical resin layer, the content of the above-mentioned organic polymer is preferably 5 to 95% by weight, more preferably 40 to 95% by weight. When the content of the above-mentioned organic polymer is too small, cracks are likely to be generated under high temperature and high humidity, which becomes a factor of light absorption and scattering. Conversely, when the content of the above-mentioned organic polymer is too large, heat resistance decreases, deterioration in a high-temperature environment progresses, and optical properties, particularly light transmittance, decrease.
如以上所述,通过使上述有机聚合物的含量为5~95重量%的范围内,能够使光学树脂层成为更透明的材料,例如,在波长630nm中,作为厚度3mm的样品的透过率,可得到80%以上。另外,通过使上述有机聚合物的含量为40~95重量%的范围内,透过率达到90%以上。As mentioned above, by making the content of the above-mentioned organic polymer in the range of 5 to 95% by weight, the optical resin layer can be made into a more transparent material. For example, at a wavelength of 630 nm, the transmittance of a sample with a thickness of , more than 80% can be obtained. Moreover, by making content of the said organic polymer into the range of 40 to 95 weight%, the transmittance becomes 90% or more.
在光学树脂层中,上述金属醇盐或其水解物的含量,相对于100重量份的有机金属聚合物,优选为0.1~15重量份,更优选为0.2~2.0重量份。上述金属醇盐或其水解物的含量过少时,OH基会残留,1450~1550nm的波长范围内的吸收增加,吸水率变高,容易劣化。相反,上述金属醇盐或其水解物的含量过多时,在高温环境中,过剩的上述金属醇盐或其水解物会从材料中脱离,成为产生裂纹的主要原因。In the optical resin layer, the content of the metal alkoxide or its hydrolyzate is preferably 0.1 to 15 parts by weight, more preferably 0.2 to 2.0 parts by weight, based on 100 parts by weight of the organometallic polymer. When the content of the above-mentioned metal alkoxide or its hydrolyzate is too small, OH groups remain, absorption in the wavelength range of 1450 to 1550 nm increases, water absorption becomes high, and deterioration is likely. Conversely, when the content of the above-mentioned metal alkoxide or its hydrolyzate is too large, the excess of the above-mentioned metal alkoxide or its hydrolyzate will detach from the material in a high-temperature environment and become a main cause of cracks.
另外,有机酸酐或有机酸的含量,相对于100重量份的有机金属聚合物,优选为0.1~10重量份,更优选为1~5重量份。有机酸酐或有机酸的含量过少时,由只具有1个能够水解的基的金属醇盐进行的OH基的除去不完全,相反,有机酸酐或有机酸的含量过多时,在高温环境中,过剩的有机酸酐或有机酸自身会从材料中脱离,成为产生裂纹的主要原因。In addition, the content of the organic acid anhydride or the organic acid is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the organometallic polymer. When the content of the organic acid anhydride or the organic acid is too small, the removal of the OH group by the metal alkoxide having only one hydrolyzable group is incomplete. The organic acid anhydride or organic acid itself will detach from the material and become the main cause of cracks.
另外,在光学树脂层中,上述有机金属聚合物的固化物的折射率与上述有机聚合物的固化物的折射率之差优选为0.01以下。通过这样使折射率之差为0.01以下,材料中的有机金属聚合物区域与有机聚合物区域的界面的由折射率差引起的光的散射被抑制,可得到90%以上的透过率。In addition, in the optical resin layer, the difference between the refractive index of the cured product of the organometallic polymer and the refractive index of the cured product of the organic polymer is preferably 0.01 or less. By setting the difference in refractive index to 0.01 or less in this way, scattering of light due to the difference in refractive index at the interface between the organometallic polymer domain and the organic polymer domain in the material is suppressed, and a transmittance of 90% or more can be obtained.
另外,在光学树脂层中,使上述有机金属聚合物固化前的液体状态下的折射率与使上述有机聚合物固化前的折射率之差,优选为0.02以下。通过这样使两者固化前的液体状态下的折射率之差为0.02以下,能够使固化后的材料的透过率为90%以上。In addition, in the optical resin layer, the difference between the refractive index in the liquid state before the organometallic polymer is cured and the refractive index before the organic polymer is cured is preferably 0.02 or less. By setting the difference in refractive index between the two in the liquid state before curing to 0.02 or less in this way, the transmittance of the material after curing can be made 90% or more.
优选光学树脂层在IR测定图中具有由上述金属醇盐引起的850cm-1附近的吸收峰。通过具有这样的吸收峰,在材料中充分地含有作为只具有1个能够水解的基的金属醇盐的三甲基甲硅烷基,材料中的OH基被有效地除去。The optical resin layer preferably has an absorption peak around 850 cm −1 caused by the above-mentioned metal alkoxide in an IR measurement chart. By having such an absorption peak, the trimethylsilyl group which is a metal alkoxide having only one hydrolyzable group is sufficiently contained in the material, and the OH group in the material is effectively removed.
<第一方面的中间层><Middle layer of the first aspect>
本发明的第一方面的中间层是使由金属氧化物构成的微小颗粒分散在由具有自由基聚合性基和能够水解的基的金属醇盐和/或其水解物形成的母体树脂中而形成的层。The intermediate layer according to the first aspect of the present invention is formed by dispersing fine particles of a metal oxide in a matrix resin made of a metal alkoxide having a radically polymerizable group and a hydrolyzable group and/or its hydrolyzate. layer.
作为上述金属醇盐,可以列举具有自由基聚合性基的三烷氧基硅烷或二烷氧基硅烷等。As said metal alkoxide, trialkoxysilane or dialkoxysilane etc. which have a radically polymerizable group are mentioned.
另外,作为自由基聚合性基,可以列举丙烯酰氧基、甲基丙烯酰氧基、苯乙烯基和乙烯基等。作为金属醇盐,特别优选使用具有这些基的三烷氧基硅烷。Moreover, as a radical polymerizable group, an acryloyloxy group, a methacryloyloxy group, a styryl group, a vinyl group, etc. are mentioned. As metal alkoxides, trialkoxysilanes having these groups are particularly preferably used.
作为分散在母体树脂中的由金属氧化物构成的微颗粒,可以列举氧化硅、氧化铌、氧化锆、氧化钛、氧化铝、氧化钇、氧化铈、氧化镧等,其中,特别优选使用氧化硅、氧化铌、氧化锆。本发明中的微小颗粒的尺寸,以平均粒径计,优选为100nm以下、更优选为5~50nm的范围内。Examples of microparticles composed of metal oxides dispersed in the matrix resin include silicon oxide, niobium oxide, zirconium oxide, titanium oxide, aluminum oxide, yttrium oxide, cerium oxide, and lanthanum oxide, among which silicon oxide is particularly preferably used. , Niobium oxide, Zirconia. The size of the fine particles in the present invention is preferably 100 nm or less, more preferably within a range of 5 to 50 nm, in terms of average particle diameter.
在本发明的第一方面的中间层中,适当选择母体树脂中含有的微小颗粒的量,使得成为期望的折射率。通常,中间层中的微小颗粒的含量优选为0.5~50重量%的范围内。In the intermediate layer according to the first aspect of the present invention, the amount of fine particles contained in the matrix resin is appropriately selected so as to have a desired refractive index. Usually, the content of fine particles in the intermediate layer is preferably in the range of 0.5 to 50% by weight.
本发明的第一方面的中间层,通过使金属醇盐和/或其水解物中的自由基聚合性基聚合而固化。例如,可以通过加热或照射紫外线等能量线而固化。The intermediate layer according to the first aspect of the present invention is cured by polymerizing the radically polymerizable radical in the metal alkoxide and/or its hydrolyzate. For example, it can be cured by heating or irradiating energy rays such as ultraviolet rays.
在中间层中也可以含有在光学树脂层中已说明的自由基聚合系的聚合引发剂。The radical polymerization-based polymerization initiator described in the optical resin layer may also be contained in the intermediate layer.
在中间层中,通过添加折射率低的微小颗粒,能够控制使得中间层的折射率降低。另外,通过含有折射率高的微小颗粒作为上述微小颗粒,能够控制使得中间层的折射率变高。作为能够提高折射率的金属氧化物颗粒,可以列举氧化铌(Nb2O5)颗粒、氧化锆(ZrO2)颗粒、和氧化钛(TiO2)颗粒。另外,作为能够降低折射率的微小颗粒,可以列举氧化硅(SiO2)颗粒。In the intermediate layer, by adding fine particles with a low refractive index, it is possible to control the lowering of the refractive index of the intermediate layer. In addition, by containing fine particles having a high refractive index as the fine particles, it is possible to control the refractive index of the intermediate layer so that it becomes high. Examples of metal oxide particles capable of increasing the refractive index include niobium oxide (Nb 2 O 5 ) particles, zirconium oxide (ZrO 2 ) particles, and titanium oxide (TiO 2 ) particles. In addition, silicon oxide (SiO 2 ) particles are exemplified as fine particles capable of lowering the refractive index.
此外,如上所述,在光学树脂层中也可以含有微小颗粒。In addition, as described above, fine particles may also be contained in the optical resin layer.
<第二方面的中间层><Intermediate layer of the second aspect>
本发明的第二方面的中间层包含设置在光学基材侧的微小颗粒层和设置在光学树脂层侧的偶联层。The intermediate layer of the second aspect of the present invention includes a fine particle layer provided on the side of the optical substrate and a coupling layer provided on the side of the optical resin layer.
本发明的第二方面中的微小颗粒,可以使用在本发明的第一方面中使用的微小颗粒。As the fine particles in the second aspect of the present invention, the fine particles used in the first aspect of the present invention can be used.
另外,形成本发明的第二方面中的偶联层的金属醇盐和/或其水解物,可以使用与第一方面中的金属醇盐和/或其水解物同样的物质。In addition, as the metal alkoxide and/or its hydrolyzate forming the coupling layer in the second aspect of the present invention, the same metal alkoxide and/or its hydrolyzate in the first aspect can be used.
本发明的第一方面中的微小颗粒层可以是将多个层叠层而形成的。多个层可以是将不同的微小颗粒的层叠层而形成的。The fine particle layer in the first aspect of the present invention may be formed by laminating a plurality of layers. A plurality of layers may be formed by laminating layers of different fine particles.
作为在本发明的第二方面中使用的粘合剂树脂,如上所述可以列举水溶性丙烯酸单体、水溶性树脂、硅烷偶联剂和感光性树脂。As the binder resin used in the second aspect of the present invention, water-soluble acrylic monomers, water-soluble resins, silane coupling agents, and photosensitive resins can be cited as described above.
作为水溶性丙烯酸单体,可以列举甲基丙烯酸2—羟乙酯、甲基丙烯酸2—羟丙酯、甲基丙烯酸2—二甲基氨基乙酯等。Examples of the water-soluble acrylic monomer include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and 2-dimethylaminoethyl methacrylate.
作为水溶性树脂,可以列举:聚乙二醇缩水甘油醚等环氧系树脂,聚丙烯酸酯、聚甲基丙烯酸酯等丙烯酸系树脂,和在由聚硅氧烷的硅氧烷键构成的主链上加成亲水性基而形成的有机硅系树脂等。Examples of water-soluble resins include epoxy resins such as polyethylene glycol glycidyl ether, acrylic resins such as polyacrylates and polymethacrylates, and polysiloxanes composed mainly of siloxane bonds. Silicone-based resins formed by adding hydrophilic groups to the chain, etc.
作为硅烷偶联剂,可以列举3—甲基丙烯酰氧基丙基三甲氧基硅烷等甲基丙烯酰氧基系硅烷偶联剂、3—环氧丙氧基丙基三甲氧基硅烷等环氧系硅烷偶联剂、对苯乙烯基三甲氧基硅烷等的水解物或水解物的聚合物等苯乙烯基系硅烷偶联剂等。Examples of the silane coupling agent include methacryloxy-based silane coupling agents such as 3-methacryloxypropyltrimethoxysilane, cyclic silanes such as 3-glycidoxypropyltrimethoxysilane, etc. Styryl-based silane coupling agents such as oxygen-based silane coupling agents, hydrolyzates such as p-styryltrimethoxysilane or polymers of hydrolyzates, and the like.
作为感光性树脂,可以列举上述的水溶性丙烯酸单体、水溶性丙烯酸树脂等。As a photosensitive resin, the above-mentioned water-soluble acrylic monomer, water-soluble acrylic resin, etc. are mentioned.
在本发明的第二方面中,作为用于将微小颗粒层图案化的清洗剂溶液,可以列举用于将光学部件洗净的清洗剂溶液。In the second aspect of the present invention, as the cleaning solution for patterning the fine particle layer, a cleaning solution for cleaning optical components may be mentioned.
<光学基材><Optical substrate>
作为本发明中的光学基材,可以列举透光性的玻璃、陶瓷和塑料等的部件。在形成厚度薄的叠层光学元件时,作为光学基材,可以使用高折射率玻璃、高折射率透光性陶瓷等。Examples of the optical substrate in the present invention include members such as translucent glass, ceramics, and plastics. When forming a thin multilayer optical element, high-refractive-index glass, high-refractive-index translucent ceramics, etc. can be used as the optical substrate.
<叠层光学元件><Laminated Optical Components>
作为本发明的叠层光学元件,可以列举复合型非球面透镜。复合型非球面透镜,是在由玻璃等构成的球面透镜上形成由透光性树脂层构成的光透过区域,从而形成非球面透镜。在本发明中,在球面透镜等光学基材和作为透光性树脂层的光学树脂层之间设置有中间层,因此,能够设置密着性优异的光学树脂层。另外,在本发明中,在光学树脂层中使用硬度和耐热性优异的材料。因此,本发明的叠层光学元件,是高温高湿下的可靠性高、而且硬度和耐热性优异的叠层光学元件。As the multilayer optical element of the present invention, a composite aspheric lens can be mentioned. A composite aspheric lens is formed by forming a light transmission region made of a translucent resin layer on a spherical lens made of glass or the like to form an aspheric lens. In the present invention, since an intermediate layer is provided between an optical substrate such as a spherical lens and an optical resin layer that is a translucent resin layer, an optical resin layer excellent in adhesion can be provided. In addition, in the present invention, a material excellent in hardness and heat resistance is used for the optical resin layer. Therefore, the multilayer optical element of the present invention is a multilayer optical element that has high reliability under high temperature and high humidity and is excellent in hardness and heat resistance.
本发明的叠层光学元件,因为高温高湿下的可靠性优异、硬度和耐热性高,所以,能够应用于电配线用基板、机械部件用材料、防反射膜和表面保护膜等各种涂敷材料、光发送接收组件、光开关、光调制器等光通信器件、光波导路、光纤、透镜阵列等光传播路径结构以及包含它们的光束分光镜等光器件、积分透镜(integrator lens)、微透镜阵列、反射板、导光板、投影用屏幕等显示器件(显示器或者液晶投影机等)相关的光学元件、眼镜、CCD用光学系统、透镜、复合型非球面透镜、2P(Photoreplication Process)透镜、滤光片、衍射光栅、干涉仪、光耦合器、光合分波器、光传感器、全息光学元件、其它光学部件用材料、光电动势元件、接触透镜、医疗用人工组织、发光二极管(LED)的模材料等。The multilayer optical element of the present invention is excellent in reliability under high temperature and high humidity, and has high hardness and heat resistance, so it can be applied to various substrates for electrical wiring, materials for machine parts, antireflection films, and surface protection films. Coating materials, optical sending and receiving components, optical switches, optical modulators and other optical communication devices, optical waveguides, optical fibers, lens arrays and other optical propagation path structures, and optical devices including them such as beam splitters, integrator lenses ), microlens arrays, reflectors, light guide plates, projection screens and other display devices (displays or liquid crystal projectors, etc.) ) lenses, optical filters, diffraction gratings, interferometers, optical couplers, optical multiplexers, optical sensors, holographic optical elements, materials for other optical components, photoelectromotive force elements, contact lenses, medical artificial tissues, light-emitting diodes ( LED) mold materials, etc.
本发明的摄像模块的特征在于,具有由多个透镜构成的组合透镜、摄像元件、和用于保持它们的支架(holder),上述多个透镜中,至少1个是本发明的叠层光学元件。The imaging module of the present invention is characterized in that it has a combination lens composed of a plurality of lenses, an imaging element, and a holder for holding them, and at least one of the plurality of lenses is the multilayer optical element of the present invention. .
本发明的便携式电话的特征在于,包括本发明的摄像模块。A mobile phone of the present invention is characterized by including the camera module of the present invention.
本发明的液晶投影机的特征在于,包括:光源;照明光学系统;由液晶、半透明反射镜、反射镜、和透镜等构成的液晶部;以及投影光学系统,使用本发明的复合型非球面透镜的投影光学系统与光源被设置在相邻的位置。The liquid crystal projector of the present invention is characterized in that, comprises: light source; Illumination optical system; The liquid crystal part that is made of liquid crystal, semi-transparent mirror, reflecting mirror, and lens etc.; The projection optical system of the lens and the light source are arranged adjacent to each other.
在本发明中,在光学基材和光学树脂层之间设置有使由金属氧化物构成的微小颗粒分散在由具有自由基聚合性基和能够水解的基的金属醇盐和/或其水解物形成的母体树脂中而形成的中间层。因此,本发明的叠层光学元件,光学树脂层和光学基材之间的密着性优异,高温高湿下的可靠性高,而且硬度和耐热性优异。In the present invention, between the optical substrate and the optical resin layer, fine particles made of metal oxide are dispersed in metal alkoxide and/or its hydrolyzate having a radically polymerizable group and a hydrolyzable group. The intermediate layer is formed in the matrix resin formed. Therefore, the laminated optical element of the present invention has excellent adhesion between the optical resin layer and the optical substrate, high reliability under high temperature and high humidity, and excellent hardness and heat resistance.
附图说明 Description of drawings
图1是表示按照本发明的实施例1的叠层光学元件的截面结构的截面图。Fig. 1 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图2是表示按照本发明的实施例2的叠层光学元件的截面结构的截面图。Fig. 2 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to Example 2 of the present invention.
图3是表示按照本发明的实施例3的叠层光学元件的截面结构的截面图。Fig. 3 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图4是表示按照本发明的实施例5的叠层光学元件的截面结构的截面图。Fig. 4 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图5是表示图4所示的中间层的母体树脂层的结构的图。FIG. 5 is a diagram showing the structure of a matrix resin layer of the intermediate layer shown in FIG. 4 .
图6是表示按照本发明的实施例6的叠层光学元件的截面结构的截面图。Fig. 6 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图7是表示按照本发明的实施例7的叠层光学元件的截面结构的截面图。Fig. 7 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图8是沿着图7所示的A-A线的截面图。Fig. 8 is a cross-sectional view along line A-A shown in Fig. 7 .
图9是表示按照本发明的实施例8的叠层光学元件的截面结构的截面图。Fig. 9 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图10是表示图9所示的防反射膜9的结构的截面图。FIG. 10 is a cross-sectional view showing the structure of the
图11是表示作为按照本发明的各实施例中的叠层光学元件的复合型非球面透镜的制造工序的截面图。11 is a cross-sectional view showing a manufacturing process of a composite aspheric lens as a laminated optical element in each embodiment according to the present invention.
图12是表示比较例的复合型非球面透镜的截面图。12 is a cross-sectional view showing a composite aspheric lens of a comparative example.
图13是沿着图12所示的A-A线的截面图。Fig. 13 is a cross-sectional view along line A-A shown in Fig. 12 .
图14是表示比较例2的截面结构的截面图。FIG. 14 is a cross-sectional view showing a cross-sectional structure of Comparative Example 2. FIG.
图15是表示比较例3的截面结构的截面图。FIG. 15 is a cross-sectional view showing a cross-sectional structure of Comparative Example 3. FIG.
图16是表示比较例4的截面结构的截面图。FIG. 16 is a cross-sectional view showing a cross-sectional structure of Comparative Example 4. FIG.
图17是表示用于观测复合型非球面透镜的球面像差的装置的示意图。FIG. 17 is a schematic diagram showing an apparatus for observing spherical aberration of a compound aspheric lens.
图18是表示使用玻璃球面透镜和复合型非球面透镜观察时的网眼图案的图。Fig. 18 is a diagram showing a mesh pattern when observed using a glass spherical lens and a composite aspheric lens.
图19是表示按照本发明的实施例9的叠层光学元件的截面结构的截面图。Fig. 19 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图20是表示按照本发明的实施例9的叠层光学元件的截面结构的放大截面图。Fig. 20 is an enlarged cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图21是表示按照本发明的实施例10的叠层光学元件的截面结构的截面图。Fig. 21 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图22是表示按照本发明的实施例10的叠层光学元件的截面结构的放大截面图。Fig. 22 is an enlarged cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图23是表示按照本发明的实施例11的叠层光学元件的截面结构的截面图。Fig. 23 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图24是表示按照本发明的实施例11的叠层光学元件的截面结构的放大截面图。Fig. 24 is an enlarged cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图25是表示按照本发明的实施例12的叠层光学元件的截面结构的截面图。Fig. 25 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图26是表示按照本发明的实施例13的叠层光学元件的截面结构的截面图。Fig. 26 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图27是表示制造按照本发明的实施例14的叠层光学元件的工序的截面图。Fig. 27 is a cross-sectional view showing the steps of manufacturing a laminated optical element according to Example 14 of the present invention.
图28是表示制造按照本发明的实施例15的叠层光学元件的工序的截面图。Fig. 28 is a cross-sectional view showing the steps of manufacturing a laminated optical element according to Example 15 of the present invention.
图29是表示按照本发明的实施例16的叠层光学元件的截面结构的截面图。Fig. 29 is a cross-sectional view showing a cross-sectional structure of a laminated optical element according to
图30是表示按照本发明,在板状的光学基材上形成多个光学元件的状态的立体图。Fig. 30 is a perspective view showing a state in which a plurality of optical elements are formed on a plate-like optical substrate according to the present invention.
图31是表示具有按照本发明的叠层光学元件的摄像模块的截面图。Fig. 31 is a cross-sectional view showing a camera module having a laminated optical element according to the present invention.
图32是表示配置有以往的摄像模块的便携式电话的截面图。FIG. 32 is a cross-sectional view showing a mobile phone equipped with a conventional camera module.
图33是表示具有使用按照本发明的叠层光学元件的摄像模块的便携式电话的截面图。Fig. 33 is a cross-sectional view showing a cellular phone having a camera module using the laminated optical element according to the present invention.
图34是表示具有按照本发明的叠层光学元件的液晶投影机的示意截面图。Fig. 34 is a schematic sectional view showing a liquid crystal projector having a laminated optical element according to the present invention.
图35是表示具有按照本发明的叠层光学元件的液晶投影机的示意截面图。Fig. 35 is a schematic sectional view showing a liquid crystal projector having a laminated optical element according to the present invention.
图36是表示具有按照本发明的叠层光学元件的液晶投影机的示意截面图。Fig. 36 is a schematic sectional view showing a liquid crystal projector having a laminated optical element according to the present invention.
图37是表示按照本发明的光波导路的截面图。Fig. 37 is a cross-sectional view showing an optical waveguide according to the present invention.
图38是表示混合微小颗粒层中的Nb2O5含有率与折射率的关系的图。Fig. 38 is a graph showing the relationship between the Nb 2 O 5 content in the mixed fine particle layer and the refractive index.
图39是表示基板的折射率与混合微小颗粒层的反射率的关系的图。Fig. 39 is a graph showing the relationship between the refractive index of the substrate and the reflectance of the mixed fine particle layer.
符号说明Symbol Description
1 光学基材1 Optical substrate
2 中间层2 middle layer
3 光学树脂层3 Optical resin layer
4 母体树脂层4 matrix resin layer
5 微小颗粒5 tiny particles
6 偶联剂层6 Coupling agent layer
7、8 防反射膜7, 8 Anti-reflection film
9 母体树脂层9 matrix resin layer
21、23~31、32a、32b、33、34、35a、35b、36a、36b 微小颗粒层21, 23~31, 32a, 32b, 33, 34, 35a, 35b, 36a, 36b tiny particle layer
22 偶联层22 coupling layer
40 摄像模块40 camera module
41、42、43、44 非球面透镜41, 42, 43, 44 aspherical lens
45 摄像元件45 camera components
50 便携式电话50 portable phone
51 TV调谐器51 TV tuner
52 硬盘驱动器52 hard drives
53 显示器53 display
54 键盘54 keyboard
55 电池55 batteries
60 液晶投影机60 LCD projectors
61 投影光学系统61 Projection optical system
62 照明光学系统62 Illumination optical system
63 光源63 light source
64、65 半透明反射镜(halfmirror)64, 65 semi-transparent mirror (halfmirror)
66、67、68 反射镜(mirror)66, 67, 68 Reflector (mirror)
69 正交棱镜69 Orthogonal Prisms
70、71、72 透镜70, 71, 72 lens
73、74、75 液晶面板73, 74, 75 LCD panel
80 基板80 substrate
81 中间层81 middle layer
82 微小颗粒层82 Tiny particle layer
83 偶联层83 coupling layer
84 光学树脂层84 optical resin layer
85 芯层(core layer)85 core layer
86 下部包覆层86 lower cladding
86a 下部包覆层的槽86a Slot for lower cladding
87 上部包覆层87 upper cladding
具体实施方式 Detailed ways
以下,利用实施例详细地说明本发明,但本发明不受以下的实施例限定。Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.
〔偶联剂溶液1〕[Coupling agent solution 1]
用乙醇将3—甲基丙烯酰氧基丙基三甲氧基硅烷(MPTMS)稀释为2重量%,制成偶联剂溶液1。3-Methacryloxypropyltrimethoxysilane (MPTMS) was diluted with ethanol to 2% by weight to prepare a
用旋涂法等将该溶液涂敷在基材表面上,利用大气中的水分将MPTMS水解而产生的OH基与基材形成氢键。另外,MPTMS水解物中的有机基(甲基丙烯酰氧基丙基部分)与树脂等有机材料的相容性良好,因此,与树脂层的密着性提高。This solution is applied on the surface of the substrate by spin coating or the like, and OH groups generated by hydrolyzing MPTMS with moisture in the atmosphere form hydrogen bonds with the substrate. In addition, since the organic group (methacryloxypropyl group moiety) in the MPTMS hydrolyzate has good compatibility with organic materials such as resin, the adhesion to the resin layer is improved.
〔偶联剂溶液2〕[Coupling agent solution 2]
在13g乙醇中添加6.8g MPTMS并搅拌后,添加8g纯水、1.6g 2N盐酸并搅拌,放置72小时,制成偶联剂溶液2。After adding 6.8g MPTMS in 13g ethanol and stirring, add 8g pure water, 1.6g 2N hydrochloric acid and stir, leave for 72 hours, make
在偶联剂溶液2中,通过添加盐酸,能够积极且充分地水解、并缩聚,因此,能够制成高粘度的溶液。因此,与偶联剂溶液1相比,能够形成更厚的偶联剂层。In the
〔偶联剂溶液3〕[Coupling agent solution 3]
进一步用200g乙醇稀释偶联剂溶液2,制成偶联剂溶液3。Further dilute
〔氧化硅颗粒分散液〕〔Silicon oxide particle dispersion〕
制作将氧化硅颗粒(平均粒径20nm)分散在乙醇中并使其成为10重量%的分散液,将该分散液与上述偶联剂溶液2混合,制备出氧化硅颗粒分散液。A dispersion liquid in which silicon oxide particles (average particle diameter: 20 nm) was dispersed in ethanol to 10% by weight was prepared, and this dispersion liquid was mixed with the above-mentioned
调整混合比例,使得通过加热和/或光照射使分散液固化时,可得到规定的折射率。在氧化硅颗粒分散液的情况下,氧化硅颗粒的混合比例越多,固化后的折射率越小。通过调整氧化硅颗粒的混合比例,能够在约1.50~1.48的范围内调整波长589nm的折射率nD。The mixing ratio is adjusted so that a predetermined refractive index can be obtained when the dispersion liquid is cured by heating and/or light irradiation. In the case of a silicon oxide particle dispersion, the higher the mixing ratio of the silicon oxide particles, the smaller the refractive index after curing. By adjusting the mixing ratio of the silicon oxide particles, the refractive index nD at a wavelength of 589 nm can be adjusted within a range of about 1.50 to 1.48.
以下,只要没有特别说明,就是使用折射率调整为1.48的分散液。Hereinafter, unless otherwise specified, a dispersion liquid whose refractive index was adjusted to 1.48 was used.
〔氧化铌颗粒分散液〕[Niobium Oxide Particle Dispersion]
在13g乙醇中添加4.72g MPTMS和2.08g二苯基二甲氧基硅烷(DPhDMS),再添加8g纯水、1.6g 2N盐酸并搅拌,放置72小时。制备将氧化铌颗粒(平均粒径10nm)分散在乙醇中并使其成为10重量%的分散液,将上述的MPTMS和DPhDMS的溶液与该分散液混合,制备出氧化铌颗粒分散液。Add 4.72g MPTMS and 2.08g diphenyldimethoxysilane (DPhDMS) in 13g ethanol, then add 8g pure water, 1.6g 2N hydrochloric acid and stir, stand for 72 hours. A dispersion liquid in which niobium oxide particles (average particle diameter: 10 nm) was dispersed in ethanol to 10% by weight was prepared, and the above-mentioned MPTMS and DPhDMS solutions were mixed with the dispersion liquid to prepare a niobium oxide particle dispersion liquid.
调整上述金属醇盐与氧化铌颗粒的混合比,使得通过涂敷溶液而形成的层达到确定的折射率。在氧化铌颗粒分散液的情况下,氧化铌颗粒的含量越多,固化后的折射率越大。通过控制氧化铌颗粒的含量,波长589nm的折射率nD能够在约1.53~1.60左右的范围内调整。The mixing ratio of the aforementioned metal alkoxide and niobium oxide particles is adjusted so that the layer formed by applying the solution achieves a defined refractive index. In the case of the niobium oxide particle dispersion, the higher the content of the niobium oxide particles, the larger the refractive index after curing. By controlling the content of niobium oxide particles, the refractive index nD at a wavelength of 589 nm can be adjusted within the range of about 1.53-1.60.
以下,只要没有特别说明,就是使用将折射率设定为1.59的分散液。Hereinafter, unless otherwise specified, a dispersion liquid having a refractive index of 1.59 was used.
〔光学树脂层形成用溶液〕[Solution for forming optical resin layer]
在20.5ml(16.2g)乙醇中混合10ml(10.4g)MPTMS、4.1ml(4.4g)DPhDMS和1.65ml(1.7g)2N盐酸后,放置24小时,由此,使金属醇盐水解并缩聚。将得到的缩聚物的液体取4ml放入带盖的玻璃器皿中,作为聚合引发剂,溶解10mg的1—羟基—环己基—苯基—酮后,在100℃下加热,由此将乙醇蒸发除去,得到粘性液体A。在1g该粘性液体A中混合3ml(2.25g)三甲基乙氧基硅烷和0.8ml(0.41g)三氟乙酸酐,放置24小时后,在100℃下加热干燥,由此,将过剩的三甲基乙氧基硅烷和三氟乙酸酐蒸发除去,得到粘性液体B。After mixing 10 ml (10.4 g) of MPTMS, 4.1 ml (4.4 g) of DPhDMS, and 1.65 ml (1.7 g) of 2N hydrochloric acid in 20.5 ml (16.2 g) of ethanol, the metal alkoxide was hydrolyzed and polycondensed by standing for 24 hours. Put 4ml of the obtained polycondensate liquid into a glass vessel with a cover, and dissolve 10mg of 1-hydroxy-cyclohexyl-phenyl-ketone as a polymerization initiator, and then heat at 100°C to evaporate ethanol Removal gave viscous liquid A. 3 ml (2.25 g) of trimethylethoxysilane and 0.8 ml (0.41 g) of trifluoroacetic anhydride were mixed in 1 g of this viscous liquid A, and after standing for 24 hours, they were heated and dried at 100° C. Trimethylethoxysilane and trifluoroacetic anhydride were evaporated to give B as a viscous liquid.
相对于0.55g该粘性液体B,添加0.45g聚氨酯丙烯酸酯系光固化树脂后搅拌,得到含有45重量%聚氨酯丙烯酸酯系光固化树脂的光学树脂层形成用溶液。0.45 g of urethane acrylate photocurable resin was added to 0.55 g of this viscous liquid B, followed by stirring to obtain a solution for forming an optical resin layer containing 45% by weight of urethane acrylate photocurable resin.
(实施例1)(Example 1)
<复合型非球面透镜的制作><Production of composite aspheric lens>
利用图11所示的制造工序,制作复合型非球面透镜。A composite aspheric lens was manufactured by the manufacturing process shown in FIG. 11 .
如图11(a)所示,使用玻璃制的球面透镜作为光学基材1,在该光学基材1上形成中间层2后,滴加光学树脂层形成用溶液3。作为光学基材1,使用直径5mm、最大厚度1mm的高折射率玻璃球面透镜(玻璃的折射率nD=约1.8)。中间层2通过旋涂氧化硅颗粒分散液后、在100℃下加热1小时而形成。As shown in FIG. 11( a ), a spherical lens made of glass is used as the
如图11(b)所示,将内面具有非球面形状的镍制的模具10按压在光学树脂层形成用溶液3上,接着,如图11(c)所示,从光学基材1侧照射紫外线,使光学树脂层形成用溶液3固化,形成光学树脂层3。具体地说,用高压汞灯(强度约40mW/cm2)从光学基材1侧照射6分钟紫外线,使光学树脂层3固化后,如图11(d)所示,卸下模具10。接着,用高压汞灯(强度约40mW/cm2)从光学树脂层3侧照射10分钟紫外线,使光学树脂层3进一步固化。As shown in FIG. 11( b ), the
如以上那样操作,得到图11(e)所示的复合型非球面透镜。As described above, the composite aspheric lens shown in FIG. 11( e ) was obtained.
图1是沿着图11(e)的A-A线的截面图。如图1所示,在光学基材1上形成有中间层2,在中间层2上形成有光学树脂层3。另外,虽然在图11(e)中没有表示,但在光学树脂层3的外侧表面和光学基材1的相反侧的面上分别形成有防反射膜7和8。防反射膜7和8由真空蒸镀法形成。在光学树脂层3上形成的防反射膜7,是从光学树脂层3侧依次为SiO2层(厚度31nm)/Ti2O3层(厚度15nm)/SiO2层(厚度24nm)/Ti2O3层(厚度93nm)/SiO2层(厚度83nm)的、由5层结构构成的防反射膜。此外,SiO2层的折射率是1.46,Ti2O3层的折射率是2.35。FIG. 1 is a cross-sectional view along line AA of FIG. 11( e ). As shown in FIG. 1 , an
在光学基材1上形成的防反射膜8,是从光学基材1侧依次为Ti2O3层(厚度11nm)/SiO2层(厚度24nm)/Ti2O3层(厚度117nm)/SiO2层(厚度89nm)的由4层结构构成的防反射膜。此外,SiO2层的折射率和Ti2O3层的折射率与上述相同。The
如图1所示,本实施例的中间层2由分散有氧化硅颗粒5的母体树脂层4形成。中间层2的厚度是200nm。另外,光学树脂层3的最大厚度是140μm。As shown in FIG. 1 , the
(实施例2)(Example 2)
如图2所示,由在光学基材1上设置的偶联剂层6、和在其上设置的分散有氧化硅颗粒5的母体树脂层4形成中间层2,除此以外,与上述实施例1同样地操作,制作出复合型非球面透镜。As shown in FIG. 2 , the
偶联剂层6通过旋涂偶联剂溶液3、并在140℃下加热1小时而形成。偶联剂层6的厚度是10nm。母体树脂层4与实施例1同样地形成。其最大厚度是200nm。The
因此,本实施例中的中间层2的厚度是210nm。Therefore, the thickness of the
(实施例3)(Example 3)
在本实施例中,使用氧化铌颗粒作为微小颗粒5。在形成母体树脂层4中使用氧化铌颗粒分散液,由此使用氧化铌颗粒作为微小颗粒5,除此以外,与上述实施例2同样地操作,制作出复合型非球面透镜。In this embodiment, niobium oxide particles are used as the
(实施例4)(Example 4)
在乙醇中添加氧化铌颗粒(平均粒径10nm)使其成为10重量%的比例,制备出分散液,在1g光学树脂层形成用溶液中添加1g该分散液并搅拌,制备出分散有氧化铌颗粒的光学树脂层形成用溶液。除了使用该溶液形成光学树脂层3以外,与实施例3同样地操作,制作出复合型非球面透镜。Niobium oxide particles (average particle diameter: 10 nm) were added to ethanol to make a ratio of 10% by weight to prepare a dispersion, and 1 g of the dispersion was added to 1 g of the optical resin layer forming solution and stirred to prepare a niobium oxide-dispersed A solution for forming an optical resin layer of particles. Except having used this solution to form the
(实施例5)(Example 5)
如图4所示,作为中间层2,在光学基材1上形成偶联剂层6,在偶联剂层6上形成母体树脂层9,在母体树脂层9上形成偶联剂层6。母体树脂层9,如图5所示,具有将4层叠层的结构。即,在分散有氧化铌颗粒5b的母体树脂层4b上叠层分散有氧化硅颗粒5a的母体树脂层4a、再重复该2层的叠层结构,由此形成合计4层结构的母体树脂层9。具体地说,在旋涂氧化铌颗粒分散液、并在140℃下加热1小时后,在其上旋涂氧化硅颗粒分散液、并在140℃下加热1小时。反复进行2次该工序,形成图5所示的4层结构的母体树脂层9。As shown in FIG. 4 , as the
光学基材1上的偶联剂层6通过旋涂偶联剂溶液3后、在140℃下加热1小时而形成。其厚度是10nm。The
母体树脂层9上的偶联剂层6通过旋涂偶联剂溶液3后、在100℃下加热1小时而形成。其厚度是10nm。光学树脂层3与实施例1同样地形成。The
图5所示的母体树脂层9的各层,从靠近光学树脂层的一边、即从上方开始,具有以下的厚度。Each layer of the
分散有氧化硅颗粒的母体层:厚度169nmMatrix layer dispersed with silicon oxide particles: thickness 169nm
分散有氧化铌颗粒的母体层:厚度157nmMatrix layer dispersed with niobium oxide particles: thickness 157nm
分散有氧化硅颗粒的母体层:厚度93nmMatrix layer dispersed with silicon oxide particles: thickness 93nm
分散有氧化铌颗粒的母体层:厚度79nmMatrix layer dispersed with niobium oxide particles: thickness 79nm
此外,分散有氧化硅颗粒的母体层的折射率是1.48、分散有氧化铌颗粒的母体层的折射率是1.59。In addition, the refractive index of the matrix layer in which silicon oxide particles were dispersed was 1.48, and the refractive index of the matrix layer in which niobium oxide particles were dispersed was 1.59.
作为比较,制作出不形成母体层9的复合型非球面透镜,与本实施例的复合型非球面透镜比较透过率,在形成有母体树脂层9的本实施例的复合型非球面透镜中,透过率提高了约1.8%。As a comparison, a composite aspheric lens without
(实施例6)(Example 6)
形成图6所示的中间层2。偶联剂层6通过旋涂偶联剂溶液3后、在140℃下加热1小时而形成。其厚度是10nm。The
分散有氧化硅颗粒5的母体树脂层4,通过旋涂氧化硅颗粒分散液后、在140℃下加热1小时,并用高压汞灯照射紫外线,使厚度达到0.9μm而形成。通过使该层与缓冲氢氟酸(BHF)液接触,将表面附近的氧化硅颗粒溶解除去,在其表面上形成孔4c,将表面多孔化。The
此后,与实施例1同样地形成光学树脂层3,由此,在光学树脂层3的树脂浸入母体树脂层4的孔4c中的状态下形成光学树脂层3。Thereafter, the
(实施例7)(Example 7)
在本实施例中,如图7所示,在光学基材1的整个周围形成中间层2。In this embodiment, as shown in FIG. 7 , the
图8是沿着图7所示的A-A线的截面图。如图8所示,通过在光学基材1上形成偶联剂层6和分散有氧化铌颗粒5的母体树脂层4而形成中间层2。具体地说,将光学基材1在偶联剂溶液3中浸渍后,将其提起,通过鼓风(air blow)将多余的溶液吹走后,在140℃下加热1小时,由此,在光学基材1的周围整个面上形成厚度10nm的偶联剂层6。Fig. 8 is a cross-sectional view along line A-A shown in Fig. 7 . As shown in FIG. 8 ,
接着,将形成有偶联剂层6的光学基材1浸渍在氧化铌颗粒分散液中,将其提起后,通过鼓风将多余的分散液吹走,此后,在100℃下加热1小时,由此,在光学基材1的周围的整个面上形成厚度200nm的母体树脂层4。Next, the
接着,与实施例1同样地形成光学树脂层3,使得其最大厚度为140μm。Next, the
(实施例8)(Embodiment 8)
如图9所示,在本实施例中,除了将在光学树脂层3上形成的防反射膜13形成为如图10所示的防反射膜13以外,与实施例2同样地操作,制作出复合型非球面透镜。本实施例中的防反射膜13通过如下方法形成:在涂敷氧化硅分散液后,与实施例5同样地与缓冲氢氟酸(BHF)液接触,将表面附近的氧化硅颗粒溶解除去,形成孔4c,从而多孔质化。防反射膜13的厚度为4μm。As shown in FIG. 9, in this embodiment, except that the
如图10所示,具有从靠近光学树脂层的一侧向外侧、多孔质的孔4c的体积增加的结构。因此,折射率连续地变化,由此使其具有防反射功能。As shown in FIG. 10 , it has a structure in which the volume of the
(比较例1)(comparative example 1)
图12表示比较例1的复合型非球面透镜。如图12所示,在光学基材1上形成有光学树脂层3。图13是沿着图12的A-A线的截面图。如图13所示,在光学基材1上形成偶联剂层11后,在其上形成光学树脂层3。作为光学基材1,使用与实施例1同样的高折射率玻璃球面透镜。偶联剂层11通过旋涂偶联剂溶液1后、在100℃下加热1小时而形成。光学树脂层3与实施例1同样地操作而形成,使得其最大厚度为140μm。另外,防反射膜7和8也与实施例1同样地形成。FIG. 12 shows a composite aspheric lens of Comparative Example 1. FIG. As shown in FIG. 12 , an
偶联剂层11的厚度用触针式轮廓仪无法测定,因此,可以认为是10nm以下。Since the thickness of the
(比较例2)(comparative example 2)
如图14所示,在该比较例中,将偶联剂层11的厚度加厚。偶联剂层11通过使用偶联剂溶液3、在将其旋涂后在100℃下加热1小时而形成。偶联剂层11的厚度用触针式轮廓仪测定,为10nm。As shown in FIG. 14 , in this comparative example, the thickness of the
(比较例3)(comparative example 3)
如图15所示,在该比较例中,将偶联剂层11的厚度进一步加厚。具体地说,使用偶联剂溶液2,在将其旋涂后、在100℃下加热1小时,由此形成偶联剂层11。用触针式轮廓仪测定,偶联剂层11的厚度为200nm。As shown in FIG. 15 , in this comparative example, the thickness of the
(比较例4)(comparative example 4)
如图16所示,在该比较例中,在偶联剂层11上,使用环氧系光固化树脂作为母体树脂,形成分散有氧化硅颗粒5的母体树脂层12。因此,除了使用环氧系光固化树脂作为母体树脂以外,与实施例2同样地形成。As shown in FIG. 16 , in this comparative example, an epoxy-based photocurable resin was used as a matrix resin on the
具体地说,通过旋涂偶联剂溶液3后、在140℃下加热1小时,形成厚度10nm的偶联剂层11,然后,在其上旋涂使氧化硅颗粒分散在环氧系光固化树脂中而形成的分散液后,在100℃下加热1小时,由此形成厚度200nm的母体树脂层12。分散有氧化硅颗粒的环氧系树脂的分散液,使用乙醇作为溶剂,使用含有约5重量%的氧化硅颗粒(平均粒径20nm)、约20重量%的环氧系光固化树脂的分散液。Specifically, after spin-coating the
〔中间层表面的表面粗糙度〕〔Surface roughness of the surface of the intermediate layer〕
在上述的各实施例和各比较例中,在形成中间层后,测定中间层的表面粗糙度。测定的中间层的表面粗糙度是成为与光学树脂层的界面的表面的粗糙度。表面粗糙度由AFM(Atomic Force Microscopy:原子力显微镜)测定。在表1中表示测定结果。In each of the examples and comparative examples described above, the surface roughness of the intermediate layer was measured after the intermediate layer was formed. The measured surface roughness of the intermediate layer is the roughness of the surface to be the interface with the optical resin layer. The surface roughness was measured by AFM (Atomic Force Microscopy: atomic force microscope). Table 1 shows the measurement results.
〔高温高湿试验〕〔High temperature and high humidity test〕
对上述各实施例和各比较例的复合型非球面透镜进行高温高湿试验。将各50个样品在85℃、85%的环境下放置800小时,测定光学树脂层未从基板剥离的样品个数,在表1中表示其结果。A high-temperature and high-humidity test was performed on the composite aspheric lenses of the above-mentioned examples and comparative examples. The 50 samples were left in an environment of 85° C. and 85% for 800 hours, and the number of samples in which the optical resin layer was not peeled off from the substrate was measured. Table 1 shows the results.
〔反射率的测定〕〔Measurement of reflectance〕
测定光学树脂层侧的反射率。反射率的测定方法,利用透镜反射率测定机测定。The reflectance on the side of the optical resin layer was measured. The method for measuring the reflectance is to measure with a lens reflectance measuring machine.
将评价结果示于表1。Table 1 shows the evaluation results.
〔格子图案投影试验〕〔Lattice pattern projection test〕
使用图17所示的装置,对上述各实施例和各比较例的复合型非球面透镜进行格子图案投影试验。Using the apparatus shown in FIG. 17 , a lattice pattern projection test was performed on the composite aspheric lenses of the above-mentioned Examples and Comparative Examples.
将测定对象的透镜17配置在形成有网眼图案的屏幕18和CCD摄像机16之间,利用CCD摄像机16将屏幕18上的网眼图案放大后观察。屏幕18上的网眼图案是如图17所示的间隔0.5mm的网眼图案19。The
当使用玻璃球面透镜10作为透镜17时,由于球面透镜特有的球面像差,观察到如图18(a)所示的歪斜的网眼图案的图像。与此相对,当使用如上述那样制作的复合型非球面透镜作为透镜17时,得到如图18(b)所示的、网眼图案被忠实地放大后的图像。将得到如图18(b)所示的网眼图案的情况记为“良好”。将格子的线部分地稍微歪斜、或粗细产生波动的情况记为“不良”。When the glass
将测定结果示于表1。The measurement results are shown in Table 1.
表1Table 1
从表1所示的结果可看出,按照本发明的实施例的复合型非球面透镜在高温高湿中的耐久性优异。另外,虽然比较例3在高温高湿中的耐久性优异,但格子图案为不良,产生渗透或歪斜。From the results shown in Table 1, it can be seen that the composite aspheric lens according to the example of the present invention is excellent in durability under high temperature and high humidity. In addition, although Comparative Example 3 was excellent in durability under high temperature and high humidity, the lattice pattern was defective, and bleeding and distortion occurred.
在上述实施例中,作为微小颗粒,使用了氧化硅颗粒和氧化铌颗粒,但在使用氧化锆颗粒取代它们时,也可得到与上述同样的结果。In the above examples, silicon oxide particles and niobium oxide particles were used as fine particles, but the same results as above can be obtained when zirconia particles are used instead of them.
另外,在上述实施例中,作为光学树脂层的有机聚合物,使用了聚氨酯丙烯酸酯系树脂,但环氧丙烯酸酯系树脂、聚酯丙烯酸酯系树脂、有机硅系聚氨酯丙烯酸酯树脂等丙烯酸酯系的紫外线固化性或热固化性树脂、和环氧系的热固化性或紫外线固化性树脂也能够得到同样的效果。In addition, in the above-mentioned examples, urethane acrylate resin was used as the organic polymer of the optical resin layer, but acrylate resins such as epoxy acrylate resin, polyester acrylate resin, silicone urethane acrylate resin, etc. The same effects can also be obtained with UV-based or thermosetting resins and epoxy-based thermosetting or UV-curable resins.
以下,说明按照本发明的第二方面的实施例。Next, an embodiment according to the second aspect of the present invention will be described.
(实施例9)(Example 9)
图19是表示本实施例的叠层光学元件的截面图。在光学基材1上形成有中间层2,在中间层2上形成有光学树脂层3。中间层2由在光学基材1上形成的微小颗粒层21和在微小颗粒层21上形成的偶联层22构成。Fig. 19 is a cross-sectional view showing the laminated optical element of this embodiment. An
作为本实施例中的光学基材1,使用高折射率玻璃的基材。高折射率玻璃通常是含有大量的TiO2、ZrO2、Nb2O5、Ta2O5等高折射率氧化物的、二氧化硅成分少的玻璃。本实施例中使用的高折射率玻璃,是商品名为“S-TIH6”(小原株式会社生产)、无Pb和As、含有大量TiO2的高折射率玻璃。As the
微小颗粒层21通过涂敷市售的胶态二氧化硅水溶液后、在400℃下烘焙2小时而形成。胶态二氧化硅水溶液通常是平均粒径5nm~500nm的SiO2微颗粒以10~40重量%的含量分散在水中的水溶液。在本实施例中,使用平均粒径为5nm、SiO2含量为10重量%的胶态二氧化硅水溶液。此外,平均粒径可以用电子显微镜测定。The
用水稀释上述胶态二氧化硅水溶液,使得重量比(胶态二氧化硅水溶液:水)成为1:8的比例,以3000rpm的旋转速度进行旋涂,将其涂敷在作为光学基材1的高折射率透镜上。在涂敷前,为了改善对胶态二氧化硅水溶液的润湿性,预先用稀释的氢氟酸对透镜表面进行处理。也可以取代氢氟酸处理,进行在清洗剂中使清洗剂成分吸附在玻璃表面上等处理。通过进行这样的前处理,能够提高微小颗粒层中的微小颗粒分散的均匀性。微小颗粒层的厚度依赖于表面处理的状态,如果使表面处理的状态和旋涂等涂敷的条件总是一定,则能够利用胶态二氧化硅水溶液的浓度进行控制。在本实施例中,使微小颗粒层21的厚度为20nm。为了防止产生裂纹等,优选使微小颗粒层的厚度为1000nm左右以下。另外,作为含有SiO2微小颗粒的液体,以水以外的醇和甲苯等作为溶剂的液体也有市售,但使用水溶液时,涂敷后的微小颗粒之间的结合力强,因此优选。另外,将醇和甲苯进行比较时,使用醇溶液时,可得到膜质坚固的微小颗粒层。即,作为形成微小颗粒层的溶液,最优选水溶液,其次,优选乙醇、异丙醇等醇类的溶液。The above-mentioned colloidal silica aqueous solution was diluted with water so that the weight ratio (colloidal silica aqueous solution: water) became a ratio of 1:8, spin-coated at a rotation speed of 3000 rpm, and coated on the
如上所述,在光学基材1上涂敷胶态二氧化硅水溶液后、在400℃下烘焙2小时。由此,在光学基材1与微小颗粒层21的界面中,各自的构成物质产生相互扩散。由该相互扩散,密着性提高。如果此时的热处理温度高于500℃,则根据玻璃的种类不同,会产生基材的变形,因此,优选500℃以下的温度、优选为400℃左右。As described above, after coating the aqueous colloidal silica solution on the
图20是将图19的微小颗粒层21和偶联剂层22放大表示的图。如图20所示,在微小颗粒层21中,由于来自光学基材1的Ti的扩散,形成有Ti扩散区域21a。另外,在微小颗粒层21的上方,形成有存在大量二氧化硅成分的二氧化硅高浓度区域21b。利用STEM-EDS分析进行Ti浓度的分析。STEM-EDS分析是根据在向进行了截面TEM观察的试样截面照射电子束时产生的X射线的强度,分析所含的元素的种类和比例(化学组成)的方法。根据分析结果,在二氧化硅高浓度区域21b中,检测出Ti约1原子%,在Ti扩散区域21a中,检测出Ti约9原子%。因此,可以认为,在二氧化硅高浓度区域21b中,约99%是Si、约1%是Ti。另外,可以认为,在Ti扩散区域21a中,约91%是Si、约9%是Ti。因此,可以认为,在Ti扩散区域21a中,与二氧化硅高浓度区域21b相比,存在约9倍高浓度的Ti。FIG. 20 is an enlarged view showing the
上述的烘焙处理后,在微小颗粒层21上涂敷上述的“偶联剂溶液2”,形成偶联层22。涂敷后,在100℃下加热处理5分钟后,使用异丙醇除去多余的偶联剂,在表面上形成1nm以下的偶联剂层。该层是用透过型电子显微镜无法观测的程度的薄层,可以认为是1分子层~几分子层左右的厚度。After the above-mentioned baking treatment, the above-mentioned “
这样涂敷偶联剂溶液后,优选在100~120℃左右进行热处理。另外,在涂敷后,优选用乙醇或异丙醇等醇将多余的偶联剂除去、形成1nm以下的厚度。由此,能够形成密着性更高的偶联层。After applying the coupling agent solution in this way, it is preferable to perform heat treatment at about 100 to 120°C. In addition, after coating, it is preferable to remove excess coupling agent with alcohol such as ethanol or isopropanol to form a thickness of 1 nm or less. Thereby, a coupling layer with higher adhesiveness can be formed.
在上述那样形成的偶联层22上,使用上述的“光学树脂层形成用溶液”,形成光学树脂层。On the
在本实施例中,在涂敷偶联剂溶液以形成偶联层22之前,进行了使微小颗粒层21的表面成为疏水性的前处理。作为这样的前处理,可以列举使用有机溶剂系的液体的处理。在本实施例中,使用以烷基苯和烷基苯磺酸为主要成分的光致抗蚀剂的除去剂(商品名:“502A”,东京应化株式会社生产,芳香族烃100重量%、苯酚20重量%、烷基苯磺酸20重量%),通过在该除去剂中浸渍,对微小颗粒层21的表面进行前处理。处理后,用丙酮洗净。In this embodiment, before the coupling agent solution is applied to form the
在本实施例中,使用“偶联剂溶液2”,但也可以取代其而使用“偶联剂溶液1”或“偶联剂溶液3”。In this example, "
<剥离试验><Peel test>
在由上述实施例的叠层光学元件和高折射率玻璃透镜构成的光学基材上不形成微小颗粒层、直接形成偶联层,在其上形成光学树脂层,制作出作为比较样品的叠层光学元件。On the optical substrate composed of the laminated optical element and the high-refractive index glass lens of the above-mentioned examples, a coupling layer was directly formed without forming a fine particle layer, and an optical resin layer was formed thereon to produce a laminate as a comparative sample. Optical element.
对于实施例的样品和比较例的样品,作为加速试验,在温度85℃—湿度85%的气氛中放置500小时后,用肉眼观察实施例和比较例的样品。在比较例的样品中,几μm~几十μm左右的大致圆形的光学树脂层剥离,但在本实施例的样品中,完全看不到剥离。另外,作为其它的高折射率玻璃的商品名“S-LAH79”(小原株式会社生产)、高折射率透光性陶瓷也能够得到同样的结果。The samples of the examples and the samples of the comparative examples were left in an atmosphere of a temperature of 85° C. and a humidity of 85% for 500 hours as an accelerated test, and then the samples of the examples and the comparative examples were visually observed. In the sample of the comparative example, the approximately circular optical resin layer of several μm to several tens of μm peeled off, but in the sample of the present example, no peeling was observed at all. In addition, the same result was obtained also as other high-refractive-index glass "S-LAH79" (manufactured by Ohara Co., Ltd.) and high-refractive-index light-transmitting ceramics.
(实施例10)(Example 10)
图21是表示本实施例的叠层光学元件的截面图。如图21所示,在光学基材1上形成有中间层2,在其上形成有光学树脂层3。中间层2通过将微小颗粒层与偶联层22叠层而构成,该微小颗粒层包括由Nb2O5构成的微小颗粒层23、由SiO2构成的微小颗粒层24、由Nb2O5构成的微小颗粒层25和由SiO2构成的微小颗粒层26。Fig. 21 is a cross-sectional view showing the laminated optical element of this embodiment. As shown in FIG. 21, an
作为光学基材1,使用和实施例9同样的高折射率玻璃透镜(折射率1.8)。As the
微小颗粒层23的厚度是20nm、微小颗粒层24的厚度是20nm、微小颗粒层25的厚度是140nm、微小颗粒层26的厚度是80nm。由SiO2构成的微小颗粒层24和26,与实施例10同样,通过用水稀释胶态二氧化硅水溶液(平均粒径5nm、SiO2含量为10重量%)并进行旋涂而形成。由Nb2O5构成的微小颗粒层23和25通过用水将作为市售品的Nb2O5溶胶水溶液(平均粒径5nm、Nb2O5含量为10重量%)分别稀释为50倍、1.6倍,并将其旋涂而形成。但是,因为以1次旋涂只能得到约70nm的厚度,所以,微小颗粒层25进行了2次旋涂。此外,在形成微小颗粒层23之前,与实施例10同样地进行使用光致抗蚀剂的除去剂的前处理。The thickness of the
旋涂胶态二氧化硅水溶液后,在140℃下烘焙1分钟。另外,旋涂Nb2O5溶胶水溶液后,在140℃下烘焙1分钟。形成微小颗粒层26后,与实施例10同样地在400℃下烘焙2小时,由此进行相互扩散处理。通过该相互扩散处理,改善了多层膜的密着性。此后,与实施例10同样地涂敷偶联剂以形成偶联层22,在其上形成光学树脂层3。After spin-coating the colloidal silica aqueous solution, it baked at 140 degreeC for 1 minute. Also, after spin-coating an aqueous Nb 2 O 5 sol solution, it was baked at 140° C. for 1 minute. After forming the
图22是将中间层2放大表示的图。如图22所示,在微小颗粒层23、24和25中,产生来自光学基材1的Ti的扩散。FIG. 22 is an enlarged view of the
在本实施例中,在由Nb2O5构成的微小颗粒层上形成由SiO2构成的微小颗粒层,但也可以在这些层之间形成将Nb2O5和SiO2混合的微小颗粒层,使组成的变化分级地变化。由此,能够形成膜形成时的应力少的多层膜。In this embodiment, a fine particle layer composed of SiO 2 is formed on a fine particle layer composed of Nb 2 O 5 , but a fine particle layer in which Nb 2 O 5 and SiO 2 are mixed may be formed between these layers. , so that the composition changes stepwise. Thereby, a multilayer film with less stress during film formation can be formed.
<剥离试验><Peel test>
对本实施例的样品,也与上述实施例9同样地进行剥离试验,结果完全看不到剥离。另外,作为其它的高折射率玻璃的商品名“S-LAH79”(小原株式会社生产)、高折射率透光性陶瓷也能够得到同样的结果。The sample of this example was also subjected to a peeling test in the same manner as in Example 9 above, and as a result, no peeling was observed at all. In addition, the same result was obtained also as other high-refractive-index glass "S-LAH79" (manufactured by Ohara Co., Ltd.) and high-refractive-index light-transmitting ceramics.
(实施例11)(Example 11)
图23是表示本实施例的叠层光学元件的截面图。如图23所示,在光学基材1上形成有中间层2,在中间层2上形成有光学树脂层3。中间层2由第一微小颗粒层27和第二微小颗粒层28以及偶联层22形成。第一微小颗粒层27与实施例9同样地使用胶态二氧化硅水溶液形成,通过涂敷胶态二氧化硅水溶液后、在400℃下烘焙2小时而形成。其厚度是5nm。接着,第二微小颗粒层28通过涂敷同样的胶态二氧化硅水溶液后、将烘焙处理的温度降低为280℃进行30分钟烘焙处理而形成。其厚度是5nm。Fig. 23 is a cross-sectional view showing the laminated optical element of this embodiment. As shown in FIG. 23 , an
图24是将中间层2放大表示的图。第一微小颗粒层27,如上所述,在400℃下进行烘焙处理,因此,产生来自光学基材1的Ti等的扩散。与此相对,第二微小颗粒层28,如上所述,在280℃下进行烘焙处理,因此,几乎不产生Ti等的扩散,成为二氧化硅含量多的层。因此,与在其上形成的偶联层22的密着性变得更加良好。FIG. 24 is an enlarged view of the
通过像本实施例那样设置由更低温度的烘焙处理形成的微小颗粒层,即使将微小颗粒层整体的厚度变薄,也能够在其表面上形成二氧化硅成分多的层。通过将微小颗粒层的厚度变薄,能够减少剥离和裂纹的产生,因此,根据这样的方法,能够制造可靠性更高的叠层光学元件。By providing a fine particle layer formed by baking at a lower temperature as in this example, even if the overall thickness of the fine particle layer is reduced, a layer rich in silica can be formed on the surface. Since the generation of peeling and cracks can be reduced by reducing the thickness of the fine particle layer, a multilayer optical element with higher reliability can be manufactured according to such a method.
此外,偶联层22和光学树脂层3,与实施例9同样地形成。In addition, the
(实施例12)(Example 12)
图25是表示本实施例的叠层光学元件的截面图。如图25所示,在光学基材1上形成有中间层2,在中间层2上形成有光学树脂层3。在本实施例中,中间层2通过在微小颗粒层29上形成偶联层22而构成。在本实施例中,微小颗粒层29使用平均粒径80nm的胶态二氧化硅水溶液形成。通过使SiO2微小颗粒的平均粒径为80nm,在微小颗粒层29的表面形成大的凹凸。因此,能够使微小颗粒层29的表面积增加,偶联层22和光学树脂层3以相互进入的界面状态形成。因此,微小颗粒层29、偶联层22和光学树脂层3相互的密着性提高。Fig. 25 is a cross-sectional view showing the laminated optical element of this embodiment. As shown in FIG. 25 , an
此外,偶联层22和光学树脂层3,与实施例9同样地形成。In addition, the
(实施例13)(Example 13)
图26是表示本实施例的叠层光学元件的截面图。如图26所示,在本实施例中,在光学基材1上形成有中间层2,在中间层2上形成有光学树脂层3,中间层2由第一微小颗粒层30、第二微小颗粒层31和偶联层22形成。Fig. 26 is a cross-sectional view showing the laminated optical element of this embodiment. As shown in FIG. 26, in this embodiment, an
第一微小颗粒层30通过使用平均粒径5nm的胶态二氧化硅水溶液,涂敷后、在400℃下进行2小时烘焙处理而形成,使得厚度为20nm左右。第二微小颗粒层31通过在其上使用平均粒径80nm的胶态二氧化硅水溶液、涂敷后在280℃下处理30分钟而形成,使得厚度为300nm左右。这样,通过形成第一微小颗粒层30和第二微小颗粒层31,能够制作与光学基材1的密着性良好、而且与偶联层22和光学树脂层3的密着性良好的叠层光学元件。The first fine particle layer 30 is formed by applying an aqueous solution of colloidal silica with an average particle diameter of 5 nm, followed by baking at 400° C. for 2 hours, so that the thickness is about 20 nm. The second fine particle layer 31 is formed by applying an aqueous solution of colloidal silica having an average particle diameter of 80 nm and treating it at 280° C. for 30 minutes so as to have a thickness of about 300 nm. In this way, by forming the first fine particle layer 30 and the second fine particle layer 31, it is possible to manufacture a laminated optical element having good adhesion to the
即,第一微小颗粒层30形成为平均粒径5nm、即使用TEM观察也极其平坦的层,微小颗粒之间不形成空隙、气密地聚集而形成层。因此,在整个界面上与光学基材1接触,与光学基材1的密着性成为良好的状态。通过使用平均粒径达到50nm左右大小的胶体颗粒,能够形成致密的层。第二微小颗粒层31与实施例12同样地,在其表面形成大的凹凸,因此,成为与偶联层22和光学树脂层3的密着性良好的状态。That is, the first fine particle layer 30 is formed as an extremely flat layer with an average particle diameter of 5 nm even when observed by TEM, and the fine particles are airtightly aggregated to form a layer without forming gaps. Therefore, the
第一微小颗粒层30与第二微小颗粒层31的界面,虽然接触面积小,但因为由相同材料形成,所以,在例如120℃左右进行退火,也能够得到充分良好的密着性。Although the interface between the first fine particle layer 30 and the second fine particle layer 31 has a small contact area, they are made of the same material, and thus sufficient adhesion can be obtained even by annealing at, for example, about 120°C.
在本实施例中,将微小颗粒层分为2层,形成使微小颗粒层的粒径逐渐增大的分级结构,但也可以进一步形成多层、形成粒径增大的分级结构。In this embodiment, the fine particle layer is divided into two layers to form a hierarchical structure in which the particle diameter of the fine particle layer gradually increases, but it is also possible to further form multiple layers and form a hierarchical structure in which the particle diameter increases.
此外,偶联层22和光学树脂层3,与实施例9同样地形成。In addition, the
(实施例14)(Example 14)
在上述各实施例中,使用胶态二氧化硅水溶液形成微小颗粒层,但也可以在胶态二氧化硅水溶液中添加粘合剂树脂后使用。通过添加这样的粘合剂树脂,即使不在300~500℃左右的高温下进行烘焙处理,也能够使微小颗粒层固化而形成。例如,能够通过加热到120℃左右的温度而使其固化、或通过照射紫外线而使其固化。In each of the above examples, the colloidal silica aqueous solution was used to form the fine particle layer, but it may also be used after adding a binder resin to the colloidal silica aqueous solution. By adding such a binder resin, the fine particle layer can be solidified and formed without performing a baking treatment at a high temperature of about 300 to 500°C. For example, it can be cured by heating to a temperature of about 120° C., or cured by irradiating ultraviolet rays.
本实施例是使用添加有这样的粘合剂树脂的微小颗粒水溶液的实施例。The present example is an example using an aqueous solution of fine particles to which such a binder resin is added.
图27是表示本实施例的叠层光学元件的制造工序的截面图。首先,准备图27(a)所示的由高折射率玻璃透镜构成的光学基材1。接着,如图27(b)所示,在光学基材1的一个面上形成第一微小颗粒层32a。该第一微小颗粒层32a通过使用不含粘合剂树脂的胶态二氧化硅水溶液(平均粒径5nm、SiO2含量为10重量%)、涂布后在400℃下进行相互扩散处理而形成,使得厚度为20nm。在其上,如图27(b)所示,与实施例9同样地操作,形成偶联层22和光学树脂层3。Fig. 27 is a cross-sectional view showing the manufacturing process of the multilayer optical element of this example. First, an
接着,如图27(c)所示,以覆盖全体的方式形成第二微小颗粒层32b。使用在4ml胶态二氧化硅水溶液(平均粒径5nm、SiO2含量为10重量%)和4ml水的混合液中添加有20μl(微升)甲基丙烯酸—2—羟乙基酯作为树脂粘合剂而形成的水溶液,通过涂敷该水溶液,形成第二微小颗粒层32b。就涂敷方法而言,在旋涂法中,在涂布中有可能产生不均匀,所以,优选利用气枪等从涂敷的液体上方吹氮气或空气,以使其尽快干燥。在本实施例中,一边吹空气以使其干燥一边进行涂敷。使涂膜干燥后,照射紫外线,形成第二微小颗粒层32b。Next, as shown in FIG. 27(c), the second
在第二微小颗粒层32b的形成中使用树脂粘合剂,是因为已经形成了第一光学树脂层3a、所以不能在高温下进行烘焙的缘故。The reason why the resin binder is used in forming the second
接着,如图27(d)所示,在光学基材1的另一个面上的第二微小颗粒层32b上,与实施例9同样地操作,形成第二偶联层22b和第二光学树脂层3b。Next, as shown in FIG. 27( d), on the second
在图27(d)所示的叠层光学元件中,第二微小颗粒层32b在光学基材1的一个面(上方的面)中,能够作为硬膜(hard coat)层起作用,在另一个面(下方的面)中,能够作为用于改善密着性的微小颗粒层起作用。In the laminated optical element shown in FIG. 27( d), the second
作为树脂粘合剂,在本实施例中使用作为水溶性的丙烯酸单体的一种的甲基丙烯酸—2—羟乙基酯,但也可以使用水溶性丙烯酸树脂和水溶性环氧树脂等。另外,在4ml胶态二氧化硅水溶液和4ml水的混合液中,加入20μl(微升)的甲基丙烯酸—2—羟乙基酯,并且再加入20μl(微升)的偶联剂溶液2,由此成为更稳定的液体,有能够减少涂敷不均匀的效果。As the resin binder, 2-hydroxyethyl methacrylate, which is a kind of water-soluble acrylic monomer, was used in this embodiment, but water-soluble acrylic resins, water-soluble epoxy resins, and the like may also be used. In addition, in the mixture of 4ml colloidal silica aqueous solution and 4ml water, add 20μl (microliter) of 2-hydroxyethyl methacrylate, and then add 20μl (microliter) of
作为粘合剂树脂,在水溶性丙烯酸单体中,如上述单体那样具有羟基的物质难以使微小颗粒凝集,非常容易处理。As a binder resin, among water-soluble acrylic monomers, those having a hydroxyl group like the above-mentioned monomers are difficult to aggregate fine particles and are very easy to handle.
另外,在形成由Nb2O5构成的微小颗粒层时,与SiO2的微小颗粒层相比,难以产生涂布后的不均匀。例如,在4ml的Nb2O5溶胶水溶液(平均粒径5nm、Nb2O5含量为10重量%)和4ml水的混合液中,添加20μl(微升)的甲基丙烯酸—2—羟乙基酯,并进行旋涂而形成。另外,将由SiO2构成的微小颗粒层和由Nb2O5构成的微小颗粒层交替地叠层后,同时照射紫外线,由此能够容易地形成多层膜。In addition, when forming a fine particle layer composed of Nb 2 O 5 , unevenness after coating is less likely to occur compared with a fine particle layer of SiO 2 . For example, in a mixture of 4 ml of Nb 2 O 5 sol aqueous solution (
(实施例15)(Example 15)
图28是表示本实施例的叠层光学元件的制造工序的截面图。Fig. 28 is a cross-sectional view showing the manufacturing process of the multilayer optical element of this embodiment.
如图28(a)所示,准备一面平的类型的高折射率透镜,作为光学基材1。接着,如图28(b)所示,在光学基材1的平面一侧,不稀释地涂敷Nb2O5溶胶水溶液(平均粒径5nm、Nb2O5含量为10重量%)后,如以下那样进行图案化,形成第一微小颗粒层33,制作出菲涅耳透镜(Fresnel lens)。作为菲涅耳透镜的制作方法,有以下2种方法。As shown in FIG. 28( a ), a high-refractive-index lens with one surface flat is prepared as an
<第一方法><first method>
涂敷Nb2O5溶胶水溶液(平均粒径5nm、Nb2O5含量为10重量%)后,在140℃下烘焙30分钟,使微小颗粒层达到某种程度的固化。接着,在该微小颗粒层的表面形成光致抗蚀剂,使用光掩模形成衍射光栅的抗蚀剂图案。此后,通过在加热到80℃的玻璃洗净专用的清洗剂(商品名“SE10”、Sonic Fellow株式会社生产)中浸泡5~10分钟,未被抗蚀剂膜覆盖的部分的微小颗粒部分溶出到清洗剂中而被除去。此后,利用抗蚀剂去除装置(resist stripper)除去光致抗蚀剂。微小颗粒层能够利用氢氟酸除去,但此时,有可能蚀刻到底层的透镜。但是,通过使用该清洗剂,能够选择性地只除去微小颗粒层。该除去方法不仅在Nb2O5时可以使用,在SiO2和其它氧化物微粒时也可以使用。After coating the aqueous solution of Nb 2 O 5 sol (
<第二方法><second method>
在涂敷与上述同样的4ml的Nb2O5溶胶水溶液、和20μl的甲基丙烯酸—2—羟乙基酯的混合液后,使用光掩模,进行紫外线照射。由此,作为感光性丙烯酸单体的甲基丙烯酸—2—羟乙基酯发生交联反应,仅微小颗粒层的感光部分固化。接着,通过在加热到80℃的玻璃洗净专用的清洗剂(SE10)中浸泡5~10分钟,未感光的部分的微小颗粒层溶出到清洗剂中而被除去。After applying the same mixture of 4 ml of Nb 2 O 5 sol aqueous solution and 20 µl of 2-hydroxyethyl methacrylate as above, ultraviolet irradiation was performed using a photomask. As a result, 2-hydroxyethyl methacrylate, which is a photosensitive acrylic monomer, undergoes a crosslinking reaction, and only the photosensitive portion of the fine particle layer is cured. Next, by immersing for 5 to 10 minutes in a cleaning agent (SE10) heated to 80°C for glass cleaning, the fine particle layer of the unexposed part is eluted into the cleaning agent and removed.
利用以上的方法,将由Nb2O5构成的第一微小颗粒层33图案化后,如图28(c)所示,涂敷由SiO2构成的第二微小颗粒层34。当在第一微小颗粒层中添加粘合剂树脂时,优选在第二微小颗粒层34中也添加粘合剂树脂。另外,当在第一微小颗粒层33中不添加粘合剂树脂而将其图案化时,优选在第二微小颗粒层34中也不添加粘合剂树脂。此时,第二微小颗粒层在涂敷后在400℃下烘焙2小时,以使其固化。After the first fine particle layer 33 composed of Nb 2 O 5 is patterned by the above method, as shown in FIG. 28( c ), the second fine particle layer 34 composed of SiO 2 is applied. When a binder resin is added to the first fine particle layer, it is preferable to also add a binder resin to the second fine particle layer 34 . In addition, when the first fine particle layer 33 is patterned without adding a binder resin, it is preferable not to add a binder resin to the second fine particle layer 34 either. At this time, the second fine particle layer was baked at 400° C. for 2 hours after coating to be cured.
接着,在涂敷偶联剂溶液2后,与实施例9同样地用醇将表面的偶联剂除去,形成厚度1nm以下的偶联层22。Next, after applying the
接着,如图28(d)所示,在偶联层22上,与实施例9同样地操作,形成光学树脂层3,由此能够制成菲涅耳透镜。Next, as shown in FIG. 28( d ), an
(实施例16)(Example 16)
图29是表示本实施例的叠层光学元件的截面图。在本实施例的叠层光学元件中,使用板状的光学元件1,在其两面上,各自形成有由衍射光栅产生的菲涅耳透镜、和由光学树脂层3a和3b产生的非球面透镜。在上方的面和下方的面中,与实施例15同样地操作,分别形成图案化的第一微小颗粒层35a和35b,在其上形成第二微小颗粒层36a和36b,在其上分别形成偶联层22a和22b,然后在其上形成光学树脂层3a和3b。Fig. 29 is a cross-sectional view showing the laminated optical element of this embodiment. In the laminated optical element of this embodiment, a plate-shaped
另外,在使用板状基材作为光学基材时,如图30所示,能够在同一光学基材1上同时制作多个光学元件37。In addition, when a plate-shaped base material is used as the optical base material, as shown in FIG. 30 , a plurality of optical elements 37 can be produced simultaneously on the same
另外,如图27所示,在形成微小颗粒层作为最外层的硬膜层时,可以通过将该硬膜层的部分图案化而形成衍射光栅。In addition, as shown in FIG. 27 , when forming the fine particle layer as the outermost hard coat layer, a diffraction grating can be formed by patterning part of the hard coat layer.
在上述各实施例中,通过相互扩散处理,使作为光学基材成分的Ti扩散到微小颗粒层中,即使是例如Nb、Zr、Sn、Ce、Ta等,也与Ti同样地能够得到提高微小颗粒层与光学基材的密着性的效果。In each of the above-mentioned embodiments, Ti, which is an optical base material component, is diffused into the fine particle layer by interdiffusion treatment, and even if it is, for example, Nb, Zr, Sn, Ce, Ta, etc., it can also be improved in the same way as Ti. The effect of the adhesion of the particle layer to the optical substrate.
在上述各实施例中,作为形成微小颗粒层时的涂敷方法,以旋涂法为中心进行了说明,但也可以利用浸渍法取代旋涂法进行涂敷。在该情况下,为了均匀地涂敷,优选将光学基材浸渍在涂敷溶液中后、以一定的速度将光学基材提起。In each of the above-mentioned embodiments, the spin coating method has been mainly described as the coating method for forming the fine particle layer, but the coating may be performed by the dipping method instead of the spin coating method. In this case, it is preferable to lift up the optical substrate at a constant speed after dipping the optical substrate in the coating solution for uniform coating.
在上述各实施例中,作为微小颗粒,对SiO2和Nb2O5进行了说明,但本发明不限定于这些微小颗粒,也可以使用:ZrO2、TiO2、Al2O3、SnO2、CeO2、Ta2O5等氧化物;比氧化物折射率高的GaN、AlN、GaInN等氮化物系的微小颗粒;或金刚石微小颗粒等。这些微小颗粒,因为物理硬度高,所以,在兼作为硬膜层时,优选使用这些颗粒。另外,在氮化物系的微小颗粒的情况下,在TiO2、Nb2O5等氧化物中,由于光催化反应,当在与光学树脂接触的部分照射紫外线时,有引起树脂变色的情况,但通过使用氮化物系的微小颗粒,能够解决这样的问题。In each of the above-mentioned examples, SiO 2 and Nb 2 O 5 were described as fine particles, but the present invention is not limited to these fine particles, and ZrO 2 , TiO 2 , Al 2 O 3 , and SnO 2 may also be used. , CeO 2 , Ta 2 O 5 and other oxides; GaN, AlN, GaInN and other nitride-based fine particles with a higher refractive index than oxides; or diamond fine particles, etc. Since these fine particles have high physical hardness, they are preferably used when also serving as a hard coat layer. In addition, in the case of nitride-based fine particles, in oxides such as TiO 2 and Nb 2 O 5 , due to photocatalytic reaction, when ultraviolet rays are irradiated on the part in contact with the optical resin, the resin may be discolored. However, such a problem can be solved by using nitride-based fine particles.
(实施例17)(Example 17)
图31是表示本发明的摄像模块的一个实施例的截面图。如图31所示,在摄像元件45上设置有由被支架46保持的4块非球面透镜41、42、43和44构成的组合透镜。摄像模块40这样具有4块非球面透镜41~44,能够作为便携式电话用的2~5兆像素的摄像模块使用。Fig. 31 is a cross-sectional view showing an example of the camera module of the present invention. As shown in FIG. 31 , a combined lens composed of four aspherical lenses 41 , 42 , 43 , and 44 held by a
在本实施例的非球面透镜41~44中,在光学基材上形成有实施例9所示的微小颗粒层21和在微小颗粒层上形成的偶联层22。因此,即使在二氧化硅成分少的光学基材上,也能够密着性、可靠性良好地形成光学树脂层3,从而能够使用二氧化硅成分少的高折射率玻璃作为光学基材。因此,在本实施例中,作为非球面透镜41~44,使用在实施例9中使用高折射率玻璃(小原株式会社生产、商品名“S-LAH79”、折射率约2.0)作为光学基材而形成的非球面透镜。因为使用折射率约2.0的高折射率基材,所以能够缩短焦点距离。因此,能够缩短支架46的长度,所以,能够使本实施例的摄像模块的高度为约8mm。In the aspheric lenses 41 to 44 of this embodiment, the
另外,在本实施例中,使非球面透镜41~44全部为复合型非球面透镜,但根据摄像模块的设计,不需要使全部的透镜都为复合型非球面透镜,只要使至少1个透镜为复合型非球面透镜即可。In addition, in this embodiment, all the aspheric lenses 41-44 are compound aspheric lenses, but according to the design of the camera module, it is not necessary to make all the lenses be compound aspheric lenses, as long as at least one lens It only needs to be a composite aspheric lens.
在光学基材上使用不具有如实施例9所示的微小颗粒层21的复合型非球面透镜的、以往的便携式电话用摄像模块中,为了维持光学基材与光学树脂层的密着性,需要提高光学基材的二氧化硅成分,因此,能够使用的玻璃材料受到限定,其折射率达到1.6左右。因此,不能缩短焦点距离,所以,以往的摄像模块的高度为约10mm左右。In a conventional camera module for a cellular phone that uses a composite aspheric lens that does not have a
图32是表示配置有高度10mm的以往的摄像模块的对折型的便携式电话的截面图。32 is a cross-sectional view showing a foldable mobile phone in which a conventional camera module with a height of 10 mm is arranged.
在图32(a)和(b)所示的对折状态下,高度H为25mm。在图32(a)所示的便携式电话中,上方部的高度h1和下方部的高度h2各自为12.5mm,是相同的高度。在上方部中具有摄像模块40,内置有TV调谐器51、硬盘驱动器52和显示器53等。在图32(a)中,上方部的高度h1为12.5mm,较低,所以,摄像模块40的存在成为麻烦,设置有小的显示器53。在下方部中,内置有键盘54和电池55等。In the half-folded state shown in Fig. 32(a) and (b), the height H is 25 mm. In the mobile phone shown in FIG. 32( a ), the height h1 of the upper part and the height h2 of the lower part are each 12.5 mm, which are the same height. There is a
在图32(b)所示的便携式电话中,上方部的高度h1为14.5mm、下方部的高度h2为10.5mm。因为设计成上方部的高度h1变高,所以,能够配置大的显示器53。另一方面,因为下方部的高度h2为10.5mm,所以,电池55的容积变小,有电池容量变小的问题。In the mobile phone shown in FIG. 32(b), the height h1 of the upper part is 14.5 mm, and the height h2 of the lower part is 10.5 mm. Since the height h1 of the upper part is designed to be high, a
图33是表示按照本发明的一个实施例的便携式电话的截面图。在图33(a)和(b)所示的便携式电话中,内置有本发明的摄像模块40。本发明的摄像模块40的高度能够降低到例如8mm左右,所以,如图33(a)所示,即使配置大的显示器53,也不需要提高上方部的高度h1,能够使下方部的高度h2为与上方部的高度h1相同的12.5mm。因此,能够内置大容量的电池55。Fig. 33 is a sectional view showing a portable telephone according to an embodiment of the present invention. The
另外,如图33(b)所示,能够在上方部和下方部分别配置摄像模块40。因此,能够进行立体图像的摄影,而且,自己的脸也能够以高图像质量进行摄影。另外,也能够进行使用多个摄像机的全景摄影、将多个摄像机的输出信号电合成从而实质上提高灵敏度等应用。In addition, as shown in FIG. 33( b ), it is possible to arrange the
(实施例18)(Example 18)
另外,图31所示的摄像模块也可以作为车载用后监视器的摄像模块使用。车载用的摄像模块需要高度的耐热性,可以使用在实施例17中使用的非球面透镜。另外,因为该非球面透镜具有高折射率,所以,能够扩大视角。In addition, the camera module shown in FIG. 31 can also be used as a camera module of a vehicle-mounted rear monitor. A vehicle-mounted camera module requires high heat resistance, and the aspheric lens used in Example 17 can be used. In addition, since the aspheric lens has a high refractive index, it is possible to widen the viewing angle.
(实施例19)(Example 19)
图34是表示液晶投影机的示意截面图。在光源63上设置有照明光学系统62,照明光学系统62由透镜62a和62b构成。从光源63射出的光照射在半透明反射镜64上,透过半透明反射镜64的光被反射镜68反射,通过透镜70和液晶面板73,入射到正交棱镜69。Fig. 34 is a schematic sectional view showing a liquid crystal projector. An illumination
另一方面,被半透明反射镜64反射的光照射在半透明反射镜65上,被半透明反射镜65反射的光,通过透镜71和液晶面板74,入射到正交棱镜69。On the other hand, the light reflected by the
透过半透明反射镜65的光被反射镜66反射、再被反射镜67反射,通过透镜72和液晶面板74,入射到正交棱镜69。The light transmitted through the
液晶面板75是红色(R)用的液晶面板,液晶面板74是绿色(G)用的液晶面板,液晶面板73是蓝色(B)用的液晶面板。通过这些液晶面板的光由正交棱镜69合成,通过投影光学系统61,向外部射出。投影光学系统61由复合型非球面透镜61a、61b和61c构成。The
光源63例如由金属卤化物灯、汞灯、LED等构成。The
因为光源63是发热源,所以,在不使用实施例9所示的微小颗粒层21的以往的液晶投影机中,由于由光源的开/关而引起的反复的温度变化的影响,存在玻璃基材与光学树脂层剥离的问题,需要使投影光学系统的透镜61a~61c尽可能离开光源63某种程度的距离。Because the
但是,在本实施例中,在透镜61a~61c中,使用实施例17中使用的复合型非球面透镜,在这些复合型非球面透镜的光学基材上,形成有实施例9中所示的微小颗粒层21和在微小颗粒层上形成的偶联层22。因此,不论光学基材的二氧化硅含量如何,都能够密着性、可靠性良好地形成光学树脂层3,即使由于由光源63的开/关而引起的反复的温度变化,玻璃基材与光学树脂层也不会剥离。另外,该复合型非球面透镜的光学树脂层(树脂透镜层),由包含有机金属聚合物和有机聚合物的具有良好的耐热性的有机金属聚合物材料形成,所以,具有良好的耐热性。因此,能够将透镜61a~61c配置在光源63的附近。However, in this example, the composite aspheric lenses used in Example 17 are used for the lenses 61a to 61c, and the optical substrates of these composite aspheric lenses are formed with the The
图35是表示按照本发明的液晶投影机的一个实施例的示意截面图。Fig. 35 is a schematic sectional view showing an embodiment of a liquid crystal projector according to the present invention.
在图35所示的实施例中,在投影光学系统61的透镜61a~61c中,使用实施例17中使用的透镜。因此,如图35所示,能够将光源63的位置配置成靠近投影光学系统61。因此,能够使液晶投影机60小型化。In the embodiment shown in FIG. 35 , the lenses used in the seventeenth embodiment are used for the lenses 61 a to 61 c of the projection
在图35所示的液晶投影机中,从光源63射出的光通过照明光学系统62照射在半透明反射镜64上,被半透明反射镜64反射的光,通过透镜70和液晶面板73,入射到正交棱镜69。透过半透明反射镜64的光被反射镜68反射,射向半透明反射镜65。被半透明反射镜65反射的光,通过透镜71和液晶面板74,入射到正交棱镜69。透过半透明反射镜65的光被反射镜66反射,再被反射镜67反射,通过透镜72和液晶面板75入射到正交棱镜69。透过液晶面板73、74和75的光由正交棱镜69合成,通过投影光学系统61射出到外部。In the liquid crystal projector shown in FIG. 35 , the light emitted from the
图34和图35所示的液晶投影机是用独立的液晶面板显示RGB的3板式透过型投影机,但即使是使用1块合成的液晶面板显示RGB的单板式透过型投影机,也能够得到同样的效果。The liquid crystal projectors shown in Fig. 34 and Fig. 35 are 3-panel transmissive projectors that display RGB with independent liquid crystal panels. The same effect can also be obtained.
在图36所示的液晶投影机中,为了进一步实现小型化,使用白色LED作为光源63。如图36所示,从光源63射出的光,通过照明光学系统62,通过透镜70、液晶面板73,再通过投影光学系统61,射出到外部。In the liquid crystal projector shown in FIG. 36 , a white LED is used as the
如图36所示,能够将从光源63到投影光学系统61配置在直线上。在这样的情况下,在投影光学系统61的透镜61a、61b和61c中,使用实施例17中使用的复合型非球面透镜,由此能够缩短焦点距离,所以,能够缩短液晶投影机整体的长度。As shown in FIG. 36 , the
(实施例20)(Example 20)
图37是表示本发明的光波导路的截面图。如图37所示,在基板80上设置有中间层81,在中间层81上形成有光学树脂层84。光学树脂层84由下部包覆层86、在下部包覆层86的槽86a内设置的芯层85、和上部包覆层87形成,构成光波导路。中间层81由微小颗粒层82和偶联层83构成。Fig. 37 is a cross-sectional view showing the optical waveguide of the present invention. As shown in FIG. 37 , an intermediate layer 81 is provided on a
作为基板80,可以使用例如玻璃基板、Si基板、蓝宝石基板、GaN基板等。另外,也可以使用在这些基板的表面上形成有Al2O3膜、SiN膜、金属膜等的基板。根据本发明,即使使用基板表面不含有SiO2成分的基板,通过形成几乎由SiO2构成的微小颗粒层,能够提高偶联层的密着性提高效果,从而能够密着性良好地形成光学树脂层。As the
微小颗粒层82例如能够与实施例9同样地使用胶态二氧化硅水溶液形成。另外,偶联层83也能够与实施例9同样地操作而形成。The
在如以上那样形成的偶联层83上,形成下部包覆层86、芯层85和上部包覆层87,从而形成作为光波导路的光学树脂层84。下部包覆层86和上部包覆层87可以使用实施例1中的“光学树脂层形成用溶液”形成。另外,对于芯层85,也使用实施例1中的“光学树脂层形成用溶液”,但芯层的折射率需要比包覆层的折射率高约0.005左右,因此,在准备“光学树脂层形成用溶液”时,比包覆层时多加0.1ml的PhDMS、添加4.2ml即可。On the
下部包覆层86按如下方法形成:在偶联层83上滴加光学树脂层形成用溶液,接着,将具有凸部的模具按压在该溶液的层上,在该状态下照射紫外线,使溶液固化。由此,能够形成具有槽86a的下部包覆层86。接着,在槽86a内滴加上述的芯层形成用溶液,用该溶液充满槽86a,照射紫外线,使该溶液固化,能够形成芯层85。The
接着,在下部包覆层86和芯层85上滴加上述的光学树脂层形成用溶液,照射紫外线将其固化,由此能够形成上部包覆层87。Next, the above-mentioned solution for forming an optical resin layer is dropped on the
根据本发明,例如能够利用旋涂或浸渍法在基板上形成SiO2微小颗粒层,在其上涂敷偶联剂、形成偶联层,由此,能够密着性良好地形成光波导路等光学树脂层。因此,即使是基板表面不含有SiO2成分的基板,也能够密着性良好地形成光波导路等。因此,在Si基板上也能够密着性良好地形成光波导路,所以,能够在电子器件上形成光器件,从而能够容易地制作电子·光的大型器件。例如,能够整体地制作发送接收模块等电子器件部和光波导路部。According to the present invention, for example, a SiO2 fine particle layer can be formed on a substrate by spin coating or dipping, and a coupling agent can be applied thereon to form a coupling layer, thereby forming an optical waveguide such as an optical waveguide with good adhesion. resin layer. Therefore, an optical waveguide or the like can be formed with good adhesion even on a substrate whose surface does not contain a SiO 2 component. Therefore, since an optical waveguide can be formed with good adhesion also on a Si substrate, an optical device can be formed on an electronic device, and a large electronic/optical device can be easily produced. For example, an electronic device part such as a transceiver module and an optical waveguide part can be fabricated integrally.
(实施例21)(Example 21)
在本实施例中,在玻璃基板上依次叠层混合微小颗粒层、SiO2微小颗粒层、偶联层和光学树脂层,制作出复合型非球面透镜。在复合型非球面透镜等中,在玻璃基材的折射率高的情况下,与光学树脂层的折射率之差变大,所以,有在玻璃基材与光学树脂层的界面的反射变大的问题。通常,在复合型非球面透镜中,玻璃基材与光学树脂层的反射率之差,作为对430~650nm波长的光的平均反射率,要求为1%以下。以往,将折射率不同的例如2种氧化膜组合,通常构成3层以上的多层膜,作为防反射膜使用。为了形成多层膜,需要进行多次成膜,同时需要严格控制各层的厚度。因此,考虑到厚度的均匀性和再现性的波动,难以将对波长430~650nm的光的平均反射率抑制为1%以下。根据本实施例,通过将氧化物层叠层2层,能够容易地制造防反射膜,从而能够将对波长430~650nm的光的平均反射率抑制为1%以下。In this example, a composite aspheric lens was produced by sequentially stacking a mixed fine particle layer, a SiO 2 fine particle layer, a coupling layer, and an optical resin layer on a glass substrate. In composite aspheric lenses, etc., when the refractive index of the glass substrate is high, the difference between the refractive index and the optical resin layer becomes large, so the reflection at the interface between the glass substrate and the optical resin layer becomes large. The problem. Generally, in a composite aspheric lens, the difference in reflectance between the glass substrate and the optical resin layer is required to be 1% or less as the average reflectance for light having a wavelength of 430 to 650 nm. Conventionally, for example, two types of oxide films having different refractive indices are combined to form a multilayer film of three or more layers, and used as an antireflection film. In order to form a multilayer film, it is necessary to perform film formation several times, and at the same time, it is necessary to strictly control the thickness of each layer. Therefore, it is difficult to suppress the average reflectance for light having a wavelength of 430 to 650 nm to 1% or less in consideration of fluctuations in thickness uniformity and reproducibility. According to this example, an antireflection film can be easily produced by laminating two oxide layers, and the average reflectance to light with a wavelength of 430 to 650 nm can be suppressed to 1% or less.
本实施例的叠层光学元件的结构是与图23所示的同样的结构,中间层2由第一微小颗粒层27、第二微小颗粒层28和偶联层22形成。在本实施例中,第一微小颗粒层27是将折射率不同的2种微颗粒混合形成的混合微小颗粒层,第二微小颗粒层28是由SiO2构成的微小颗粒层。The structure of the laminated optical element of this embodiment is the same structure as that shown in FIG. In this embodiment, the first fine particle layer 27 is a mixed fine particle layer formed by mixing two kinds of fine particles having different refractive indices, and the second fine particle layer 28 is a fine particle layer composed of SiO 2 .
混合微小颗粒层通过将折射率不同的2种微颗粒的分散液混合,将折射率调整为规定值。混合微小颗粒层的形成,能够利用旋涂法或浸渍法等进行。优选使混合微小颗粒层的折射率为玻璃基材的折射率与光学树脂层的折射率的平均值nave。另外,厚度优选为波长的1/4。在作为光学用透镜使用时,因为是可见光区域,所以,作为中心波长,优选为λ=540nm左右。因此,混合微小颗粒层的厚度优选为(1/4)·λ/nave。In the mixed fine particle layer, the refractive index is adjusted to a predetermined value by mixing two types of fine particle dispersions having different refractive indices. Formation of the mixed fine particle layer can be performed by a spin coating method, a dipping method, or the like. The refractive index of the mixed fine particle layer is preferably the average value na ave of the refractive index of the glass substrate and the refractive index of the optical resin layer. In addition, the thickness is preferably 1/4 of the wavelength. When used as an optical lens, since it is in the visible light region, the center wavelength is preferably about λ=540 nm. Therefore, the thickness of the mixed fine particle layer is preferably (1/4)·λ/n ave .
SiO2微小颗粒层,作为偶联层的底层,用于使与光学树脂层的密着性良好而形成。优选使其厚度薄至10~15nm左右,使得不影响反射率。另外,在可以不考虑与光学树脂层的密着性时,也能够将该层省略。The SiO 2 fine particle layer is formed as a bottom layer of the coupling layer to improve adhesion with the optical resin layer. It is preferable to make the thickness as thin as about 10 to 15 nm so as not to affect the reflectance. In addition, when the adhesiveness with the optical resin layer can be ignored, this layer can also be omitted.
对于偶联层,也优选使厚度薄至10~15nm左右,使得不影响反射率。在可以不考虑与光学树脂层的密着性时,也能够将该层省略。It is also preferable to make the thickness of the coupling layer as thin as about 10 to 15 nm so as not to affect the reflectance. When the adhesiveness with the optical resin layer can be ignored, this layer can also be omitted.
在本实施例中,作为玻璃基材,使用高折射率玻璃(小原株式会社生产、商品名“S-LAL7”、折射率约1.8)。另外,光学树脂层使用实施例1中的“光学树脂层形成用溶液”形成。光学树脂层的折射率是1.5。In this example, high-refractive index glass (manufactured by Ohara Co., Ltd., trade name "S-LAL7", refractive index about 1.8) was used as the glass substrate. In addition, the optical resin layer was formed using the "solution for forming an optical resin layer" in Example 1. The refractive index of the optical resin layer is 1.5.
混合微小颗粒层通过将SiO2微颗粒分散液和Nb2O5微颗粒分散液混合而形成。作为SiO2微颗粒分散液,使用胶态二氧化硅水溶液(日产化学株式会社生产、商品名“スノ—テツクスNXS”、平均粒径5nm、SiO2含量15.7重量%左右)。作为Nb2O5微颗粒分散液,使用铌溶胶水溶液(多木化学株式会社生产、商品名“バイラ—ルNb-X10”、平均粒径5nm、Nb2O5含量10重量%)。The mixed fine particle layer is formed by mixing the SiO 2 fine particle dispersion and the Nb 2 O 5 fine particle dispersion. As the SiO 2 fine particle dispersion liquid, an aqueous colloidal silica solution (manufactured by Nissan Chemical Co., Ltd., trade name "Snow-Tex NXS",
表2表示由胶态二氧化硅单独(试样A)、铌溶胶单独(试样C)以及胶态二氧化硅溶胶与铌溶胶的混合溶胶(试样B)形成的微小颗粒层的折射率。在将溶胶混合的试样B中,以试样A:试样C=1:2的重量比率混合。此外,微小颗粒层通过利用旋涂法(3000rpm、30秒)在玻璃基材上涂敷各溶胶、并将其干燥而形成。Table 2 shows the refractive index of the microparticle layer formed by colloidal silica alone (sample A), niobium sol alone (sample C), and a mixed sol of colloidal silica sol and niobium sol (sample B) . In sample B in which the sol was mixed, it was mixed at a weight ratio of sample A:sample C=1:2. In addition, the fine particle layer was formed by applying each sol on a glass substrate by a spin coating method (3000 rpm, 30 seconds) and drying it.
表2Table 2
图38是表示微小颗粒层中的Nb2O5含有率和折射率的关系的图。Fig. 38 is a graph showing the relationship between the Nb 2 O 5 content in the fine particle layer and the refractive index.
如图38所示,折射率与Nb2O5的含有率成比例地变大。因此,可知,通过调整Nb2O5含有率,能够在1.39~1.88的范围内调整折射率。As shown in FIG. 38 , the refractive index becomes larger in proportion to the content of Nb 2 O 5 . Therefore, it can be seen that the refractive index can be adjusted within the range of 1.39 to 1.88 by adjusting the Nb 2 O 5 content.
在本实施例中,使用试样B,使混合微小颗粒层的折射率为1.66。另外,混合微小颗粒层的厚度,以中心波长为540nm,成为(1/4)·λ/nave=81nm。In this example, sample B was used, and the refractive index of the mixed fine particle layer was set to 1.66. In addition, the thickness of the mixed fine particle layer was (1/4)·λ/n ave =81 nm when the center wavelength was 540 nm.
图39是表示在光学树脂层的折射率为1.5、混合微小颗粒层的折射率为1.66时,使玻璃基材的折射率以1.8为中心、在1.7~1.9之间变化时的反射率计算值的图。如图39所示,可知,当玻璃基材的折射率为1.8时,反射率最低。因此可知,当使混合微小颗粒层的折射率为玻璃基材和光学树脂层的折射率的平均值时,反射率最低。Fig. 39 shows calculated reflectance values when the refractive index of the optical resin layer is 1.5 and the refractive index of the mixed fine particle layer is 1.66, and the refractive index of the glass substrate is changed from 1.7 to 1.9 around 1.8 diagram. As shown in FIG. 39 , it can be seen that the reflectance is the lowest when the refractive index of the glass substrate is 1.8. Therefore, it can be seen that the reflectance is the lowest when the refractive index of the mixed fine particle layer is the average value of the refractive indices of the glass substrate and the optical resin layer.
通过如本实施例那样使用混合微小颗粒层,能够容易地形成防反射膜。混合微小颗粒层的折射率如上所述能够调整为任意值,因此,即使玻璃基材和光学树脂层的材料改变,通过调整混合微小颗粒层中的微颗粒的种类和混合比,能够调整混合微小颗粒层的折射率,使得反射率最低。具体地说,能够调整混合微小颗粒层的折射率,使其成为玻璃基材和光学树脂层的中间值的折射率。By using the mixed fine particle layer as in this example, an antireflection film can be easily formed. The refractive index of the mixed fine particle layer can be adjusted to any value as described above. Therefore, even if the materials of the glass substrate and the optical resin layer are changed, the mixed fine particle layer can be adjusted by adjusting the type and mixing ratio of the fine particles in the mixed fine particle layer. The index of refraction of the particle layer, resulting in the lowest reflectivity. Specifically, the refractive index of the mixed fine particle layer can be adjusted so as to be an intermediate value between the glass substrate and the optical resin layer.
另外,通过在混合微小颗粒层上设置SiO2微小颗粒层,能够提高偶联层的密着效果,从而能够提高光学树脂层的密着性。In addition, by providing the SiO 2 fine particle layer on the mixed fine particle layer, the adhesion effect of the coupling layer can be improved, thereby improving the adhesion of the optical resin layer.
Claims (23)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP140504/2005 | 2005-05-13 | ||
JP2005140504 | 2005-05-13 | ||
JP252753/2005 | 2005-08-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101019044A CN101019044A (en) | 2007-08-15 |
CN100495077C true CN100495077C (en) | 2009-06-03 |
Family
ID=38727232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006800007841A Expired - Fee Related CN100495077C (en) | 2005-05-13 | 2006-05-11 | Laminated Optical Components |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100495077C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI477820B (en) * | 2013-01-22 | 2015-03-21 | Himax Tech Ltd | Wafer level optical lens structure |
US9279964B2 (en) | 2013-01-22 | 2016-03-08 | Himax Technologies Limited | Wafer level optical lens structure |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6284849B2 (en) * | 2013-08-23 | 2018-02-28 | 富士フイルム株式会社 | Laminate |
JP7433765B2 (en) * | 2018-03-16 | 2024-02-20 | キヤノン株式会社 | Optical elements, optical instruments and imaging devices |
CN111435180B (en) * | 2019-05-24 | 2022-12-16 | 宁波激智科技股份有限公司 | Double-sided light adjusting sheet and preparation method thereof |
CN117666146A (en) * | 2023-12-07 | 2024-03-08 | 广州纳立多科技有限公司 | Composite lenses, optical modules, head-mounted display devices and virtual display systems |
-
2006
- 2006-05-11 CN CNB2006800007841A patent/CN100495077C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI477820B (en) * | 2013-01-22 | 2015-03-21 | Himax Tech Ltd | Wafer level optical lens structure |
US9279964B2 (en) | 2013-01-22 | 2016-03-08 | Himax Technologies Limited | Wafer level optical lens structure |
Also Published As
Publication number | Publication date |
---|---|
CN101019044A (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7887910B2 (en) | Laminated optical element | |
JP4912146B2 (en) | Organometallic polymer material | |
JP2007291321A (en) | Curable organometallic composition, organometallic polymer material and optical component | |
TWI518156B (en) | Anti-reflection and anti-glare coating composition, anti-reflection and anti-glare film, and method for preparation of the same | |
CN100495077C (en) | Laminated Optical Components | |
CN104246544B (en) | Optical device | |
WO2017159992A1 (en) | Anti-reflective film and display apparatus | |
TWI703039B (en) | Functional membrane | |
CN101495888A (en) | Coating solution for forming light diffusion layer, and light diffusion plate | |
JP2013007831A (en) | Low-refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film | |
US20200348450A1 (en) | Anti-reflective film, polarizing plate, and display apparatus | |
US7396873B2 (en) | Organometallic polymer material and process for preparing the same | |
JPWO2008001675A1 (en) | Optical multilayer thin film, optical element, and method of manufacturing optical multilayer thin film | |
JP2008266578A (en) | Optical polymer material and optical component | |
CN108291031A (en) | Poly- metal oxygen alkane, its manufacturing method, its composition, cured film and its manufacturing method and the component and electronic unit for having it | |
CN108431641A (en) | Optical film, polarizing coating, the manufacturing method of polarizing coating and image display device | |
JP5288018B2 (en) | Curable resin composition and cured product | |
JP2013087162A (en) | Fluorine-containing polymer, curable resin composition, and cured product | |
US20150124327A1 (en) | Coating material, optical coating film, and optical element | |
JP2007191687A (en) | Material for forming organic-inorganic composite, organic-inorganic composite, its manufacturing method and optical device | |
JP7150384B2 (en) | Antireflection films, polarizers and display devices | |
JP7401351B2 (en) | Components, optical equipment, coating fluids, manufacturing methods for components, porous membranes | |
US20240393502A1 (en) | Optical element, optical system, image pickup apparatus, and manufacturing method of an optical element | |
WO2024095908A1 (en) | Member having optical interference layer, and optical device | |
JP2023031380A (en) | Transmission type diffraction element, light source device, optical system, electronic apparatus, and method for manufacturing transmission type diffraction element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090603 Termination date: 20120511 |