CN100489535C - Method for continuously monitoring smoke discharge and the device - Google Patents
Method for continuously monitoring smoke discharge and the device Download PDFInfo
- Publication number
- CN100489535C CN100489535C CNB2006100518957A CN200610051895A CN100489535C CN 100489535 C CN100489535 C CN 100489535C CN B2006100518957 A CNB2006100518957 A CN B2006100518957A CN 200610051895 A CN200610051895 A CN 200610051895A CN 100489535 C CN100489535 C CN 100489535C
- Authority
- CN
- China
- Prior art keywords
- gas
- continuous monitoring
- fume emission
- heated air
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 239000000779 smoke Substances 0.000 title description 3
- 239000007789 gas Substances 0.000 claims abstract description 89
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000003546 flue gas Substances 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000012806 monitoring device Methods 0.000 claims abstract description 23
- 238000005070 sampling Methods 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims description 20
- 238000005516 engineering process Methods 0.000 claims description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000013307 optical fiber Substances 0.000 claims description 11
- 238000000862 absorption spectrum Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 150000002736 metal compounds Chemical class 0.000 claims description 8
- 230000005298 paramagnetic effect Effects 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 238000001069 Raman spectroscopy Methods 0.000 claims description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 6
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 3
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229960002523 mercuric chloride Drugs 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 239000003517 fume Substances 0.000 claims 13
- 238000002189 fluorescence spectrum Methods 0.000 claims 3
- 238000001237 Raman spectrum Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 47
- 239000000126 substance Substances 0.000 abstract description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 12
- 238000004847 absorption spectroscopy Methods 0.000 description 5
- 238000001506 fluorescence spectroscopy Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001285 laser absorption spectroscopy Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种烟气排放连续监测方法,包括如下步骤:(1)管道内的烟气经过取样后再伴热传输到加热气体室,测量出加热气体室内至少一种第一类被测气态组分的浓度;(2)除去从加热气体室排出气体中的水分;(3)测量出除水后气体中至少一种第二类被测气态组分的浓度。本发明还公开了一种烟气排放连续监测装置,包括取样装置、伴热管线、加热气体室、第一测量装置,伴热管线两端连接取样装置和加热气体室,所述第一测量装置测量加热气体室内至少一种第一类被测气态组分的浓度;该烟气排放连续监测装置还包括一对从所述加热气体室排出气体进行除水的除水装置及一安装在除水装置下游测量除水后气态物质中的至少一种第二类被测气态组分浓度的第二测量装置。
A continuous monitoring method for flue gas emission, comprising the following steps: (1) The flue gas in the pipeline is transported to a heating gas chamber with heat after being sampled, and the concentration of at least one first type of gaseous component to be measured in the heating gas chamber is measured. concentration; (2) removing the moisture in the gas discharged from the heating gas chamber; (3) measuring the concentration of at least one gaseous component of the second type to be measured in the gas after removing the water. The invention also discloses a continuous monitoring device for flue gas emission, which includes a sampling device, a heating pipeline, a heating gas chamber, and a first measuring device. Both ends of the heating pipeline are connected to the sampling device and the heating gas chamber. The first measuring device Measure the concentration of at least one first type of measured gaseous component in the heating gas chamber; the flue gas emission continuous monitoring device also includes a pair of water removal devices for removing water from the gas discharged from the heating gas chamber and a water removal device installed in the water removal device. Downstream of the device is a second measuring device for measuring the concentration of at least one second type of gaseous component to be measured in the gaseous substance after water removal.
Description
【技术领域】 【Technical field】
本发明涉及烟气连续监测领域,更确切地说,涉及一种烟气排放连续监测方法及其装置。The invention relates to the field of continuous monitoring of flue gas, more specifically, to a method and device for continuous monitoring of flue gas emission.
烟气排放连续监测装置是一种对烟气排放污染源进行监测的系统。目前,一种广泛使用的烟气排放连续监测装置,包括取样装置、伴热管线、加热气体室和测量装置。被测烟囱或管道内的烟气经过取样装置采样后,经全程伴热管线通到加热气体室,然后应用测量装置测得加热气体室内气体的各组分如二氧化硫、氮氧化物、氨气和氯化氢等的浓度。测量装置通常采用非分光红外分析技术和付里叶红外光谱分析技术来分析气体浓度。该类分析技术主要有以下不足:非分光红外分析仪需要为每种被测气体配置相应的滤光片,系统复杂,需要使用运动部件,可靠性差,使用非分光技术,测量漂移较大;付里叶红外光谱分析仪中使用运动部件,价格昂贵,可靠性差;使用中远红外光源,较难使用光纤来传导测量光束,可生产性和可维护性差。The flue gas emission continuous monitoring device is a system for monitoring the pollution source of flue gas emission. At present, a widely used continuous monitoring device for flue gas emission includes a sampling device, a heating line, a heating gas chamber and a measuring device. After the flue gas in the chimney or pipe to be tested is sampled by the sampling device, it is passed to the heating gas chamber through the whole heating pipeline, and then the components of the gas in the heating gas chamber are measured by the measuring device, such as sulfur dioxide, nitrogen oxides, ammonia and concentration of hydrogen chloride etc. Measuring devices usually use non-spectral infrared analysis technology and Fourier transform infrared spectroscopy analysis technology to analyze the gas concentration. This type of analysis technology mainly has the following disadvantages: the non-spectral infrared analyzer needs to be equipped with a corresponding filter for each gas to be measured, the system is complex, it needs to use moving parts, the reliability is poor, and the non-spectral technology is used, and the measurement drift is large; The moving parts used in the Lie infrared spectrometer are expensive and have poor reliability; the middle and far infrared light source is used, it is difficult to use optical fiber to transmit the measurement beam, and the productivity and maintainability are poor.
另外一种常用的烟气排放连续监测装置,与上述监测装置不同的地方是,不采用加热气体室而增加了冷凝排水预处理装置;被测烟囱或管道内的烟气经过取样装置采样后,经全程伴热管线通到冷凝排水预处理装置冷凝除水,然后送分析仪器测量各被测组分的浓度。在分析仪器前还安装了流量计,通过流量计的读数可得知取样装置、伴热气体管线等是否堵塞。然而,该种烟气排放连续监测装置存在以下不足:由于烟气中的氨气、二氧化硫、氯化氢等气体易溶于水,被测烟气中的这些气体会溶于冷凝水导致这些气体的测量浓度比真实值偏小;特别是当测量低浓度的易溶于水的气体如二氧化硫、氨气的浓度时,误差非常大。此外,该种烟气排放连续监测装置的冷凝排水预处理装置使用冷凝器、流量计和蠕动泵,成本高,可靠性差。Another commonly used continuous monitoring device for flue gas emission differs from the above-mentioned monitoring device in that it does not use a heating gas chamber but adds a condensate drainage pretreatment device; after the flue gas in the measured chimney or pipe is sampled by the sampling device, Through the whole heating pipeline, it leads to the condensate drainage pretreatment device to condense and remove water, and then send it to the analytical instrument to measure the concentration of each component to be measured. A flow meter is also installed in front of the analytical instrument, and the reading of the flow meter can be used to know whether the sampling device and the heating gas pipeline are blocked. However, this kind of flue gas emission continuous monitoring device has the following disadvantages: since ammonia, sulfur dioxide, hydrogen chloride and other gases in the flue gas are easily soluble in water, these gases in the measured flue gas will dissolve in condensed water, resulting in the measurement of these gases The concentration is smaller than the true value; especially when measuring the concentration of low-concentration water-soluble gases such as sulfur dioxide and ammonia, the error is very large. In addition, the condensate drainage pretreatment device of this continuous flue gas emission monitoring device uses a condenser, a flow meter and a peristaltic pump, which is costly and has poor reliability.
【发明内容】 【Content of invention】
本发明所要解决的技术问题是克服上述缺陷,提供一种成本较低、测量误差小、可靠性高、可生产性和可维护性好的烟气排放连续监测方法及其装置。The technical problem to be solved by the present invention is to overcome the above-mentioned defects and provide a continuous monitoring method and device for flue gas emission with low cost, small measurement error, high reliability, good productivity and maintainability.
本发明是通过以下技术方案实现的:本发明公开一种烟气排放连续监测方法,包括如下步骤:(1)管道内的烟气经过取样后再伴热传输到加热气体室,使用吸收光谱技术或拉曼光谱技术或荧光光谱技术或电化学技术或顺磁技术测量出加热气体室内至少一种易溶于水的气体或气态金属或者气态金属化合物的浓度;(2)除去从加热气体室排出气体中的水分;(3)使用吸收光谱技术或拉曼光谱技术或荧光光谱技术或电化学技术或顺磁技术测量出除水后气体中至少一种难溶于水的气体的浓度。The present invention is achieved through the following technical solutions: The present invention discloses a continuous monitoring method for flue gas emission, which includes the following steps: (1) The flue gas in the pipeline is sampled and then transferred to the heating gas chamber with heat tracing, and the absorption spectrum technology is used to or Raman spectroscopy or fluorescence spectroscopy or electrochemical techniques or paramagnetic techniques to measure the concentration of at least one water-soluble gas or gaseous metal or gaseous metal compound in the heated gas chamber; Moisture in the gas; (3) Using absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, electrochemical techniques or paramagnetic techniques to measure the concentration of at least one gas that is insoluble in water in the gas after water removal.
所述易溶于水的气体包括二氧化硫、三氧化硫、二氧化氮、氨气、氯化氢、氟化氢。The gas soluble in water includes sulfur dioxide, sulfur trioxide, nitrogen dioxide, ammonia, hydrogen chloride, hydrogen fluoride.
所述气态金属包括锌、铅或汞,而所述气态金属化合物包括氯化汞或氯化银。The gaseous metals include zinc, lead or mercury, and the gaseous metal compounds include mercuric chloride or silver chloride.
在所述步骤(3)之前还有一过滤步骤,以过滤掉烟气中的固态/液态颗粒物。There is also a filtering step before the step (3) to filter out solid/liquid particles in the flue gas.
所述步骤(2)中的除水方式为冷凝除水。The water removal method in the step (2) is condensation water removal.
一种烟气排放连续监测装置,包括取样装置、伴热管线、加热气体室、第一测量装置,伴热管线两端连接取样装置和加热气体室,其特征在于:所述第一测量装置测量加热气体室内至少一种易溶于水的气体或气态金属或者气态金属化合物的浓度;所述烟气排放连续监测装置还包括一个对从所述加热气体室排出气体进行除水的除水装置,以及一安装在除水装置下游测量除水后气态物质中的至少一种难溶于水的气体的浓度的第二测量装置,所述第一测量装置、第二测量装置分别是吸收光谱或拉曼光谱或荧光光谱或电化学或顺磁分析装置。A continuous monitoring device for flue gas emission, comprising a sampling device, a heating pipeline, a heating gas chamber, and a first measuring device, the two ends of the heating pipeline are connected to the sampling device and the heating gas chamber, characterized in that: The concentration of at least one water-soluble gas or gaseous metal or gaseous metal compound in the heating gas chamber; the continuous monitoring device for flue gas emission also includes a water removal device for removing water from the gas discharged from the heating gas chamber, And a second measuring device installed downstream of the dewatering device to measure the concentration of at least one water-insoluble gas in the gaseous substance after dewatering, the first measuring device and the second measuring device are respectively absorption spectrum or pull Mann spectroscopy or fluorescence spectroscopy or electrochemical or paramagnetic analysis devices.
所述吸收光谱装置为差分光学吸收光谱分析装置,包括光源、光纤、分光器件、光电转换器、信号处理器,分析装置通过光纤与加热气体室相连,光源发出的光通过光纤引至加热气体室,穿过加热气体室中的气体后再由光纤引至分光器件分光,之后被光电转换器接收并送信号处理器分析。The absorption spectrum device is a differential optical absorption spectrum analysis device, including a light source, an optical fiber, a spectroscopic device, a photoelectric converter, and a signal processor. The analysis device is connected to the heating gas chamber through an optical fiber, and the light emitted by the light source is led to the heating gas chamber through an optical fiber. After passing through the gas in the heated gas chamber, it is led to the spectroscopic device by the optical fiber to split the light, and then it is received by the photoelectric converter and sent to the signal processor for analysis.
所述第一测量装置设有一氧气传感器,所述第二测量装置也设有一氧气传感器。The first measuring device is provided with an oxygen sensor, and the second measuring device is also provided with an oxygen sensor.
所述除水装置包括除水罐或过滤器。The water removal device includes a water removal tank or a filter.
所述监测装置还包括用于抽出管道内烟气的取样泵或射流装置。The monitoring device also includes a sampling pump or a jet device for extracting smoke from the pipeline.
所述取样泵或射流装置前安装有压力传感器。A pressure sensor is installed in front of the sampling pump or the jet device.
所述加热气体室上还安装有用于检测气体室中气体温度的温度传感器。A temperature sensor for detecting the temperature of the gas in the gas chamber is also installed on the heating gas chamber.
与现有技术相比,本发明的优点为:1、测量误差很小、精度高。由于是把管道内的烟气经取样后全程伴热到气体室,测量一些易溶于水的气体和/或一些气态金属或气态金属化合物的浓度,此时烟气中水是以蒸汽形式存在,不影响易溶于水的气体的测量精度。然后经过冷凝除水把一些易溶于水的气体除掉,剩余一些难溶于水的气体,此时温度低,便于使用吸收光谱技术或电化学方法去测量气体的浓度。2、系统成本低,省掉了价格昂贵的冷凝器,降低了成本。3、通过前后两个氧气传感器的读数可得知烟气中水的含量。Compared with the prior art, the present invention has the following advantages: 1. The measurement error is small and the precision is high. Since the flue gas in the pipeline is sampled and then heated to the gas chamber, the concentration of some water-soluble gases and/or some gaseous metals or gaseous metal compounds is measured. At this time, the water in the flue gas exists in the form of steam. , does not affect the measurement accuracy of water-soluble gases. Then, some water-soluble gases are removed through condensation and water removal, and some water-insoluble gases remain. At this time, the temperature is low, and it is convenient to use absorption spectroscopy or electrochemical methods to measure the gas concentration. 2. The system cost is low, saving the expensive condenser and reducing the cost. 3. The water content in the flue gas can be known through the readings of the front and rear oxygen sensors.
【附图说明】 【Description of drawings】
图1是一种烟气排放连续监测装置的结构示意图。Fig. 1 is a structural schematic diagram of a continuous monitoring device for flue gas emission.
图2是第一测量装置的结构示意图。Fig. 2 is a schematic structural diagram of the first measuring device.
图3是第二测量装置的结构示意图。Fig. 3 is a schematic structural diagram of the second measuring device.
图4是一种烟气排放连续监测方法的流程示意图。Fig. 4 is a schematic flow chart of a continuous monitoring method for flue gas emission.
【具体实施方式】 【Detailed ways】
请参阅图1所示,一种烟气排放连续监测装置,包括取样装置2、伴热管线3、加热气体室4、第一测量装置12、除水装置(如水罐6、7,储水罐14和过滤器8)及第二测量装置11,其中所述伴热管线3两端连接所述取样装置2和加热气体室4,而所述取样装置2安装在被测管道1上,所述管道1内的烟气被该取样装置2采样后经过所述伴热管线3、阀门13连接到所述加热气体室4,所述加热气体室4、阀门13安装在加热盒5内,一氧气传感器及一温度传感器(未示出)安装在所述加热气体室4内;烟气从加热气体室4中排出;所述烟气通过所述水罐6、7,储水罐14和过滤器8冷凝并除掉所述烟气中的水分,所述水罐6通过气管与所述过滤器8连接,且该水罐6还与一压力传感器9相连接;其中,所述过滤器8滤掉所述烟气中的固态/液态颗粒物,排出的气体通过气管连接到仪表柜中。Please refer to shown in Fig. 1, a kind of flue gas emission continuous monitoring device, comprises sampling device 2,
请一并参阅图1、图2及图3所示,所述第一测量装置12安装在仪表柜中,是一套应用紫外差分吸收光谱技术的测量装置,该紫外差分吸收光谱技术的测量装置是这样工作的:一紫外光源如氙灯120发出的光通过一光纤123连接到加热气体室4的一端,穿过加热气体室4内的气态组分后再通过另一光纤124与光接收装置121如分光器件和光电转换器连接,接收到的光被分光器件如光栅分光,再由光电转换器转换为电信号,之后将该电信号送第一信号处理器122分析得到至少一种第一类被测气态组分的浓度。所述第二测量装置11安装在仪表柜中,是一套应用半导体激光吸收光谱技术的测量装置,该应用半导体激光吸收光谱技术的测量装置是这样工作的:一光源如激光器110发出的光穿过气体,之后被光电转换器111接收并转换为电信号,然后将该电信号送第二信号处理器112分析并考虑到加热气体室4内的温度,从而测量除水后气态物质中的至少一种第二类被测气态组分浓度。另外,仪表柜中的气管上还安装氧气传感器。一抽气泵10安装在所述过滤器8和所述第二测量装置11之间的气路上,用于抽出管道1内的烟气。当然也可以用一安装于所述第二测量装置11后的射流装置达成同样的功能,对于此类替代已为业界现有技术所揭示,在此不再赘述。烟气从仪表柜中排出后还可以再通入气体管道内或其他分析设备上。Please also refer to Fig. 1, Fig. 2 and shown in Fig. 3, described
请一并参阅图4所示,本发明还揭示了一种烟气排放连续监测方法,其主要包括如下步骤:(1)管道内的烟气经过取样后再伴热传输到加热气体室,测量出加热气体室内至少一种第一类被测气态组分的浓度;(2)除去从加热气体室排出气体中的水分;(3)测量出除水后气体中至少一种第二类被测气态组分的浓度。Please also refer to Fig. 4, the present invention also discloses a method for continuous monitoring of flue gas emission, which mainly includes the following steps: (1) the flue gas in the pipeline is transported to the heating gas chamber with heat after being sampled, and measured (2) remove the moisture in the gas discharged from the heating gas chamber; (3) measure at least one of the second measured gaseous components in the gas after water removal Concentration of gaseous components.
具体到本实施例,表现为上述烟气排放连续监测装置的工作过程:被测管道1内的烟气通过所述取样装置2采样后,通过所述伴热管线3通到所述加热气体室4内,仪表柜中的所述第一测量装置12测量出所述加热气体室4内至少一种第一类被测气态组分的浓度;所述第一类被测气态组分主要是那些如果不在所述加热气体室4内测量,其测量结果可能会失真的气态组分,比如氨气、二氧化硫、三氧化硫、二氧化氮、氯化氢、氟化氢等一些易溶于水的气体和温度降低后其浓度会发生变化的气态金属(如锌、铅或汞等)以及气态金属化合物(如氯化汞或氯化银等);同时所述加热气体室4内的氧气传感器测得此时烟气中氧的含量;所述烟气从加热气体室4排出后通过所述除水装置如水罐6、7,储水罐14和过滤器8,除掉烟气中的水分和一些易溶于水的气体如氨气、二氧化硫、氯化氢、氟化氢等,并通过与所述水罐6相连接的压力传感器9测得此时气体的压力;之后通过气管通到仪表柜中,仪表柜中的气管上安装氧气传感器,测得此时气体中的氧含量;最后仪表柜中的所述第二测量装置11测量出除水后气体中至少一种第二类被测气态组分的浓度,比如一氧化碳等一些难溶于水的气体的浓度。Specifically to this embodiment, it is shown as the working process of the above-mentioned continuous monitoring device for flue gas discharge: after the flue gas in the measured pipeline 1 is sampled by the sampling device 2, it is passed to the heating gas chamber through the
根据国家标准,一套烟气排放连续监测装置还要测出烟气中水的含量,这里可以通过所述加热气体室4内的氧气传感器和仪表柜中的气管上的氧气传感器的读数得到烟气中的水的含量。According to national standards, a set of flue gas emission continuous monitoring device also needs to measure the content of water in the flue gas. Here, the smoke can be obtained through the readings of the oxygen sensor in the heating gas chamber 4 and the oxygen sensor on the air pipe in the instrument cabinet. water content in the air.
必须指出,上述实施例只是对本发明作出的一个非限定性举例说明。比如在上述实施例中,对第一、第二测量装置的测量方法及其使用的装置仅仅是一个具体的特例,当然,所述第一类、第二类被测气态组分浓度也可以使用其他吸收光谱技术或拉曼光谱技术或荧光光谱技术或电化学技术或顺磁技术测量。相应地,所述第一测量装置、第二测量装置也可以分别包括拉曼光谱或荧光光谱或电化学或顺磁分析装置。但凡本领域的技术人员在没有偏离本发明的宗旨和范围下,对本发明作出各种修改、替换和变更,仍属于本发明的保护范围。It must be pointed out that the above-mentioned embodiment is only a non-limitative illustration of the present invention. For example, in the above-mentioned embodiment, the measurement method of the first and second measurement devices and the device used therefor are only a specific special case. Of course, the concentration of the first and second types of measured gaseous components can also be used Other absorption spectroscopy techniques or Raman spectroscopy techniques or fluorescence spectroscopy techniques or electrochemical techniques or paramagnetic techniques measurements. Correspondingly, the first measuring device and the second measuring device may respectively include Raman spectroscopy or fluorescence spectroscopy or electrochemical or paramagnetic analysis devices. As long as those skilled in the art make various modifications, replacements and changes to the present invention without departing from the spirit and scope of the present invention, they still belong to the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100518957A CN100489535C (en) | 2006-06-08 | 2006-06-08 | Method for continuously monitoring smoke discharge and the device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100518957A CN100489535C (en) | 2006-06-08 | 2006-06-08 | Method for continuously monitoring smoke discharge and the device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1869706A CN1869706A (en) | 2006-11-29 |
CN100489535C true CN100489535C (en) | 2009-05-20 |
Family
ID=37443424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100518957A Active CN100489535C (en) | 2006-06-08 | 2006-06-08 | Method for continuously monitoring smoke discharge and the device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100489535C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788486A (en) * | 2010-03-02 | 2010-07-28 | 武汉钢铁(集团)公司 | Flue gas on-line analysis device of converter hot end |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101393222B (en) * | 2007-09-20 | 2012-07-18 | 财团法人工业技术研究院 | Organic gas monitoring device and method |
CN101949789A (en) * | 2010-08-16 | 2011-01-19 | 聚光科技(杭州)股份有限公司 | Method and device for pretreating gas |
CN102087179B (en) * | 2011-01-20 | 2012-11-14 | 北京雪迪龙科技股份有限公司 | Infrared gas analysis pretreatment system |
CN102707076B (en) * | 2012-04-05 | 2014-01-01 | 中国石油化工股份有限公司 | Integrated-three-chamber online analysis system |
CN104407161B (en) * | 2014-11-24 | 2016-01-13 | 汇众翔环保科技河北有限公司 | Smoke on-line monitoring system and monitoring method |
CN105606683A (en) * | 2016-01-29 | 2016-05-25 | 华电电力科学研究院 | Online continuous SO3 monitoring device and method |
CN106596198A (en) * | 2016-12-20 | 2017-04-26 | 哈尔滨工业大学 | An online SO3 measurement system and method |
CN108535154B (en) * | 2018-01-26 | 2021-03-16 | 沈阳东大山汇环境科技有限公司 | Equipment and method for detecting secondary pollutants in flue gas |
CN108663488A (en) * | 2018-07-16 | 2018-10-16 | 苏州仕净环保科技股份有限公司 | One kind of multiple exhaust gas on-line measuring devices |
CN112824875A (en) * | 2019-11-20 | 2021-05-21 | 杭州绰美科技有限公司 | Method for detecting ultraviolet differential nitrogen dioxide gas |
CN114354520A (en) * | 2021-12-29 | 2022-04-15 | 杭州谱育科技发展有限公司 | Device and method for detecting VOCs in water |
-
2006
- 2006-06-08 CN CNB2006100518957A patent/CN100489535C/en active Active
Non-Patent Citations (1)
Title |
---|
加热炉烟气在线自动测氧技术的研究. 苏道源.钢铁研究,第1期. 2004 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788486A (en) * | 2010-03-02 | 2010-07-28 | 武汉钢铁(集团)公司 | Flue gas on-line analysis device of converter hot end |
Also Published As
Publication number | Publication date |
---|---|
CN1869706A (en) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100489535C (en) | Method for continuously monitoring smoke discharge and the device | |
CN100504351C (en) | Continuous monitoring method and system for flue gas emission | |
CN110530814B (en) | A gas sampling measurement system and its application method | |
CN201803886U (en) | Gas pretreatment device and gaseous component monitoring system employing same | |
CN2914094Y (en) | Continuous fume emission monitoring system | |
US9410872B2 (en) | Exhaust gas flowmeter and exhaust gas analyzing system | |
CN101726468B (en) | Nox analyzer | |
CN109752344B (en) | Portable non-methane total hydrocarbon concentration detector and detection method | |
CN108507966A (en) | A kind of infrared spectrum gas sensor and data processing method | |
CN1759315B (en) | Analytical sensitivity enhancement by catalytic transformation | |
CN217112072U (en) | System for continuously monitoring greenhouse gas emission in waste treatment process on line | |
CN2914071Y (en) | Continuous fume emission monitoring system | |
CN205484057U (en) | Sulfur dioxide analysis appearance | |
CN118294422A (en) | Automatic change atmosphere active oxygen on-line measuring appearance | |
CN104237153A (en) | Online rapid detection system for gas content of transformer oil | |
CN112129898A (en) | Device and method for on-line monitoring of sulfur trioxide concentration in coal-fired flue gas | |
CN101949789A (en) | Method and device for pretreating gas | |
CN208721484U (en) | A kind of flue gas pre-processing device | |
CN117367916A (en) | Pretreatment device and method for quantitative analysis of organic carbon element and carbon in atmospheric particulate matters | |
CN203083931U (en) | Online monitor of heavy metals in water based on atomic fluorescence spectrometry | |
CN108956513A (en) | Portable ultraviolet spectrum flue gas analyzer and analysis method | |
CN104865207B (en) | Gray haze detecting system based on cavity ring-down spectroscopy instrument | |
CN102288557B (en) | Optical analyzing equipment and method for fluid | |
CN115184291A (en) | Full-range high-frequency infrared carbon and sulfur analyzer | |
CN105092510A (en) | A method and system for online continuous monitoring of flue gas in a natural gas power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C57 | Notification of unclear or unknown address | ||
DD01 | Delivery of document by public notice |
Addressee: Sun Jingwen Document name: Written notice of preliminary examination of application for patent for invention |
|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP02 | Change in the address of a patent holder |
Address after: Hangzhou City, Zhejiang Province, Binjiang District Binhu road 760 Patentee after: Juguang Sci. & Tech. (Hangzhou) Co., Ltd. Address before: Hangzhou City, Zhejiang Province, Binjiang District Road No. 1180 Building No. 3 bin Patentee before: Juguang Sci. & Tech. (Hangzhou) Co., Ltd. |
|
C56 | Change in the name or address of the patentee |
Owner name: FOCUSED PHOTONICS (HANGZHOU), LTD. Free format text: FORMER NAME: JUGUANG SCIENCE AND TECHNOLOGY (HANGZHOU) CO., LTD. |
|
CP01 | Change in the name or title of a patent holder |
Address after: Hangzhou City, Zhejiang province Binjiang District 310052 shore road 760 Patentee after: Focused Photonics (Hangzhou) Inc. Address before: Hangzhou City, Zhejiang province Binjiang District 310052 shore road 760 Patentee before: Juguang Sci. & Tech. (Hangzhou) Co., Ltd. |