CN100494793C - 可利用低品位热源的两级转轮除湿空调装置 - Google Patents
可利用低品位热源的两级转轮除湿空调装置 Download PDFInfo
- Publication number
- CN100494793C CN100494793C CNB2007100459012A CN200710045901A CN100494793C CN 100494793 C CN100494793 C CN 100494793C CN B2007100459012 A CNB2007100459012 A CN B2007100459012A CN 200710045901 A CN200710045901 A CN 200710045901A CN 100494793 C CN100494793 C CN 100494793C
- Authority
- CN
- China
- Prior art keywords
- stage
- air
- dehumidification
- regeneration
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007791 dehumidification Methods 0.000 title claims abstract description 169
- 238000004378 air conditioning Methods 0.000 title claims abstract description 25
- 230000008929 regeneration Effects 0.000 claims abstract description 128
- 238000011069 regeneration method Methods 0.000 claims abstract description 128
- 238000012545 processing Methods 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002274 desiccant Substances 0.000 claims description 5
- 238000005057 refrigeration Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 description 27
- 230000001172 regenerating effect Effects 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003912 environmental pollution Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Central Air Conditioning (AREA)
- Drying Of Gases (AREA)
Abstract
一种制冷除湿技术领域的可利用低品位热源的两级转轮除湿空调装置,包括两级除湿转轮、两级换热器、两个加热器、蒸发冷却器、处理风机、再生风机、电动机、皮带或齿轮,电动机通过皮带或齿轮与除湿转轮连接,带动除湿转轮转动,每个除湿转轮分为处理区及再生区两个区域,第一级除湿转轮的处理区与第一级换热器进口连接,第一级换热器出口与第二级除湿转轮的处理区连接,第二级除湿转轮另一侧与第二级换热器连接,第二级换热器与蒸发冷却器连接,蒸发冷却器与处理风机连接。再生风机分别与两级除湿转轮再生区连接,两个加热器分别与两级除湿转轮的再生区另一侧连接。本发明不需电制冷空调就能够达到足够的温度、湿度下降。
Description
技术领域
本发明涉及的是一种制冷技术领域的空调装置,具体是一种可利用低品位热源的两级转轮除湿空调装置。
背景技术
利用低品位热源的转轮除湿技术吻合了当前节能减排、可持续发展的总趋势。固体转轮除湿可采用低品位热源驱动干燥转轮除去空气中的水分,使其成为干燥空气,再通过直接蒸发冷却达到需要的温湿度范围,对电力供应的紧张趋势可起到减缓作用。另外,转轮除湿减少采用氯氟烃类制冷剂,无CFCS问题也无温室效应作用,是一种环境友好型的制冷方式。最新研究还发现,经过转轮处理的空气,能去除其中的有害气体及成分,提高空气品质。两级转轮除湿空调器可广泛应用于家用、商用、公共场所及工业空调等领域,特别适合湿热、湿冷气候,与单纯电驱动空调机比较,具有供热、供冷高效节能、可处理更多新鲜空气且空气处理质量好、环保等优点,可达到更低的温湿度要求。
常规单个转轮除湿有以下不足:1)再生温度高,主要利用电热、蒸汽等热源,应用太阳能、余热等低品位热源有一定困难。2)除湿能力有限,不能除去足够的水分,在没有电制冷配合的情况下,不能达到舒适空调的送风的温度及湿度要求。3)深度除湿需要与电制冷空调配合,结构复杂。
经对现有技术文献的检索发现,专利号为00227043.9的中国实用新型专利,名称为“低露点转轮除湿机”,该专利公开了相关技术特征为:新风直接通过转轮除湿,再生风机通过再生风道与除湿转轮的再生侧连接,再生加热器通过再生风道与除湿转轮组件再生侧连通。此专利技术的缺陷和不足为:依赖专门的热源,能量效率不理想,且在夏季标准环境工况下,不能达到需要的空气温度、湿度调节的范围。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种可利用低品位热源的两级转轮除湿空调装置,使其具有能利用低品位热源,不需电制冷空调就能够达到足够的温度、湿度下降,并能够处理新风及回收室内热能的优点。
本发明是通过以下技术方案实现的,本发明包括:两级除湿转轮、两级换热器、两个加热器、蒸发冷却器、处理风机、再生风机、电动机、皮带或齿轮。电动机通过皮带或齿轮与除湿转轮连接,带动除湿转轮转动,每个除湿转轮分为处理区及再生区两个区域。第一级除湿转轮的处理区与第一级换热器进口连接,第一级换热器出口与第二级除湿转轮的处理区连接,第二级除湿转轮另一侧与第二级换热器连接,第二级换热器与蒸发冷却器连接,再生风机分别与两级除湿转轮再生区连接,两个加热器分别与两级除湿转轮的再生区另一侧连接。
按空气流动路径本发明空气流动分为两个流动路径,处理风路径及再生风路径,具体为:
所述处理风路径:第一级除湿转轮、第一级换热器、第二级除湿转轮、第二级换热器、蒸发冷却器、处理风机连接,依次串连连接。具体为:第一级除湿转轮处理区通过风管与第一级换热器连接,该第一级换热器又与第二级除湿转轮处理区连接,而第二级除湿转轮处理区的另一侧与第二级换热器通过风管连接,第二级换热器通过风管与蒸发冷却器连接。蒸发冷却器与处理风机连接。处理风机亦可任意放置于以上其他部件之间。以上各部件是依次串连关系。
所述再生风路径:第一级除湿转轮再生区通过风管与第一级加热器连接。第二级除湿转轮通过风管与第二级加热器再生区连接。再生风机分别与第一级除湿转轮、第二级除湿转轮再生区通过风管连接。第一级除湿转轮与第一级换热器是串联关系,称为第一级再生侧。第二级除湿转轮再生区与第二级换热器是串联关系。称为第二级再生侧。所述的第一级再生侧、第二级再生侧之间是并联连接。
所述换热器可以是空气与空气换热的叉流换热器,也可以是水气换热器。
所述加热器可以是空气与空气换热的叉流换热器,也可以是水气换热器。
所述蒸发冷却器为能够实现等焓加湿的直接蒸发冷却器或湿膜加湿器。
所述除湿剂包括硅胶、氯化锂、分子筛,复合除湿剂等。
本发明为两级转轮除湿系统,对室外新风或室内回风进行湿度及温度处理。湿度处理主要由第一级除湿转轮、第二级除湿转轮完成,温度处理主要由换热器及蒸发冷却器完成。空气流动分为两个路径,处理空气(也称处理风)及再生空气(也称再生风)。处理空气经过除湿转轮后,含湿量减少,温度略有上升。再生空气经过转轮后,含湿量减少,温度略有上升。通常,再生空气温度高于处理空气温度。
本发明中,夏季引入室内利用的是处理风,即经过处理区域的空气,转轮起到除湿的功能。冬季引入室内利用的是再生风,即经过再生区域空气,转轮起增加空气中含湿量的功能。使用的除湿剂可采用低再生温度(50~70℃)予以再生,因此可使用蒸汽压缩式制冷的冷凝器余热、太阳能热水、太阳能热空气等再生。
本发明在夏季处理过程为:第一级除湿转轮除湿后,处理空气被换热器冷却,再次流过第二级除湿转轮,使处理空气更加干燥,干燥的处理风再次通过换热器实现焓降,然后通过蒸发冷却器适当降温加湿,调整至合适的温湿度状态送入室内。
本发明的工作原理是:
(1)空调降温季节,转轮一侧起吸附空气中水分,即除湿作用,另一侧通过高温空气除掉吸附在转轮中的水分,即再生作用。在标准夏季工况下,一级转轮不能除去足够的水分,及降低到合适的温度。因此通过两级转轮除湿、换热器降温串连,使处理空气温度、湿度在高温高湿工况下达到适度温度及低含湿量,再通过蒸发冷却器处理,达到降低温度及合适的含湿量。
(2)取暖季节通过加热器加热空气,再通过转轮再生区,增加空气中的含湿量,达到合适的温湿度状态,送入室内。
本发明可应用于图书馆等公共建筑、商业建筑、工厂等场合的夏季空调及冬季供暖,适合大、中型系统。
本发明相对现有技术具有如下的优点及效果:
(1)现有蒸汽压缩式电制冷空调在夏季时易造成用电高峰,一般不能提供新风,而且需低温除湿,送风温度低。冬季无加湿功能。本发明使用低品位热源,并能利用太阳能的可再生能源,仅风机、电动机使用少量电能,在夏季用电高峰节省电能效果显著,二氧化碳减排效果显著。且可将空气直接处理到室内需要的温湿度,送风更加舒适。能向室内输入新风,对新风进行有效热湿处理,并能够回收室内的冷(热)量。能直接用于冬季供暖,并具有一定加湿功能,从而使得系统全年都可得到利用。
(2)现有单级除湿空调在夏季标准工况下不能达到室内舒适要求的温湿度,本发明则可以达到较低的温湿度,满足空调舒适性要求。
(3)本发明结构简单,易于控制,设备投资费用低,不同于吸附、吸收式制冷的热驱动制冷方式,能实现热驱动空调设备的小型化。同等工况下,能量效率优于吸附、吸收式空调。采用空气、水等自然工质为介质,无臭氧层破坏或温室效应气体排放、环境污染的问题,是一种绿色节能型制冷机组。
附图说明
图1是本发明基于两个除湿转轮的实施例结构示意图
图2是图1中第一级除湿转轮分区的结构示意图
图3是图1中第二级除湿转轮分区的结构示意图
图4是本发明再生侧装有蒸发冷却器的实施例结构示意图
图5是本发明基于两个除湿转轮的可利用低品位热源两级转轮除湿空调装置的供暖系统结构示意图
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例结构如图1所示,本实施例包括:处理风进口风管1,第一级除湿转轮2,第一级除湿转轮驱动电机3,第一级处理换热器4,第二级除湿转轮5,第二级除湿转轮驱动电机6,第二级处理换热器7,蒸发冷却器8,处理风机9,第二级再生风进口风管10,第二级再生加热器11,第二级除湿转轮驱动皮带12,第一级再生风进口风管13,第一级再生加热器14,第一级除湿转轮驱动皮带15,第二级再生风出口风管16,再生风机17。
如图2所示,第一级除湿转轮2处理区18与再生区19占转轮截面的面积分别为3/4及1/4,亦可为其他比例,如1/2及1/2。如图3所示,第二级除湿转轮5处理区20与再生区21占转轮截面的面积分别为3/4及1/4,亦可为其他比例,如1/2及1/2。第一级除湿转轮2的转轮分区比例与第二级除湿转轮5的转轮分区比例可以相同,也可以不同。
第一级除湿转轮驱动电机3通过第一级除湿转轮驱动皮带15(或齿轮)与第一级除湿转轮2连接,带动第一级除湿转轮2转动。第二级除湿转轮驱动电机6通过第二级除湿转轮驱动皮带12(或齿轮)与第二级除湿转轮5连接,带动第二级除湿转轮5转动。
空气流动有两个路径,即处理风路径及再生风路径。
处理风路径的连接方式为:处理风进口风管1与第一级除湿转轮2的处理区进风侧相连接,第一级除湿转轮2的处理区出风侧通过风管与第一级处理换热器4处理侧进口相连接。第一级处理换热器4处理侧出口通过风管与第二级除湿转轮5的处理区进风侧相连接。第二级除湿转轮5的处理区出风侧通过风管与第二级处理换热器7处理侧进口相连接,第二级处理换热器7处理侧出口通过风管与蒸发冷却器8连接。蒸发冷却器8再与处理风机9连接。
再生风路径的连接方式为:第一级再生加热器14一侧与第一级再生风进口风管13连接,另一侧通过风管与第一级除湿转轮2的再生区连接,第一级除湿转轮再生区出风侧则与再生风机17连接。第二级再生加热器11一侧与第二级再生风进口风管10连接,另一侧通过风管与第二级除湿转轮5的再生区连接,第二级除湿转轮5的再生区出风侧则与再生风机17连接。两级再生侧部件处于并联状态。
基于上述装置的结构,本实施例装置实现的两级转轮除湿空调的降温除湿方式为:室外空气或者室内回风,或者室内外混合风(简称处理空气)由处理风进口风管1进入第一级除湿转轮2的处理区,空气中的水分被除湿转轮吸附,该过程为一个等焓过程。空气温度有所上升,若继续除湿,除湿效果将变差。因此该处理空气接着进入第一级处理换热器4,将热量传给换热器另一侧的冷却媒体,例如水或空气。然后,降了温的处理空气再次进入第二级除湿转轮5的处理区,空气中的水分被除湿转轮5进一步吸附,成为含湿量较低的空气。接着,再次进入第二级处理换热器7,将热量传给换热器另一侧的冷却媒体。由于选用的冷却媒体为冷却塔冷水或室外空气,或室内回风,处理风经过第二级处理换热器7的温度下降尚未达到舒适送风要求。而由于此时的处理风含湿量较低,即焓降已经达到送风要求,处理风流过蒸发冷却器8,实现降低温度及湿度增加含湿量,从而达到舒适的送风温湿度工况。处理风由位于蒸发冷却器8出口的处理风机9(处理风机9亦可布置于处理风流过的其他部件之间)驱动并送入空调房间。
第一、二级转轮驱动电机3、6分别通过皮带(或齿轮)15驱动第一、二级除湿转轮2、5转动。第一、二级除湿转轮吸附水分部分在电机的驱动下旋转到再生区被再生空气加热,除掉吸附的水分。再生空气可以是室外空气或室内回风,由第一、二级再生风进风管分别进入第一、二级再生加热器14、11,并被加热到需要的再生温度然后进入除湿转轮再生区。经过转轮再生区的再生风经历的是等焓过程,温度有所下降,但含湿量增加。两级再生风的流动由布置于再生区出口的再生风机17驱动(再生风机17亦可布置于再生风流过的其他位置),并排放到室外。
冬季时可将再生风引入室内,实现向室内供暖,并增湿。冬季供暖时,处理风侧第一级处理换热器4、第二级处理换热器7及蒸发冷却器8可不工作,处理风排出室外。
本实施例两级转轮除湿空调装置可应用于图书馆等公共建筑、商业建筑、工厂等场合的夏季空调及冬季供暖,适合大、中型系统。
本实施例实现热驱动空调设备的小型化,降低热驱动空调设备的成本;具有结构简单,系统运行易于控制等特点,能有效地利用太阳能等低品位热源,无环境污染,是一种绿色节能型制冷机组。
实施例2
本实施例的结构形式如图4所示,两级转轮除湿空调包括:处理风进口风管1,第一级除湿转轮2,第一级除湿转轮驱动电机3,第一级处理回热器22,第二级除湿转轮5,第二级除湿转轮驱动电机6,第二级处理回热器23,蒸发冷却器8,处理风机9,第二级再生风进口风管10,第二级再生加热器11,第二级除湿转轮驱动皮带12,第一级再生风进口风管13,第一级再生加热器14,第一级除湿转轮驱动皮带15,第二级再生风出口风管16,再生风机17,再生风进口总管24,再生侧蒸发冷却器25。图2、图3是第一级除湿转轮2、第二级除湿转轮5分区结构示意图,第一级除湿转轮2处理区18与再生区19占转轮截面的面积分别为3/4及1/4,亦可为其他比例,如1/2及1/2。如图3所示,第二级除湿转轮5处理区20与再生区21占转轮截面的面积分别为3/4及1/4,亦可为其他比例,如1/2及1/2。第一级除湿转轮2的转轮分区比例与第二级除湿转轮5的转轮分区比例可以相同,也可以不同。
本实施例与实施例1的区别在于:增加了再生侧蒸发冷却器25,使环境引入的空气或室内回风得以降温,再生侧蒸发冷却器25与再生风第一级处理回热器22连接,再生侧蒸发冷却器25还与第二级处理回热器23连接,用于冷却处理风。
第一级除湿转轮驱动电机3通过第一级除湿转轮驱动皮带15(或齿轮)与第一级除湿转轮2连接,带动第一级除湿转轮2转动。第二级除湿转轮驱动电机6通过第二级除湿转轮驱动皮带12(或齿轮)与第二级除湿转轮5连接,带动第二级除湿转轮5转动。
空气流动有两个路径,即处理风路径及再生风路径。处理风路径的连接方式为:处理风进口风管1与第一级除湿转轮2的处理区进风侧相连接,第一级除湿转轮2的处理区出风侧通过风管与第一级处理回热器22处理侧进口相连接。第一级处理回热器22处理侧出口通过风管与第二级除湿转轮5的处理区进风侧相连接。第二级除湿转轮5的处理区出风侧通过风管与第二级处理回热器23处理侧进口相连接,第二级处理回热器23处理侧出口通过风管与蒸发冷却器8连接。蒸发冷却器8再与处理风机9连接。
再生风路径的连接方式为:再生风进口总管24与再生侧蒸发冷却器25连接。再生侧蒸发冷却器25出口分别与第及第二级处理回热器23连接。第一级再生加热器14一侧与第一级处理回热器22连接,另一侧通过风管与第一级除湿转轮2的再生区连接,第一级除湿转轮再生区出风侧则与再生风机17连接。第二级再生加热器11一侧与第二级处理回热器23连接,另一侧通过风管与第二级除湿转轮5的再生区连接,第二级除湿转轮5的再生区出风侧则与再生风机17连接。两级再生侧部件处于并联状态。
基于上述装置的结构,本实施例实现的两级转轮除湿空调的降温除湿方式为:室外空气或者室内回风,或者室内外混合风(简称处理空气)由处理风进口风管1进入第一级除湿转轮2的处理区,空气中的水分被除湿转轮吸附,该过程为一个等焓过程。空气温度有所上升,若继续除湿,除湿效果将变差。因此该处理空气接着进入第一级处理回热器22,将热量传给换热器另一侧的冷却媒体,即经过蒸发冷却器的空气。然后,降了温的处理空气再次进入第二级除湿转轮5的处理区,空气中的水分被除湿转轮5进一步吸附,成为含湿量较低的空气。接着,再次进入第二级处理回热器7,将热量传给换热器另一侧的冷却媒体。由于选用的冷却媒体为冷却塔冷水或室外空气,或室内回风,处理风经过第二级处理回热器23的温度下降尚未达到舒适送风要求。而由于此时的处理风含湿量较低,即焓降已经达到送风要求,处理风流过蒸发冷却器8,实现降低温度及湿度增加含湿量,从而达到舒适的送风温湿度工况。处理风的流动由位于蒸发冷却器8出口的处理风机9(处理风机9亦可布置于处理风流过的其他部件之间)驱动并送入空调房间。
第一、二级转轮驱动电机3、6分别通过皮带(或齿轮)驱动第一、二级除湿转轮2、5转动。第一、二级除湿转轮吸附水分部分在电机的驱动下旋转到再生区被再生空气加热,除掉吸附的水分。再生空气可以是室外空气或室内回风,由再生风进口总管24进入再生侧蒸发冷却器25,等焓加湿,温度下降。然后分别进入第一、二级处理换热器,用于冷却处理风,并得到预热。再进入第一、二级再生加热器14、11,并被加热到需要的再生温度然后进入除湿转轮再生区。两级再生风的流动由布置于再生区出口的再生风机17驱动(再生风机17亦可布置于再生风流过的其他位置),并排放到室外。
本实施例两级转轮除湿空调装置可应用于图书馆等公共建筑、商业建筑、工厂等场合的夏季空调及冬季供暖,适合大、中型系统。
本实施例实现热驱动空调设备的小型化,降低热驱动空调设备的成本;具有结构简单,系统运行易于控制等特点,能有效地利用太阳能等低品位热源,无环境污染,是一种绿色节能型制冷机组。
实施例3
本实施例的结构形式如图5所示。本实施例的结构与实施例2相比,再生侧无蒸发冷却器,仅用于冬季供暖。
与实施例2相比,其连接方式区别在于:
处理风经过第一级处理回热器22处理侧出口通过风管27与处理风机9相连接。第二级处理风进口管26与第二级除湿转轮5的处理区进风侧连接,第二级除湿转轮5的处理区出风侧通过风管与第二级处理回热器23处理侧进口相连接,第二级处理回热器23通过风管与蒸发冷却器8连接。蒸发冷却器8再与处理风机9连接。两级处理侧部件处于并联状态。
再生风路径的连接方式类似于实施例2,但可不连接蒸发冷却器,两级再生侧部件处于并联状态。
基于上述装置的结构,本实施例实现的两级转轮除湿空调的降温除湿方式为:室外空气或者室内回风,或者室内外混合风(简称处理空气)由处理风进口风管1进入第一级除湿转轮2的处理区,空气中的水分被除湿转轮吸附,该过程为一个等焓过程。空气温度有所上升,可通过第一级处理回热器22预热再生侧空气。然后通过处理风机9排出室外。第二级处理侧空气流动过程及状态变化与第一级相同。
第一、二级转轮驱动电机3、6分别通过皮带(或齿轮)驱动第一、二级除湿转轮2、5转动。第一、二级除湿转轮吸附水分部分(处理区)在电机的驱动下旋转到再生区被再生空气加热,转轮吸附的水分被除掉。
再生空气可以是室外空气或室内回风,由第一、二级再生风进风管10、13分别进入第一、二级再生加热器14、11,并被加热到一定温度然后进入除湿转轮再生区。在再生区,再生空气获得转轮吸附的水分,经历等焓过程,温度略微下降。两级再生风的流动由布置于再生区出口的再生风机17驱动(再生风机17亦可布置于再生风流过的其他位置),并送入室内。
本实施例两级转轮除湿空调装置可应用于图书馆等公共建筑、商业建筑、工厂等场合的夏季空调及冬季供暖,适合大、中型系统。
Claims (6)
1、一种可利用低品位热源的两级转轮除湿空调装置,包括:两级除湿转轮、两级换热器、两个加热器、蒸发冷却器、处理风机、再生风机、电动机、皮带或齿轮,其特征在于:电动机通过皮带或齿轮与除湿转轮连接,带动除湿转轮转动,每个除湿转轮分为处理区及再生区两个区域,第一级除湿转轮的处理区与第一级换热器进口连接,第一级换热器出口与第二级除湿转轮的处理区的一侧连接,第二级除湿转轮的处理区的另一侧与第二级换热器连接,第二级换热器与蒸发冷却器连接,再生风机分别与两级除湿转轮的再生区的一侧连接,两个加热器分别与两级除湿转轮的再生区的另一侧连接。
2、根据权利要求1所述的可利用低品位热源的两级转轮除湿空调装置,其特征是,所述第一级除湿转轮处理区通过风管与第一级换热器连接,该第一级换热器又与第二级除湿转轮处理区的一侧连接,而第二级除湿转轮处理区的另一侧与第二级换热器通过风管连接,第二级换热器通过风管与蒸发冷却器连接,蒸发冷却器与处理风机连接,构成整个装置的处理风路径。
3、根据权利要求1所述的可利用低品位热源的两级转轮除湿空调装置,其特征是,所述第一级除湿转轮再生区通过风管与第一级加热器连接,第二级除湿转轮通过风管与第二级加热器再生区连接,再生风机分别与第一级除湿转轮、第二级除湿转轮再生区通过风管连接构成整个装置的再生风路径,其中第一级除湿转轮与第一级换热器是串联关系为第一级再生侧,第二级除湿转轮再生区与第二级换热器是串联关系为第二级再生侧,所述的第一级再生侧、第二级再生侧之间是并联连接。
4、根据权利要求1或2或3所述的可利用低品位热源的两级转轮除湿空调装置,其特征是,所述换热器是空气与空气换热的叉流换热器,或是水气换热器。
5、根据权利要求1或3所述的可利用低品位热源的两级转轮除湿空调装置,其特征是,所述加热器是空气与空气换热的叉流换热器,或是水气换热器。
6、根据权利要求1或2所述的可利用低品位热源的两级转轮除湿空调装置,其特征是,所述蒸发冷却器为能够实现等焓加湿的直接蒸发冷却器或湿膜加湿器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100459012A CN100494793C (zh) | 2007-09-13 | 2007-09-13 | 可利用低品位热源的两级转轮除湿空调装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100459012A CN100494793C (zh) | 2007-09-13 | 2007-09-13 | 可利用低品位热源的两级转轮除湿空调装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101122409A CN101122409A (zh) | 2008-02-13 |
CN100494793C true CN100494793C (zh) | 2009-06-03 |
Family
ID=39084846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100459012A Expired - Fee Related CN100494793C (zh) | 2007-09-13 | 2007-09-13 | 可利用低品位热源的两级转轮除湿空调装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100494793C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4269887A1 (en) * | 2022-04-27 | 2023-11-01 | Trane International Inc. | Air dehumidifier |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101816881B (zh) * | 2010-04-30 | 2012-08-01 | 广州捷达莱堡通用设备有限公司 | 新风节能型热泵转轮除湿机 |
JP2012229641A (ja) * | 2011-04-26 | 2012-11-22 | Anest Iwata Corp | 空気圧縮装置 |
CN102287882B (zh) * | 2011-07-22 | 2013-07-31 | 集美大学 | 船用两级转轮除湿空调系统及其操作方法 |
WO2013026255A1 (zh) * | 2011-08-25 | 2013-02-28 | Ma Jun | 蒸汽压缩式制冷与转轮除湿耦合空调装置 |
CN102766734B (zh) * | 2012-06-18 | 2014-11-26 | 中冶南方工程技术有限公司 | 一种等焓式退火炉保护气体加湿装置 |
CN103075770B (zh) * | 2013-01-18 | 2015-04-22 | 清华大学 | 一种利用室内排风蒸发冷却的转轮除湿装置及其使用方法 |
CN103673113A (zh) * | 2013-12-19 | 2014-03-26 | 南京航空航天大学 | 双级再生转轮除湿系统及其空气处理方法 |
CN106338113B (zh) * | 2015-07-06 | 2019-07-19 | 中南大学 | 冷冻转轮混合除湿装置 |
CN105588244A (zh) * | 2016-01-29 | 2016-05-18 | 北京科技大学 | 立式多级吸附式新风处理塔 |
CN105841268B (zh) * | 2016-03-28 | 2018-06-05 | 上海交通大学 | 废水余热驱动式干风冷水空调系统及其运行方法 |
CN105841267B (zh) * | 2016-03-28 | 2018-07-17 | 上海交通大学 | 废水余热驱动式空调新风系统及其运行方法 |
CN109464885B (zh) * | 2018-09-28 | 2020-06-19 | 浙江大学 | 一种双级回热太阳能驱动转轮干燥系统及其运行方法 |
CN109990398A (zh) * | 2019-04-28 | 2019-07-09 | 中原工学院 | 节能型锂电池生产环境处理系统 |
CN111256221A (zh) * | 2020-01-31 | 2020-06-09 | 西安航空学院 | 一种绿植协同光催化净化空调系统及方法 |
CN113028871B (zh) * | 2021-03-15 | 2022-01-11 | 上海交通大学 | 开式吸附储热系统及控制方法 |
CN118009433A (zh) * | 2024-01-18 | 2024-05-10 | 广东海洋大学 | 一种热驱动冷热协同空调系统及控制方法 |
CN117824023B (zh) * | 2024-02-06 | 2024-08-20 | 深圳市森辉智能自控技术有限公司 | 一种用于锂电生产的除湿机节能控制系统 |
CN118310105B (zh) * | 2024-04-18 | 2025-02-25 | 广东海洋大学 | 一种热能驱动转轮除湿的蒸发冷却装置及方法 |
-
2007
- 2007-09-13 CN CNB2007100459012A patent/CN100494793C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4269887A1 (en) * | 2022-04-27 | 2023-11-01 | Trane International Inc. | Air dehumidifier |
Also Published As
Publication number | Publication date |
---|---|
CN101122409A (zh) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100494793C (zh) | 可利用低品位热源的两级转轮除湿空调装置 | |
CN100510558C (zh) | 太阳能驱动的单个转轮两级除湿空调器 | |
CN103075770B (zh) | 一种利用室内排风蒸发冷却的转轮除湿装置及其使用方法 | |
CN103712292B (zh) | 太阳能制冷转轮除湿空调系统及工作方法 | |
CN101105347A (zh) | 可调节湿度的热泵空调器 | |
CN102003759B (zh) | 再生式蒸发冷却空调 | |
CN202719696U (zh) | 一种热泵驱动转轮除湿和再生型空气处理机组 | |
CN100432573C (zh) | 太阳能驱动的辐射供冷空调装置及辐射供冷方法 | |
CN207815569U (zh) | 一种光伏驱动的二次除湿水冷空调系统 | |
CN102287885A (zh) | 带自动吸尘的双转轮式蒸发冷却与机械制冷复合空调机组 | |
CN102506475A (zh) | 冷凝废热驱动的基于固体除湿的热湿独立控制的热泵系统 | |
CN1281899C (zh) | 混合式除湿空调 | |
CN102954545B (zh) | 具有蓄能效果的太阳能除湿空调系统 | |
CN102287882A (zh) | 船用两级转轮除湿空调系统及其操作方法 | |
CN105805869B (zh) | 太阳能驱动的回热式固体干燥除湿空调系统及运行方法 | |
CN110513905B (zh) | 一种基于开式吸收循环的冷热联供系统 | |
CN102563785A (zh) | 燃气型转轮-露点式蒸发冷却与机械制冷联合空调机组 | |
CN202403360U (zh) | 燃气型转轮与蒸发冷却、机械制冷复合的空调机 | |
CN103759362A (zh) | 太阳能光伏热利用与建筑空气热湿调节的耦合和实现方法 | |
CN113028524B (zh) | 多联机型固体除湿多功能空调系统及其应用方法 | |
CN202024420U (zh) | 一种转轮式间接-直接复合型蒸发冷却空调机组 | |
CN103727606A (zh) | 使用涡流管冷却及再生的转轮除湿系统及其空气处理方法 | |
CN2896100Y (zh) | 利用回风蒸发冷却全热回收型热驱动溶液新风机组 | |
CN205747257U (zh) | 立式多级吸附式新风处理塔 | |
CN207815570U (zh) | 一种光伏驱动的热回收型热管式蒸发冷却空调系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090603 Termination date: 20150913 |
|
EXPY | Termination of patent right or utility model |