CN100493700C - A kind of preparation method of ruthenium-based ammonia synthesis catalyst - Google Patents
A kind of preparation method of ruthenium-based ammonia synthesis catalyst Download PDFInfo
- Publication number
- CN100493700C CN100493700C CNB2005101183602A CN200510118360A CN100493700C CN 100493700 C CN100493700 C CN 100493700C CN B2005101183602 A CNB2005101183602 A CN B2005101183602A CN 200510118360 A CN200510118360 A CN 200510118360A CN 100493700 C CN100493700 C CN 100493700C
- Authority
- CN
- China
- Prior art keywords
- ruthenium
- mgo
- catalyst
- preparation
- stir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000003054 catalyst Substances 0.000 title claims abstract description 63
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims description 10
- 230000015572 biosynthetic process Effects 0.000 title description 26
- 238000003786 synthesis reaction Methods 0.000 title description 26
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 title description 19
- 229910052707 ruthenium Inorganic materials 0.000 title description 18
- 238000003756 stirring Methods 0.000 claims abstract description 42
- 239000000243 solution Substances 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 239000005457 ice water Substances 0.000 claims abstract description 10
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001354 calcination Methods 0.000 claims abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 6
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000002585 base Substances 0.000 claims 4
- 239000011777 magnesium Substances 0.000 claims 2
- 238000004062 sedimentation Methods 0.000 claims 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims 1
- 239000012298 atmosphere Substances 0.000 claims 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 5
- 150000004706 metal oxides Chemical class 0.000 abstract description 4
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 3
- 150000001340 alkali metals Chemical class 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract description 2
- 229910002651 NO3 Inorganic materials 0.000 abstract 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract 1
- 229910052783 alkali metal Inorganic materials 0.000 abstract 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 abstract 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 abstract 1
- 235000012254 magnesium hydroxide Nutrition 0.000 abstract 1
- 239000000347 magnesium hydroxide Substances 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 38
- 239000000395 magnesium oxide Substances 0.000 description 38
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 31
- 230000000694 effects Effects 0.000 description 26
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 26
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 235000010333 potassium nitrate Nutrition 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000005265 energy consumption Methods 0.000 description 7
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012752 auxiliary agent Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910019440 Mg(OH) Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229940051250 hexylene glycol Drugs 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 241001455213 Leopardus pardalis Species 0.000 description 1
- CVTZKFWZDBJAHE-UHFFFAOYSA-N [N].N Chemical compound [N].N CVTZKFWZDBJAHE-UHFFFAOYSA-N 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- AVIYEYCFMVPYST-UHFFFAOYSA-N hexane-1,3-diol Chemical compound CCCC(O)CCO AVIYEYCFMVPYST-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种氨合成催化剂,尤其是涉及一种以钌(Ru)为活性中心,以氧化镁(MgO)等金属氧化物为载体的高活性新型氨合成催化剂制备方法,适用于氢气和氮气合成氨的反应。The present invention relates to an ammonia synthesis catalyst, in particular to a method for preparing a highly active novel ammonia synthesis catalyst with ruthenium (Ru) as the active center and metal oxides such as magnesium oxide (MgO) as the carrier, suitable for hydrogen and nitrogen Ammonia synthesis reaction.
背景技术 Background technique
目前,能源枯竭问题已经成为全球所共同关注并亟待解决的问题,在未找到替代性能源之前,降低能源消耗已经成为减缓能源枯竭,保证经济持续发展的一个重要手段。合成氨工业能耗高,每年约消耗全世界1%的能源。现阶段国内外使用的工业氨合成催化剂主要采用多促进的铁系催化剂,通常是由精选磁铁矿和一系列不同含量的助剂(如Al2O3,K20,CaO,MgO,BaO等)原料混合,经熔融、冷却而制成。这种传统的催化剂成本较低,但是需要在高温和高压条件下反应,能源消耗太高。能源危机将导致合成氨的成本大幅度提高,欲降低成本,必须降低能源消耗,合成氨催化剂是降低能耗最直接的因素之一。开发一种在较低温度和压力下具有较高活性的催化剂有利于减少能源消耗,降低成本,增强企业的竞争力。负载型钌基氨合成催化剂具有在低温和低压下活性罗高的特点,被誉为新一代氨合成催化剂,在国际上已有广泛的研究。1992年11月BP和Kellogg(Report Article in ApplCatal A:General.93(1993)N16)联合开发成功以碳为载体的钌系氨合成催化剂,应用于KAAP流程,在加拿大Ocelot氨厂首次工业化。该流程合成效率高,催化剂用量少,反应条件温和,吨氨能源消耗降低1.06×106kJ,而且催化剂中的贵金属钌可再生利用,这是合成氨工业重大的技术革命。At present, the problem of energy depletion has become a global concern and an urgent problem to be solved. Before alternative energy sources are found, reducing energy consumption has become an important means to slow down energy depletion and ensure sustainable economic development. The ammonia industry consumes a lot of energy, consuming about 1% of the world's energy every year. At present, the industrial ammonia synthesis catalysts used at home and abroad mainly use multi-promoted iron-based catalysts, usually made of selected magnetite and a series of additives with different contents (such as Al2O 3 , K20, CaO, MgO, BaO, etc.) Mixed, made by melting and cooling. The cost of this traditional catalyst is low, but it needs to react under high temperature and high pressure conditions, and the energy consumption is too high. The energy crisis will lead to a substantial increase in the cost of ammonia synthesis. To reduce costs, energy consumption must be reduced. Ammonia synthesis catalysts are one of the most direct factors for reducing energy consumption. The development of a catalyst with higher activity at lower temperature and pressure is beneficial to reduce energy consumption, reduce costs and enhance the competitiveness of enterprises. The supported ruthenium-based ammonia synthesis catalyst has the characteristics of high activity at low temperature and low pressure. It is known as a new generation of ammonia synthesis catalyst and has been extensively studied in the world. In November 1992, BP and Kellogg (Report Article in ApplCatal A: General. 93 (1993) N16) jointly developed a carbon-supported ruthenium-based ammonia synthesis catalyst, which was applied to the KAAP process and was first industrialized at the Ocelot ammonia plant in Canada. This process has high synthesis efficiency, less catalyst consumption, mild reaction conditions, 1.06×106kJ reduction in energy consumption per ton of ammonia, and the renewable use of precious metal ruthenium in the catalyst, which is a major technological revolution in the ammonia synthesis industry.
由于在高温高压的反应条件下,普通活性碳会发生甲烷化导致活性组分流失,从而大大降低了催化剂的活性。英国石油BP公司于1974年(Chemical Engineering.Chementator.3(1993)19)开发了含石墨的碳,其稳定性和活性均好于普通活性碳。但含石墨的碳其机械强度差,且需采用二次高温处理和一次氧化处理的制备方法,能耗与生产成本较高,生产操作与控制比较复杂。因此,近年来氨合成催化剂的科研工作者倾向于选用难还原的金属氧化物作为钌基催化剂的载体。Under the reaction conditions of high temperature and high pressure, methanation of ordinary activated carbon will lead to the loss of active components, thereby greatly reducing the activity of the catalyst. British Petroleum BP developed graphite-containing carbon in 1974 (Chemical Engineering. Chementator. 3 (1993) 19), which has better stability and activity than ordinary activated carbon. However, graphite-containing carbon has poor mechanical strength, and needs to be prepared by secondary high-temperature treatment and primary oxidation treatment. The energy consumption and production cost are relatively high, and the production operation and control are relatively complicated. Therefore, in recent years, researchers of ammonia synthesis catalysts tend to choose difficult-to-reduce metal oxides as supports for ruthenium-based catalysts.
国内科研工作者也致力于高活性的负载型钌基氨合成催化剂的研究。例如公开号为CN1270081A的专利申请公开了一种以钌为活性中心,以活性碳为载体,以碱土金属、稀土等为助剂的氨合成催化剂。其钌负载量为0.1%~16%wt,钌与助剂的摩尔比为0.01~10。它采用浸渍法制备。公开号为CN1481933A的专利申请公开了氨合成生产用的一种新型催化剂,它以钌为活性成分,碱金属或者碱土金属的氟化物为助剂,以氧化镁等为载体的高活性氨合成催化剂及其制备方法。Ru的负载量Ru/MgO为3%~8%,Ru与MFx的摩尔比为0.5~8,所用的溶剂为水或可溶解RuCl3·nH2O或者羰基钌的有机溶剂。分别采用浸渍法或机械混合煅烧与浸渍法制备。Domestic researchers are also committed to the research of highly active supported ruthenium-based ammonia synthesis catalysts. For example, the patent application whose publication number is CN1270081A discloses an ammonia synthesis catalyst with ruthenium as the active center, activated carbon as the carrier, and alkaline earth metals, rare earths, etc. as auxiliary agents. The loading amount of ruthenium is 0.1%-16%wt, and the molar ratio of ruthenium to additive is 0.01-10. It is prepared by dipping. The patent application with publication number CN1481933A discloses a new type of catalyst for ammonia synthesis production, which uses ruthenium as the active component, alkali metal or alkaline earth metal fluoride as an auxiliary agent, and a highly active ammonia synthesis catalyst with magnesium oxide as a carrier and its preparation method. The loading amount of Ru Ru/MgO is 3%-8%, the molar ratio of Ru to MFx is 0.5-8, and the solvent used is water or an organic solvent capable of dissolving RuCl 3 ·nH 2 O or ruthenium carbonyl. It is prepared by impregnation method or mechanical mixing calcining and impregnation method respectively.
发明内容 Contents of the invention
本发明的目的在于针对已有的负载型钉基氨合成催化剂其活性较低、稳定性较差的问题,提供一种新型钌基氨合成催化剂制备方法,该催化剂(在以氢气与氮气为原料合成氨的生产过程中)有着较高的氮氢成氨的活性和较好的稳定性。The object of the present invention is to provide a kind of preparation method of novel ruthenium-based ammonia synthesis catalyst for the problems of its low activity and poor stability of the existing loaded-type nail-based ammonia synthesis catalyst, which catalyst (with hydrogen and nitrogen as raw materials In the production process of synthetic ammonia), it has a higher activity of nitrogen and hydrogen into ammonia and better stability.
本发明所说的催化剂是负载在纳米氧化镁(12~14nm)上的贵金属钌和一种碱金属硝酸盐组成的Ru-MNO3/MgO体系,所说的催化剂以Ru为活性组分,以MgO为载体,以碱金属硝酸盐MNO3为助剂,Ru的负载量Ru/MgO为2Wt%~8Wt%,MNO3与Ru的摩尔比为0.5~8,所用的还原剂为已二醇、甲醛和水合阱等中的一种,浸渍助剂的溶剂为已二醇、水和乙醇等中的一种。Ru的负载量最好为2Wt%~6Wt%,MNO3与Ru的摩尔比最好为1~5。Ru可来自RuCl3·nH2O或者羰基钌等,其中n为结晶水的数目,还原剂的使用量为10~50ml每克MgO,溶剂的量为10~30ml每克Ru/MgO。Said catalyzer of the present invention is the Ru-MNO 3 /MgO system that the noble metal ruthenium and a kind of alkali metal nitrate on the nano magnesium oxide (12~14nm) are supported on the Ru-MNO 3 /MgO system, said catalyzer is active component with Ru, with MgO is used as a carrier, and alkali metal nitrate MNO3 is used as an auxiliary agent. The loading capacity of Ru Ru/MgO is 2Wt%-8Wt%, the molar ratio of MNO3 to Ru is 0.5-8, and the reducing agent used is hexanediol, One of formaldehyde and hydration trap, etc., and the solvent of impregnation aid is one of hexylene glycol, water and ethanol, etc. The loading amount of Ru is preferably 2Wt%-6Wt%, and the molar ratio of MNO 3 to Ru is preferably 1-5. Ru can come from RuCl 3 ·nH 2 O or ruthenium carbonyl, etc., where n is the number of crystal water, the amount of reducing agent used is 10-50ml per gram of MgO, and the amount of solvent is 10-30ml per gram of Ru/MgO.
本发明所说的制备钌基氨合成催化剂的具体步骤为:The concrete steps of the said preparation ruthenium-based ammonia synthesis catalyst of the present invention are:
1)在硝酸镁的水溶液中加入氨水溶液至pH值为8~11,将Mg(OH)2沉淀过滤并用去离子水洗涤后烘干;1) Add ammonia solution to the aqueous solution of magnesium nitrate until the pH value is 8-11, filter the Mg(OH) 2 precipitate, wash it with deionized water, and then dry it;
2)在400~700℃下煅烧0.5~3h,然后在N2气氛下400~700℃煅烧3~8h;2) Calcining at 400-700°C for 0.5-3h, then calcining at 400-700°C for 3-8h under N2 atmosphere;
3)按RuCl3·nH2O与MgO的质量比为3~25:100的比例加入到还原剂溶液中,搅拌均匀后在冰水浴中冷却;3) Add RuCl 3 ·nH 2 O to MgO in a ratio of 3 to 25:100 by mass to the reducing agent solution, stir evenly and cool in an ice-water bath;
4)搅拌蒸干;4) stirring and evaporating to dryness;
5)在325~425℃下通氢气得到Ru/MgO;5) Pass hydrogen at 325-425°C to obtain Ru/MgO;
6)将所制得的Ru/MgO与助剂碱金属硝酸盐MNO3按质量比100:5~20的比例加入溶剂中静置;6) Add the prepared Ru/MgO and the auxiliary agent alkali metal nitrate MNO 3 into the solvent in a mass ratio of 100:5-20;
7)搅拌蒸干;7) stirring and evaporating to dryness;
8)通氢气得目标产物。8) Through hydrogen to obtain the target product.
在步骤1)中,在硝酸镁的水溶液中加入一定溶度的氨水溶液至pH值为11,将Mg(OH)2沉淀过滤并用去离子水洗涤至少1遍后烘干,烘干温度为80~180℃。In step 1), add a certain amount of ammonia solution to the aqueous solution of magnesium nitrate until the pH value is 11, filter the Mg(OH) precipitate , wash it with deionized water at least once, and then dry it at 80 ~180°C.
在步骤1)中,烘干温度为100℃。In step 1), the drying temperature is 100°C.
在步骤2)中,在600℃下空气中煅烧1h,然后在N2气氛下600℃下煅烧5h。In step 2), calcination was performed at 600 °C in air for 1 h, followed by calcination at 600 °C for 5 h under N2 atmosphere.
在步骤3)中,在60~180℃下搅拌均匀后在冰水浴中冷却。In step 3), stir evenly at 60-180° C. and cool in an ice-water bath.
在步骤4)中,在160~250℃下搅拌蒸干;In step 4), stirring and evaporating to dryness at 160-250°C;
在步骤6)中,将所制得的Ru/MgO与助剂碱金属硝酸盐MNO3按质量比100:5~20的比例加入溶剂中,搅拌3~12h后静置。In step 6), the prepared Ru/MgO and the auxiliary alkali metal nitrate MNO 3 are added to the solvent in a mass ratio of 100:5-20, stirred for 3-12 hours and then left to stand.
在步骤7)中,在160~250℃下搅拌蒸干。In step 7), stir and evaporate to dryness at 160-250°C.
在步骤8)中,在325~425℃下通氢气得目标产物。In step 8), pass hydrogen gas at 325-425° C. to obtain the target product.
使用前可经压片、破碎、过筛(35~60目)。It can be tabletted, crushed and sieved (35-60 mesh) before use.
本发明所说的催化剂用于氮气氢气混合气催化合成氨。The catalyst mentioned in the invention is used for catalytically synthesizing ammonia with nitrogen-hydrogen mixed gas.
与已有的同类催化剂相比,本发明所说的催化剂的优点是利用已二醇等还原剂在一定温度条件下还原出具有较好颗粒大小和晶体结构的钌金属胶体并使之均匀负载在纳米氧化镁上。采用已二醇为溶剂浸渍助剂所制备的催化剂具有最高活性,在整个制备过程没有使用水溶剂,避免Mg(OH)2的生成,提高了Ru的分散度和金属表面利用率同时较好的控制钌颗粒的大小,从而极大程度上提高了催化活性。本发明所说的催化剂的催化氨合成活性在低温和低压下具有很高活性,在385℃,压力0.2MPa,流速为2100ml/h下其活性高达6341.5μmolh-1g-1-cat是通常使用传统方法制备的同类型钌基催化剂的10至13倍。Compared with existing similar catalysts, the advantage of the said catalyst of the present invention is that the ruthenium metal colloids with better particle size and crystal structure are reduced under certain temperature conditions by utilizing reducing agents such as hexanediol and make it uniformly loaded on the on nano-magnesium oxide. The catalyst prepared by using hexylene glycol as the solvent impregnation aid has the highest activity, and no water solvent is used in the whole preparation process, which avoids the formation of Mg(OH) 2 , improves the dispersion of Ru and the utilization rate of the metal surface, and at the same time has a good Controlling the size of ruthenium particles greatly improves the catalytic activity. The catalytic ammonia synthesis activity of the said catalyst of the present invention has very high activity at low temperature and low pressure, at 385 ℃, pressure 0.2MPa, its activity is as high as 6341.5μmolh-1g-1-cat under the flow rate of 2100ml/h. 10 to 13 times that of the same type of ruthenium-based catalyst prepared by the method.
具体实施方式 Detailed ways
以下实施例将对本发明作更详细的说明。The following examples will illustrate the present invention in more detail.
实施例1Example 1
将2g纳米氧化镁和0.21gRuCl3·nH2O加入50ml的已二醇溶液中,在油浴中加热至180℃,搅拌1.5h后立刻放入冰水浴中搅拌3h;160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃,通氢气12h除去氯离子。将0.15g KNO3溶解于约20ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍6h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃,通氢气3h除去剩余的已二醇。取0.2g左右的催化剂放置于反应管中在压力0.2MPa,流速为2100ml/h下测定其催化剂活性。传统方法制备的催化剂KNO3-Ru/MgO-con也在相同条件下制备和评价。结果表明,采用新的催化剂制备方法比传统方法制备氨合成催化剂的活性来得高,见表1。Add 2g of nano-magnesium oxide and 0.21g of RuCl 3 ·nH 2 O into 50ml of hexanediol solution, heat to 180°C in an oil bath, stir for 1.5h, then put it in an ice-water bath and stir for 3h; stir at 160-250°C Evaporate to dryness and remove the organic solution. The obtained solid powder was passed through hydrogen at 425°C for 12 hours to remove chloride ions. Dissolve 0.15g KNO3 in about 20ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO3 hexanediol solution with stirring and impregnate for 6h, stir and evaporate to dryness at 160-250°C, and the obtained Catalyst at 425 ° C, through hydrogen for 3 hours to remove the remaining hexanediol. Take about 0.2 g of catalyst and place it in a reaction tube to measure its catalyst activity at a pressure of 0.2 MPa and a flow rate of 2100 ml/h. The catalyst KNO 3 -Ru/MgO-con prepared by the traditional method was also prepared and evaluated under the same conditions. The results show that the activity of the ammonia synthesis catalyst prepared by the new catalyst preparation method is higher than that of the traditional method, as shown in Table 1.
表1.催化剂KNO3-Ru/MgO与参比催化剂KNO3-Ru/MgO-con活性比较(μ molh-1g-1-cat)Table 1. Catalyst KNO 3 -Ru/MgO and reference catalyst KNO 3 -Ru/MgO-con activity comparison (μ molh-1g-1-cat)
实施例2Example 2
将2.0g纳米氧化镁和0.21gRuCl3·nH2O加入50ml的已二醇溶液中,在油浴中加热至80℃,搅拌2.5h后立刻放入冰水浴中搅拌5h;160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃,通氢气12h除去氯离子。将0.15g KNO3溶解于约20ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍6h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃通氢气3h除去剩余的已二醇。取0.2g左右的催化剂放置于反应管中在压力0.2MPa,流速为2100ml/h下测定其催化剂活性。Add 2.0g nano-magnesium oxide and 0.21g RuCl 3 ·nH 2 O into 50ml of hexanediol solution, heat to 80°C in an oil bath, stir for 2.5h, then put it in an ice-water bath and stir for 5h; at 160~250°C Stir and evaporate to dryness to remove the organic solution. The obtained solid powder was passed through hydrogen at 425°C for 12 hours to remove chloride ions. Dissolve 0.15g KNO3 in about 20ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO3 hexanediol solution with stirring and impregnate for 6h, stir and evaporate to dryness at 160-250°C, and the obtained The catalyst was passed through hydrogen at 425°C for 3 hours to remove the remaining hexanediol. Take about 0.2 g of catalyst and place it in a reaction tube to measure its catalyst activity at a pressure of 0.2 MPa and a flow rate of 2100 ml/h.
实施例3Example 3
将2g纳米氧化镁和0.21gRuCl3·nH2O加入50ml的已二醇溶液中,在油浴中加热至140℃,搅拌0.5h后立刻放入冰水浴中搅拌3h;160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃,通氢气12h除去氯离子。将0.15g KNO3溶解于约20ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍6h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃,通氢气3h除去剩余的已二醇。取0.2g左右的催化剂放置于反应管中在压力0.2MPa,流速为2100ml/h下测定其催化剂活性。结果如表2所示。结果表明,当还原温度为180℃时,催化活性最高。Add 2g nano-magnesium oxide and 0.21g RuCl 3 ·nH 2 O into 50ml of hexanediol solution, heat to 140°C in an oil bath, stir for 0.5h, then put it in an ice-water bath and stir for 3h; stir at 160-250°C Evaporate to dryness and remove the organic solution. The obtained solid powder was passed through hydrogen at 425°C for 12 hours to remove chloride ions. Dissolve 0.15g KNO3 in about 20ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO3 hexanediol solution with stirring and impregnate for 6h, stir and evaporate to dryness at 160-250°C, and the obtained Catalyst at 425 ° C, through hydrogen for 3 hours to remove the remaining hexanediol. Take about 0.2 g of catalyst and place it in a reaction tube to measure its catalyst activity at a pressure of 0.2 MPa and a flow rate of 2100 ml/h. The results are shown in Table 2. The results showed that the catalytic activity was the highest when the reduction temperature was 180 °C.
表2.不同的还原温度对催化剂活性的影响Table 2. Effect of different reduction temperatures on catalyst activity
实施例4Example 4
将2g纳米氧化镁和0.105gRuCl3·nH2O加入15ml的已二醇溶液中,在油浴中加热至140℃,搅拌2h后立刻放入冰水浴中搅拌3h:160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃,通氢气12h除去氯离子。将0.075g KNO3溶解于约15ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍6h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃,通氢气3h除去剩余的已二醇得到K-Ru/MgO。Add 2g of nano-magnesium oxide and 0.105g of RuCl 3 ·nH 2 O into 15ml of hexanediol solution, heat to 140°C in an oil bath, stir for 2 hours, then put it in an ice-water bath and stir for 3 hours: Stir and steam at 160-250°C Dry and remove the organic solution. The obtained solid powder was passed through hydrogen at 425°C for 12 hours to remove chloride ions. Dissolve 0.075g KNO3 in about 15ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO3 hexanediol solution with stirring and impregnate for 6h, stir and evaporate to dryness at 160-250°C, and the obtained Catalyst at 425°C, pass hydrogen for 3 hours to remove remaining hexanediol to obtain K-Ru/MgO.
实施例5Example 5
将2g纳米氧化镁和0.42gRuCl3·nH2O加入50ml的已二醇溶液中,在油浴中加热至140℃,搅拌3h后立刻放入冰水浴中搅拌1h;160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃,通氢气12h除去氯离子。将0.075g KNO3溶解于约20ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍12h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃,通氢气1h除去剩余的已二醇得到催化剂K-Ru/MgO。Add 2g nano-magnesium oxide and 0.42g RuCl 3 ·nH 2 O into 50ml of hexanediol solution, heat to 140°C in an oil bath, stir for 3 hours, then put it in an ice-water bath and stir for 1 hour; stir and steam at 160-250°C Dry and remove the organic solution. The obtained solid powder was passed through hydrogen at 425°C for 12 hours to remove chloride ions. Dissolve 0.075g KNO 3 in about 20ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO 3 hexanediol solution with stirring and impregnate for 12h, stir and evaporate to dryness at 160-250°C, and the obtained Catalyst at 425°C, pass hydrogen for 1 hour to remove remaining hexanediol to obtain catalyst K-Ru/MgO.
实施例6Example 6
将2g纳米氧化镁和0.105gRuCl3·nH2O加入50ml的已二醇溶液中,在油浴中加热至160℃,搅拌3h后立刻放入冰水浴中搅拌1h;160~250℃下搅拌蒸干,除去有机溶液。将所得的固体粉末在425℃通氢气12h除去氯离子。将0.25g KNO3溶解于约50ml的已二醇溶液中,1g制得的Ru/MgO放入KNO3已二醇溶液中搅拌下浸渍6h后,160~250℃下搅拌蒸干,将所得的催化剂在425℃,通氢气6h除去剩余的已二醇得到催化剂K-Ru/MgO。Add 2g of nano-magnesia and 0.105g of RuCl 3 nH 2 O into 50ml of hexanediol solution, heat to 160°C in an oil bath, stir for 3 hours, then put it in an ice-water bath and stir for 1 hour; stir and steam at 160-250°C Dry and remove the organic solution. The obtained solid powder was passed through hydrogen gas at 425°C for 12 hours to remove chloride ions. Dissolve 0.25g KNO3 in about 50ml of hexanediol solution, put 1g of the prepared Ru/MgO into the KNO3 hexanediol solution with stirring and impregnate for 6h, stir and evaporate to dryness at 160-250°C, and the obtained Catalyst at 425 ° C, through hydrogen for 6 hours to remove the remaining hexanediol to obtain the catalyst K-Ru/MgO.
实施例7Example 7
按例1方法制备不同K/Ru摩尔比(1/1~5/1)的KNO3-Ru/MgO催化剂,钌的负载量为4%wt,催化剂用量0.2g,在压力为0.2MPa,反应温度为658K,合成气组成N2/H2=1/3,流速为2100ml/h的条件下评价其氨合成活性。结果如表3所示。结果表明当K/Ru摩尔比为3时,催化剂活性最高。Prepare the KNO 3 -Ru/MgO catalyst of different K/Ru mol ratios (1/1~5/1) by the method for example 1, the loading capacity of ruthenium is 4%wt, catalyst consumption 0.2g, at pressure is 0.2MPa, reaction The ammonia synthesis activity was evaluated under the condition that the temperature was 658K, the synthesis gas composition was N 2 /H 2 =1/3, and the flow rate was 2100ml/h. The results are shown in Table 3. The results show that when the K/Ru molar ratio is 3, the catalyst activity is the highest.
表3.不同的K/Ru比对催化剂活性的影响Table 3. Effect of different K/Ru ratios on catalyst activity
实施例8Example 8
按实施例1方法制备Ru/MgO催化剂,钌的负载量为4%wt,采用水作为溶剂浸渍助剂(K/Ru=3),70℃下旋转蒸干。催化剂用量0.2g,在压力为0.2MPa,反应温度658K,合成气组成N2/H2=1/3,流速为2100ml/h的条件下评价其氨合成活性。结果如表4所示。结果表明有机溶剂已二醇在浸渍助剂时是比水好的溶剂。The Ru/MgO catalyst was prepared according to the method in Example 1, the loading amount of ruthenium was 4%wt, water was used as the solvent impregnation aid (K/Ru=3), and the catalyst was spun to dryness at 70°C. The amount of the catalyst is 0.2g, the ammonia synthesis activity is evaluated under the conditions of the pressure of 0.2MPa, the reaction temperature of 658K, the synthesis gas composition of N 2 /H 2 =1/3, and the flow rate of 2100ml/h. The results are shown in Table 4. The results show that the organic solvent hexylene glycol is a better solvent than water for impregnating aids.
表4.不同溶剂对催化剂活性的影响Table 4. Effect of different solvents on catalyst activity
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101183602A CN100493700C (en) | 2005-10-28 | 2005-10-28 | A kind of preparation method of ruthenium-based ammonia synthesis catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101183602A CN100493700C (en) | 2005-10-28 | 2005-10-28 | A kind of preparation method of ruthenium-based ammonia synthesis catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1954910A CN1954910A (en) | 2007-05-02 |
CN100493700C true CN100493700C (en) | 2009-06-03 |
Family
ID=38062580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101183602A Expired - Fee Related CN100493700C (en) | 2005-10-28 | 2005-10-28 | A kind of preparation method of ruthenium-based ammonia synthesis catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100493700C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102698749B (en) * | 2012-06-14 | 2014-03-12 | 福州大学 | Ruthenium ammonia synthesis catalyst taking ruthenium ammonia complex as precursor |
CN111250143A (en) * | 2018-11-30 | 2020-06-09 | 中国科学院大连化学物理研究所 | Alkaline catalyst, and preparation method and application thereof |
CN111097410B (en) | 2019-12-06 | 2021-11-19 | 福州大学化肥催化剂国家工程研究中心 | Ruthenium ammonia synthesis catalyst and preparation method and application thereof |
CN114182293B (en) * | 2021-06-09 | 2024-04-23 | 福州大学 | Preparation method of Ru-based catalyst with controllable particle size and application of Ru-based catalyst in' renewable energy electrolysis hydrogen production-ammonia synthesis |
CN115999550B (en) * | 2023-01-06 | 2024-11-26 | 浙江大学 | A porous ammonia synthesis catalyst and its preparation method and application |
CN116651447B (en) * | 2023-06-21 | 2024-05-10 | 安徽工程大学 | A flower-shaped atomic-level Ru/MgO high-efficiency ammonia synthesis catalyst and its preparation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673732B2 (en) * | 2000-07-06 | 2004-01-06 | Haldor Topsoe A/S | Process for catalytic ammonia production—preparation and recovery of ammonia synthesis catalyst |
CN1133492C (en) * | 2002-06-03 | 2004-01-07 | 福州大学 | Process for preparing ammonia synthesis catalyst |
CN1506300A (en) * | 2002-12-12 | 2004-06-23 | 中国科学院大连化学物理研究所 | A kind of ruthenium-based ammonia decomposition hydrogen-nitrogen mixed gas catalyst and preparation method thereof |
CN1162219C (en) * | 2001-08-15 | 2004-08-18 | 中国石油化工股份有限公司 | A kind of ruthenium-based ammonia synthesis catalyst and preparation method thereof |
CN1193825C (en) * | 2002-09-12 | 2005-03-23 | 厦门大学 | Ammonia synthesis catalyst and preparation method thereof |
-
2005
- 2005-10-28 CN CNB2005101183602A patent/CN100493700C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673732B2 (en) * | 2000-07-06 | 2004-01-06 | Haldor Topsoe A/S | Process for catalytic ammonia production—preparation and recovery of ammonia synthesis catalyst |
CN1162219C (en) * | 2001-08-15 | 2004-08-18 | 中国石油化工股份有限公司 | A kind of ruthenium-based ammonia synthesis catalyst and preparation method thereof |
CN1133492C (en) * | 2002-06-03 | 2004-01-07 | 福州大学 | Process for preparing ammonia synthesis catalyst |
CN1193825C (en) * | 2002-09-12 | 2005-03-23 | 厦门大学 | Ammonia synthesis catalyst and preparation method thereof |
CN1506300A (en) * | 2002-12-12 | 2004-06-23 | 中国科学院大连化学物理研究所 | A kind of ruthenium-based ammonia decomposition hydrogen-nitrogen mixed gas catalyst and preparation method thereof |
Non-Patent Citations (6)
Title |
---|
Ammonia synthesis over ruthenium catalysts supportedonhighsurface area MgO and MgO-Al2O3 system. D.Szmigiel等.Appli. Cataly. A: Gen,Vol.273 No.1-2. 2004 |
Ammonia synthesis over ruthenium catalysts supportedonhighsurface area MgO and MgO-Al2O3 system. D.Szmigiel等.Appli. Cataly. A: Gen,Vol.273 No.1-2. 2004 * |
Support and Promoter Effect of Ruthenium Catalyst. K. Aika等.Journal of Catalysis,Vol.92 No.2. 1985 |
Support and Promoter Effect of Ruthenium Catalyst. K. Aika等.Journal of Catalysis,Vol.92 No.2. 1985 * |
以氧化镁为载体的钌基氨合成催化剂研究. 霍超,李瑛等.浙江工业大学学报,第30卷第5期. 2002 |
以氧化镁为载体的钌基氨合成催化剂研究. 霍超,李瑛等.浙江工业大学学报,第30卷第5期. 2002 * |
Also Published As
Publication number | Publication date |
---|---|
CN1954910A (en) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101879448B (en) | Regular structure catalyst for hydrogenation of oxalate to ethylene glycol and preparation method thereof | |
WO2018103144A1 (en) | Manganese-based catalyst for use in treatment of volatile organic compounds, and preparation and application thereof | |
CN101791556B (en) | Octanol hydrorefining catalyst and preparation method thereof | |
CN101549292B (en) | Catalyst for synthesizing cyclohexene by hydrogenation of benzene ring and preparing method thereof | |
CN102744060B (en) | BaTiO3-supported ruthenium ammonia synthesis catalyst, and preparation method thereof | |
CN105381796A (en) | Catalyst for hydrodeoxygenation of organic oxygen containing compound in oil product, preparation method and application | |
CN103028409A (en) | Supported copper-based metal catalyst with high dispersion as well as preparation method and application thereof | |
CN105983427A (en) | Apatite loaded platinum catalyst as well as preparation method and application thereof | |
CN111389404A (en) | A kind of preparation method of cerium oxide supported nickel catalyst and use thereof | |
CN104971727A (en) | Preparation method of high-efficiency nickel-based catalyst for producing hydrogen in methanol-steam reforming | |
CN114669299A (en) | Mesoporous carbon supported copper-iron bimetallic catalyst and preparation method and application thereof | |
CN114700084A (en) | Catalyst for hydrogenation and dehydrogenation of organic hydrogen storage liquid, preparation method thereof and hydrogenation and dehydrogenation method of organic hydrogen storage liquid | |
CN100421788C (en) | Mixed ruthenium-based ammonia synthesis catalyst and preparation method thereof | |
CN101733089A (en) | Catalyst for preparing hydrogen gas, method for preparing same and application thereof | |
CN100493700C (en) | A kind of preparation method of ruthenium-based ammonia synthesis catalyst | |
CN103566930B (en) | A kind of Pd/SiO 2catalysts and its preparation method and application | |
CN117046498A (en) | Preparation method of vanadium nitride-loaded metal monoatomic catalyst | |
CN106799249A (en) | Co oxide/BaCO3 catalyst for catalytic decomposition of N2O and preparation method thereof | |
CN105727934A (en) | A macroporous-mesoporous TiO2 transition metal-doped denitration catalyst and preparation method thereof | |
CN102698749A (en) | Ruthenium ammonia synthesis catalyst taking ruthenium ammonia complex as precursor | |
CN105498780B (en) | A kind of Cu/ZnO catalyst and preparation method thereof and in CO2Application in chemical conversion | |
WO2011150834A1 (en) | Regular catalyst for synthesizing oxalate by carbon monoxide gaseous-phase coupling, preparation method and use thereof | |
CN108114729A (en) | A kind of anthraquinone hydrogenation catalyst and its preparation method and application | |
CN112058277A (en) | High-activity catalyst for ammonia synthesis and preparation method thereof | |
CN117839709A (en) | Ammonia decomposition catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090603 Termination date: 20111028 |