[go: up one dir, main page]

CN100485511C - Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof - Google Patents

Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof Download PDF

Info

Publication number
CN100485511C
CN100485511C CNB200610116368XA CN200610116368A CN100485511C CN 100485511 C CN100485511 C CN 100485511C CN B200610116368X A CNB200610116368X A CN B200610116368XA CN 200610116368 A CN200610116368 A CN 200610116368A CN 100485511 C CN100485511 C CN 100485511C
Authority
CN
China
Prior art keywords
optical fiber
fiber
quantum dot
evanescent wave
dot semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB200610116368XA
Other languages
Chinese (zh)
Other versions
CN1928688A (en
Inventor
王廷云
庞拂飞
王克新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNB200610116368XA priority Critical patent/CN100485511C/en
Publication of CN1928688A publication Critical patent/CN1928688A/en
Application granted granted Critical
Publication of CN100485511C publication Critical patent/CN100485511C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本发明述及一种量子点半导体纳米材料渐逝波光纤放大器及其制造方法。它是利用熔锥型光纤耦合器作为光纤渐逝波放大的放大光纤,并把熔锥耦合区外面涂上纳米级的半导体材料,从而实现了纳米半导体材料耦合式的渐逝波光纤放大效果。它由泵浦光源和信号光源连接量子点半导体纳米材料渐逝波放大光纤构成。本方法是:首先制作光纤耦合器件,接着制作量子点半导体纳米材料,然后是制作量子点半导体纳米材料渐逝波放大光纤,最后制成放大器系统。本量子点半导体纳米材料渐逝波光纤放大器,实现宽光谱,体积小,价格低廉,可广泛应用于长距离、大容量、高速率的通信系统,接入网,光纤CATV网,FTTH,军用系统等领域的光信号放大,也可用于光纤传感器领域的光信号放大。

The invention relates to a quantum dot semiconductor nano material evanescent wave optical fiber amplifier and a manufacturing method thereof. It uses the fused cone fiber coupler as the amplifying fiber for the evanescent wave amplification of the fiber, and coats the outside of the fused cone coupling area with nano-scale semiconductor materials, thereby realizing the evanescent wave fiber amplification effect coupled with nano-semiconductor materials. It consists of a pumping light source and a signal light source connected to a quantum dot semiconductor nanomaterial evanescent wave amplifying fiber. The method is as follows: firstly, an optical fiber coupling device is made, then quantum dot semiconductor nanometer material is made, then quantum dot semiconductor nanometer material evanescent wave amplifying optical fiber is made, and finally an amplifier system is made. The quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier realizes wide spectrum, small size and low price, and can be widely used in long-distance, large-capacity, high-speed communication systems, access networks, optical fiber CATV networks, FTTH, military systems Optical signal amplification in fields such as optical fiber sensors can also be used for optical signal amplification in the field of optical fiber sensors.

Description

量子点半导体纳米材料渐逝波光纤放大器及其制造方法 Quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier and manufacturing method thereof

技术领域 technical field

本发明述及一种量子点半导体纳米材料渐逝波光纤放大器及其制造方法,属光通信技术和纳米材料制备技术领域。The invention relates to a quantum dot semiconductor nano material evanescent wave optical fiber amplifier and a manufacturing method thereof, belonging to the technical fields of optical communication technology and nano material preparation.

背景技术 Background technique

纳米材料是当今最富有活力的新材料研究领域。因纳米颗粒的量子尺寸、表面和宏观量子隧道等效应,与同材料的微米晶体相比,在催化、光学、磁性、力学、生物等方面具有许多奇异的性能。纳米技术是未来信息科技与生命科技进一步发展的共同基础,利用纳米材料研制特种功能型的光纤器件,正是纳米技术与信息技术结合的产物。其中,光纤通信领域急需的宽光谱光纤放大器就是一个纳米技术与光通信技术结合点。光纤放大器是高速、大容量光纤通信网络中最重要的部件之一,随着密集波分复用(DWDM)信道不断增加以及光纤到户(FTTH)的迅速推广应用,对光纤放大器的要求也越来越高,它要求光纤放大器向宽带宽、小型化的方向发展,但目前常用的基于掺铒稀土元素光纤实现的放大器(EDFA)由于其使用光纤长(为30m左右)、放大谱宽窄(约30nm)已不能满足光纤通信日益发展的需要。另外,价位低廉、工程化强的光纤放大器也是光纤通信系统所追求的。Nanomaterials are the most dynamic field of new material research today. Due to the quantum size, surface, and macroscopic quantum tunneling effects of nanoparticles, compared with micron crystals of the same material, they have many strange properties in terms of catalysis, optics, magnetism, mechanics, and biology. Nanotechnology is the common basis for the further development of information technology and life science and technology in the future. The use of nanomaterials to develop special functional optical fiber devices is the product of the combination of nanotechnology and information technology. Among them, the broadband optical fiber amplifier urgently needed in the field of optical fiber communication is a combination point of nanotechnology and optical communication technology. Optical fiber amplifiers are one of the most important components in high-speed, large-capacity optical fiber communication networks. With the continuous increase of dense wavelength division multiplexing (DWDM) channels and the rapid application of fiber-to-the-home (FTTH), the requirements for optical fiber amplifiers are also increasing. Higher and higher, it requires the fiber amplifier to develop in the direction of wide bandwidth and miniaturization, but the commonly used amplifier (EDFA) based on erbium-doped rare earth element fiber is due to its long fiber length (about 30m) and narrow amplification spectrum width (about 30nm) can no longer meet the growing needs of optical fiber communication. In addition, optical fiber amplifiers with low price and strong engineering are also pursued by optical fiber communication systems.

发明内容 Contents of the invention

本发明的目的在于针对已有技术存在的缺陷,提供一种新型的量子点半导体纳米材料渐逝波光纤放大器。它具有光信号的放大功能,解决掺杂稀土光纤必须使用长光纤(米级)实现光信号放大的问题,它可以用较短(厘米级)的光纤实现光信号放大。The object of the present invention is to provide a novel quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier aiming at the defects in the prior art. It has the function of amplifying optical signals and solves the problem that doped rare earth fibers must use long optical fibers (meter level) to achieve optical signal amplification, and it can use shorter (centimeter level) optical fibers to achieve optical signal amplification.

本发明的第二个目的是量子点半导体纳米材料渐逝波光纤放大器具有宽带特性,大约是普通掺铒光纤带宽的3~5倍。The second object of the present invention is that the quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier has broadband characteristics, which is about 3 to 5 times of the bandwidth of common erbium-doped optical fiber.

本发明还有一个目的是根据已有的光纤制备技术,结合纳米制作技术和工艺方法,在光纤的制作技术和工艺流程方面,提出一套实用可行的量子点半导体纳米材料渐逝波光纤放大器制造方法。Another object of the present invention is to propose a set of practical and feasible quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier manufacturing in terms of optical fiber manufacturing technology and process flow based on the existing optical fiber preparation technology, combined with nanometer manufacturing technology and process methods method.

为了达到上述目的,本发明的构思是:In order to achieve the above object, design of the present invention is:

本发明提出一种新型的量子点半导体纳米材料渐逝波光纤放大器,它是基于纳米材料技术、半导体理论、光波耦合理论和光纤渐逝波理论,采用熔锥型光纤耦合器作为光纤渐逝波放大的放大光纤,并把熔锥耦合区外面涂上纳米级的半导体材料实现的。The present invention proposes a novel quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier, which is based on nanomaterial technology, semiconductor theory, light wave coupling theory and optical fiber evanescent wave theory, and uses a fused-cone fiber coupler as an optical fiber evanescent wave amplifier. The amplified amplified optical fiber is realized by coating the outside of the fusion cone coupling region with nano-scale semiconductor material.

根据上述发明构思,本发明采用下述技术方案:According to above-mentioned inventive concept, the present invention adopts following technical scheme:

一种量子点半导体纳米材料渐逝波光纤放大器,由一个泵浦光源和一个信号光源与一个渐逝波放大光纤连接构成,其特征在于所述的渐逝波放大光纤为量子点半导体纳米材料渐逝波放大光纤,它是由2×2熔锥光纤耦合器件、量子点半导体纳米材料和封装保护管组成,所述的2×2熔锥光纤耦合器件由泵浦光输入光纤和信号光输入光纤分别连接一个2×2熔锥光纤耦合区的输入端两个光纤端,而2×2熔锥光纤耦合区的输出端两个光纤端分别连接放大后信号输出光纤和放大后泵浦输出光纤所构成;所述的量子点半导体纳米材料置于封装保护管内,并包围2×2熔锥光纤耦合区;所述的封装保护管的两端有封装胶把所述的量子点半导体纳米材料密封于所述的封装保护管和2×2熔锥光纤耦合区之间。A quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier is composed of a pump light source and a signal light source connected to an evanescent wave amplifying optical fiber, and is characterized in that the evanescent wave amplifying optical fiber is quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier. Evanescent wave amplification fiber, which is composed of 2×2 fused-taper fiber coupling device, quantum dot semiconductor nanomaterials and packaging protection tube, the 2×2 fused-taper fiber coupling device consists of pump light input fiber and signal light input fiber The two fiber ends of the input end of a 2×2 fused-taper fiber coupling area are respectively connected, and the two fiber ends of the output end of the 2×2 fused-taper fiber coupling area are respectively connected to the amplified signal output fiber and the amplified pump output fiber. Composition; the quantum dot semiconductor nanomaterial is placed in the packaging protection tube, and surrounds the 2 × 2 fusion tapered fiber coupling area; the two ends of the packaging protection tube have packaging glue to seal the quantum dot semiconductor nanomaterial in the Between the packaging protection tube and the 2×2 tapered fiber coupling area.

在上述的量子点半导体纳米材料渐逝波光纤放大器,所述的量子点半导体纳米材料渐逝波光纤,可根据技术参数的要求,使用的光纤为单模或多模光纤。In the aforementioned quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier, the quantum dot semiconductor nanomaterial evanescent wave optical fiber can be single-mode or multimode optical fiber according to the requirements of technical parameters.

在上述的量子点半导体纳米材料渐逝波光纤放大器,所述的量子点半导体纳米材料,可根据实际的需要,采用不同的半导体材料,如在PSe、CdSe、CdS、InP、PbSe、ZnSe、ZnS和HgTe中任选一种。In the above-mentioned quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier, the quantum dot semiconductor nanomaterial can adopt different semiconductor materials according to actual needs, such as PSe, CdSe, CdS, InP, PbSe, ZnSe, ZnS Choose one of HgTe.

一种量子点半导体纳米材料渐逝波光纤放大器的制造方法,其特征在于首先采用熔融拉锥技术制作2×2熔锥型光纤耦合器件;接着制备量子点半导体纳米材料;然后把量子点半导体纳米材料和2×2熔锥型光纤耦合器件结合在一起,并进行封装,形成量子点半导体纳米材料渐逝波放大光纤;最后,由泵浦光源1、信号光源2和量子点半导体纳米材料渐逝波放大光纤3组成光纤放大器;其具体工艺过程及工艺步骤如下:A method for manufacturing an evanescent wave optical fiber amplifier with quantum dot semiconductor nanomaterials, which is characterized in that firstly, the fusion taper technology is used to make a 2 × 2 fusion tapered optical fiber coupling device; then the quantum dot semiconductor nanomaterial is prepared; and then the quantum dot semiconductor nanometer The materials are combined with 2×2 fused tapered optical fiber coupling devices and packaged to form the quantum dot semiconductor nanomaterial evanescent wave amplification fiber; finally, the pump light source 1, the signal light source 2 and the quantum dot semiconductor nanomaterial evanescent wave Wave amplifying optical fiber 3 forms optical fiber amplifier; Its concrete technological process and technological steps are as follows:

(1)采用熔融拉锥技术制作2×2熔锥型光纤耦合器件:(1) Fabrication of 2×2 fused-taper fiber coupling devices using fused tapered technology:

用熔融拉锥机把两根光纤拉制成2×2熔锥型光纤耦合器件,其耦合器件由泵浦光输入光纤、信号光输入光纤、2×2熔锥光纤耦合区、放大后信号输出光纤和放大后泵浦输出光纤组成,泵浦光输入光纤、信号光输入光纤、放大后信号输出光纤和放大后泵浦输出光纤的光纤长度为1~2米,2×2熔锥光纤耦合区的长度为2~3厘米;Two optical fibers are drawn into a 2×2 fused-cone fiber coupling device with a fusion tapered machine, and the coupling device consists of pump light input fiber, signal light input fiber, 2×2 fused-taper fiber coupling area, and amplified signal output Composed of optical fiber and amplified pump output fiber, the fiber length of pump light input fiber, signal light input fiber, amplified signal output fiber and amplified pump output fiber is 1-2 meters, 2×2 fused cone fiber coupling area The length is 2 to 3 cm;

(2)采用溶胶—凝胶法制备量子点半导体纳米材料:(2) Preparation of quantum dot semiconductor nanomaterials by sol-gel method:

1)正硅酸乙脂TEOS进行酸式水解1.2~1.8小时,正硅酸乙脂、水、乙醇和硝酸的比为1:1:1:2.7×10-3,甲醇溶解液,甲醇与铅盐Pb(Ac)2·3H2O的比为15.8:1,引入于正硅酸乙脂酸式水解液中,均匀分散1.2~1.8小时,加入氨水、乙醇、水,比例为0.05:1:4,再进行碱式水解,均拌后,得到表面澄清、透明的均相溶胶;1) Ethyl orthosilicate TEOS is subjected to acid hydrolysis for 1.2 to 1.8 hours, the ratio of ethyl orthosilicate, water, ethanol and nitric acid is 1:1:1:2.7×10 -3 , methanol solution, methanol and lead The ratio of the salt Pb(Ac) 2 3H 2 O is 15.8:1. It is introduced into the hydrolyzed solution of ethyl orthosilicate and dispersed evenly for 1.2 to 1.8 hours. Add ammonia water, ethanol and water at a ratio of 0.05:1: 4. Carry out basic hydrolysis again, and after uniform mixing, a clear and transparent homogeneous sol is obtained;

2)把所得的溶胶在150℃±15℃温度通入硫化氢气体,反应0.45~0.55小时即可得到PbS/SiO2的量子半导体纳米材料;2) Pass the obtained sol into hydrogen sulfide gas at a temperature of 150°C±15°C, and react for 0.45 to 0.55 hours to obtain a PbS/SiO2 quantum semiconductor nanomaterial;

(3)制备量子点半导体纳米材料渐逝波放大光纤:(3) Preparation of quantum dot semiconductor nanomaterial evanescent wave amplification optical fiber:

1)把封装保护管套在2×2熔锥光纤耦合区上,使2×2熔锥光纤耦合区在封装保护管内,然后一端用封装胶密封;1) Put the packaging protection tube on the 2×2 fusion cone fiber coupling area, so that the 2×2 fusion cone fiber coupling area is in the packaging protection tube, and then seal one end with packaging glue;

2)把量子半导体纳米材料装入封装保护管内,并包围2×2熔锥光纤耦合区;2) Put the quantum semiconductor nanomaterials into the packaging protection tube, and surround the 2×2 fusion cone fiber coupling area;

3)用封装胶密封2×2熔锥光纤耦合器件的另一端,即形成量子点半导体纳米材料渐逝波放大光纤;3) Seal the other end of the 2×2 fused-taper fiber coupling device with encapsulant, that is, form the quantum dot semiconductor nanomaterial evanescent wave amplification optical fiber;

(4)制成光纤放大器:(4) Made into optical fiber amplifier:

把泵浦光源与量子点半导体纳米材料渐逝波放大光纤的泵浦光输入光纤连接,信号光源与量子点半导体纳米材料渐逝波放大光纤的信号光输入光纤连接,此时在放大后信号输出光纤得到的信号即为光放大信号,而放大后泵浦输出光纤输出的光信号为泵浦光经放大器吸收后的剩余泵浦光信号。Connect the pump light source to the pump light input fiber of the quantum dot semiconductor nanomaterial evanescent wave amplification fiber, and connect the signal light source to the signal light input fiber of the quantum dot semiconductor nanomaterial evanescent wave amplification fiber. At this time, the signal output after amplification The signal obtained by the optical fiber is the optically amplified signal, and the optical signal output by the pump output fiber after amplification is the remaining pumping optical signal after the pumping light is absorbed by the amplifier.

上述的量子点半导体纳米材料渐逝波光纤放大器的制造方法,所述的量子点半导体纳米材料渐逝波放大光纤,可根据技术参数的要求,使用的光纤为单模或多模光纤。In the manufacturing method of the above quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier, the quantum dot semiconductor nanomaterial evanescent wave amplifying optical fiber can be single-mode or multimode optical fiber according to the requirements of technical parameters.

上述的量子点半导体纳米材料渐逝波光纤放大器的制造方法,所述的量子点半导体纳米材料,可根据实际的需要,采用不同的半导体材料,如在PSe、CdSe、CdS、InP、PbSe、ZnSe、ZnS和HgTe中任选一种。The above-mentioned manufacturing method of quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier, described quantum dot semiconductor nanomaterial can adopt different semiconductor materials according to actual needs, such as PSe, CdSe, CdS, InP, PbSe, ZnSe , ZnS and HgTe any one.

本发明方法的原理如下所述:The principle of the inventive method is as follows:

本发明的这种量子点半导体纳米材料渐逝波光纤放大器的放大机理在于,利用熔锥型光纤耦合器作为光纤渐逝波放大的放大光纤,并把熔锥形外层涂上纳米级的半导体材料实现的。当泵浦光和信号光通过具有耦合效应的渐逝波半导体锥区时,一旦入射泵浦光子能量大于半导体带隙,就会发生强烈的本征吸收,入射光子使半导体价带中的电子受激发而垂直跃迁进入导带,这样,当信号光波通过处于该状态的半导体纳米材料时,信号光就会得到放大。The amplification mechanism of this quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier of the present invention is to utilize the amplifying optical fiber of the evanescent wave amplification of the fused-cone fiber coupler, and coat the fused-cone outer layer with nano-scale semiconductor material realized. When the pump light and the signal light pass through the evanescent wave semiconductor cone region with coupling effect, once the incident pump photon energy is greater than the semiconductor band gap, strong intrinsic absorption will occur, and the incident photon will absorb the electrons in the semiconductor valence band Excitation makes a vertical transition into the conduction band, so that when the signal light wave passes through the semiconductor nanomaterial in this state, the signal light is amplified.

因把半导体纳米颗粒镶嵌于介质中,当他们的尺度为量子尺度(即小于半导体材料中束缚激子的Bohr半径)时(也称为量子尺寸效应),形成了量子点结构。量子点半导体纳米材料的出现将电子局限于点状结构之内,实现零维量子限制。由此,会在导带和价带间形成具有一定能量间隔的量子化能级,而且,量子点的尺寸越小,其量子化能级间距越大,吸收泵浦光束的能力越强,高能带上形成的粒子反转数越强。当一定波长的小信号光耦合到量子点半导体纳米材料时,就会诱发大量的光生载流子,从较高的量子化能级驰豫到较低的量子化能级,形成受激辐射过程,使产生受激辐射光子的概率增大,这提高放大性能,使信号得到增强的放大。Because the semiconductor nanoparticles are embedded in the medium, when their scale is the quantum scale (that is, smaller than the Bohr radius of the bound excitons in the semiconductor material) (also known as the quantum size effect), a quantum dot structure is formed. The emergence of quantum dot semiconductor nanomaterials confines electrons within the point-like structure, realizing zero-dimensional quantum confinement. As a result, quantized energy levels with a certain energy interval will be formed between the conduction band and the valence band, and the smaller the size of the quantum dot, the larger the distance between the quantized energy levels, the stronger the ability to absorb the pump beam, and the higher energy The number of particle inversions formed on the belt is stronger. When a small signal light of a certain wavelength is coupled to the quantum dot semiconductor nanomaterial, a large number of photogenerated carriers will be induced to relax from a higher quantized energy level to a lower quantized energy level, forming a stimulated emission process. , which increases the probability of generating stimulated emission photons, which improves the amplification performance and enables the signal to be amplified with enhancement.

由上所述,可以看出本发明的量子点半导体纳米材料渐逝波光纤放大器是一种集成化、增益谱宽、且使用方便、价格低廉的新型光纤放大器。From the above, it can be seen that the quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier of the present invention is a new type of optical fiber amplifier that is integrated, has a wide gain spectrum, is easy to use, and is cheap.

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:

本发明实现的渐逝波光纤放大器,结构上采用的是双纤熔锥形式,放大材料采用的是量子点纳米半导体,与掺杂稀土光纤放大器相比,它在带宽、体积、价格上有优势。具体的优点如下:(1)量子点半导体作为放大材料,它的粒子跃迁不是发生在分立的能级之间,而是产生于两个能带(价带和导带)之间,因而放大的谱宽要比掺杂稀土元素光纤要宽得多,大约是传统掺铒光纤放大器的3—5倍;(2)纳米半导体材料对泵浦光源波长的要求也不苛刻,所以泵浦光源不一定要求是激光器,也可以用发光二极管阵列等器件;(3)它的放大光纤区域在厘米级范围,且放大区域的引线端就可作为泵浦和信号光的输入和输出,体积小、成本低。The evanescent wave optical fiber amplifier realized by the present invention adopts the double-fiber fusion cone form in structure, and the amplifying material adopts quantum dot nano-semiconductor. Compared with the rare earth-doped optical fiber amplifier, it has advantages in bandwidth, volume and price . The specific advantages are as follows: (1) Quantum dot semiconductor is used as an amplifying material, and its particle transition does not occur between discrete energy levels, but between two energy bands (valence band and conduction band), so the amplified The spectral width is much wider than that of rare-earth-doped fiber, about 3-5 times that of traditional erbium-doped fiber amplifiers; (2) Nano-semiconductor materials do not have strict requirements on the wavelength of the pump light source, so the pump light source is not necessarily The requirement is a laser, and devices such as light-emitting diode arrays can also be used; (3) its amplified optical fiber area is in the centimeter range, and the lead end of the amplified area can be used as the input and output of pump and signal light, small in size and low in cost .

本发明作为光纤放大器,适合应用于长距离、大容量、高速率的通信系统,接入网,光纤CATV网,FTTH,军用系统等领域的光信号放大,也可用于光纤传感器领域的光信号放大。As an optical fiber amplifier, the present invention is suitable for optical signal amplification in long-distance, large-capacity, high-speed communication systems, access networks, optical fiber CATV networks, FTTH, military systems, and other fields, and can also be used for optical signal amplification in the field of optical fiber sensors .

附图说明: Description of drawings:

图1为本发明量子点半导体纳米材料渐逝波光纤放大器结构原理示意图。Fig. 1 is a schematic diagram of the structure and principle of an evanescent wave optical fiber amplifier made of quantum dot semiconductor nanomaterials according to the present invention.

图2为量子点半导体纳米材料渐逝波放大光纤结构示意图。Fig. 2 is a schematic diagram of the structure of an evanescent wave amplifying optical fiber made of quantum dot semiconductor nanomaterials.

具体实施方式 Detailed ways

本发明的一个优选实施例结合附图叙述于后:A preferred embodiment of the present invention is described below in conjunction with accompanying drawing:

本量子点半导体纳米材料渐逝波光纤放大器,它由980nm泵浦光源2、1310nm信号光源1和量子点PbS半导体纳米材料渐逝波放大光纤3组成,参见图1,其量子点半导体纳米材料渐逝波放大光纤3是由2×2熔锥单模光纤耦合器件、量子点半导体纳米材料34和封装保护管35组成,其中2×2熔锥单模光纤耦合器件由泵浦光输入光纤31、信号光输入光纤32、2×2熔锥光纤耦合区39、放大后信号输出光纤37和放大后泵浦输出光纤38组成,把量子点PbS半导体纳米材料34放置于石英封装保护管35内,并包围2×2熔锥光纤耦合区39,封装胶33、36是把量子点半导体纳米材料34密封于石英封装保护管35和2×2熔锥光纤耦合区39之间。This quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier is composed of a 980nm pump light source 2, a 1310nm signal light source 1 and a quantum dot PbS semiconductor nanomaterial evanescent wave amplification fiber 3, as shown in Figure 1, its quantum dot semiconductor nanomaterial evanescent wave amplifier The evanescent wave amplifying fiber 3 is composed of a 2×2 fused-cone single-mode fiber coupling device, a quantum dot semiconductor nanomaterial 34 and a package protection tube 35, wherein the 2×2 fused-cone single-mode fiber coupling device is composed of a pump light input fiber 31, The signal light input optical fiber 32, the 2×2 fusion taper optical fiber coupling area 39, the amplified signal output optical fiber 37 and the amplified pump output optical fiber 38 are composed of the quantum dot PbS semiconductor nanomaterial 34 placed in the quartz packaging protection tube 35, and Surrounding the 2×2 fused-taper fiber coupling region 39 , encapsulation glue 33 and 36 seal the quantum dot semiconductor nanomaterial 34 between the quartz package protection tube 35 and the 2×2 fused-taper fiber coupling region 39 .

本量子点半导体纳米材料渐逝波光纤放大器的制造方法包括以下各步骤,参见图2:The manufacturing method of this quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier comprises the following steps, referring to Fig. 2:

(1)采用熔融拉锥技术,制作2×2熔锥型单模光纤耦合器件:(1) Using fused tapered technology to make 2×2 fused tapered single-mode fiber coupling devices:

用熔融拉锥机把两根单模光纤拉制成2×2熔锥型光纤耦合器件,其耦合器件由泵浦光输入光纤31、信号光输入光纤32、2×2熔锥光纤耦合区39、放大后信号输出光纤37和放大后泵浦输出光纤39组成,泵浦光输入光纤31、信号光输入光纤32、放大后信号输出光纤37和放大后泵浦输出光纤38的光纤长度为1米,2×2熔锥光纤耦合区39的长度为3厘米。Two single-mode optical fibers are drawn into a 2×2 fused-taper fiber coupling device with a fusion tapered machine, and the coupling device is composed of a pump light input fiber 31, a signal light input fiber 32, and a 2×2 fused-taper fiber coupling area 39 , an amplified signal output optical fiber 37 and an amplified pump output optical fiber 39, the optical fiber length of the pump light input optical fiber 31, the signal light input optical fiber 32, the amplified signal output optical fiber 37 and the amplified pump output optical fiber 38 is 1 meter , the length of the 2×2 fused-taper fiber coupling region 39 is 3 cm.

(2)采用sol-gel(溶胶—凝胶)法,制备量子点PbS半导体纳米材料:(2) Using the sol-gel (sol-gel) method to prepare quantum dot PbS semiconductor nanomaterials:

1)正硅酸乙脂TEOS进行酸式水解1.5小时,正硅酸乙脂、水、乙醇和硝酸的比例为1:1:1:2.7×10-3,甲醇溶解液,甲醇与铅盐(Pb(Ac)2·3H2O)的比例为15.8:1,引入于正硅酸乙脂酸式水解液中,均匀分散1.5小时,加入氨水、乙醇、水,比例为0.05:1:4,再进行碱式水解,均拌后,得到表面澄清、透明的均相溶胶;1) Ethyl orthosilicate TEOS was subjected to acid hydrolysis for 1.5 hours, the ratio of ethyl orthosilicate, water, ethanol and nitric acid was 1:1:1:2.7×10 -3 , methanol solution, methanol and lead salt ( The ratio of Pb(Ac) 2 3H 2 O) is 15.8:1, introduced into the acid hydrolyzate of orthosilicate acetate, and dispersed evenly for 1.5 hours, adding ammonia, ethanol, water, the ratio is 0.05:1:4, Carry out alkaline hydrolysis again, after mixing evenly, obtain the homogeneous sol with clear surface, transparent;

2)把溶胶在150℃温度通入硫化氢气体,反应0.5小时即可得到PbS/SiO2的量子半导体纳米材料34。2) Pass the sol into hydrogen sulfide gas at a temperature of 150° C., and react for 0.5 hour to obtain the PbS/SiO2 quantum semiconductor nanomaterial 34 .

(3)制备量子点半导体纳米材料渐逝波放大光纤:(3) Preparation of quantum dot semiconductor nanomaterial evanescent wave amplification optical fiber:

1)把石英封装保护管套35在2×2熔锥光纤耦合区39上,使2×2熔锥光纤耦合区39在在封装保护管35内,然后一端用封装胶33密封;1) Put the quartz packaging protective sleeve 35 on the 2×2 fused-taper fiber coupling region 39, so that the 2×2 fused-taper fiber coupling region 39 is in the packaging protection tube 35, and then seal one end with a packaging glue 33;

2)把量子PbS半导体纳米材料34装入石英封装保护管35内,并包围2×2熔锥光纤耦合区39;2) Put the quantum PbS semiconductor nanomaterial 34 into the quartz package protection tube 35, and surround the 2×2 fusion tapered fiber coupling area 39;

3)用封装胶36密封2×2熔锥光纤耦合器件的另一端,即形成量子点半导体纳米材料渐逝波放大光纤3。3) Seal the other end of the 2×2 fused-taper fiber coupling device with encapsulant 36 , that is, form the evanescent-wave amplifying optical fiber 3 made of quantum dot semiconductor nanomaterials.

(4)制成光纤放大器:(4) Made into optical fiber amplifier:

把980nm泵浦光源1与量子点半导体纳米材料渐逝波放大光纤3的泵浦光输入光纤31连接,1310nm信号光源2与量子点半导体纳米材料渐逝波放大光纤3的信号光输入光纤32连接,此时在放大后信号输出光纤37得到的信号即为光放大信号,信号的放大增益约为在4—5dB。Connect the 980nm pump light source 1 with the pump light input fiber 31 of the quantum dot semiconductor nanomaterial evanescent wave amplification fiber 3, and connect the 1310nm signal light source 2 with the signal light input fiber 32 of the quantum dot semiconductor nanomaterial evanescent wave amplification fiber 3 At this time, the signal obtained by the signal output optical fiber 37 after amplification is the optical amplified signal, and the amplification gain of the signal is about 4-5 dB.

量子点半导体纳米材料渐逝波光纤放大器的量子点半导体纳米材料渐逝波放大光纤3,使用的光纤为单模光纤,其纤芯为9μm、光纤直径为125μm。Quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier The quantum dot semiconductor nanomaterial evanescent wave amplifying optical fiber 3 uses a single-mode optical fiber with a core of 9 μm and a fiber diameter of 125 μm.

Claims (3)

1.一种量子点半导体纳米材料渐逝波光纤放大器,由一个泵浦光源(1)和一个信号光源(2)与一个渐逝波放大光纤连接构成,其特征在于所述的渐逝波放大光纤为量子点半导体纳米材料渐逝波放大光纤(3),它是由2×2熔锥光纤耦合器件、量子点半导体纳米材料(34)和封装保护管(35)组成,所述的2×2熔锥光纤耦合器件由泵浦光输入光纤(31)和信号光输入光纤(32)分别连接一个2×2熔锥光纤耦合区(39)的输入端两个光纤端,而2×2熔锥光纤耦合区(39)的输出端两个光纤端分别连接放大后信号输出光纤(37)和放大后泵浦输出光纤(38)所构成;所述的量子点半导体纳米材料(34)置于封装保护管(35)内,并包围2×2熔锥光纤耦合区(39);所述的封装保护管(35)的两端有封装胶(33、36)把所述的量子点半导体纳米材料(34)密封于所述的封装保护管(35)和2×2熔锥光纤耦合区(39)之间。1. A quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier is formed by connecting a pump light source (1) and a signal light source (2) with an evanescent wave amplification optical fiber, and is characterized in that described evanescent wave amplification The optical fiber is a quantum dot semiconductor nanomaterial evanescent wave amplifying optical fiber (3), which is composed of a 2×2 fused-taper fiber coupling device, a quantum dot semiconductor nanomaterial (34) and a packaging protection tube (35), and the 2× 2 Fused-tapered optical fiber coupling device is respectively connected to two fiber ends of the input end of a 2×2 fused-tapered fiber coupling area (39) by pumping light input fiber (31) and signal light input fiber (32), and 2×2 fused The two fiber ends of the output end of the tapered fiber coupling area (39) are respectively connected to the amplified signal output fiber (37) and the amplified pump output fiber (38); the quantum dot semiconductor nanomaterial (34) is placed In the encapsulation protection tube (35), and surround 2 * 2 melting taper fiber coupling regions (39); The two ends of the encapsulation protection tube (35) have encapsulation glue (33, 36) to put the quantum dot semiconductor nano The material (34) is sealed between the packaging protection tube (35) and the 2×2 fusion tapered fiber coupling region (39). 2.根据权利要求1所述的量子点半导体纳米材料渐逝波光纤放大器,其特征在于所述的量子点半导体纳米材料渐逝波光纤(3)使用的光纤为单模或多模光纤。2. The quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier according to claim 1, characterized in that the optical fiber used in the quantum dot semiconductor nanomaterial evanescent wave optical fiber (3) is a single-mode or multimode optical fiber. 3.根据权利要求1所述的量子点半导体纳米材料渐逝波光纤放大器,其特征在于所述的量子点半导体纳米材料(34)为PSe、CdSe、CdS、InP、PbSe、ZnSe、ZnS和HgTe中任选一种。3. quantum dot semiconductor nanomaterial evanescent wave optical fiber amplifier according to claim 1, is characterized in that described quantum dot semiconductor nanomaterial (34) is PSe, CdSe, CdS, InP, PbSe, ZnSe, ZnS and HgTe Choose one of them.
CNB200610116368XA 2006-09-21 2006-09-21 Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof Active CN100485511C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200610116368XA CN100485511C (en) 2006-09-21 2006-09-21 Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200610116368XA CN100485511C (en) 2006-09-21 2006-09-21 Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof

Publications (2)

Publication Number Publication Date
CN1928688A CN1928688A (en) 2007-03-14
CN100485511C true CN100485511C (en) 2009-05-06

Family

ID=37858704

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610116368XA Active CN100485511C (en) 2006-09-21 2006-09-21 Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof

Country Status (1)

Country Link
CN (1) CN100485511C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100570463C (en) * 2007-09-14 2009-12-16 中国科学院上海光学精密机械研究所 Subwavelength Diameter Fiber Amplifier Based on Evanescent Wave
CN101364707B (en) * 2008-10-08 2010-06-02 北京工业大学 Fused Taper Fiber Oppositely Cross-Coupled External Cavity Semiconductor Lasers
CN102096272B (en) * 2010-12-31 2013-03-06 上海大学 Evanescent wave excitation semiconductor quantum dot optical fiber amplifier and preparation method thereof
CN102692783B (en) * 2012-06-26 2014-12-31 上海大学 High molecular material decorated quantum dot single-mode optical fiber amplifier and manufacturing method thereof
CN111308829A (en) * 2020-04-10 2020-06-19 上海大学 A kind of PbS/SiO2 co-doped nanometer integrated tapered fiber amplifier and preparation method thereof
CN115912039A (en) * 2022-11-03 2023-04-04 南方科技大学 Preparation method of time-space mode-locked fiber laser based on saturable absorber

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Miniature erbium doped planar optical amplifiers. A.POLMAN.proc. 27th EUR. CONF. ON OPT. COMM.. 2001 *
一种新型结构的单纵模光纤激光器. 杨敬等.中国激光,第32卷第4期. 2005 *
利用有机-无机溶胶-凝胶方法制备平面波导环形谐振腔. 庞拂飞等.中国激光,第33卷第5期. 2006 *

Also Published As

Publication number Publication date
CN1928688A (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CN100485511C (en) Evanescent wave optical fiber amplifier for quantum spot semiconductor nano-materials and manufacture method thereof
Sun et al. Giant optical gain in a single-crystal erbium chloride silicate nanowire
US5881200A (en) Optical fibre with quantum dots
CN101825737B (en) Optical fiber amplifier including nanostructures
Bozolan et al. Temperature sensing using colloidal-core photonic crystal fiber
TW200425598A (en) Evanescent-field optical amplifiers and lasers
CN103151687B (en) A kind of directly produce in the amplifier in the method for infrared excess continuous spectrum
CN102208738A (en) Graphene passive mode-locked fiber laser
US6470127B2 (en) Photonic band-gap light-emitting fibers
CN100509672C (en) Nano-quantum point optical fiber and manufacturing method thereof
Wang et al. The development and progression of micro-nano Optics
Zhu et al. Quantum Dot‐Doped Optical Fibers
CN202373839U (en) Multistage cascading type 1064nm band high-power active seeker electronics (ASE) light source
CN110061408A (en) It mixes the preparation of chromium selenizing zinc nanoparticles saturable absorber and its constitutes full optical fiber Q-switched laser
Wu et al. Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber
CN102096272B (en) Evanescent wave excitation semiconductor quantum dot optical fiber amplifier and preparation method thereof
CN108988111A (en) Pulse laser and preparation method thereof based on conical fiber vulcanized lead quantum dot
JPH09139534A (en) Rare earth element doped fiber amplifier
CN102244351A (en) Passive mode-locking device based on SCNTs (singlewalled carbon nano tubes) and manufacturing method thereof
Sun et al. Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design
CN109449735A (en) A kind of mixed mode-locking thulium-doped fiber laser
Zhang et al. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber
Yusoff et al. Aluminum oxide/polydimethylsiloxane-based Q-switched mode-locked erbium-doped fiber laser
CN202957448U (en) Mid-far infrared supercontinuum fiber laser
CN105826805B (en) Random fiber laser capable of being magnetically regulated and controlled

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant